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The use of seismic exploration data to invert shear (S-) wave information plays a
very important role in oil and gas exploration, especially in reservoir prediction
with increasingly complex lithology and deeper target layers. Combining
longitudinal (P-) and S-waves information can help us better describe reservoirs.
In theory, to obtain accurate shear wave information through inversion, we will
need shear or converted wave (PS-wave) data to be used in a joint inversion. The
propagation of S-wave in underground media is different from that of P-wave,
as S-wave are mainly influenced by the rock skeleton and less affected by pore
fluids. As a result, we propose a joint prestack seismic inversion method for PP-
and PS-waves data based on L;_ ,-norm constraints. Firstly, a joint coefficient
matrix is constructed using linear approximation equations for the reflection
coefficients of PP- and PS-wave. Next, the L; ,-norm constraint is introduced
to construct the inversion objective function, and a two-steps iterative strategy
is applied for optimization, achieving a three-parameter prestack inversion. In
the synthetic data testing, different models are used for inversion comparison.
The synthetic data inversion results show that compared with traditional
norm constrained methods or PP-wave inversion alone, the proposed joint
inversion method can invert results with higher correlation coefficients and
lower errors, confirming the accuracy and stability of the proposed method.
Finally, the proposed method is applied to offshore OBN multi-component
seismic data. The well and seismic joint comparative analysis of the inversion
results shows that the inversion results are reliable, and compared with PP-
wave inversion alone, the results provide higher resolution and better continuity,
enabling more accurate prediction of reservoirs.

KEYWORDS

prestack joint inversion, OBN seismic data, L;_, norm, reservoir prediction, multi-
component seismic

Introduction

Prestack inversion is an important way to obtaining subsurface elastic parameters,
which utilises the characteristic of amplitude-versus-offset/angle (AVO/AVA) to invert
for the underground velocity, density information, etc. Based on this, different rock
physics models can be used to calculate associated reservoir properties, such as porosity
and fluid saturation, from the elastic parameters (Karimi et al., 2010), helping reservoir
prediction. Therefore, accurately obtaining subsurface elastic parameters and improving the
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precision of prestack inversion is crucial. As seismic exploration
technology becomes more refined, oil and gas exploration targets
have shifted from simple, conventional reservoirs to complex,
unconventional, and subtle reservoirs, presenting significant
challenges for seismic inversion and reservoir prediction (Avseth
and Lehocki, 2016).

For complex oil and gas reservoir prediction, only PP-wave
data is not sufficient to accurately predict reservoirs. As the
target reservoirs in exploration become increasingly complex,
using only PP-wave data can no longer meet the practical
demands of exploration (Jin, 1999; Veire and Landre, 2006).
To address the limitations of traditional seismic exploration,
multi-component seismic exploration technology emerged.
Unlike traditional exploration that mainly focuses on P-wave,
multi-component exploration takes full advantage of both
P-wave and S-wave data to investigate lithology and fluids.
Seismic S-wave data, which are less affected by pore fluids and
mainly related to the rock skeleton, allow for a more accurate
analysis of subsurface properties. This multi-component seismic
exploration approach significantly improves exploration accuracy
and effectively identifies subtle and unconventional reservoirs
(Englehart et al., 2001; Knapp et al., 2001).

Multi-wave prestack joint inversion incorporates additional S-
wave information, with seismic S-wave containing rich S-wave
velocity and density details. Joint inversion can enhance the accuracy
of parameter estimation, making the inversion results more precise
and reliable (Stewart et al., 2002; Kurt, 2007). Stewart et al.
(1990) first proposed the joint inversion of PP-wave and PS-wave,
using weighted stacking to obtain subsurface elastic parameters.
Larsen et al. (1999) conducted joint inversion of PP-wave and
PS-wave data to simultaneously invert for P-wave and S-wave
impedances. Hu et al. (2011) introduced a multi-wave joint inversion
method based on Bayesian theory to invert for P-wave and S-wave
velocities as well as density, improving inversion accuracy. Lu et al.
(2015) applied least squares to joint inversion of PP-wave and PS-
wave data, successfully inverting for P-wave and S-wave velocities
and density. Song et al. (2016) used an iterative regularization
method in joint inversion of PP-wave and PS-wave. Zhi et al. (2017)
proposed a two-step method for joint inversion of PP- and PS-
wave using the precise Zoeppritz equation, achieving accurate and
stable inversion results. Huang et al. (2021) improved joint inversion
accuracy by constructing a more reasonable mismatch function to
invert multi-wave seismic data using dynamic time warping. Besides
inverting for elastic parameters, Chen et al. (2021) applied joint
inversion of PP- and PS- waves to estimate the elastic parameters
and attenuation factors of viscoelastic media. Joint inversion of
multi-wave data has proven effective in many applications.

