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Snow cover is recognized as one of the most variable land cover parameters
and plays a critical role in the global energy balance, climate change,
and hydrological processes. Polar-orbiting satellites serve as the primary
data source for monitoring both polar and global snow cover, providing
wide coverage and high spatial resolution products. However, the utility of
these snow cover products is significantly limited by data gaps caused by
unfavorable observation conditions, such as cloud cover. Various reconstruction
approaches are required to fill these gaps, depending on the snow cover
product type (binary snow cover (BSC), normalized difference snow index
(NDSI), or fractional snow cover (FSC)), snow characteristics, and availability
of auxiliary datasets. This paper categorizes current reconstruction approaches
into eight types: temporal filters, spatial filters, multisensor fusion, and the
hidden Markov random field (HMRF) model for BSC mapping, as well as
temporal and spatial interpolation methods, spatiotemporal reconstruction
algorithms, machine learning-based reconstruction techniques, and data
assimilation methods for NDSI or FSC mapping. This paper provides a
comprehensive review of the principles, advantages, and limitations of these
approaches and offers recommendations for their appropriate application. The
discussion highlights that future improvements in snow cover reconstruction
can be achieved through three key approaches. First, enhancing snow
cover recognition algorithms will increase the accuracy of the original snow
cover products, providing more reliable prior information for reconstruction.
Second, careful consideration of spatiotemporal environmental factors, such
as terrain, temperature, precipitation, solar radiation, and forest cover, along
with the development of corresponding multisource data processing and fusion
techniques, is essential. Third, further exploration of the synergy between
machine learning and data assimilation could leverage their strengths in
multisource data processing scenarios, offering novel insights for conducting
snow monitoring and forecasting in complex environments. This review
contributes to snow cover mapping and related research by offering a
comprehensive analysis and guidelines for generating gap-filled snow cover
products across a variety of spatiotemporal scales.

snow cover reconstruction, remote sensing, spatiotemporal methods, machine
learning, data assimilation
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1 Introduction

Snow cover is among the most dynamic natural components of
the cryosphere and is crucial for the global energy balance, climate
change, and the hydrological cycle (Tang et al., 2013; Li et al., 2018;
Thackeray et al., 2019; Li et al., 2022). Snow cover enhances the
surface albedo, reduces the absorption of solar shortwave radiation,
and regulates the heat exchange process between the ground and
the atmosphere. Moreover, it influences atmospheric circulation,
serves as a key indicator for predicting regional precipitation, and
plays a crucial feedback role in climate change (Dozier and Warren,
1982; Warren, 1982; Zhang, 2005; Warren, 2019; You et al., 2020).
Additionally, snowmelt supplies water to more than one-sixth of
the global population, affecting both the quality and quantity of
downstream river water and serving as a vital source of river
runoff (Armstrong et al., 2019; Han P. et al,, 2019; Qin et al,
2020; Musselman et al., 2021; Yang et al, 2022). Consequently,
as global warming alters the snow accumulation and snowmelt
processes, the importance of snow cover monitoring becomes
increasingly evident. Such monitoring procedures not only provide a
critical foundation for scientific research, including snowmelt runoff
forecasting and climate change assessment, but also offer essential
support for disaster prevention, resource management, and water
supply planning.

Currently, snow cover products derived from polar-orbiting
satellites serve as crucial data sources for global snow cover
monitoring and mapping, particularly in polar and high-latitude
regions (Romanov et al., 2000; Dietz et al, 2012; Dixit et al.,
2019; Zhang et al., 2023). These products typically utilize optical
remote sensing data, which are more accurate than microwave
products in identifying snow cover areas (SCAs) under clear-
sky conditions, particularly in regions with shallow snow cover
(Wang et al., 2008; Foster et al., 2011; Dietz et al.,, 2012). These
optical products offer advantages such as near-global coverage,
wide availability, high precision, high temporal resolution (ranging
from daily to several days), and spatial resolution from 5km to
several meters (Dixit et al., 2019; Muhuri et al., 2021; Zhang et al.,
2023). Snow cover products derived from optical remote sensing
are categorized into binary snow cover (BSC) products, normalized
difference snow index (NDSI) products and fractional snow cover
(FSC) products. BSC mapping is the traditional method used during
the early stages of snow cover monitoring and involves simply
classifying a pixel as either a snow or non-snow pixel, making
it suitable for large-scale snow monitoring (Dobreva and Klein,
2011; Riggs and Hall, 2010; Rittger et al., 2013; Gafurov et al.,
2016). With the development of remote sensing technology and
algorithms, NDSI and FSC products, which provide continuous
snow cover parameters, are becoming increasingly important in
cryosphere and hydrology research. Specifically, the NDSI, which
is the normalized difference between the green and shortwave
infrared spectral bands, effectively distinguishes snow from clouds
and other land features and can be used to generate both BSC
and FSC products (Kulkarni et al., 2002; Salomonson and Appel,
2004; Mishra et al., 2016; Riggs et al., 2017; Li X. et al., 2019). FSC
provides a more precise estimate of the areal extent of snow cover
by estimating the fraction of a snow-covered pixel, which directly
reflects the snow conditions of mixed pixels in complex terrain
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(Dozier et al., 2008; Dobreva and Klein, 2011; Tang et al., 2013;
Haseeb Azizi et al., 2024; Xiao et al., 2024; Huang et al., 2025).

In practical applications, the above snow cover products
inevitably suffer from data gaps due to a variety of influencing
factors (Figure 1); however, reconstruction methods can address
this issue, thereby enhancing the quality and utility of snow
cover products. Cloud cover represents the primary cause of data
gaps in snow cover products. The global mean cloud cover level,
which is derived from MODIS products, is approximately 66%
(Mao et al, 2019). The cloud cover levels in key ice and snow
regions, including the North and South Poles, range from 50% to
80% (Kato et al., 2006), and the degree of cloud cover can reach
70% during the snowmelt season in alpine regions (Da Ronco and
De Michele, 2014), which significantly impacts the availability and
long-term comparability of snow cover products. The impact of
cloud cover is a global, persistent, and non-negligible issue, making
it the primary concern addressed by most current reconstruction
methods. Cloud-induced shadows further exacerbate data gaps,
particularly in high-resolution snow cover monitoring applications.
In addition, accurate observation of snow cover beneath canopies
is challenging at the surface in forested areas (Yang et al., 2023).
Snow cover in mountainous areas with complex terrain is affected
by satellite observation angles and mountain shadows, which lead
to observation blind spots (Zhang et al., 2023). Although the effects
of forest cover and complex terrain are relatively localized, they
significantly increase the uncertainty of snow cover monitoring
in mountainous and forested areas, posing major challenges for
accurate reconstruction at the local scale. Additionally, adverse
lighting conditions may also degrade the quality of snow cover
products. Intense sunlight reflected from snow cover can saturate
the utilized sensor (ZhangY. et al, 2020). At the North and
South Poles, the prolonged periods of darkness caused by the
polar night render traditional optical remote sensing ineffective for
observation tasks. Although nighttime light remote sensing offers
new opportunities for polar snow cover monitoring, clouds and
auroras may still obscure the acquired data (Huang et al., 2022a;
Liuetal., 2023). These unfavorable factors may occur simultaneously
depending on geographic and observational conditions, leading to
increased data gaps and further reduced reliability of snow cover
products. To mitigate the effects of these factors on snow cover
products and reconstruct missing data, researchers have developed
a variety of snow cover reconstruction methods (Gao et al,
2010a; Gao et al., 2010b; Richiardi et al., 2023). First, snow cover
reconstruction enhances the continuity and timeliness of snow
cover monitoring. Reconstructing historical snow cover datasets
addresses issues such as the limited availability of remote sensing
data and the insufficient number of observations acquired at remote
mountain sites, analyzing snow cover characteristics across broad
geographical areas over several decades, and providing long-term
historical data for the operation and calibration of hydrological
models (Gafurov et al., 2015). Second, the reconstructed snow cover
products serve as crucial input data for estimating snow depth (SD),
snow water equivalent (SWE) and other snow parameters, thereby
reducing uncertainty in parameter retrieval. For example, recent
snow depth products derived from Sentinel-1 SAR data utilize a
gapless, daily binary snow cover product to indicate snow presence
and minimize the influence of non-snow factors (Lievens et al., 2022;
Hoppinen et al., 2024; Ying et al., 2025). The reconstructed snow
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FIGURE 1
Factors contributing to data gaps.

cover results can also be used as a mask to constrain the target
snow cover area and assist in downscaling SD and SWE products to
higher spatial resolutions, which is important for evaluating regional
snow resources, analyzing the spatial distribution of snow cover
with its generation and dissipation processes, and predicting future
snowmelt runoff (Molotch and Margulis, 2008; Hall et al., 2010;
Rittger et al., 2016).

To this end, we provide a review of various reconstruction
methods for snow cover products from polar-orbiting satellites and
organize the paper according to the flowchart in Figure 2. Although
previous research has discussed related methods for MODIS
BSC products (Coll and Li, 2018; Li X. et al,, 2019; Gao Y. et al.,
2024), we broaden the scope of our exploration and address
the following key points that have not been covered in
prior studies.

1. First, we briefly introduce the six primary data sources for
monitoring snow cover from polar-orbiting satellites. We
discuss their basic accuracies and characteristics to establish
a foundation for subsequent research.

