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Calcium carbonate particles are common in many sedimentary environments,
with the formational processes unresolved. Due to the variety of sedimentary
environments, these particles exhibit significant variations in their petrographic,
mineralogical, and geochemical features, as well as their genetic mechanisms.
In the Huanglong travertine system, Sichuan, China, unique calcium carbonate
particles, resembling sand grains, have been identified and are referred to
as sand-like particles (0.5-3.0 mm). This study systematically investigates
the mineralogical, petrographic, and geochemical characteristics of these
particles. The particles form in a high-Ca?" cold spring environment (Ca*
>3.00mM, T < 13°C) through an exceptional aggregation-cementation-
accretion-compaction process involving both detrital fragments and
newformed calcite crystals. The particle growth is primarily controlled
by hydrodynamic fluctuations and microbial mediation, with extracellular
polymeric substances (EPS) templating calcite nucleation while kinetic
disequilibrium drives rapid crystallization. These composite particles preserve
distinct microtextural signatures of multiple diagenetic phases, offering
new insights into non-classical carbonate formation. This study highlights
the complexity and diversity of localized travertine deposition, bridging
the gap between macroscopic sedimentary frameworks and localized
depositional processes. The Huanglong system represents a unique natural
laboratory for studying carbonate sedimentation under hydrochemical
gradients. This research provides fundamental insights into the complex
interplay between inorganic processes (hydrochemical precipitation driven
by high Ca?* and CO, degassing) and organic mediation (microbial activity
and extracellular polymeric substances) in these unique high-calcium
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aquatic systems. This not only elucidates the diversity of carbonate deposition
mechanisms in Huanglong's environment, but also holds significant implications
for understanding the establishment of similar coupled physicochemical-
biological systems in other high-altitude, calcium-rich spring environments

worldwide.
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Huanglong ravine

1 Introduction

Travertine and tufa, as described by Ford and Pedley (1996)
and Pentecost (2005) secondary carbonate rocks formed by the
deposition of karst waters in various environments such as springs,
rivers, and lakes on the surface or in caves. These terrestrial
carbonate rocks (Capezzuoli et al, 2014) are common in the
Quaternary record (Pedley, 1990). The chemical deposition of
continental travertine can be described by a gas -water-solid
equilibrium reaction as follows: Ca®* (aq) +2HCO; ™ (aq) = CaCO;4
(s) + H,O (1) + CO, (g). Travertine landscapes have not only become
prized tourism resources due to their aesthetic appeal, but more
importantly, they have emerged as significant scientific archives with
unique value for paleoclimate reconstruction and geological event
documentation (Matsuoka et al., 2001; Garnett et al., 2004; Liu, 2014;
Rodriguez-Berriguete et al., 2018; Tchouatcha et al., 2016; Gao et al.,
2013; Temiz et al., 2021). As a result, the study of sedimentary
environments and the evolution of travertine systems has become
a major research focus (Amato et al, 2012; Croci et al, 2016;
Henchiri et al., 2017; Kano et al., 2019; Qiu et al., 2022).

The Huanglong Scenic Area in Sichuan, China, represents an
actively forming continental carbonate system, often described as
a “natural travertine museum” due to its extensive and diverse
travertine formations (Dong et al., 2023). The area features various
carbonate landscapes, including travertine waterfalls, colorful pools
with basins and side stone dams, beach flows, and caves (Lu
and Li, 1992; Lu et al, 2000). During our investigation of the
Huanglong travertine system, we observed notable accumulations
of spherical or near-spherical calcium carbonate particles along
the edges of rimstone dams adjacent to the pools, particularly
in zones with low water flow and gentle slopes. Since these
particles exhibit morphological and size characteristics similar to
sand grains, they are herein referred to as “sand-like particles”
Spherical or near-spherical calcium carbonate particles, such as
pisoids, ooids, oncoids, pearls, spherulites, and vadoids, are found
in various continental sedimentary environments, each with distinct
characteristics and formation mechanisms (Folk and Chafetz, 1983;
Verrecchia et al., 1995; Porta, 2015; Melim et al., 2009; Melim and
Spilde, 2018; Mors et al., 2022). Their characteristics are strongly
influenced by genetic conditions, with morphology, size and internal
structure reflecting sedimentary environments.

Preliminary observations in Huanglong indicate that sand-
like particles may compromise rimstone dam structural integrity
and inhibit the natural evolution of travertine pools. These detrital
particles (Guo, 2005; Zhang et al., 2012a), being highly susceptible
to fluvial transport, predominantly accumulate along pool rear
margins and dam peripheries. Such accumulations not only
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diminish the aesthetic value of travertine landscapes but also
physically alter local hydrodynamic patterns through sediment
loading, potentially redirecting flow paths and exacerbating
asymmetric erosion. And may biochemically influence cementation
processes via particle-associated microbial communities, thereby
weakening While these hypothesized
mechanisms require validation through targeted monitoring,
they underscore the critical need to elucidate particle formation

structural  cohesion.

mechanisms and their geomorphological roles in carbonate systems.

Historically, investigations of travertine systems have relied
heavily on macroscale surveys and bulk geochemical analyses
(Liu et al., 2009; Jiang, 2008; Pedley, 2010). While these approaches
effectively capture large - scale deposition patterns and system -
level evolution, they often overlook the role of localized carbonate
particles critical for understanding fine - scale geomorphic
and biogeochemical processes. Thus, this study employs a
multiscale, interdisciplinary methodology integrating: microscopic
petrography to characterize particle morphology, internal
structures, and microbial associations; in - situ hydrochemical
testing to link particle formation to dynamic environmental
conditions; and molecular biological techniques to elucidate biotic
- abiotic interactions. By applying this framework, the study
identifies specific sedimentary environments and conditions,
explores the factors controlling carbonate particle deposition.
Highlighting travertine deposition complexity, this work contributes
to carbonate sedimentation knowledge, provides a framework for
studying mineralogical - geochemical - biological interactions in
continental settings. Significantly, it offers practical implications for
environmental monitoring and conservation in regions with delicate
karst landscapes, where understanding carbonate deposition is
crucial for preserving these unique natural resources.