Although multi-wave joint inversion can effectively improve
inversion accuracy by incorporating S-wave information, it still faces
other issues. Due to the interference of random noise and inaccurate
wavelet extraction, seismic inversion often faces instability issues
(Xue et al,, 2024), which makes it difficult to guarantee a unique
solution, which is often referred to as an ill-posed problem. A
common solution to these problems is to apply regularization
constraints (Tarantola, 2005; Li et al., 2021), where appropriate prior
constraints are added during the inversion process to ensure the final
inversion results align with the prior characteristics, addressing the
issue of multiple solutions. For instance, in machine learning, storing

Frontiers in Earth Science

10.3389/feart.2025.1651562

prior information can help address complex conditions and ensure
the accuracy of the final results (Wang et al., 2023). Generally, given
the sparse distribution of reflection coefficients in subsurface layers,
L,-norm sparse constraints are widely used in various geophysical
inversion scenarios (Taylor et al., 1979; Zhang and Castagna, 2011;
Chai et al, 2014). However, as its application becomes more
widespread, some limitations of this approach appeared, such as the
suppression of weak reflections (Wang et al., 2019). In recent years,
a constraint form based on the difference between the L,-norm and
L,-norm has been increasingly applied to handle sparse problems,
as it provides stronger sparsity and has shown success in seismic
inversion (Lou et al., 2015; Wang et al., 2018; Wang and Chen, 2022).

In this paper, we focus on the joint inversion of reservoir
characterization using OBN multi-component seismic data. We
propose a joint PP- and PS-wave inversion method based on L, ,-
norm constraints. First, we construct a joint inversion coefficient
matrix for PP- and PS-wave using approximate equations. Then, we
introduce the L, ,-norm constraint to form the inversion objective
function, which is solved using the Difference of Convex Algorithm
(DCA) and the Alternating Direction Method of Multipliers
(ADMM). In synthetic data tests, we compare the proposed
method with conventional constraint inversion methods to verify
its feasibility and stability, highlighting the advantages of using the
L, ,-norm constraint. Then, we test it on a actual well log data,
comparing the results of only PP-wave inversion with joint inversion.
The joint inversion results are more accurate than only PP-wave.
Finally, we apply the proposed method to real field data and achieve
good results.

Methodology

In this section, we will first describe the forward problem in
elastic media. This is followed by introducing our objective function
used for the optimization. Finally, describe our strategy for the
inversion.

Forward model

According to convolution theory, a prestack seismic gather can
be regarded as the result of the convolution between reflection
coefficients at different angles and the seismic wavelet. Considering
an incident angle, the expression of the prestack convolution model
matrix can be written as:

D(6) = W-R(m, 0) + n(6), (1)

where (-) in the middle represents multiplication, D(6) is the seismic
record vector at an incident angle of 8, W is the seismic wavelet
matrix, R(m,0) represents the reflection coefficient sequence
calculated from the model parameters m at angle of 6 and n(6) is
the random noise vector.

In prestack inversion, the Aki-Richards approximate equations
are commonly used. The expressions for PP- and PS-wave reflection
coefficients are as follows (Aki and Richards, 1980):

AV, V2 AV, V2 A
Rpp(0) = 1 sec? 0—2L — 45 gin29—S 4 l(1 —4-5_in? 9>—p, 2)
2 Ve VR Vs vp? P
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FIGURE 1
Comparison of 3D surfaces and 2D contour of different noRMS. (a) Ly-norm, (b) L,-norm, (c) L;-norm, (d) L,ycny-norm, (e) Ly-norm, (f) L;_,-norm.

2
Rps(6,9) = % [( 4V_52 sin? - 4% cos 0 cos (p> % where Rpp represents the PP-wave reflection coefficient, and Rpg
S Ve P s (3)  represents the PS-wave reflection coefficient. 6 is the average of the
2
_<1 _ 2% sin 04+ 2% cos 6 cos <P> Ap ] . incident and transmitted angles for the PP-wave, ¢ is the average
P P P

of the reflection and transmission angles for the PS-wave. Vp, Vg
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FIGURE 2
Workflow of the proposed PP- and PS-waves joint inversion method.

and p are the average values of P-wave velocity, S-wave velocity, and
density on both sides of the elastic interface, respectively. AV, AVy
and Ap represent the differences in P-wave velocity, S-wave velocity,
and density across the elastic interface.