2. We focus on a comprehensive analysis of four reconstruction
methods for NDSI or FSC mapping while providing a
brief overview of the reconstruction methods for BSC
mapping. Specifically, we offer recommendations for the
appropriate application of each method. These insights can
assist researchers in selecting suitable methods or refining
existing approaches.

3. By comparing current reconstruction methods, we highlight
challenges within the existing research and propose future
research directions, offering guidelines for generating gap-
filled snow cover products for related scientific studies.

2 Snow cover products derived from
polar-orbiting satellites

Before snow cover is reconstructed, understanding the
characteristics of different snow cover products, including
their original accuracy and resolution, is essential for selecting
appropriate reconstruction methods.
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Various types of snow cover products are derived from polar-
orbiting satellites (Table 1). Most official products still contain
significant numbers of cloud or missing pixels (hereafter referred
to as cloud pixels), with a few gap-filled exceptions (such as
MODI0AIF and MYDI10A1F). Snow cover products provide
accurate clear-sky observations that serve as reliable prior data,
forming the foundation for performing snow cover reconstruction.
The most widely used snow cover products come from the Moderate
Resolution Imaging Spectroradiometer (MODIS) onboard the Terra
and Aqua satellites (Hall et al., 2010; Hall et al., 2019). The MODIS
products are characterized by easy accessibility, wide coverage,
and excellent snow monitoring capabilities, with overall accuracies
typically exceeding 85% (Hall et al., 2002; Hall and Riggs, 2007;
Wang et al., 2008; Parajka et al., 2012; Hou et al,, 2018; Liu et al,,
2020). The MODIS snow cover algorithm and products are also
the foundation of the Visible Infrared Imaging Radiometer Suite
(VIIRS) snow cover algorithms, ensuring the accuracy, continuity
and consistency of the resulting snow cover datasets from the Suomi-
National Polar-orbiting Partnership (S-NPP), Joint Polar Satellite
System-1 (JPSS-1, now known as NOAA-20) and JPSS-2 (now
known as NOAA-21) (Riggs et al.,, 2017; Riggs and Hall, 2020;
Liu A. et al.,, 2022; Stillinger et al,, 2023; Romén et al., 2024).
According to the research by Zhang H. et al. (2020), the VNP10A1
product from VIIRS performs as well as the MOD10A1 product
from Terra, except on the Tibetan Plateau, and is significantly
more accurate than the MYDI10Al data from Aqua in China.
It is recommended to prioritize the use of snow cover products
from VIIRS and Terra rather than snow cover products from
Aqua because of the questionable observations of Band 6 in Aqua
(Huang et al., 2018; Hall et al., 2019; Zhang H. et al., 2020). In
addition, S-NPP VIIRS produced the VNP46A1 and VNP46A2
products using nighttime light remote sensing data, achieving a
classification accuracy exceeding 79% in Arctic ice and snow cover
monitoring scenarios (Liu et al., 2023). The AVHRR snow cover
products provided by the European Space Agency (ESA) achieved
an overall accuracy of 94% in the Himalayas (Wu et al., 2021).
The JASMES product, which was developed using NOAA AVHRR
and MODIS data, attained an accuracy exceeding 82% (Hori et al.,
2017). Since 2008, China’s FY-3 series satellites, which are equipped
with a Medium Resolution Spectral Imager (MERSI), Visible and
InfraRed Radiometer (VIRR) and Microwave Radiation Imager
(MWRI), have provided critical Earth observations. The accuracy
of the multisensor fusion snow cover products (MULSS) derived
from the FY-3 MERSI and VIRR data ranges from 83% to 87%,
reflecting long-term snow cover trends in China (Min et al., 2021;
Li et al, 2022). Optical and passive microwave imagery derived
from the FY-3D MERSI and MWRI has also been integrated to
generate new snow cover products, known as MULSS_SCM. In
addition to the aforementioned snow cover products with spatial
resolutions ranging from hundreds of meters to several kilometers,
satellite data with spatial resolutions as fine as tens of meters are
also available. For example, the United States Geological Survey
(USGS) provides Landsat-8 L3-level data with a 30 m resolution
and a 16-day temporal interval for the fractional Snow Covered
Area (fSCA). The Fl-score, the harmonic mean of precision
and recall, for the Landsat-8 products reached 97.3%, slightly
outperforming the metrics of MODIS and VIIRS, as validated
by airborne lidar datasets in the western USA (Stillinger et al.,
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FIGURE 2
Flowchart of snow cover reconstruction.

2023). With respect to Sentinel-2 satellites, which have a high
spatial resolution of 20 m, the empirical threshold-based method of
the official processor (Sen2Cor) has achieved an overall accuracy
of only 58% (Wang et al., 2022¢). In contrast, enhanced Let-It-
Snow (LIS) algorithms and machine learning methods, such as
random forests and U-Net models, can increase this accuracy
to 90%-94% (Barrou Dumont et al., 2021; Richiardi et al., 2021;

Frontiers in Earth Science

Lietal., 2022). The Theia Snow Collection provides high-resolution
snow cover maps (20-30 m) using Sentinel-2 and Landsat-8 data
by incorporating the NDSI and snow lines. These maps serve as
valuable references for evaluating MODIS snow cover products and
data assimilation methods. The Sentinel-2 results from the Theia
Snow Collection have achieved an overall accuracy of 94% and a
kappa coefficient of 0.83 (Gascoin et al., 2019). Additionally, these
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TABLE 1 Prominent snow cover products derived from polar-orbiting satellites.

Satellites Optical Launch year Spatial Temporal Snow cover product
sensor resolution resolution
1d MODI10A1/MYDI10AL;
MODI10A1F/MYD10A1F
500 m
8d MOD10A2/MYD10A2
Terra/Aqua MODIS 1999/2002 14 MOD10CI/MYD10C1
5km 8d MOD10C2/MYD10C2
Monthly MOD10CM/MYD10CM
375m 1d VNP10A1/V]J110A1; VNP10A1F/VJ110A1F
S-NPP/JPSS-1/]JPSS-2 VIIRS 2011/2017/2022
500 m 1d VNP46A1; VNP46A2
NOAA series satellites AVHRR 1979 5km 1d JASMES; SnowCCI AVHRR products
Landsat series satellites TM/ETM+/OLI 1984 30 m 16d . Landsat SCA/fSCA
Theia Snow
i collection .
Sentinel-2 MSI 2015 20 m 5d HRSI collection
1km 1d MERSI/MULSS SNow Cover (SNC)
FY-3 MERSI 2008
5km 1d FY-3 MULSS Snow Cover Merged (SCM)

Sentinel-2 results are more sensitive to in situ SD observations than
are those of MODIS, as the optimal SD threshold for the former
is close to 0 m, whereas for MODIS, the optimal SD threshold is
0.15m, at which the product achieves its best kappa coefficient
(Gascoin et al., 2015; Gascoin et al., 2019). All the abovementioned
snow cover products, which are available at different spatial and
temporal resolutions, offer diverse data support for snow monitoring
at both global and regional scales.

Therefore, snow cover reconstruction methods must be
selected while carefully considering the detection characteristics
of different satellites or constellations. For example, temporal
methods that rely on continuous multiday snow cover information
are challenging to apply to Landsat and Sentinel-2 products with
low temporal resolutions. When nighttime light remote sensing
data are utilized for snow cover monitoring in polar regions, it
is essential to account for the impact of lunar phase changes on
image brightness, and methods must be employed to remove clouds
and auroras (Liu et al., 2023). Snow cover products with various
spatial resolutions require different reconstruction strategies.
For daily products with moderate spatial resolutions ranging
from 1km to 5km (Table 1), the primary objective of snow
cover reconstruction is to retrieve snow information obscured
by cloud cover. For Landsat and Sentinel-2 satellite products,
which have high spatial resolutions (<30 m) and long revisit
intervals, daily snow cover maps may need to be generated using
temporal interpolation methods, along with cloud gap filling.
These factors illustrate the variations exhibited by snow cover
reconstruction methods across different spatiotemporal scales and
emphasize the significance of satellite observation characteristics
in snow reconstruction algorithms.
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Therefore, research on snow cover reconstruction must adopt
more precise methods to increase the clear-sky accuracy and
quality of the original products. Furthermore, the resolutions of
snow cover products and their detection characteristics should be
considered when an appropriate snow cover reconstruction method
is selected.

3 Snow cover reconstruction methods

Snow cover reconstruction methods, which are also referred
to as cloud removal approaches, are employed primarily to fill
data gaps caused by cloud cover, cloud shadows, forest cover or
detector saturation in snow cover products. These methods increase
the reliability and continuity of snow cover products, facilitating
their application in runoff forecasting and data assimilation systems
(Hall et al., 2010; Coll and Li, 2018; Hall et al., 2019; Li et al,,
2020). Numerous researchers have conducted relevant studies on
snow cover reconstruction based on the distinct characteristics
of snow cover products. We classified snow cover reconstruction
methods according to their predominant use for BSC and NDSI/FSC
products in existing studies to better reflect common practices. Some
methods—such as certain machine learning algorithms—classified
under NDSI/FSC reconstruction have also been applied to BSC
products and, in some cases, have generated both types of
results simultaneously. Nevertheless, we still categorize them as
NDSI/ESC methods to encourage the generation of continuous-
value outputs, which preserve more detailed snow information and
can be readily converted to BSC products through appropriate
thresholding.
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3.1 Reconstruction methods for BSC
products

Based on the different gap-filling principles, the snow cover
reconstruction methods that are commonly used for BSC products
can be classified into temporal filters, spatial filters, multisource
fusion, and the hidden Markov random field (HMRF) model (Coll
and Li, 2018; Li X. et al,, 2019; Gao Y. et al., 2024). As BSC products
remain valuable data sources for large-scale snow monitoring and
satisfy snow cover detection needs at coarse resolutions, these
methods continue to evolve. In this paper, we provide a concise
review of these methods.