2 Materials and methods
2.1 Study area and sample collection

2.1.1 Study area

The Huanglong Scenic Area, located in the northern part of
Songpan County, Aba Tibetan and Qiang Autonomous Prefecture,
Sichuan (China) lies within the southern Minshan Mountains,
where the Qinghai-Tibet Plateau transitions into the Sichuan Basin
(Figures 1a,b). The region features alpine canyon terrain, with slopes
ranging from southwest to northeast. The Huanglong Scenic Area
spans 38 km north-south and 23 km east-west, with an elevation
range of 1700-5588 m. Due to its unique geographical position, the
area experiences a cold and arid monsoon climate, characteristic
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FIGURE 1
Study the geographical location and geological structure of the area. (a) Ge

study area. (c) Structural and geological map of the Huanglong study area.

of the plateau temperate monsoon (Liu et al., 2003). The core
area boasts a vibrant travertine landscape, including thousands of
colorful pools, with Huanglong Ravine being the primary attraction
(Figure 1c). The Huanglong Ravine is located at the confluence
of three structural units: the Yangtze paraplatform, the Songpan-
Garze fold system, and the Qinling fold system (Cao et al,
2009; Zhang et al, 2015). The outcropped rock formations in
the Huanglong area date from the Silurian to Triassic periods,
with a total thickness exceeding 2,700 m. The dominant lithologies
are limestone, bioclastic limestone, and dolomite (Figure 1c). The
southern margin of Wangxiangtai is predominantly Devonian,
Carboniferous, and Permian limestone, dolomitic limestone, and
bioclastic limestone, while the northern part mainly consists
of Triassic sandstone, Silurian slate, and intercalated slate and
limestone (Team, 2001).

Surface water from rainfall, snowmelt, and springs, particularly
from the Zhuanhua Spring Group, serves as the primary water
source for Huanglong Ravine. This constant water supply is crucial
for travertine formation in the valley (Guo et al, 2002). The
pH of surface water in the study area ranges from 6.81 to 8.62,
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ographical location of Sichuan. (b) Geographical location of the Huanglong

with most waters showing alkaline characteristics. Hydrochemical
analysis reveals that it falls in the category of HCO;-Ca, with
Ca?* and Mg®* as the principal cations and HCO; as the
dominant anion (Gao et al., 2023).

2.1.2 Sample Collection

These particles primarily gather along the gentle lower edges of
rimstone dams within travertine pools. Similar deposits have been
found in sloping flow systems near the Horseshoe Sea, Charming
Pool, and Mirror Reflecting Pool (Figure 2). As a result, we chose
four sites with notable particle accumulation - Colorful Pool,
Horseshoe Sea, Charming Pool, and Mirror Reflecting Pool - as the
sampling locations for the study. In situ sampling was carried out at
these sites to examine the morphology and size variety of sand-like
particles in the Huanglong area.

2.2 Analytical methods

To comprehensively characterize the carbonate particles in the
travertine system and elucidate their formation mechanisms and
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Map showing the sampling sites. (a) An overview of the multicolored pool, with the main accumulation areas of travertine particles circled in blue. (b) In
the gentle area of the Horseshoe Sea, the particles are evenly distributed and conserved by water. (c) Field - observed accumulation morphology of
particles. (d) Sample photograph. (e) Geological profile map and distribution of sampling points along Huanglong Ravine. Revised
according to Liu et al. (1993).

environmental implications, a multi - faceted analytical approach
was employed. This included hydrodynamic and hydrochemical
analysis to understand the physical and chemical properties of
the water environment, petrographic and mineralogical analysis
encompassing petrography, scanning electron microscopy -
energy dispersive spectroscopy (SEM - EDS), Tescan Integrated
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Mineral Analyzer (TIMA), and cathodoluminescence (CL)
techniques (Table 1). These methods were systematically applied
to examine particle morphology, mineral composition, elemental
distribution, and growth characteristics, providing a holistic
understanding of the travertine carbonate particles from multiple

perspectives.
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TABLE 1 Summary of analytical methods and technical parameters.

10.3389/feart.2025.1654910

Analysis Type Method/Instrument Key Parameters Target Characteristics
Hydrodynamic Radarvelocimeter (HD-SCDPL) Range: 0.1-30 m/s Spatial flow variability
Accuracy: 2% + 0.03 m/s
Hydrochemical WTW Multi 3630 IDS pH: +£0.004 Ca’*-HCO;" equilibrium
Titration: VISOCOLOR® ECO/HE DO: +0.5% Calcite saturation index
Conductivity: +0.5%
Petrographic Polarizing microscope (Zeiss) Thin-section: 30 um Grain morphology/cementation
Magnification: 50-200x Growth zoning
Microanalysis SEM-EDS (HITACHI SU8010) Voltage: 0.3-30 kV Micromorphology/element distribution
Beam current: 1 pA-1 A Organic matter occurrence
Detection limit: 0.1%-0.5%
Automated Mineralogy TIMA3X GMH Resolution: 1 nm Quantitative mineralogy
Beam current: 2 pA-200 nA
Cathodoluminescence GATAN MonoCL3+ Spatial resolution: ~10 pm Primary or secondary carbonate
Elements: Mn>*/Fe?* discrimination; Cementation sequence

Green rows = Fieldwork measurements; Blue rows = Laboratory analyses.

2.2.1 Hydrodynamic and hydrochemical analysis

Hydrodynamic tests were conducted at four sampling points,
focusing on flow velocity. A portable radar wave velocity meter (HD-
SCDPL, Surface Velocity Radar) using K-band radar was employed
for non-contact flow velocity measurements (range: 0.1-30 m/s,
accuracy: £2% = 0.03 m/s). Multiple measurements were averaged
and recorded.