Equations 2, 3 can be simplified into a linear summation of three
parameter reflection coeflicients and expressed in matrix form as:

Rpp(6) GiO) GO GO @
rs |
Rps(6,9) 0 G(69) Cs(09)
P
where rp = %, rg = 2% and ro= &, C,, C,, G5, C, and Cj are

S
the coefficients related to the angles 6 and ¢ respectively, and are
expressed as:

Vg? Vs?
C,(0) = 1 sec? 0,C,(0) = 74—52 sin® 0,C5(0) = l(1 74—52 sin® 9),
2 Vp 2 Vp
tan @v, V.2 V.
Cy(0,9) = P (4—5 sin® §—4—2 cos 0 cos (p),
2v, Vp? Vp
tan gV, vg? V.
Cs(6,9) = —$<1 -2 sin? §+2— cos 6 cos <p>.
2Vy VP2 Vp

(5)

In Equation 5, the angle ¢ can be converted to 6 using Snell’s Law.
Therefore, for multi-channel seismic data with different incident
angles, the PP-wave and PS-wave reflection coefficients defined by
the approximate equations can be expressed in matrix form as:

Rpp(6))]  [Ci(6) Cx(6,) C5(6)) ]
: : : r
Rpp(0:) | _| C1(6) C(8) C(0) | .
= s |
Rpg(6)) 0 Cy(6,) Cs(6,) (6)
o
-RPS(ei) - - 0 C4(9i) CS(ei)—
R C r
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where Rpp(6;) = [Rpp1(6;)  Rpp(6;) Rpp ,(6;)]" represents
the PP-wave reflection coefficient vector at an incident angle of
0;, n is the number of sampling points. Similarly, Rpg(6;) is the

PS-wave reflection coefficient vector. rp = [rp T

Tp2 To,n)
represents the reflection coefficient vector for P-wave velocity.
Similarly, rg and r, are the reflection coefficient vectors for S-
wave velocity and density, respectively. C,(6;), C,(6;), C5(6;),
C,(6;) and Cs(6;) are all diagonal matrices with similar
expressions. For an example of C;(6,), and its expression can be

given by:
C11(6) 0 0
C1,(6) 0
C,(6) = @)
0
0 0 Cl,n(ei)

According to Equation 1 of convolution model, the forward
modelling of prestack seismic gathers at different angles can be
expressed in matrix form as:

PPP(BI) Wpp(6)) lfpp(‘ﬁ)
bPP(ef) _ Wopp(6;) « liPP(ei)
Pps(el) Wps(601) lfps(gl)
bPS(ei) Wps(6;) lips(ﬂz)
D w R
(8)
T
where Dpp(6;) = [Dpp1(6;)  Dypp,(6)) DPP,n(Gi)]

represents the PP-wave seismic data vector at an incident
angle of 6, and similarly, Dpg(6;) represents the PS-wave
seismic data vector. Wpp(0;) is the PP-wave wavelet matrix
corresponding to the angle 6;, and similarly, Wp4(6;) is the PS-wave
wavelet matrix.

According to Equations 6, 8, the noise-contaminated prestack
gather forward convolution model can be simplified as:

D=WR+n=WCr+n 9)

where D represents the prestack seismic data vector for both PP-
wave and PS-wave. W is the large diagonal matrix composed of the
wavelet matrices for PP-wave and PS-wave at different angles. C is
the coefficient matrix composed of the diagonal matrices C,(6,),
C,y(6,), C5(6,), C4(6)) and C5(6,). r=[rp 15 1,]" is the overall
elastic parameter reflection coefficient vector composed of the P-
wave velocity, S-wave velocity, and density reflection coeflicient
vectors. n represents the random noise vector.

L,.,-norm constrained objective function

The construction of the inversion objective function includes
a misfit term and a regularization term. The misfit term describes
the residuals between the observed data and the modelled data,
and it typically uses the least-squares misfit function due to its
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1D multilayer model and prestack synthetic angle gathers for PP- and PS-wave. (a) 1D multilayer model, (b) noise-free, (c) SNR = 10, (d) SNR = 5.

computational efficiency. The role of regularization term is to
introduce prior constraint information into the inversion process
and solve the problem of multiple solutions in inversion. In seismic
inversion, the presence of noise and inaccuracies in the wavelet
forward operator often make the problem highly ill-posed with
significant non-uniqueness. Therefore, selecting an appropriate
regularization constraint is crucial for seismic inversion.