There are four types of commonly used temporal filters: Terra
and Aqua combination (TAC), adjacent temporal deduction (ATD),
fixed and flexible multiday combination (MDC), and the snow
cycle filter (SCFil). These methods are based on the temporal
continuity of snow cover and the dynamic processes of snow
accumulation and ablation. They assume that snow cover undergoes
minimal change over certain periods, whereas cloud cover changes
more rapidly. As a result, clouds can be effectively removed by
combining multitemporal snow cover products within a temporal
window. The typical size of this temporal window ranges from
several hours (TAC) to tens of days (Liang TG. et al, 2008;
Parajka and Bloschl, 2008; Gao et al., 2010b; Singh et al., 2021;
Mattar et al., 2022; Wang J. et al., 2025). Generally, a larger temporal
window reduces cloud contamination but also decreases the overall
classification accuracy and temporal resolution. Therefore, selecting
appropriate temporal windows for different regions and seasons is
essential for balancing cloud removal efficiency with classification
accuracy, ultimately improving the overall quality of the data.
Gaoetal. (2010b) reported that underestimation and overestimation
errors typically remain low during stable snow-covered and non-
snow periods (generally December-March and July-September,
depending on regional snow characteristics) when TAC, ATD, and
MDC are used with temporal windows <8 days. However, larger
temporal windows in the fixed MDC method result in increased
overestimation errors during transitional periods. In contrast, the
flexible MDC method provides an effective solution for improving
reconstruction outcomes by adjusting the window size based on
cloud cover percentage and a predefined maximum number of
days (Gao et al., 2010b; Zhang et al, 2012; Chen et al, 2014;
Yang et al, 2018). Notably, temporal filters are ineffective at
completely removing clouds from BSC products, except for SCFil.
However, the error of SCFil is the greatest among these methods,
exceeding 10% (Gafurov and Bérdossy, 2009; Li X. et al., 2019).
The SCFil method assumes that snow cover persists between the
start day of snow accumulation and the day of complete snowmelt,
during which all the cloud pixels are reclassified as snow-covered.
In contrast, cloud pixels are classified as snow-free during other
periods. The SCFil method is constrained by the accuracy of the
estimated snow start and complete snowmelt days. Overall, the
performance of the method is influenced by cloud cover dynamics
and may be further diminished during periods of rapid snow
change. Previous research has demonstrated that the SCFil method
tends to overestimate snow cover on land pixels (Gafurov and
Bardossy, 2009). These temporal filters are generally suitable for
scenes with frequent dynamic interference (e.g., clouds and auroras)
and relatively stable snow cover. The higher the frequency of
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satellite observations is, the more effective the temporal filters are
(Liang TG. et al.,, 2008; Parajka and Bloschl, 2008; Gafurov and
Bardossy, 2009; Gao et al., 2010b; Paudel and Andersen, 2011;
Lindsay et al., 2015; Singh et al., 2021; Liu et al., 2023). Short-term
snowfall or snowmelt events can reduce the accuracy of temporal
filtering methods.

The spatial filters are primarily based on four orthogonal
neighboring pixels, the elevation of eight neighboring pixels, locally
weighted logistic regression (LWLR), and snow lines. Spatial filters
rely primarily on snow cover information and the environmental
association information of neighboring pixels within a specific
spatial window to reclassify cloud pixels. Spatial filters based
on four orthogonal neighboring pixels or the elevation of eight
neighboring pixels achieve high classification accuracy but remove
only a few cloud pixels (Gafurov and Bérdossy, 2009; Jain et al.,
2009; Tong et al., 2009; Paudel and Andersen, 2011; Loépez-
Burgos et al, 2013; Griinewald et al, 2014; Hou et al., 2018;
Li X. etal., 2019; Poussin et al., 2025). The LWLR method can reduce
the cloud coverage rate from 39% to 15% (Lopez-Burgos et al.,
2013) but exhibits significant temporal variations, with unstable
cloud removal effects and high computational costs (Clark and
Slater, 2006; Lopez-Burgos et al., 2013). Different snow-line methods
estimate snow and land boundaries in different ways based on
snow distributions to reclassify cloud pixels (Guglielmin et al.,
2003; Gafurov and Bardossy, 2009; Parajka et al., 2010; Paudel
and Andersen, 2011; Qiu et al., 2017; Zhang et al., 2023). The
most commonly used snow-line method is the regional snow-
line method (SNOWL) (Parajka et al., 2010; Dietz et al, 2014;
Hisler et al., 2014; Poussin et al., 2025), which is affected by
the misclassification of cloud pixels as snow cover pixels and
does not account for cloud shadows, making it difficult to apply
this technique to snow cover products derived from high-spatial-
resolution satellites such as Landsat-8 and Sentinel-2. Therefore,
Zhang et al. (2023) enhanced the SNOWL algorithm using the tools
Fmask and Sen2Cor to identify cloud cover, cloud shadows and
snow pixels precisely in Sentinel-2 images. Additionally, unstable
snow cover areas were incorporated to improve the snow cover
reconstruction process in mountainous regions affected by clouds
and cloud shadows, making the method more suitable for Sentinel-
2 data (Zhang et al,, 2023; Zhang et al., 2024). Considering that
snow cover is influenced by various factors, Qiu et al. (2017) also
employed multiple linear regression to model snow-line elevation
data for reconstruction purposes, using the snow-line elevation
as the dependent variable and the longitude, latitude and slope
aspect as independent variables. This method has been widely
applied to conduct snow monitoring over the Qinghai-Tibet
Plateau and the China-Pakistan Economic Corridor (Qiu et al,,
2017; Yu, 2017; Hao et al, 2019). However, both the improper
selection of subregions and the overfitting of regressions affect the
cloud removal rate and classification accuracy of this method. In
general, the above spatial filters perform best in areas with simple
terrain and stable snow cover conditions over a wide range. They
generally perform well in filling gaps caused by small, scattered
clouds but are less effective in areas with extensive cloud cover
(Huang et al., 2018; Yan et al., 2024).

Traditional methods involve the
combination of BSC products derived from optical observations,
SDor SWE products

multisource  fusion

acquired from passive microwave
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observations, and station observations. Owing to the coarse spatial
resolution of microwave products, the SWE or SD needs to be
sampled to align them with the spatial resolution of BSC products,
and cloud pixels in BSC products are directly replaced with
the corresponding reclassified SWE pixels (Liang T. et al., 2008;
Gao etal., 2010a; Gao et al., 2010b; Foster et al., 2011; Bergeron et al.,
2014; Huang et al., 2016; Romanov, 2017; Hao et al., 2021). Station
observations provide continuous, long-term and high-precision
SD data but are limited to fixed locations. Therefore, integrating
station observations with remote sensing products requires the
consideration of additional spatial distribution characteristics of
snow (Gafurov et al., 2015; Dong and Menzel, 2016; Gafurov et al.,
2016). When remote sensing images are scarce, the reconstruction
of long time series and large-scale historical snow cover can be
accomplished by constructing a probabilistic relationship between
individual pixels and station data. However, data quality differences
caused by the migration of ground stations, environmental changes,
observation standard revisions, and unstable operations may
negatively impact the accuracy of snow cover fusion products
(Yangetal., 2013; Zhang et al,, 2021). Additionally, some researchers
have proposed integrating IMS snow and ice products with BSC
products, as IMS products offer higher spatial resolutions (1-4 km)
and can serve as alternatives to microwave products (Newfel et al.,
2013; LiY. et al, 2019; Gao Z. et al.,, 2024; Hao et al., 2019;
Wang J. et al.,, 2025). With the development of nighttime light
remote sensing, the combination of snow cover products from both
daytime and nighttime has shown significant promise in snow cover
reconstruction. High spatial resolution snow cover products derived
from VIIRS nighttime light data can be used not only for polar night
monitoring but also as valuable complements to conventional optical
products (such as MODIS BSC products). The integration of both
daytime and nighttime products can reduce cloud cover by more
than 30% and expand the observation range (Chen et al., 2023).
Applying multiple temporal and spatial filters to reduce the number
of cloud pixels before using multisource fusion methods can help
minimize the degree of uncertainty in snow cover monitoring tasks
(Newfel et al., 2013; Huang et al., 2014; Li Y. et al., 2019; Zheng and
Cao, 2019; Wang et al., 2022a).