A WTW Multi 3630 IDS (Intelligent Digital Sensor) digital
multiparameter analyzer with three IDS sensor ports was
used to measure pH, oxidation-reduction potential (ORP),
dissolved oxygen (DO), and conductivity/total dissolved solids
(TDS)/salinity. The pH range was 0.00-14.00 (accuracy: +0.004),
DO ranged from 0.00 to 20.00 mg/L (accuracy: +0.5%), and
conductivity ranged from 10 pS/cm to 2000 pS/cm (accuracy:
+0.5%).

Water samples were collected using a syringe and filtered
through a 0.45 um membrane filter to remove particulate matter.
Titrimetric test kits VISOCOLOR® ECO Calcium (1 drop =5 mg/L
Ca®*) and VISOCOLOR®HE Alkalinity AL 7 (0.2-7.2 mmol/L
OH") were used to measure Ca** and HCO, concentrations.
The calcite saturation index was determined using PHREEQC-I
version 3.6.2.

2.2.2 Petrographic and mineralogical analysis

1. Petrography

Initial particle morphology was observed using a binocular
microscope to characterize general morphology prior to
detailed sectioning. For thin-section preparation, samples were
systematically selected based on three criteria: representativeness of
grain size; morphological integrity (excluding fractured or abraded
particles), and diversity of surface textures. The selected samples
were then prepared into standard 30 um thin sections for detailed

analysis under a polarizing microscope, enabling examination of
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particle morphology, crystallization patterns (including growth
zoning), and internal cementation characteristics across different
size fractions.

2. Scanning Electron Microscopy-Energy
Spectroscopy (SEM-EDS) Analysis

Dispersive

Samples showing complete particle structures were fixed in a 2%
glutaraldehyde solution and stored in darkness for 2 days. They were
air-dried and gold-coated to enhance conductivity. Microstructural
analysis and organic content assessment were conducted using
a HITACHI SU8010 SEM at Northwest University of China.
Additionally, semi-quantitative analysis of sample elements was
performed using EDS (X-MaxN 50). The detection limit ranged
from 0.1% to 0.5%, with a beam current intensity of 1 pA to 1 UA,
acceleration voltages ranging from 0.3 kv to 30 kv, and a working
distance spanning from 5 mm to 80 mm. Sample sizes were tailored
to thin slices with diameters of approximately 1-3 mm, based on
particle size, and a combination of point and area analysis was
employed to ensure representative coverage.

3. Tescan Integrated Mineral Analyzer (TIMA)

The Tescan Integrated Mineral Analyzer (TIMA3X GMH
model, Northwest University, China) is an automated mineralogy
system that combines scanning electron microscopy with energy-
dispersive X-ray spectroscopy (SEM-EDS) for high-throughput
mineralogical characterization. It can be specifically employed to:
(1) quantitatively determine the modal mineralogy of sand-like
particles, (2) map mineral associations at the micrometer scale, and
(3) statistically analyze particle size distributions. The system offers
a 1.0 nm resolution, with an acceleration voltage range from 200 V
to 30 kV and an electron beam current range from 2 pA to 200 nA.
Data from 20 samples were used to determine the mineral species,
content, and distribution of the particles. These 20 samples were
carefully selected from limited available materials due to protection
restrictions in the Huanglong travertine scenic area, ensuring they
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TABLE 2 Hydrochemical and hydrodynamic parameters of sampling points.

10.3389/feart.2025.1654910

Parameters Colorful pool Horseshoe sea Charming pool Mirror reflecting pool
Flow velocity (m/s) 0.150 0.500 0.157 0.478
Temperature (°C) 10.9 12.9 12.4 11.7
pH 8.08 8.17 8.18 8.25
Conductivity (uS/cm) 951 630 652 657
Ca?* (mM) 4.59 3.12 3.25 3.00
Alkalinity (mM) 10.0 6.6 6.8 6.8
Saturation index of calcite 1.442 1.263 1.299 1.313
pCO, (ppm) 4,627.00 2,623.01 2,568.62 2,133.04

Field measurements were conducted in September 2024 (autumn; air temp: 10 °C-17 °C).

are morphologically intact with fresh surfaces free from subsequent
erosion.

4. Cathodoluminescence (CL)

The GATAN MonoCL3+ system at Northwest University
was used in conjunction with scanning electron microscopy to
examine growth zoning, microcracks, and alteration features
in the samples. This technique detects trace-element variations
(particularly Mn?* and Fe®* signatures) at ~10um spatial
resolution, enabling identification of growth zonation patterns,
diagenetic overprinting features, and cementation boundaries
that are crucial for understanding travertine paragenesis but
often indistinguishable through conventional microscopy. The
CL imaging, performed in conjunction with scanning electron
microscopy, reveals textural features including luminescence bands
indicative of primary growth, Mn-activated luminescence or Fe-
quenched zones characteristic of diagenetic alteration, and abrupt
luminescence shifts marking cementation boundaries (Pagel et al.,
2000; Gotze and Kempe, 2008; Gotze, 2012). While CL does not
provide absolute trace-element concentrations, its high sensitivity
to crystal chemistry variations makes it particularly valuable for
differentiating genetic carbonate phases in our study of Huanglong
travertines. All analyses followed the methodological framework of
with instrument settings calibrated using standard calcite reference
materials to ensure analytical consistency, as the technique’s ability to
simultaneously visualize both depositional structures and alteration
features was essential for reconstructing the complex formation
history of these carbonates.