Initially, the L,-norm constraint was commonly used, which is
a type of smoothness constraint. However, in seismic inversion,
the primary target is the reflection coeflicient series, which tends

Frontiers in Earth Science

to be sparse due to the layered nature of the subsurface. To
better reflect real conditions, most modern seismic inversion
methods introduce sparse constraints to enhance the sparsity of the
inversion results. Among different sparse norm regularizations, the
Ly-norm is the best measure of sparsity. However, the optimization
problem involving the L-norm is NP-Hard and difficult to solve. As
a convex approximation of the Ly-norm, the L, -norm is widely used
in seismic inversion. Here, we introduce a sparse norm constraint
that has been gradually applied to geophysical inversion in recent
years—the L, ,-norm constraint. It is defined as the difference
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FIGURE 4
Comparison of three parameter inversion results for 1D multilayer model using different norm constraints: (a—c) results of noise-free, SNR = 10, and
SNR = 5 with the L;-norm constraint, respectively; (d—f) results of noise-free, SNR = 10, and SNR = 5 with the L,_,-norm constraint, respectively. Each
subfigure illustrates, from left to right, the inversion results for Vp, Vs, and p. The black solid line, red solid line and blue dashed line represent the actual
model, inversion result, and initial model, respectively.

TABLE 1 Correlation coefficients and normalized root-mean-square errors between inversion results and the true model for the 1D multilayer model.

Methods Correlation coefficients Normalized RMS error (%)
Vp Vs. Rho Vs. Rho
L,-norm 0.9999 0.9998 0.9994 0.59 0.58 1.48
Noise-free
L, ,-norm 1.0000 0.9999 0.9996 0.39 0.45 1.23
L,-norm 0.9993 0.9994 0.9966 1.19 1.14 3.29
SNR = 10
L, ,-norm 0.9997 0.9996 0.9971 0.88 0.83 2.79
L,-norm 0.9991 0.9991 0.9928 1.53 2.24 4.88
SNR=5
L, ,-norm 0.9996 0.9994 0.9954 1.08 1.46 3.04

between the L;-normand the L,-norm, and it provides better
sparsity than the L,-norm.

To illustrate the advantages of the L, ,-norm constraint, we
computed the 3D solution space distributions for different norms,
as well as their contour projections on a 2D plane, comparing
their sparsity (Wang and Chen, 2022), as shown in Figure 1. The
figure not only compares the conventional Ly, L,, and L,-norm,
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but also compares two other norm constraints proposed by scholars
to optimize the inversion results, namely, the L, and L,-norm.
In the 3D solution space, the process of minimizing the objective
function can be seen as finding the solution with the smallest
regularization term while keeping the misfit function constant,
which corresponds to searching for the lowest point on the surface.
Therefore, the lowest point of the 3D surface is generally located near
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FIGURE 5
Comparison of three parameter reflection coefficient results for 1D multilayer model using different norm constraints: (a—c) results of noise-free, SNR
=10, and SNR = 5 with the L;-norm constraint, respectively; (d—f) results of noise-free, SNR = 10, and SNR = 5 with the L; , norm constraint,
respectively. Each subfigure illustrates, from left to right, v,, v, and p reflection coefficients. The blue thick line and red thin line represent the true
model reflection coefficients and the calculated reflection coefficients from the inversion results in Figure 3, respectively.

the x-axis and y-axis on the 2D contour map. Accordingly, for the
distribution of contour lines, the closer they are to the x-axis and
y-axis, the sparser the corresponding inversion solution. It can be
observed that the L, norm is the sparsest among these constraints,
with contour lines distributed along the x-axis and y-axis. Compared
to the other norms, the L, ,-norm’s minimum contour lines are
closer to the x-axis and y-axis, making it more similar to the L, norm.
Therefore, the sparsity of the L, ,-norm constraint is superior to the
other norm constraints.