The HMRF model is a widely used framework for image
segmentation tasks; it accounts for the mutual influences of adjacent
observations and expresses a contextual relationship (Dubes and
and Jain, 1989; Chatzis and Tsechpenakis, 2010). The HMRF
model for snow cover reconstruction aims to integrate spectral,
spatial, temporal, and environmental information; calculate the
total spatiotemporal energy (probability) for each cloud pixel; and
determine whether the target pixel corresponds to a snow or non-
snow pixel (Huang et al., 2018; Huang et al., 2022b). This method
effectively and efficiently removes cloud cover from snow cover
products, enhancing the cloud removal process during periods
with unstable snow and in complex terrain areas. This method
has demonstrated strong performance on both the MODIS and
AVHRR datasets (Huang et al., 2018; Hao et al,, 2021; Hao et al,,
2022; Wang, 2022; Huang and Xu, 2022; GaoY. et al, 2024;
Hao et al., 2025; Wang Q. et al.,, 2025). Additionally, Huang et al.
(2022b) incorporated solar radiation as environmental background
information into the HMRF method, replacing the conventional
process of using surface elevation data. This approach more
effectively captures the combined influence of factors such as slope,
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aspect and sunlight duration. Increased solar radiation results in a
delayed onset of snow cover, faster snowmelt, and more rapid snow
cover changes (Dombrovsky and Kokhanovsky, 2022). As a result,
the HMRF method, which incorporates solar radiation, reduces
commission and omission errors, with overall accuracies ranging
from 0.91 to 0.98.

Among these approaches, temporal filters, spatial filters and
multisource fusion are limited by insufficient cloud removal
capabilities or reduced accuracy and are often combined into
multistep methods to generate cloud-free BSC products. The HMRF
method simultaneously accounts for the spatiotemporal correlation
of snow cover, fully utilizing both spatial and temporal information
to restore missing data. The HMRF model can be employed for snow
cover reconstruction either independently or in combination with
other methods.

3.2 Reconstruction methods for the NDSI
and FSC products

NDSI and FSC products are also commonly used snow cover
products derived from optical remote sensing data. Unlike BSC
products, NDSI and FSC products provide continuously varying
snow parameters. NDSI or FSC values can be converted to BSC
products using an appropriate threshold (such as NDSI = 0.5
or FSC = 0.4), after which snow cover can be reconstructed
via the methods described in Section 3.1. However, the NDSI
and FSC provide more detailed snow cover information and
are being increasingly used directly in related studies. Temporal
and spatial interpolation methods, spatiotemporal reconstruction
algorithms, machine learning-based reconstruction algorithms and
data assimilation can be applied to NDSI and FSC data.

3.2.1 Temporal and spatial interpolation methods

The simplest reconstruction methods for NDSI or FSC products
are temporal and spatial interpolation methods, which evolve from
temporal and spatial filters for BSC products. They still rely on
the temporal or spatial continuity of snow cover, but each method
considers only one of these characteristics at a time.

The temporal interpolation methods for NDSI or FSC products
assume that the FSC gradually changes over a short period.
Therefore, the predicted FSC value of a cloud pixel can be
interpolated from FSC values within a temporal window. Like
the TAC method used for BSC products, combining Terra and
Aqua MODIS NDSI/FSC products represents a specific application
of temporal interpolation methods. This approach typically uses
maximum value composition, averaging, or valid-value selection
from the two MODIS products—often prioritizing the more
accurate Terra products (e.g., MOD10A1) when available (Hou et al.,
2019; Qiu and Wang, 2021; Hou et al., 2022). Hou et al. (2019)
applied a more general method, adjacent temporal filtering (ATF),
which replaced cloud-covered pixels with the nearest cloud-free
FSC value from the previous 3 days. Similarly, Hou et al. (2022)
used a variant of the ATF, averaging the NDSI values from adjacent
days to fill missing pixels. Pan et al. (2024) replaced cloud pixels
on the current day with the arithmetic mean of the observed
FSC values on the previous and following days. Poussin et al.
(2025) integrated data from Sentinel-2 and Landsat satellites to
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generate monthly composites by selecting the maximum NDSI value
for each pixel across all available images. Additionally, the linear
interpolation, quadratic interpolation, cubic spline interpolation
(CSI) or piecewise cubic Hermite interpolating polynomial (PCHIP)
can be applied to clear-sky values within a fixed or adaptively
changing temporal window to estimate the NDSI and FSC values
for cloud pixels in segments (Dozier et al., 2008; Tang et al., 2013;
Hao et al,, 2014; Hou et al.,, 2022; Deng et al., 2024b; Hua et al.,
2025). However, the interpolation algorithm, which considers only
the temporal continuity of snow cover, lacks sufficient effective data
during extended periods of cloudy weather, making the interpolated
values prone to outliers.

Spatial interpolation methods estimate NDSI or FSC values
based on the values of cloud-free pixels surrounding a cloud pixel.
If most of the neighboring pixels around a cloud pixel have valid
values, the cloud pixel is assigned the interpolated value of the snow-
covered neighboring pixels. In the simplest case, the FSC value of
a cloud pixel is the arithmetic mean of the effective FSC values of
four or eight neighboring pixels (Pan et al., 2024). In addition, the
inverse distance weight (IDW) interpolation algorithm within the
selected spatial window also performs effectively. Researchers can
further screen cloud-free pixels with appropriate altitude differences
within the spatial window for IDW interpolation, leading to a mean
absolute error of 0.10 in the FSC results (Pan et al., 2024). Like
spatial filters, complex terrain and environmental factors can cause
anomalies in the interpolation results.

3.2.2 Spatiotemporal reconstruction algorithms

Spatiotemporal reconstruction algorithms aim to reconstruct
NDSI or FSC values at cloud pixels by jointly leveraging the temporal
and spatial continuity of snow cover. Unlike approaches that rely
on only one of these dimensions, they simultaneously integrate
both and are sometimes further refined with auxiliary topographic
information such as DEM. These algorithms consider snow cover
information within a spatiotemporal cube or image pairs from
multiple dates.

To fully leverage the spatiotemporal snow cover information of
a single product, five reconstruction algorithms can be employed
to generate cloud-free NDSI or FSC products. These include
a spatiotemporal fusion method based on the Gaussian kernel
function and error correction (STF-GKF-EC) (Jing et al., 2019;
Jing et al., 2022), a spatiotemporal similar pixel selecting algorithm
(SPSA) (Li et al., 2020), a spatial and temporal adaptive gap-filling
method (STAGFM) (Chen et al., 2020), a spatiotemporal cube cloud
removal algorithm based on NDSI similarity (STNSI) (Guo et al.,
2024), and a spatiotemporal weighted method combined with CSI
(CSI-STW) (Deng et al., 2024b). These methods generally follow
similar principles: treating the target cloud pixel as the central
pixel, determining similarity estimation rules, selecting the clear-
sky pixels with the highest similarity to the central pixel from the
dynamic spatiotemporal cube, and calculating the NDSI of the
central pixel by weighting the NDSI of the most similar clear-sky
pixels based on their spatiotemporal distances (Figure 3).

Each method estimates similarity differently, but they all
assume that similar pixels have similar NDSI values, consistent
multitemporal changes, and spatial proximity overall. The STF-
GKF-EC method primarily uses a regional correlation coefficient
(greater than 0.7) for the spatiotemporal blocks within a temporal
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window to select similar pixels. It subsequently employs a Gaussian
kernel function to perform spatiotemporal weighted averaging on
the selected similar pixels, thereby estimating the NDSI for cloud
pixels (Jing et al., 2019). This method was enhanced to form the
Spatio-Temporal Adaptive fusion method with erroR correction
(STAR), which produces an NDSI collection with reduced omission
errors (Jing et al., 2022). The SPSA provides a formula (SIMI?)
for calculating the NDSI similarity between pixels and incorporatés
multiyear variations as a constraint for predicting the NDSI value
at a cloud pixel. Several clear-sky pixels with the highest similarity
values are selected, and their arithmetic average NDSI is used to
replace the cloud pixel (Li et al.,, 2020). STAGFM calculates the
squared Euclidean distance of the NDSI between the central pixel
and its spatially neighboring clear-sky pixels, selecting those with
the smallest distances as similar pixels. The NDSI of the target cloud
pixel can be predicted by a weighted average of the bias-corrected
NDSI values of similar pixels, where the contribution of a pixel
is inversely proportional to its geographic distance (Chen et al.,
2020). The STNSI method is somewhat similar to the STAGFM
method, but it calculates NDSI differences and average NDSI
errors for performing correction within a snow season rather than
at the target and reference images, as in the STAGFM method
(Guo et al.,, 2024). The CSI-STW method places greater emphasis
on the spatiotemporal correlation of snow cover and incorporates
elevation control conditions to constrain the process of selecting
similar pixels (Deng et al., 2024b). It employs the Inverse Distance
Weighted (IDW) method to reconstruct the NDSI of cloud pixels,
with their weights determined by their temporal, geographic and
elevational distances. In these methods, spatiotemporal cubes that
are too small may limit the number of similar pixels available for
reconstruction, whereas overly large cubes can significantly increase
computational costs. Consequently, typical spatiotemporal cube
sizes range from 3 x 3xt to 5 x 5xt, where t usually spans 5-17 days
(Jing et al., 2022; Deng et al., 2024b; Guo et al., 2024). Additionally,
the STAGFM algorithm adopts a 15 x 15 spatial window and
selects 20 similar pixels to achieve optimal accuracy (Chen et al.,
2020). Future research may explore the use of dynamically adaptive
window sizes to more effectively balance reconstruction accuracy
and computational efficiency.
addition the
reconstruction methods employed for single remote sensing
products,
spatiotemporal characteristics of multisource images and developed

In to aforementioned  spatiotemporal

some studies have explored the complementary
spatiotemporal fusion algorithms for generating high-accuracy