3 Result

3.1 Depositional setting of sand-like
particles

Modern, sand-like particles are actively forming in the small

depressions between rimstone dams within travertine pools along
Huanglong Ravine. Notable deposition sites include the Colorful

Frontiers in Earth Science

Pool, Horseshoe Sea, Charming Pool, and Mirror Reflecting
Pool. These depressions exhibit water depths of 1-5cm, where
particles deposition occurs. Flow velocities in these areas range
from 0.150 m/s to 0.500 m/s, with average water temperatures of
11.9 C and an average pH of 8.17. The water temperature initially
increases and subsequently decreases along the flow path from the
Colorful Pool to the Mirror Reflecting Pool, despite the decreasing
altitude. This phenomenon is attributed to the significant diurnal
temperature variation in the Huanglong area. Specifically, when
measuring the water temperature of the Mirror Reflecting Pool, the
readings were taken near dusk when ambient air temperatures had
decreased. Ca** concentrations range from 3.00 mM to 4.59 mM,
alkalinity ranges from 6.6 mM to 10 mM, and the average pCO, is
2987.92 ppm (Table 2).

3.2 Composition

TIMA results demonstrate that 97.31% + 1.25% of the particles’
composition is calcite, with minor occurrences of quartz and
anorthite (Table 3). Exogenous minerals such as mica, wollastonite,
and ferro-actinolite are present within the interstitial spaces and
growth suture lines, indicating a mix of endogenous and external
influences during formation.

Energy-dispersive X-ray spectroscopy (EDS) identifies CaCOj,
as the primary component of the particles. In addition to C, O,
and Ca, the particles also contained significant amounts of Fe, Si,
K, Mg, Al (Table 4). Howe sand-like particles ver, spectra 3 and 7,
which do not correspond to the particles, show significantly lower
Ca content. At these points, elements like C, O, and Al dominate,
likely due to the characteristics of the testing platform background.

3.3 Petrographic characteristics of
sand-like particles

The sand-like particles exhibit predominantly spherical to sub-
spherical shapes, with occasional elongated spheroids (Figure 3).
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TABLE 3 TIMA mineral composition statistics of sand-like particles.

10.3389/feart.2025.1654910

Primary 1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4 4-1 4-2 4-3
phases
Calcite 99.48 | 96.79 | 9835 | 9748 | 97.75 | 9648 | 9744 = 98.67 = 99.24 = 9731 97.46 | 94.14 | 97.24 | 9578 | 96.01 93.48
Quartz 0.06 0.42 0.16 0.16 0.45 0.21 0.17 0.16 0.16 0.49 0.22 0.39 0.25 0.32 0.03 0.18
Anorthite 0.16 0.24 0.14 0.15 0.37 0.22 0.15 0.12 0.18 0.31 0.18 0.10 0.22 0.18 0.12 0.31
Albite 0.02 0.06 0.00 0.01 0.12 0.04 0.06 0.00 0.02 0.09 0.02 0.04 0.04 0.05 0.01 0.01
Muscovite 0.01 0.05 0.02 0.02 0.03 0.06 0.01 0.01 0.01 0.04 0.00 0.04 0.02 0.03 0.00 0.00
Ferro- 0.02 0.02 0.01 0.02 0.07 0.01 0.01 0.01 0.00 0.05 0.03 0.00 0.02 0.03 0.00 0.02
Actinolite
Wollastonite 0.00 0.03 0.01 0.03 0.04 0.01 0.02 0.00 0.00 0.01 0.02 0.00 0.01 0.00 0.00 0.00
Orthoclase 0.00 0.04 0.00 0.00 0.05 0.01 0.00 0.00 0.00 0.03 0.01 0.02 0.01 0.00 0.00 0.00
Hematite/ 0.02 0.03 0.00 0.01 0.00 0.02 0.02 0.00 0.00 0.01 0.00 0.00 0.02 0.01 0.02 0.00
Magnetite
Diopside 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.06
Plagioclase 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.02 0.00 0.02 0.01 0.00 0.00 0.02 0.00 0.00
Ankerite 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00
Garnet- 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pyrope
Biotite 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00
Titanite 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00
Monazite 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
[Unclassified] 0.22 2.29 1.31 2.10 1.10 291 2.11 0.99 0.37 1.59 2.05 5.26 2.15 3.56 3.80 5.92
The rest 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Samples 1-1, 1-2, 1-3, and 1-4 were collected from Colorful Pool; samples 2-1, 2-2, 2-3, and 2-4 from Horseshoe Sea; samples 3-1, 3-2, 3-3, and 3-4 from Charming Pool; samples 4-1, 4-2,

4-3, and 4-4 from Mirror Reflecting Pool.

Their surfaces are irregularly rough, resembling aggregates of
numerous minute fragments. Surface colors vary from yellow to
light yellow, occasionally interspersed with black specks (Figure 3a).
The particles are mechanically robust, resisting hand-crushing but
yielding to knife cuts. Their sizes range from 0.5 mm to 3.0 mm,
with some reaching up to 5 mm in long-axis diameter. Based solely
on particle size, these deposits are a mixture of ooids and pisoids.
Microscopic examination reveals the particle surfaces, characterized
by irregular contours and protrusions (Figure 3b). These protrusions
are calcite crystals displaying radial growth patterns (Figure 3c).

3.3.1 Internal structures and composition

At higher magnifications, the particles are composed primarily
of calcite crystals of various shapes, including triangular and
elongated rhombohedral forms (Figure 4a), as well as irregular
polygonal detrital minerals that have just begun to gather and bond

Frontiers in Earth Science

while maintaining distinct, uneroded edges and corners (Figure 4c),
indicating they have not been significantly affected by flowing water
or weathering processes. Unlike oolites, these particles lack distinct,
single-material nuclei and instead exhibit a rough internal radial
structure. Polarizing microscopy highlights distinct growth patterns
and bonding characteristics of calcite crystals under plane polarized
light, particularly showing how pseudo-triangular detrital materials
gather at vertices to form relatively stable aggregation structures at
initial nucleation points (Figure 4b).