Based on the prestack gather forward model in Equation 9 and
the least-squares misfit function, the objective function with the L, -
norm constraint can be expressed as:

J(r) = argmin%”WCr—DH% + el (10)
where A is the trade-off factor. Here, we introduce the L, -
norm constraint, and the objective function is then expressed as:

.1
Jx) = argmin > IWCr - DIi5 +Adlell, - alrll,), (11)

where a€(0,1] is a constant that enhances the sparsity of
the inversion results. r represents the reflection coefficients
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of the subsurface elastic parameters. To directly invert for
the elastic parameters, a new inversion objective function is
constructed based on Equation 11, by introducing a first-order
difference matrix and incorporating initial model constraints:

1
J(m) = argmin=> [WCLm - D||3 + A(|Lm|, — «Lm],) + g”m —my%,
(12)

where L is the first-order difference matrix, m is the logarithm of the
elastic parameters, m,, is the initial model.

Strategy for inversion algorithms

To solve the optimization problem, a two-step iterative strategy
is adopted. In the first step, the Difference of Convex Algorithm
(DCA) is used to decompose the objective function. In the second
step, the Alternating Direction Method of Multipliers (ADMM)
is applied to solve the decomposed problem (Aster et al., 2019).
In the first step, the DCA algorithm is used to reformulate
the objective function as follows:
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1D well log data and prestack synthetic angle gathers for PP- and PS-wave. (a) 1D well log data, (b) noise-free, (c) SNR = 10, (d) SNR = 5.

J(m) = F(m) — H(m), (13)

where F(m) = %||WCLm—D||§+A||Lm||1+§||m—m0 >, H(m)=
Aa||Lmll,. After decomposition, the objective function takes the
form of the difference between two convex functions, which
means that the overall function is also convex. In this case, any
locally optimal solution is guaranteed to be a globally optimal
solution. For Equation 13, the solution is obtained through

an alternating iterative process:
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¥ € aH(m"),

(14)

m-! = argminF(m) — (H(mk) + <yk,m - mk>),

where k is the number of iterations, y* represents the gradient of

H(m) at m¥, and is expressed as:

Yk

0,if m* =0,
L'Lm*

“ k
o
2

A

,otherwise.

(15)
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FIGURE 7
Comparison of three parameter inversion results for the well log data: (a—c) results of noise-free, SNR = 10, and SNR = 5 with only PP-wave,
respectively; (d—f) results of noise-free, SNR = 10, and SNR = 5 with joint PP- and PS-wave, respectively. Each subfigure illustrates, from left to right,
the inversion results for Vp, Vs, and p. The black solid line, red solid line and blue dashed line represent the actual model, inversion result, and initial
model, respectively.

TABLE 2 Correlation coefficients and normalized root-mean-square errors between inversion results and the true model for the well log data.

Methods Correlation coefficients Normalized RMS error (%)
Vp Vs. Rho
PP 0.9987 0.9989 0.9828 0.85 0.90 3.08
Noise-free
PP-PS 0.9992 0.9993 0.9910 0.70 0.80 2.03
PP 0.9513 0.9682 0.7582 4.83 427 10.82
SNR = 10
PP-PS 0.9866 0.9889 0.8325 2.79 2.36 9.47
PP 0.9368 0.9331 0.7417 5.40 5.62 11.33
SNR=5
PP-PS 0.9564 0.9535 0.8106 455 4.68 9.88
In addition, in Equation 14, (,) represents the inner product  algorithm, a new auxiliary vector x is introduced. The

symbol, and mF*! denotes the obtained solution. To solve for mk“,

this is equivalent to solving a new optimization problem:

mFt! = argmin% [WCLm - D||§ +AllLm|; + §||m - mo||§ + <m,yk>. (16)

For this new problem, the second-step strategy is applied,
using the ADMM algorithm for solving it. In the ADMM
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optimization problem then becomes:

.1
mk! = argm1n5||WCLm - D2+ Allx], + g"m —my|} + <m,yk>,

subject toLm =x.
17)
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FIGURE 9
Partially stacked angle profiles of PP-wave data: (a) 12°, (b) 25°, (c) 38°. Partially stacked angle profiles of PS-wave data: (d) 12°, (e) 25°, (f) 38°.

Using Lagrange multipliers, Equation 17 can be rewritten in the mF = (LTCTWTWCL +pl + w(LTL))A

form of an augmented Lagrangian:
& srang (LTCTWTD - yk +pmg + wLT(xk - uk)),

! (19)
L(m,x,u) = argmin > [WCLm — Dllg + Ml + §||m— m0||§ + <myk> Xk = sthresh(Lmk“ + uk,)t/w),
T w 2
+u (Lm-x)+ Elle—xllz, u**! = uf + Lm**! —x"

(18)

where u is the Lagrange multiplier vector, and w > 0 is the penalty
parameter that controls the convergence speed of the iterations. Where T represents the transpose symbol of the matrix,
For Equation 18, the solution can be obtained through alternating ~ sthresh represents the soft-thresholding algorithm, and is

iterations among the three variables (Aster et al., 2019): expressed as:
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(Lmk+1 i uk) “Ma, (Lmk“ + uk) > A w,
K= 3 (Lm !+ u¥) + 2 /0, (L +ub) < -1/, (20)

0,otherwise.