Unlike
reconstruction algorithms for individual products, spatiotemporal

and high-resolution snow products. spatiotemporal
fusion algorithms evaluate the similarity between pixels of coarse
and fine products using a sliding window and calculate the
transformation coefficients based on spatiotemporal weights. The
coarse-resolution products are downscaled and integrated with the
fine-resolution products. For example, Bousbaa et al. (2022) selected
ESTARFM, FSDAF and preclassification FSDAF from various
spatiotemporal data fusion algorithms (Zhu et al., 2010; Zhu et al.,
2016) and combined Sentinel-2 and Landsat-8 images to generate
10-m NDSI products, effectively filling data gaps caused by cloud
cover and cloud shadows. The root mean square error (RMSE) of
the fused NDSI generated by the preclassification FSDAF algorithm
was only 0.12, demonstrating the highest accuracy. Because the
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FIGURE 3
NDSI reconstruction algorithms based on spatiotemporal information.

preclassification FSDAF algorithm employs a supervised machine
learning technique instead of the unsupervised classification process
used in FSDAF it obtains more accurate input BSC data as a
constraint for spatiotemporal fusion. This approach effectively
integrates spatiotemporal fusion methods with machine learning.
Gao et al. (2022) developed an enhanced spatiotemporal fusion
method, iESTARFM, for integrating Landsat and MODIS products.
This method distinguishes snow pixels from non-snow pixels using
NDSI and DEM thresholds and calculates similarity values based on
pixel categories. The iESTARFM algorithm achieved a correlation
coeflicient greater than 0.9 in the visible and near-infrared bands,
indicating a high level of agreement with the actual conditions and
enhancing the accuracy of the NDSI calculations. Dong et al. (2024)
employed the FSDAF method to integrate MODIS and Sentinel-2
data, generating daily NDSI products at a 20-m spatial resolution.
Their findings indicate that the reliability of the FSDAF model in
regions with persistent cloud cover requires further investigation,
as the NDSI values were significantly underestimated in heavily
clouded areas. This highlights the importance of further enhancing
cloud removal and NDSI reconstruction during the spatiotemporal
integration process. Xiao et al. (2024) developed a spatiotemporal
fusion framework that integrates microwave data with MODIS
optical data to generate 1-km daily FSC products, achieving overall
accuracies of 0.92-0.94 across various land covers, including
grasslands, wetlands, farmlands, and urban areas. Guo et al
(2025) employed the ESTARFM algorithm to combine MODIS and
Sentinel-2 NDSI, producing 10-m NDSI products and enhancing the
accuracy of snow cover mapping in the eastern Qilian Mountains.
These fusion algorithms aim to integrate both coarse and fine
products, improve temporal and spatial resolution, enhance
reconstruction accuracy, and increase applicability. However, their
explanations of complex environmental factors remain insufficient,
and their accuracies are influenced by the selection of reference
images from both products in algorithm construction.
Spatiotemporal reconstruction algorithms typically require
similarity evaluations between pixels in remote sensing
spatiotemporal images, and their overall accuracy generally exceeds
90%. However, less prior snow information becomes available when
cloud coverage persists for longer periods, reducing the accuracy
of spatiotemporal reconstruction algorithms. Although methods
such as CSI-STW have been optimized for use under prolonged
cloudy conditions, they still struggle to account for complex factors
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such as slope, aspect, land cover, and vegetation cover. Extremely
rapid and fluctuating snow variations may introduce errors during
reconstruction, leading to inconsistencies between the selected
similar pixels and cloud pixels. Additionally, the accuracy of original
snow cover products inherently constrains the performance of
reconstruction algorithms. Applying machine learning techniques
to snow cover identification, extracting accurate prior information,
and subsequently reconstructing snow cover can be effective
strategies for improving the accuracy of reconstructed NDSI or FSC
products (Zhu et al., 2016; Bousbaa et al., 2022; Gao et al., 2022).

3.2.3 Machine learning-based reconstruction
algorithms

Advancements in image processing and computing technology
have enabled machine learning to introduce innovative strategies for
reconstructing snow cover.

First, machine learning-based reconstruction methods can
further analyze the spatiotemporal characteristics of snow cover,
efficiently incorporate auxiliary environmental data such as
meteorological and geographic information, and increase the
accuracy of reconstructed snow cover products. For example,
Hou et al. (2019) developed a nonlocal spatiotemporal filtering
(NSTF) algorithm via the fast elitist nondominated sorting genetic
algorithm for multi-objective optimization (NSGA-II) (Hou and
Huang, 2016). The NSTF algorithm integrates MODIS snow
products with geographic information, including land cover,
elevation, slope and aspect information, to reconstruct snow cover.
This method retained 0.52% of the cloud cover while achieving an
overall accuracy of 93.7%, outperforming the CSI method. Xing et al.
(2022) proposed a U-Net model with partial convolutions (PU-
Net) that utilizes spatiotemporal information to reconstruct the
MODIS NDSI, achieving an MAE of less than 0.15 under simulated
conditions. However, heterogeneous and rapidly changing snow
cover reduces the reconstruction accuracy of PU-Net, and the
absence of auxiliary data, such as topography and temperature,
limits its performance. Hou et al. (2022) developed three methods
based on long short-term memory (LSTM) deep neural networks,
namely, forward, backward and bidirectional LSTM, and applied
them to reconstruct MODIS NDSI products by following the
TAC method. This study revealed that the bidirectional LSTM
model performed best, enabling snow cover reconstruction to be
implemented in complex mountainous regions by learning temporal

frontiersin.org


https://doi.org/10.3389/feart.2025.1649808
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

Zhang et al.

NDSI features and incorporating spatially assisted information
derived via the IDW. The overall accuracy of this method reached
89.9% in the source region of the Yellow River. Yatheendradas
and Kumar (2022) utilized topographic, precipitation, SWE, leaf
area index, MODIS snow albedo and surface temperature data as
input variables. A three-layer legacy superresolution convolutional
neural network (SRCNN) was trained to reconstruct the snow
cover in the MOD10A1 dataset. This method can produce snow
cover reconstructions even when data gaps are inconsistent across
multisource datasets, enabling its widespread application. Zhu
(2022) developed a snow grain size gap-filling model based
on a spatiotemporal extra tree by utilizing geographical and
meteorological information acquired from the Kaidu River Basin.
The results indicated that among the seven widely used machine
learning methods, the spatiotemporal extra tree achieved the
most effective reconstruction effect, reducing the annual average
cloud coverage level by approximately 18% compared with that of
MODI10A1 products (Zhu et al., 2023). Xiao et al. (2021) applied
Random Forest (RF) in combination with optical and passive
microwave data to avoid the influences of cloud contamination
and estimate the FSC. Their work inspired Du (2024) to apply the
RF model to generate binary snow cover maps using brightness
temperature data and MODIS reference products, demonstrating
its effectiveness in reconstructing nighttime snow cover and
mitigating overestimation in high-altitude regions. In addition,
when machine learning is integrated with high-resolution (1-5 m)
satellite images, the vegetation index and other auxiliary data
enhance the snow monitoring capabilities of the utilized algorithms
in challenging areas, including canopy edges, forest gaps, and even
areas beneath dense canopies. This advancement is crucial for
improving the snow cover reconstruction process in forested regions
(John et al., 2022; Yang et al., 2023). Additionally, Ye et al. (2024)
proposed a spatiotemporal extreme gradient boosting (STXGBoost)
model to generate a gap-filled NDSI dataset, achieving a mean
absolute error of 0.011 by incorporating multisource auxiliary
data, including surface albedo. Dong et al. (2025) developed a
LightGBM-based NDSI reconstruction method, suggesting that the
incorporation of snow-related spatiotemporal and environmental
information significantly improved the quality and accuracy of the
reconstructed products. In addition to the models mentioned above,
the application of Transformer models in image reconstruction has
recently attracted increasing interest from researchers. Xu et al.
(2025) proposed the MAT-MS model, which employs a Swin
Transformer-based encoder and a CNN-based decoder, integrating
topographic and temperature data to reconstruct the MODIS NDSIL.
Furthermore, MAT-MS incorporates a novel mask-aware technique
to address inaccuracies and mitigate unnatural transitions at data
gap boundaries. Compared with the CNN, LSTM, and U-Net
models, the MAT-MS model demonstrates superior performance,
with average MAE and RMSE values of 1.585 and 5.531, respectively.