Microscopic analyses differentiate the particles into two
regions. The central region primarily consists of bonded clastic
components. The peripheral region displays radial divergent growth
(Figure 4c) contributing to irregular, convex shapes along the outer
boundaries (Figure 4d). Discrepancies in clarity are observed at
particle aggregation and bonding sites, indicating variations in their
development stages.
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TABLE 4 EDS spectral spot measurements of the sand-like particles.

10.3389/feart.2025.1654910

Spectrum Element Line type ‘ Weight (%) Weight sigma Atomic (%)
C K series 31.20 0.31 40.31
O K series 47.76 0.32 43.93
Ca K series 18.27 0.28 13.60
Spectrum 1
Al K series 2.07 0.11 1.57
Si K series 0.25 0.08 0.18
Na K series 0.45 0.13 0.40
C K series 35.19 0.57 45.53
O K series 49.99 0.58 48.55
Spectrum 2
Ca K series 13.87 0.26 5.38
Al K series 0.95 0.08 0.55
C K series 71.94 0.44 78.28
(@) K series 24.61 0.44 20.10
Al K series 2.59 0.07 1.26
Spectrum 3 Ca K series 0.30 0.04 0.10
Si K series 0.24 0.04 0.11
Cl K series 0.15 0.04 0.06
Na K series 0.17 0.05 0.10
C K series 33.62 0.66 43.12
O K series 54.14 0.66 52.13
Spectrum 4
Ca K series 11.94 0.28 4.59
Al K series 0.30 0.08 0.17
C K series 33.30 0.67 43.41
(¢] K series 51.71 0.68 50.62
Spectrum 5
Ca K series 14.41 0.31 5.63
Al K series 0.58 0.09 0.34
C K series 33.94 0.53 43.54
O K series 53.51 0.53 51.54
Spectrum 6
Ca K series 12.02 0.22 4.62
Al K series 0.53 0.07 0.30
C K series 69.88 0.29 76.72
Spectrum 7 (6] K series 25.70 0.29 21.18
Al K series 3.30 0.05 1.61
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TABLE 4 (Continued) EDS spectral spot measurements of the sand-like particles.

Ca 0.37 0.03 0.12

K series

Na K series 0.28 0.03 0.16
Cl K series 0.25 0.02 0.09
Si K series 0.23 0.02 0.11

FIGURE 3
Morphological features of particles under the microscope (a) 2x microscope field of view. (b) 5x microscope field of view. (c) 10x local morphology
under the microscope

FIGURE 4
Particles morphology under microscope. (a,b) Particles morphology under a plane polarized. (c,d) Comparison between the inner central structure and
the outer structure of the particle under a single polarizer.

3.3.2 Growth zoning and cementation and a scanning electron microscope. Firstly, under a high -
The internal structures and mineral crystallization  magnification microscope, a large number of growth zoning of
characteristics of particles were observed under a single polarizer  calcite can be seen (Figures 5a,b), and there are three groups of
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FIGURE 5

Characteristics of internal adhesion and mineral crystallization mode of particles. (a-f single polarizer, g-h scanning electron microscope). (@) The
yellow dotted line indicates that during the growth of the particles, the calcite minerals are bonded together by microcrystalline matrix and sparry
cement. (b) The particle may have gone through five growth stages so far. (c,d) Clear calcite growth rings. (e) Calcite shows 3 complete cleavage
morphologies. (f) Carlsbad twin law - based dual crystal structure. (g,h) Calcite with good crystallization order, columnar growth, and layered

development.

complete cleavage morphologies (Figure 5¢). Some particles show
twinning characteristics under cross - polarizers—one monomer
undergoes extinction while the other remains bright, which is
consistent with the Carlsbad twin law (Figure 5d). Cementation
marks can be seen inside larger particles, and calcite minerals
are bonded to each other by a microcrystalline matrix and sparry
cement (Figure 5e). The interior of the particles is not completely
dense; due to the insufficient fit of crystals of different shapes
during aggregation, there are a large number of voids inside. These
voids are filled with micritic and sparry cement, thus outlining the
original particle boundaries. Evidence of multi - stage growth and
cementation can be seen in mature particles, extending from the
center to the periphery (Figure 5f), resulting in blurred boundaries
of individual particles and their welding. In addition, calcite shows
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good crystallization order and mainly grows layer by layer in the
form of columnar crystallization (Figures 5g,h).

3.4 Form of organisms in sand-like particles

Biological processes significantly influence the deposition of
CaCO; with microbes playing a pivotal role through their growth
and metabolic activity (Al-Qayim and Ghafor, 2022; Christos et al.,
2022; Ghafor et al., 2012; Ghafor and Mohialdeen, 2016; Ghafor
and Najaflo, 2022; Sharbazheri et al., 2009; Tri et al, 2023).
Calcifying algae contribute structural frameworks for travertine
deposition, while additional mechanisms such as product induction
and metabolic regulation have also been identified (Jones and
Renaut, 2010; Gradzinski, 2010; Shiraishi et al., 2010).
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Biological traces involved in the formation process. (a,b) The gelatinous stalks of algae serve as a “template” for travertine deposition and play a
connecting role. (c,d) Algal sheaths, around which calcite particles grows. (e) Filamentous algae interspersed among calcite crystals, forming complex

and sparse structures. (f) Extracellular polymeric substances (EPS).

SEM reveals clear biological traces within the calcite crystal
crevices, including algal filaments, gelatinous stalks (Figures 6a,b),
and algal sheaths (Figures 6¢,d), that connect calcite minerals at
both ends of the crevices. Filamentous algae and their viscous
secretions adhere to the surfaces of calcite crystals, promoting
crystal growth. Radial crystalline growth is observed surrounding
algae and their secretions, reinforcing their role in facilitating
mineral deposition (Figures 6e,f).