The iterative calculation terminates when the maximum number
of iterations is reached or when the iteration error is smaller than a
predefined threshold, which can be expressed as:

k+1

Jm*! - ]
2

e <e |U(k>M) (21)
+m

where € > 0 is a given tolerance value, M is the maximum number of
iterations.

In summary, Figure 2 presents the workflow of the proposed
PP- and PS waves joint inversion method. Based on the previous
description, the workflow can be divided into three main parts. The
first part involves the combination of PP- and PS-wave seismic data.
The second part is the construction of the joint inversion objective
function. The third part is the optimization inversion solution of
three parameters.
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Synthetic data examples

In this section, we share the results of applying our approach on
two synthetic data, a multi-layered model and well log data.

Multilayer model

In the 1D multilayer model test, the reflection coefficients
of the model exhibit significant sparsity, making it suitable for
demonstrating the advantages of the L, ,-norm constraint. A
comparison with the conventional L,-norm constraint is conducted
to verify that the L, ,-norm offers superior performance. The model
curves are shown in Figure 3a, where the left panel represents P-wave
velocity, the middle panel represents S-wave velocity, and the right
panel represents density, with a time of 720 ms and a time sampling
interval of 2 ms. Using this model, reflection coeflicients at different
angles are calculated using the approximate equations (Equations 2,
3), with a maximum angle of 40°. These are then convolved with a
40 Hz Ricker wavelet to generate prestack angle gathers for both PP-
and PS-wave data. Different noise levels are added to the synthetic
gathers, as shown in Figures 3b-d, representing noise-free, SNR
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FIGURE 12
Comparison of V;/Vs velocity ratio results for the connected well survey line: (a) only PP-wave inversion; (b) joint PP-, PS-wave inversion.

= 10, and SNR = 5 conditions for the PP- and PS-wave prestack  quality decreases as noise increases, the results show better
angle gathers. overall agreement with the true model compared to the L;-
The synthetic angle gathers from the multilayer model are ~ norm constraint.

used directly for joint inversion tests of PP- and PS-waves data Table 1 provides the correlation coefficients and normalized
to verify the feasibility of the proposed method. Figure 4 shows  root mean square errors (NRMSE) between the inversion results
the comparison of elastic parameter results obtained using L;-  from Figure4 and the true model. The table shows that the
norm constraint and L, ,-norm constraint for joint inversion under =~ L, ,-norm constraint yields higher correlation coefficients and
different signal-to-noise ratios. The blue dashed line represents  lower NRMSE than the L,-norm constraint, indicating better
the initial inversion model, the black solid line represents the  performance. Figure 5 compares the elastic parameter reflection
true model, and the red solid line represents the inversion results. coeflicients calculated from the inversion results. The blue thick line
Figures 4a—c show the results of the joint inversion using the  and red thin line represent the true model reflection coefficients
L,-norm constraint. In the noise-free case, the inversion results and the calculated reflection coefficients from the inversion results,
match the true model closely, but as noise increases, the inversion  respectively. As seen in the figure, with increasing noise, the L, ,-
quality declines. Figures 4d-f show the results of the joint inversion =~ norm constraint better suppresses small values while preserving the
using the L, ,-norm constraint. In the noise-free case, the inversion ~ amplitude of larger values, confirming that the L, ,-norm constraint
results coincide with the true model, and although the inversion  provides superior sparsity.
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Comparison of V;/Vs velocity ratio results slice for sand2 body: (a) only PP-wave inversion; (b) joint PP-, PS-wave inversion.