Second, when machine learning techniques are applied to
snow cover reconstruction tasks, they can perform spatiotemporal
downscaling simultaneously, thereby significantly increasing the
availability and applicability of snow cover products. For example,
Wang et al. (2022b) developed the STDFA-matching-Pix2pix-GAN
(SMPG) algorithm, which integrates a spatial-temporal data fusion
approach (STDFA) with the pix2pixGAN to fuse MODIS and
Landsat images, compute the NDSI, and generate daily snow cover
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maps with a spatial resolution of 30 m. A performance evaluation
against four benchmark methods—STARFM, FSDAF, SwinSTFM
(Swin spatiotemporal fusion model), and GAN-STFM (GAN-
based spatiotemporal fusion model)—demonstrates the superior
performance of SMPG, which effectively reduces the spectral
distortion of the fused images and achieves the highest average
correlation coefficient of 0.962. Richiardi et al. (2023) developed
a two-stage RF algorithm to integrate MODIS and Sentinel-2
products, generating daily cloud-free snow cover products at a
spatial resolution of 20 m and providing both NDSI and BSC
values. In this method, the first-stage RF model fills the gaps
observed in the MODIS products, whereas the second-stage
RF model performs multisource data fusion and downscaling.
The overall accuracy of the generated products exceeded 92%.
Zakeri and Mariethoz (2024) employed the K-nearest neighbor
(KNN) classification algorithm, which integrates meteorological
data to address the low temporal resolutions of Landsat and
Sentinel-2 data and produces high-resolution daily snow cover
images at 30 m. This method generates both BSC and NDSI
products. A comprehensive analysis indicated that machine learning
reconstruction algorithms achieve multisource data fusion and
downscaling, effectively mitigating the limitations posed by cloud
contamination in high-spatial-resolution remote sensing data (e.g.,
Landsat-8/9 or Sentinel-2 data). These approaches typically provide
products with the highest spatiotemporal resolution, enabling the
precise monitoring of snow cover dynamics (Revuelto et al., 2021;
Rittger et al., 2021; Kollert et al., 2024).

To
reconstruction algorithms can rapidly integrate geographic

achieve  reconstruction, machine learning-based
information, meteorological observations and weather forecasts
alongside spatiotemporal information of snow cover. These
algorithms incorporate meteorological and climatic factors that
influence snow accumulation and snowmelt processes rather than
relying solely on the spatiotemporal distribution of snow cover,
as is done in spatiotemporal reconstruction algorithms. As a
result, machine learning-based reconstruction algorithms can not
only generate high-precision and high-resolution cloud-free snow
cover products but also enable the historical reconstruction and
future prediction of snow cover in scenarios that lack remote
sensing observations, thus demonstrating significant application
potential (Koehler et al., 2022). However, machine learning typically
relies on high-quality training samples that adequately represent
the characteristics of the target domain. Inadequate sample size,
excessive noise, or overly complex model structures can lead
to overfitting, whereas overly simplistic models or insufficient
features may result in underfitting. A sufficient quantity of high-
quality training samples and optimized network architectures are
crucial for improving the generalizability of machine learning-based
algorithms. For example, Hou et al. (2022) reported that 21 hidden
layer nodes in their bidirectional LSTM-based algorithm optimally
balanced underfitting (with fewer nodes) and overfitting (with
more nodes) for snow cover reconstruction. Moreover, challenges
such as persistent snow cover, cloud cover, varying training time
spans, and different land cover types further complicate machine
learning-based reconstruction efforts (Hou et al., 2019; Dong et al.,
2025). Therefore, the generalizability of machine learning models to
large-scale snow monitoring scenarios worldwide, as well as their
reconstruction accuracy under complex surface conditions, requires
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further testing and evaluation (Hou et al., 2022). Although effective
in multisource data processing, these models face interpretability
challenges. Researchers often conduct extensive literature reviews
before modeling to identify candidate input variables based on
snow physical characteristics. Because many factors influence snow
distribution, considering all of them is impractical, and excessive
variables may reduce model generalizability. Current strategies
include manually determining and testing different variable
combinations (John et al, 2022; Ye et al., 2024), progressively
incorporating additional data sources (Xu et al., 2025), applying
importance-based feature selection (Xiao et al., 2021; Dong et al.,
2025), and using SHAP analysis to improve interpretability.
Zhu et al. (2023) demonstrated that altitude, as the most influential
topographic factor, had the highest importance score (0.192).
Xu et al. (2025) reported that incorporating DEM into their MAT-
MS model significantly improved performance, reducing the RMSE
by 0.611. For Dong et al. (2025), the top five ranked variables
were spatiotemporal interpolation, shortwave radiation, cumulative
shortwave radiation over 3 days, latitude, and elevation.

In general, the effective combination of remote sensing data,
meteorological data and machine learning has promoted the
advancement of snow cover reconstruction methods, resulting in
higher accuracy and improved product resolution. This approach
is expected to provide better cloud-free snow cover products for
meteorological and hydrological models.

3.2.4 Data assimilation methods

Data assimilation (DA) methods feed remote sensing-based
snow cover products into hydrological, land surface, meteorological,
and climate models, accounting for consistency constraints as
well as physical and dynamic properties (Pandya et al.,, 2022).
This approach improves the simulation of snow cover parameters
and facilitates snow cover reconstruction. DA methods include
direct insertion (DI), Cressman interpolation, optimal interpolation
(OI), the ensemble Kalman filter (EnKF), and the particle filter
(PF), among others. OI and the EnKF are the most common
snow data assimilation methods (Helmert et al., 2018). In
recent years, the particle batch smoother (PBS) has also been
widely used to conduct data assimilation on MODIS snow cover
observations, making it well suited for simulating snow cover in
data-scarce regions (Alonso-Gonzalez et al., 2021).

Researchers have conducted extensive research on snow data
assimilation. One of the most notable examples is the American
Snow Data Assimilation System (SNODAS) (Barrett, 2003). Since
2003, the SNODAS system has provided daily snow products at a
1-km resolution for the United States and its surrounding regions
and is widely utilized because of its strong real-time performance.
The system primarily integrates meteorological information derived
from numerical weather prediction models and the NOHRSC
Snow Model (NSM) and employs a simple nudging or Newtonian
relaxation procedure to assimilate satellite, airborne and ground-
based snow cover observations (Barrett, 2003; Vuyovich et al,
2014; Lv et al., 2019). Owing to the insufficient representation of
blowing snow processes and snow interception by forest canopies
in the NSM, SNODAS results in significant deviations in certain
regions (Vuyovich et al,, 2014; Lv et al,, 2019). Lv et al. (2019)
demonstrated that further assimilating SNODAS products into the
Cold Region Hydrological Model (CRHM) could effectively increase
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the accuracy of snow cover estimation. With advancements in
DA, various innovative approaches have emerged. Arsenault et al.
(2013) assimilated MOD10A1 into the Community Land Model
(CLM2) using the DI and the EnKE respectively, revealing accuracy
differences across various altitudes. Zhang et al. (2023) developed
a multivariate land snow data assimilation system for the Northern
Hemisphere that integrates the Data Assimilation Research Testbed
(DART) and CLM4. After the MODIS snow cover products
were assimilated, the system exhibited reduced errors in snow
parameters such as the FSC and SD (Zhang and Yang, 2016).
In addition, the NASA High Mountain Asia Team (HiMAT)
developed a Bayesian snow reanalysis framework and employed the
PBS method to assimilate snow cover data derived from Landsat
and MODIS, producing the High Mountain Asia (HMA) Snow
Reanalysis (HMASR) dataset (Margulis et al., 2019; Liu et al,
2021). By utilizing the HMASR as a reference to evaluate eight
global snow cover datasets, the study revealed that the global
datasets generally underestimated the peak snow storage levels in
HMA (Liu Y. et al, 2022). As reported by Fiddes et al. (2019),
assimilating MODIS products via the PBS method improved the
accuracy of snow cover estimation at multiple spatial scales and
reduced the biases induced during downscaling processes. Similarly,
the snow reanalysis product (ICAR_assim) produced by Alonso-
Gonzalez et al. (2021) employs the PBS method and strongly agrees
with gap-filled snow cover products derived from MODIS data.
Subsequently, Alonso-Gonzilez et al. (2022) developed the Multiple
Snow Data Assimilation System (MuSA), which incorporates
six data assimilation algorithms, including the EnKE In MuSA
computational benchmarks, different data assimilation algorithms
exhibit substantial variation in computational cost. Overall, those
derived from the EnKF are more time-consuming than those
derived from the PE. For instance, when the computational cost
of the PBS, measured in wall-clock time, is 39s, that of EnKEF-
MDA reaches 270s (Alonso-Gonzalez et al., 2022). MuSA enables
the joint assimilation of FSC and land surface temperature (LST)
products derived from MODIS, which can enhance the snow
cover monitoring and reconstruction processes in the absence of
sunlight during the polar night, as the LST provides supplementary
thermodynamic information (Thiebault and Young, 2020; Alonso-
Gonzalez et al, 2022). More importantly, MuSA is an open-
source collaborative project that is conducive to promoting further
research on the topic of snow. MuSA has been used in snow cover
simulations over the Heihe River Basin, assimilating the MODIS
NDSI product into the Flexible Snow Model, effectively filling data
gaps and reducing errors in snow cover monitoring (Deng et al.,
2024a). In addition, reanalysis datasets (e.g., ERA5, MERRA-2, and
NCEP/NCAR) can provide snow parameters, including snow cover.
However, the accuracy of snow monitoring is not optimal without
specific optimization of snow cover (Brown et al., 2010; Baba et al.,
2021). Generally, the complexity of data assimilation and models
affects their computational efficiency, particularly in high-resolution
and large-scale snow cover monitoring scenarios, where a rational
method selection process is essential.

In general, snow data assimilation aims to comprehensively
assess the properties of snow and generate high-precision, gridded
snow parameters, including snow cover, SD, SWE and snow
density. Additionally, it systematically evaluates the uncertainties
associated with models, algorithms and data products. Snow cover
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reconstruction is merely one of the outcomes of DA. Given the
significant potential of integrating remote sensing observations
with numerical models, DA represents a crucial direction for the
future development of snow monitoring and forecasting techniques
(Girotto et al., 2020; Alonso-Gonzélez et al., 2022).