3.5 Application of cathodoluminescence in
particles

Cathodoluminescence provides a more precise method for
analyzing the developmental stages of cement structures and pore-
filling cement than traditional approaches such as tracing, staining,
and optical microscopy (Meyer, 1974; Fairchild, 1983). In this study,
most particles exhibited weak blue luminescence (Figure 7a). At
a scale of 100 um, particles present localized areas of relatively
more intense blue luminescence (Figure 7b). The luminescence in
carbonate minerals is primarily influenced by impurities, with Mn
serving as the activator and Fe acting as the quencher (Machel
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and Burton, 1991). While calcite typically exhibits yellow-orange
to red luminescence, the blue luminescence observed in this study
may be attributed to lattice defects rather than elemental activators
(Amieux, 1982). Additionally, Luminescence patterns revealed
distinct boundaries between luminescent and non-luminescent
regions, highlighting the contact zones between particles and
intergranular calcite cement. These patterns suggest that larger
particles formed through the aggregation of smaller particles and
mineral debris, supporting a staged cementation process (Figure 7¢).
Microscopic observations revealed biological traces and early rock
debris sand-like particles materials exhibiting high rounding among
particles (Figures 7e,f).

4 Discussion

4.1 Characteristics and depositional
conditions of the sand-like particles

The Huanglong travertine system, characterized by its

distinctive terrace landscapes, including colorful pools, slopes, and
steep cliffs, provides a unique environment for the formation of the
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FIGURE 7
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100 pm 200 pm

500 pm

Cathodoluminescence characteristics of particles. (a,b) Overall blue glow of the particles. (c) The yellow dotted line shows the grain boundary, with
more intense luminescence at the cementation points compared to the core of the calcite mineral. (d) The blue glow is intense with a slight purple
glow. (e) Microscopic observation reveals that the biological surface also exhibits noticeable luminescence. (f) Early foreign inclusions at the particle

bond, showing no luminescence.

particles. Therefore, these particles exhibit distinct morphological,
structural, and depositional characteristics (Table 5).

The hydrodynamic conditions within Huanglong Ravine
vary significantly, ranging from turbulent waterfalls to slow-
flowing slopes, creating a dynamic setting that influences pisoid
development. The particles predominantly accumulate in small
depressions along the slope flow system, particularly in gentle
areas near rimstone dams surrounding travertine pools. These
areas represent transitional hydrodynamic conditions between
turbulent and laminar flow, with velocities ranging from 0.150 m/s
to 0.500 m/s, influenced by seasonal variations. During the rainy
season, increased water flow transports particles over short
distances, while the thin water layer flowing over the rimstone
dams enhances the water-air interface, facilitating CO, escape
and promoting rapid calcium carbonate deposition (Braithwaite,
1979; Dreybrodt and Buhmann, 1991; Jones and Peng, 2016;
Schelker et al., 2016). In the dry season, decreased water flow
leads to the drying of pools, halting sedimentation and exposing
particles to air. This likely explains the blackened particles observed
within the deposits, potentially caused by such as exposure -
induced oxidation or organic staining by microbial communities
(Li et al., 2011; Zhang et al., 2023).

Morphologically, the particles exhibit dendritic structures
with rough, sub-spherical outer edges, lacking distinct concentric
banding. Instead, they show radial growth. Elemental analysis
reveals that the heightened Si content in the particles likely arises
from both biological activity and the incorporation of quartz,
feldspar, and mica debris transported by surface runoff during the
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)9). The presence of Fe, Mg, Al, and
K further supports this hypothesis. Additionally, localized strong

rainy season (Liu et al., 20(

blue luminescence could result from high - temperature quartz or
specific orientations of orthoclase, anorthite, and potassium feldspar
(Figure 7b) (Zinkernagel, 1978).

Hydrochemically, the unique conditions in Huanglong, including
a Ca** concentration of 4.59 mM, play a critical role in sand-like
particles formation. These high concentrations, coupled with low-
temperature calcium-rich waters sourced from cold springs and
surface runoff, create an environment conducive to rapid calcite
deposition. The interplay of biological activity and inorganic chemical
deposition is critical, with seasonal changes significantly influencing
sedimentation processes and resulting in the unique morphological
and structural characteristics of the particles (Liu et al., 1995). In
summary, these particles develop under transitional hydrodynamic
conditions, where both organic and inorganic processes interact
with seasonal precipitation to shape their formation, highlighting
the importance of high Ca** concentrations, low hydrodynamic
conditions, and seasonal variations in water flow.

4.2 Genesis model of travertine sand-like
particles

The genesis of travertine sand-like particles can be attributed
to two main processes: first, the formation of submillimeter-
scale detritus or loose deposits through weathering, erosion, or
denudation of pre-existing geomorphological features; and second,
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TABLE 5 Characteristics of the sand-like particles.

Properties The sand-like particles

Sedimentary environment In the gentle area around the rimstone
dams with slow flow velocity and

laminar flow,v = 0.32 m/s

Shape Sub-spheroidal, with irregular surface
Colour Yellow and light yellow
Size 0.5 mm-3.0 mm, occasionally

reaching up to 5 mm in long axis
diameter

Mesoscopic structure Roughly radial, without concentric

rings and nucleus

Microscopic structure The detrital particles are cemented by
sparite and micritic cement,
accompanied by the accretion of

calcite

Mineralogy Mainly calcite, but also contains
quartz, feldspar and very small

amounts of mica

Micro-organisms and organic matter Contains diatoms, filamentous algae

content and organic matter
Geochemistry In addition to the high content of C, O
and Ca, it also contains elements such

as Fe, Si, K, Mg, Al
Hydrochemistry T (°C) =119, pH = 8.17, Alk (mM) =

7.55, Ca®* (mM) = 4.59

the rapid crystallization of fine, submillimeter-sized calcite particles
(Figure 4). In addition to calcite, the mineral composition includes
exogenous materials such as quartz, feldspar, and mica, which are
likely introduced from the surrounding terrain (Table 4). These
materials are transported into the travertine system by flowing water
following the denudation of nearby mountainous terrain.