Well log data The synthetic angle gathers of PP- and PS-waves data from
the well-log model are used directly for inversion tests. The

In the well log model test, the model curves are shown in  results of only PP-wave inversion and PP-PS joint inversion are
Figure 6a. The left panel shows the P-wave velocity, the middle = compared. Figure7 shows the elastic parameter results under
panel shows the S-wave velocity, and the right panel shows the  different signal-to-noise ratio, comparing the outcomes of only
density, with a time of 600 ms and a time sampling interval of 2ms. =~ PP-wave inversion and PP-PS joint inversion. In the noise-free
Using this model and applying approximate equations, reflection  case, both only PP-wave and PP-PS joint inversion results match
coeflicients at different angles are calculated, with the maximum  the true model. As the noise level increases, the inversion quality
angle being 40°. These are then convolved with a Ricker wavelet of  decreases, but the joint inversion consistently outperforms the only
40 Hz dominant frequency to generate the prestack angle gathersfor =~ PP-wave inversion. Table 2 provides the correlation coefficients
both PP-wave and PS-wave data. Different levels of noise are added ~ and normalized root mean square errors between the inversion
to the synthetic gathers, as shown in Figures 6b-d, representing  results from Figure 7 and the true model. The table shows that
noise-free, SNR = 10, and SNR = 5 conditions for the PP-wave and the PP-PS joint inversion achieves higher correlation coefficients
PS-wave prestack angle gathers, respectively. and lower root mean square errors, indicating that the accuracy
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of the PP-PS joint inversion is superior to that of the only PP-
wave inversion.

Application to real field data

After testing with synthetic data, the proposed method is applied
to real field seismic data, collected using Offshore Bottom Node
(OBN) seismic acquisition. Compared to conventional towed-cable
seismic acquisition, OBN places sensors on the seafloor, enabling
effective collection of multi-component seismic data. These data
have advantages such as broad bandwidth, high signal-to-noise ratio,
and wide azimuth coverage, resulting in clearer imaging and greatly
aiding offshore oil and gas exploration.

Before joint inversion, we conduct a feasibility analysis
data
calibration. Figures 8a,b show the PP-wave and PS-wave well-

of joint inversion of seismic through  well-seismic
seismic calibration for a representative well in the actual study area.
As shown in the figure, there is a good correspondence between PP
wave, PS wave, and actual well log data. In the target gas reservoir
interval, an amplitude anomaly, commonly referred to as a “bright
spot,” is observed near the well on the PP-wave section, while such a
feature is not visible on the PS-wave section. This difference between
PP-wave and PS-wave responses provides useful information for
reservoir identification. It is important to note that due to the
different travel times of PP-wave and PS-wave, two separate time-
depth relationships are used in the well-seismic calibration. Before
conducting joint inversion, it is necessary to match PP wave and
PS wave seismic data. Here, our matching process can be divided
into two steps. The first step is time matching. Based on the P-
wave and S-wave velocity models obtained during imaging, we
calculate the velocity ratio and converted the PS-wave data from
PS-time to PP-time. The second step is frequency matching. We
adopt a Fourier scaling method, using the PP seismic wavelet as the
reference wavelet, to correct the PS seismic wavelet frequency band
to be consistent with the PP seismic wavelet. This not only improves
the stability of the joint inversion, but also eliminates the wavelet
distortion caused by the time domain conversion in the first step.
Figures 9a—c show the partially stacked angle profiles
of the matched PP-wave data at 12°, 25° and 38° angles,
respectively, while Figures 9d-f show the partially stacked angle
profiles of the matched PS-wave data at the same angles. Comparing
the matched results shows consistent timing between the PP-wave
and PS-wave profiles. The seismic responses to the same geological
structures also correspond well, indicating that the matched data
meet the requirements for joint PP- and PS-waves inversion. It is
notable that in the PP-wave profiles, bright spots and discontinuous
horizons appear in the lower part due to the influence of gas
reservoirs. In contrast, the PS-wave profiles, less affected by gas,
exhibits more continuous layering. Therefore, jointing PP- and
PS-waves data in inversion improves the accuracy of the results.
The proposed method is applied to real field data for joint
inversion of subsurface elastic parameters. For comparison, an only
PP-waves inversion is also conducted. Figures 10a-c show the results
of the only PP-wave inversion, which include P-wave velocity, S-
wave velocity, and density. Figures 10d-f present the results of
the joint inversion for the same parameters, with well log data
incorporated. The Vp/V velocity ratio, which is a key parameter for
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identifying favourable reservoirs, is calculated using the inverted P-
wave and S-wave velocities, and the results of reservoir identification
from the only PP-waves inversion are compared with those from the
joint inversion.

The comparison between the only PP-wave inversion and the PP-
PSjoint inversion shows that the trends in the P-wave velocity results
are largely consistent, both aligning with the well log data. For S-
wave velocity and density, the joint inversion incorporating PS-wave
data offers greater lateral continuity in gas-bearing layers, better
reflecting the characteristics of the rock skeleton and corresponding
more closely to the well data. The velocity ratio profiles in Figure 11
highlight that the PP-PS joint inversion provides higher-resolution
Vp/ Vg velocity ratios, which are more effective for distinguishing
favourable reservoirs compared to the only PP-wave inversion.