4 Validation and evaluation methods

4.1 Reference data for validation and
evaluation

The validation and evaluation of snow cover reconstruction
datasets constitute critical steps in demonstrating the reliability
and robustness of reconstruction methods in snow cover research.
Various types of reference data can be used for this purpose,
including in situ SD observations, snow cover maps, fleld survey
measurements, and airborne lidar datasets.

In situ SD observations are a primary source of reference data for
validating and evaluating snow cover reconstruction datasets. These
measurements are typically collected from regional meteorological
stations (Qiu et al., 2017; Huang et al, 2018; Hou et al,
2018; Hou et al, 2019; Huang et al., 2022b), Natural Resources
Conservation Service (NRCS) Snow Telemetry (SNOTEL) sites
(Gao et al, 2010b; Lopez-Burgos et al, 2013; Huang et al,
2018), or ground-based GNSS stations (Hua et al., 2025). For
validation purposes, SD values should be converted into a binary
snow/non-snow format, with thresholds typically set at 1 cm or
3 cm. Values exceeding the selected threshold are classified as
snow-covered, whereas those below are considered non-snow. The
number and temporal coverage of stations are determined by the
specific requirements of the study. Depending on the study area
and the density of stations, the number of stations can range
from a few to several thousand. Stations with substantial amounts
of invalid data may be excluded, and additional screening may
be applied where appropriate (Dong et al., 2025). For example,
Pan et al. (2024) excluded stations with SD values greater than
1 cm but fewer than 20 snow-covered days to better illustrate
the accuracy of snow identification. The validation period can
range from several months to multiple decades and may cover
the entire year or focus solely on snow seasons on an annual
basis. However, a scale mismatch exists between point-based station
observations and pixel-based snow cover products (Hall et al,
2019), and the spatial distribution of meteorological stations is
often highly uneven. Stations are primarily concentrated in low-
elevation valleys with human settlements, whereas high-elevation
snow-covered regions remain sparsely monitored (Li et al., 2020).
Therefore, in situ station data alone cannot adequately represent
entire regions, making evaluation based on snow cover maps
necessary to validate the spatial accuracy of snow cover products
(Richiardi et al., 2023).

Evaluation based on snow cover maps generally follows two
main approaches. The first involves the use of snow cover maps
derived from other sources, such as higher-resolution products
generated from Landsat, Sentinel, or GF satellite imagery through
clear-sky NDSI calculations, or existing datasets such as IMS
products (Dietz et al., 2014; Huang et al., 2018; Huang et al., 2022b;
Richiardi et al., 2023; Zhang et al., 2023; Zhu et al., 2023; Deng et al.,
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2024b; Guo et al., 2024; Pan et al., 2024; Zhang et al., 2024; Xu et al.,
2025). These snow cover maps are resampled to match the spatial
resolution of the reconstructed snow cover products. The second
approach is based on the cloud mask assumption. In this method,
cloud masks are extracted from original cloudy remote sensing
images and applied to cloud-free images, which are regarded as
the ground truth (Gafurov and Bardossy, 2009; Hou et al., 2019;
Li et al., 2020; Chen et al., 2020; Xing et al., 2022; Dong et al., 2025).
The reconstruction results are subsequently generated from the
masked images and compared with the original cloud-free images
for evaluation.

Field survey measurements refer to snow data collected during
in situ snow observation experiments within the study area,
whereas airborne LiDAR datasets are obtained from Airborne Snow
Observatory (ASO) campaigns (Stillinger et al., 2023; Yang et al.,
2023). Field measurements and airborne remote sensing campaigns
require substantial resources. Although these datasets are highly
reliable and valuable, they are difficult to obtain and are often
constrained in both temporal and spatial coverage.

4.2 Evaluation metrics and validation
results

For BSC products, commonly used evaluation metrics include
overall accuracy (OA), precision (PC), recall (RC), Fl-score,
and the Kappa coefficient (Table 2; Equations 1-5). Additional
metrics, such as MU and MO, are employed to represent
underestimated and overestimated snow events (Equations 6, 7)
(Qiu et al.,, 2017; Xing et al., 2022; Zhu et al., 2023; Dong et al,,
2025). When using SDdata from in situ stations, survey
measurements, or airborne lidar datasets to validate reconstructed
NDSI/ESC  products, the SD values must first be converted
into binary snow cover (BSC) format before validation is

conducted.

OA =(TP+TN)+ (TP + TN + FP + FN) x 100% (1)
PC =TP =+ (TP + FP) x 100% 2)
RC = TP + (TP + FN) x 100% (3)
F1 —score =2xPCxRC =+ (PC+RC) x100% (4)

Kappa = _PO —Pe R

1- Pe
(TP +FP) (TP + FN) + (FN + TN) (FP + TN)
Po = OA,p, = 3 (5)
(TP+TN+FP+FEN)

MU = EN + (TP + TN + FP + FN) x 100% (6)
MO =FP =+ (TP + TN + FP + FN) x 100% (7)

When the NDSI/FSC products are validated using snow cover
maps, the commonly used metrics include the coefficient of
determination (R?), root mean square error (RMSE), mean absolute
error (MAE), correlation coefficient (r), and mean difference error
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TABLE 2 Confusion matrix comparing reconstructed products with
reference data.

Reference

Non-snow

Snow

Reconstruction

Snow TP FP

Non-snow FN TN

(Bias) (Equations 8-12) (Hou et al., 2019; Hou et al., 2022; Zhu et al.,
2023; Ye et al., 2024; Dong et al., 2025).

R2=1 Zinzl(siref_ Sirec)2 o
TN (a o (8)
Zi:l (Sref - Sref)
RMSE = Zi:l (Si‘: ref)2 . (9)
Ioid o
MAE = D [Slec = Sr (10)
r= Z?:l(sief_ﬂ)(siec_g) (11)
\/ZLI (Sief - Q)ZZ:; (si'ec - g)z
n
Bias = %2(8;5 ~Sir) (12)
f
where n denotes the number of sample pixels, Si.. and Siref

represent the NDSI/FSC values of the i th pixel in the reconstructed
product and the reference dataset, respectively, and Q and
arethe corresponding mean NDSI/FSCvalues.

To further account for spatial accuracy, a bias-insensitive metric
called spatial efficiency (SPAEF, Equation 13) (Hou et al., 2019)
and Robert’s edge detection (Equation 14) have been used for
snow cover spatial evaluation (Dong et al., 2025). The SPAEF
metric integrates three components: the correlation coefficient (A)
between the reconstructed and reference images, the fraction of
the coefficient of variation (B), and the percentage of histogram
intersection (C); an optimal SPAEF value of 1 indicates perfect
agreement between the two images. For Robert’s edge evaluation,
D, denotes the pixel value at the x th row and y th column; a
value of 0 represents a perfectly fused image, negative values indicate
excessive smoothing of edge features, and positive values indicate
oversharpening (Zhu et al., 2022).

SPAEF = 1-\(A—12+(B— 1)+ (C—1)? (13)

Edge = |Dx,y'Dx+1,y+l| + |Dx,y+1'D (14)

x+1,y|

These evaluation metrics facilitate cross-method validation
experiments, and some of the results are summarized in Tables 3, 4.
Compared with the temporal CSI method, the NSTF-based method
achieved OA, MU, and MO values that were 2% higher, 1.92% lower,
and 0.04% lower, respectively (Hou et al., 2019). The spatiotemporal
extra tree method of Zhu et al. (2023) and the HRMF-based method
of Hao et al. (2022) each excelled on different validation dates;
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the former generally performed better on days 3 and 4. Moreover,
the LightGBM-based method proposed by Dong et al. (2025)
achieved an OA of around 83-86% and an Fl-score of 53-61%,
outperforming the CGF NDSI (Deng et al., 2024b) and matching the
performance of the STAR NDSI (Jing et al., 2022). Compared with
the spatiotemporal interpolation (SI) method, the LightGBM-based
method also showed improved numerical and spatial accuracy with
an R? of 0.82 and an Edge of —0.47. Wang et al. (2025b) evaluated
four snow cover reconstruction methods: MOD10A1F, the HMRE-
based method (Hao etal., 2022), the STAR method (Jing et al., 2022),
and the stepwise cloud-removal approach (Qiu and Wang, 2021).
They found that the HMRF-based product consistently delivered
the best performance, and the STAR product's performance varied
with terrain complexity and cloud conditions. In comparison, the
stepwise cloud-removal approach generally performed the worst.
Under the most challenging conditions, its F1-score dropped to
as low as 41.2%, whereas the other methods maintained F1-scores
in the range of 63-68%. These validation and evaluation results
suggest that, while the HMRF model, spatiotemporal reconstruction
algorithms (e.g., STAR), and machine learning-based algorithms
may each have advantages under different conditions, they generally
outperform simpler methods such as temporal and spatiotemporal
interpolation.

5 Discussion

Snow cover products derived from polar-orbiting satellites
offer extensive global coverage, high spatial resolution, and broad
applicability, making them indispensable for global snow cover
monitoring. However, factors such as cloud cover, cloud shadows,
forest cover and undetected data often result in data gaps in
snow cover products. Consequently, reconstruction methods are
needed to restore snow cover information, enhancing the reliability
and continuity of snow cover products. This strategy provides
comprehensive and accurate data support for studies on climate
change and related fields.