The formation of these particles involves a process of
of
clasts, exogenous debris, and calcite particles (Witten and Sander,
1981; Meakin, 1983; Jullien and Kolb, 1984). Based on field
observations of sand-like particle accumulation (Figure 8a) and

“aggregation-cementation-accretion-compaction” travertine

experimental results, a sedimentary model for the particles has
been proposed (Figure 8). This model emphasizes the multifactorial
nature of the sedimentation process.

Under favorable hydrodynamic conditions, detrital particles
tend to agglomerate (stick together) and converge. In aquatic
environments, four key forces act on particles:Effective gravity
(W):Pulls particles downward; Horizontal shear force (Px):Pushes
particles along the water flow direction; Vertical lift force (Pz):Lifts
particles upward (reducing their weight in water); Resistance force
(F):Slows particle movement (opposing Px/Pz). Px and Pz drive
particles to move, while W and F act as counterforces (Figure 8¢)
(Liu et al., 2019). When slope flow hits debris/particles, a “push” on
the upstream side causes upward + forward movement (Figure 8b).
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Meanwhile, eddies downstream create a pressure difference—like
a “suction” that pulls particles forward gradually (Figure 8c)
(Guha, 2008). Water currents combine Px (forward push) and
Pz (upward lift) (Tai et al., 2020). Shear stress, turbulence, and
differences in settling speed make particles bump into each other.
Brownian motion (random particle jiggling) and weak forces
from water films (bonding/van der Waals forces) help particles
stick together (Zaichik et al., 2009).

Following agglomeration, as hydrodynamic conditions weaken,
biological processes begin to influence CaCO; deposition. SEM
imagery reveals the presence of organic entities, including diatoms,
algal filaments, and extracellular polymers (Figure 6). Biological
processes primarily impact travertine deposition through the
following mechanisms (Figure 8f) (Wang et al., 2021):

Following agglomeration, as hydrodynamic conditions weaken,
biological processes begin to influence CaCO; deposition. SEM
imagery reveals the presence of organic entities, including diatoms,
algal filaments, and extracellular polymers (Figure 6). Biological
processes primarily impact travertine deposition through three key
mechanisms (Figure 8f) (Wang et al., 2021):

1. Biological Assimilation-pH modulation via photosynthesis

Photosynthesis and respiration by aquatic flora induce changes
in water pH, thereby influencing CaCOj; precipitation (Merz-Preif?
and Riding, 1999; Murray, 2003). During photosynthesis, algae
release hydrogen ions (H*), raising the pH of the water. This
higher pH enhances the bonding between carbonate and calcium
ions, increasing the CaCOj; saturation coeflicient and facilitating
supersaturation and precipitation.

2. Biological Structure Role-algae as scaffolds for CaCOj,
Pprecipitation

Algae act as both a matrix and scaffold for CaCOj;
deposition. In addition to photosynthesis, calcifying algae
precipitate CaCO; through physiological and ecological processes,
providing a structural framework (Figures6a,b) (Dupraz and
Visscher, 2005; Dupraz et al., 2008). Filamentous algae and their
secretions also influence the morphology of calcium carbonate
precipitates (Figures 6¢,f).

3. Adhesion Mechanism-EPS promoting particle aggregation

Algae promote the formation of carbonate particles by binding
micrite calcite and quartz particles (Schneider, 1977; Schneider et al.,
1983; Gomez et al., 2018). In high Ca** environments, extracellular
polymeric substances (EPS) adsorb Ca** ions, promoting
calcification (Wright et al., 1996). Settling detrital particles become
bound by algae and other organisms, undergoing calcification
through metabolic processes (Pentecost, 1995; Wu et al., 2014).
Calcite particles can grow along microbial sheaths (Figures 6¢,d).

While travertine structures formed solely through biological
processes tend to be loose, poorly compacted, and vulnerable
to weathering, the particles exhibit strength and resist manual
crushing. This observation suggests that inorganic processes also
play a role in their formation. Polarized light microscopy reveals
distinct calcite growth zoning structures, appearing as alternating
bright and dark bands on calcite minerals (Figures 5¢,d). SEM
examination further reveals a crystalline order within the calcite
particles in the aggregates (Figures 5g,h). These findings underscore
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FIGURE 8
Schematic diagram of the sedimentation environment and process for sand-like particles. (a) Roughly illustrates a travertine pool system, with red
markings representing where particles are typically deposited. (b) The movement of particle debris in the water stream. (c) Force analysis of detrital
particles in water. (d) The particles are often accumulated in the receiving area of water release, and the accumulation situation is mostly similar to the
undulation shown in (e), the particles are affected by their own gravity, and the smaller the particles are more likely to be carried by the water flow to a
slightly farther position. (f) Pathways of influence of biological processes on particle formation.

that the formation of the particles depends not only on microbial ~ centers. The unique depositional environment of Huanglong

activity but also on the “accretion” of calcite. This accretion process,  facilitates initial development of small-scale microtopographic

facilitated by algae, occurs along the boundaries of travertine detrital ~ undulations (Figure 8d), with finer particles accumulating along

particles, resulting in pronounced growth and crystallization.  flow directions (Figure 8e). Critically, seasonal precipitation

The development of well-defined columnar crystals reduces void  affects particle growth by altering hydrodynamics, regulating

spaces between particles, thereby enhancing the consolidation and ~ hydrochemistry, and controlling biological activity. This climatic

hardness of the aggregates. periodicity influences the distinct multi-stage growth patterns
The formation of travertine sand-like particles constitutes a evident in both microscopic observations and CL analyses. However,

complex process resulting from dynamic interactions between  more testing and detection matching work are still needed to clarify

abiotic and biotic factors, characterized by multistage growth  the specific control and regulation mechanisms.

influenced by environmental conditions. Larger particles form

through aggregation of smaller particles and mineral debris,

supporting a staged cementation process. CL patterns reveal this 43 The role of Sa nd-like pa rtiCles in the

progression: initial weak blue luminescence likely corresponds  sedimentary evolution of Huanglong

to early diagenetic phases with simple impurity incorporation,  travertine landscape

while more intense luminescence relates to later stages involving

complex reactions and impurity enrichment. The observed The depositional evolution of different travertine landform

particle boundaries and assemblages provide clear evidence  types exhibits synergistic characteristics (Zhang et al., 2012a),

for this growth and cementation sequence. Variations in  with a positive feedback loop existing between particle deposition

cementation timing and degree result in differential interparticle ~ and microtopographic evolution. Taking travertine pools as an

void spaces. Furthermore, accretion and compaction processes  example, their life cycle encompasses the complete process from

progressively obscure individual calcite crystals near aggregate  formation and development to eventual decline: During the pool
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FIGURE 9

particles until it disappears.