To further compare the effectiveness of only PP-wave inversion
versus joint PP- and PS-wave inversion, this study conducts focused
analyses on potential reservoirs. In the target study area, the
reservoirs are predominantly gas-bearing formations where P-
wave velocity exhibits rapid attenuation due to gas-saturated fluids,
resulting in characteristic low V;/ Vg value. Vp/V profiles derived
from inversion results are calculated and presented in Figure 12,
with separate illustrations showing profiles obtained from only PP-
wave inversion and joint PP- and PS-wave inversion approaches.
This comparative visualization demonstrates the differential
performance between the two inversion methodologies in capturing
Vp/ Vs characteristics.

To verify the reliability of the results, five well logs are
incorporated into the figure. In the well log interpretation, distinct
colors are employed to represent different reservoir interpretation
outcomes, with gas-bearing reservoirs explicitly marked in red. A
clear observation is that the V;/Vy derived from joint inversion
demonstrates significantly higher spatial resolution compared to
conventional only PP-wave inversion method. The low V},/V zones
exhibit precise alignment with the gas-bearing reservoir intervals
interpreted from the well logs, revealing strong spatial consistency.
This high degree of correspondence validates the superior precision
of the joint inversion approach.

This improvement primarily arises from the integration of
PS-wave data in the joint inversion, which is inherently more
sensitive to S-wave velocity variations. By incorporating PS-wave
data, the joint inversion achieves enhanced precision in estimating
S-wave velocities. Consequently, the velocity ratios calculated from
the joint inversion results display higher fidelity, enabling more
reliable reservoir characterization and fluid discrimination. Such
advancements underscore the critical advantage of joint inversion in
resolving complex subsurface features, particularly in gas-saturated
environments where conventional only PP-wave inversion methods
face limitations due to rapid velocity attenuation.

In Figure 13, the two purple-dashed horizons delineate two sets
of potential sandstone reservoirs. V;/Vy slices extracted along these
horizons are presented in Figures 14. Compared to Vp/Vy slices
derived from only PP-wave inversion, the slices obtained through
joint inversion exhibit significantly enhanced clarity, demonstrating
a superior ability to distinguish gas-bearing sandstone reservoirs.
Beyond the drilling-validated locations, additional areas exhibit
substantial potential for high-quality reservoirs, as highlighted by
the joint inversion results. These findings provide critical insights
for guiding future exploration and development activities.
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Discussion and conclusion

We focused on the joint inversion of multi-wave seismic data. In
the joint inversion of PP- and PS-wave information, a key point is
how to properly combine the PP- and PS-wave reflection coefficients
using an appropriate reflectivity equation. Moreover, how to ensure
the stability and accuracy of the joint inversion is also an issue
that requires thorough investigation and careful consideration. A
joint inversion method for PP- and PS-waves prestack gathers is
developed based on the Aki-Richards equations for PP-wave and PS-
wave reflection coefficients. An L, ,-norm constraint is introduced,
and a detailed expression of the objective function is derived. The
DCA + ADMM method is applied during the inversion process to
solve the optimization problem for the joint inversion of PP- and PS-
waves. In the synthetic data tests, the L, ,-norm constraint is compared
with conventional norm constraint method using a multilayer model.
The results confirm that the L, ,-norm provides stable and superior
sparse constraint performance, making it more suitable for prestack
seismic inversion. For joint inversion of PP- and PS-waves, this
approach improves inversion accuracy. The method is applied to
the actual well log data, comparing only PP-wave inversion with
joint inversion. The results demonstrate that joint inversion offers
higher accuracy and better noise resistance. In the application to real
field data, a comparison is made between only PP-wave inversion
and joint inversion with PP- and PS-waves. The results show that
joint inversion outperforms only PP-wave inversion, providing better
reservoir prediction and more accurate identification of favourable
reservoirs. The proposed joint inversion method has achieved good
results in reservoir characterization of offshore OBN seismic data.
In addition to appropriate inversion methods, how to achieve high-
precision matching between P- and S-wave data, and how to construct
initial models are also issues that need to be noted in field practical data
applications. Furthermore, multicomponent joint inversion directly in
the depth domain is a key focus of future research.
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