Sedimentary evolution of Huanglong travertine landscape influenced by sand-like particles. (a) Travertine slope affected by the particles. (b) Nascent
travertine that are not covered by the particles. (c) Particles and debris are transported from top to bottom by the water flow for short distances,
accumulating at similar locations in (d) and (e) and gradually increasing in size until the entire pot is filled. (f) Fill the travertine Colourful Pools with

formation stage, when particle-laden water overflows the dam,
abrupt topographic changes cause Kkinetic energy attenuation,
resulting in preferential deposition of coarse particles (with high
inertia) at the dam crest while fine particles (such as micritic
calcite) spread evenly across the pool bottom (Pedley, 1990). This
differential deposition promotes continuous vertical growth and
lateral expansion of rimstone dams. However, for mature travertine
pools (e.g., abandoned pools in Yellowstone’s Mammoth Hot
Springs), their vertical sequences display coarse travertine debris
from high-energy environments at the base, gradually transitioning
upward to fine-grained travertine containing plant debris, and
capped by alluvial sand layers at the top (Fouke, 2011).

Field observations in Huanglong reveal distinct depositional
differentiation phenomena in travertine dams during flood seasons
(May-September; Figures 9a,b). The thickness of newly formed
travertine layers in sandy particle accumulation areas is significantly
smaller than that of exposed travertine bodies, with some dams
even exhibiting growth stagnation. In contrast, the dry season
is dominated by weathering and erosion of secondary travertine.
Erosion products from travertine surfaces form detrital particles
that, when hydraulic conditions permit, are either transported short
distances to flat areas (Figure 9¢) or intercepted and retained by
surface litter. Comparative analysis demonstrates that secondary
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travertine bodies covered by detrital particles are more susceptible
to erosion. Notably, under the combined action of flowing water
and wind, particles around dams undergo continuous migration-
deposition cycles, with this dynamic process further amplifying
their negative effects on dam structures. It can thus be inferred
that particle deposition around travertine dams not only inhibits
vertical accretion but may also compromise structural stability.
Furthermore, particle cementation and filling alter the internal
hydraulic conductivity of dams, leading to degradation of their
original water retention capacity. With Huanglong’s well-developed
travertine terrace system and mature colored pools, when water
flows forward from inclined beaches, particles are transported to the
lower edges of rimstone dams or into colored pools, causing siltation
and even pool disappearance (Figure 9f), indicating that particle
accumulation predominantly exerts negative effects at this stage.
The travertine depositional system exhibits distinct phasic and
cyclical characteristics, with its evolution controlled by multiple
factors including hydrodynamic forces, biological activity, and
detrital particle supply. Therefore, both landscape conservation
practices and academic research must adopt systemic thinking to
holistically consider the dominant processes and their interactions
across different evolutionary stages. For instance, addressing particle
accumulation issues in mature travertine pools requires integrated
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approaches combining hydrodynamic regulation and ecological
restoration to delay landscape degradation. This understanding
holds universal significance for the sustainable management of
similar travertine landforms worldwide.

5 Conclusion

1. The sand-like particles in the Huanglong travertine system
represent a unique granular carbonate facies characterized
by subspherical morphology, yellowish coloration, radial
microstructures. Their internal architecture reveals growth
zonation with clasts and sub-particles bound by sparitic-
micritic cement, along with preserved organic matter,
supporting a hybrid genesis involving both inorganic
precipitation and microbial mediation.

These particles form under specific hydrodynamic

(0.15-0.50 m/s flow velocities) and hydrochemical (Ca** =

4.59 mM) conditions along rimstone dam peripheries, where

low-energy deposition dominates in response to seasonal

hydrological fluctuations. Material sources include both
detrital particles (weathering products) and authigenic calcite

(rapid crystallization). The sedimentation process involves

the “aggregation-cementation—accretion - compaction” of

these sub-particles, driven by a combination of inorganic
and organic factors, and is regulated by hydrodynamic and
hydrochemical variations.

3. The sand-like particles play a stage-specific role in the
sedimentary evolution of travertine landscapes, but currently
exert predominantly negative impacts on the Huanglong
travertine system, primarily manifested as: (i) These particles
accumulate around travertine rimstone dams, altering the
flow direction of water, and inhibiting the formation of
new rimstone structures; (ii) Loose particles covering the
surface of travertine terraces increase the permeability of the
travertine, indirectly lowering the water table and increasing
susceptibility to surface darkening and weathering; (iii) The
significant generation and accumulation of these particles can
fill travertine Colourful Pools, disrupting the landscape of
travertine Colourful Pools.

Our findings underscore the unique depositional dynamics
of sand-like particles in high Ca?* spring systems and emphasize
their role as sensitive indicators of hydrochemical and ecological
change. The particles distinct characteristics and sensitive
microenvironmental records further validate their value for
environmental and climatic change studies. Future studies could
apply high-resolution time-series imaging to track seasonal
particle growth dynamics, and integrate stable isotope analysis
to disentangle inorganic precipitation pathways from microbial
mediation processes.
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