The essence of snow cover reconstruction lies in inferring
and estimating the values of uninformative pixels using existing
observational data. Reconstruction methods typically analyze the
spatiotemporal distribution characteristics of snow cover to impose
additional assumptions that constrain the estimated values of cloud-
covered pixels (Figure 4). They may also incorporate multisource
snow observations to fill data gaps or integrate various auxiliary
environmental variables that influence snow accumulation and
melt—such as solar radiation, slope, aspect, land cover type,
topographic relief index (TRI), topographic position index (TPI),
temperature and precipitation—to enrich the information available
for reconstruction. Accordingly, reconstruction accuracy improves
with more stable spatiotemporal snow cover characteristics, more
realistic assumptions, greater availability of multisource data, and
more effective data utilization.

For the BSC and NDSI/FSC products, each snow cover
reconstruction method has specific applications, along with
their respective characteristics (Table 5). According to previous
studies, temporal and spatial filters, multisource fusion methods,
and temporal and spatial interpolation methods are generally
straightforward and easy to implement, making them suitable
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TABLE 3 Comparison between the NSTF-based method and the temporal CSI method (compiled from Hou et al., 2019; CC BY 4.0).

Research Methods Validation Data Time Range StudyArea OA MU MO
The proposed NSTF-based method 87 6.85 6.30

Hou et al. (2019) Meteorological Stations’ SD Observations 2001—2016 North Xinjiang
The temporal CSI method 85 8.77 6.34

TABLE 4 Comparison between the methods based on the spatiotemporal extra tree and the HMRF model (adapted from Zhu et al., 2023; CC BY 4.0).

Research Methods Validation RC F1-score Kappa
Data
The 92.89 70.12 90.40 78.98 74.78
proposed 86.99 87.55 54.69 67.32 59.74
spatiotemporal 8 October 91.44 80.34 90.84 85.27 79.26
extra tree Cloud 2015 95.77 73.13 76.21 74.64 72.33
Zhu et al. model Assunhlp.tlon 20 April Kaidu River
of Original 2016 K
(2023) X Basin

The HRMF- Snow Cover 25 April 94.43 75.23 87.65 80.97 77.72
based Data 2018 92.58 78.54 91.52 84.53 79.69
method 1 June 2018 89.45 69.02 96.62 80.52 73.56
(Hao et al,, 94.96 63.72 65.80 64.75 62.03

2022)

Select features for c it Collect input data sources for snow

¢ POREEE General Reconstruction Process Validation and Evaluation
before reconstruct cover reconstruction

‘The HMRF model

DA methods

NDSIFSC

poral Machine learning-baset
reconstruction algorithms reconstruction

FIGURE 4
General workflow for snow cover reconstruction based on multiple features and data sources.

for monitoring remote sensing data at medium and low spatial ~ conditions, or forested regions—where other methods tend to
resolutions (=1 km) over large stable snow cover areas. While the ~ underperform—these approaches often yield more accurate and
computational complexity of the HMRF model, spatiotemporal  robust monitoring results. Notably, the distinction between snow
reconstruction algorithms, machine learning-based methods, and  cover reconstruction methods for BSC and NDSI/FSC products
data assimilation techniques is relatively high, these approaches  is not absolute. For instance, reconstructed NDSI/FSC products
generally yield more stable results. Among them, spatiotemporal ~ can be converted into BSC outputs using appropriate thresholds,
reconstruction algorithms enhance accuracy by thoroughly = whereas certain methods developed for NDSI/FSC reconstruction
exploring the spatiotemporal similarity among snow-covered pixels ~ may likewise be adapted for binary snow cover estimation with
and weighting the contributions of similar pixels accordingly.  appropriate modifications. Moreover, reconstruction approaches
However, these algorithms depend primarily on the snow cover  designed for either BSC or NDSI/FSC products may inspire the
products themselves and the assumption of spatiotemporal  development of methods for the other product type.

consistency. Their limited use of auxiliary data—aside from In practice, most studies employ more than one method to
elevation—reduces their effectiveness under unstable conditions,  achieve snow cover reconstruction. For example, Gafurov and
such as prolonged cloud cover or rapidly fluctuating snow dynamics. ~ Bdrdossy (2009) proposed a six-step procedure involving TAC,
In contrast, the HMRF model, machine learning-based methods, MDC, SNOWL, spatial filters based on four and eight neighboring
and data assimilation techniques typically incorporate a richer set  pixels, and SCFil. Huang et al. (2018) applied an HMRF-based
of environmental variables as input features or explicitly account  spatiotemporal modeling approach after merging Terra and Aqua
for them in the modeling process. Therefore, in complex terrains  snow products. Wang J. et al. (2025) developed a four-step method
with strong snow heterogeneity, limited observations, nighttime  of TAC, ATD, spatial filters, and the integration of MODIS and
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TABLE 5 Characteristics and applicability of snow cover reconstruction methods.

Products

Snow cover reconstruction
methods

Complete cloud removal

10.3389/feart.2025.1649808

Applicability and suggestions

BSC

Temporal Filters

Generally, no

(1) Temporal filters are suitable for relatively stable
snow-covered regions with dynamic phenomena,
such as clouds and aurora.

(2) The original snow cover products must have high
temporal resolution (typically 1 day).

(3) TAC and ATD are recommended as
preprocessing steps before applying other snow
cover reconstruction methods.

(4) SCFil completely removes all cloud pixels, but its
accuracy is relatively low. The use of this method
needs to be carefully considered.

Spatial Filters

(1) Spatial filters are suitable for open landscapes
with simple terrain, uniform land cover (such as
large expanses of bare soil), and stable snow cover.
(2) The original products should have moderate or
low cloud cover rates and high spatial resolution
(preferably <I km).

(3) Spatial filters based on four or eight neighboring
pixels generally have low cloud removal rates. They
are not recommended for use alone but can serve as
preprocessing steps before applying other methods.

Multisource Fusion Methods

Yes

(1) The combination of BSC and SD/SWE products
is suitable for open scenes with stable snow cover and
relatively low spatial resolution requirements. This
method can be used as the final step after applying
other methods to address the remaining cloud pixels.
(2) The combination of remote sensing and station
observations reconstructs historical datasets in
remote mountainous regions with limited
observations.

(3) The combination of daytime and nighttime snow
cover products represents a promising development
direction due to the high resolution of the products.

HMRF

Yes

It has broad applicability and is suitable for
mountainous regions with unstable snow cover and
complex terrain, such as the Qinghai-Tibet Plateau.

NDSI/FSC

Temporal and Spatial Interpolation Methods

Generally, no

The application of these methods is similar to that of
temporal and spatial filters. They are better suited as
preprocessing steps before applying other snow
cover reconstruction methods.

Spatiotemporal Reconstruction Algorithms

Yes

(1) These reconstruction algorithms are commonly
used for NDSI or FSC products when only snow
cover products are available, with little or no
geographic data (such as land use or DEM).

(2) The spatiotemporal fusion method facilitates the
integration of both coarse and fine products,
improving reconstruction accuracy and enhancing
applicability.

Machine Learning-Based Reconstruction
Algorithms

Yes

(1) These methods can rapidly utilize auxiliary
spatiotemporal and environmental information.
They have broad applicability and potential,
particularly in areas with complex terrain, forest
cover, and at night.

(2) When a high spatiotemporal resolution is
needed, this type of method can be used to conduct
downscaling work through the introduction of
multiple auxiliary datasets.

(3) A reliable reference derived from actual
observations must be used for training and testing.
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TABLE 5 (Continued) Characteristics and applicability of snow cover reconstruction methods.

Snow cover reconstruction
methods

Products

Complete cloud removal

Applicability and suggestions

Data Assimilation Methods

(1) Their applicability is broad. Considering the
computational cost, these methods are
recommended for regions with rapid snow cover
changes and complex terrain or surfaces.

(2) They are suitable for conducting research on
various snow properties beyond snow cover, such as
the SD, SWE and snow grain size.

IMS data to generate a daily snow cover dataset for Central
Eurasia. Poussin et al. (2025) employed a seven-step gap-filling
procedure that included SNOWL and spatial filters. Dong et al.
(2025) first used TAC to reduce missing pixels and then used
a spatiotemporal cube neighborhood interpolation method to
construct spatiotemporal features, followed by filling missing NDSI
values with a LightGBM model. This multistep strategy varies
depending on several factors. First, some methods, although
reasonably accurate, cannot completely remove the clouds. These
methods, including most temporal and spatial filters as well as
temporal and spatial interpolation methods, must be combined
with other methods to remove cloud contamination step by step
until no cloud-covered pixels remain. Second, multisource fusion
methods have the problems of inconsistent accuracy and scale
among multiple data sources. If used, they are usually placed as the
last step to mitigate the impacts. The HMRF model, spatiotemporal
reconstruction algorithms and machine learning-based methods
consider various factors simultaneously and can achieve complete
cloud removal. However, researchers prefer to use appropriate
combinations of TAC, ATD, and spatial filters based on four
neighboring pixels for BSC products and simple temporal and spatial
interpolation methods for NDSI/FSC products as preprocessing
steps before using the HMRF model, spatiotemporal reconstruction
algorithms or machine learning-based methods. These methods are
simple and easy to implement, and their accuracy is relatively high.
The most crucial point is that they can initially reduce a portion of
the missing information as a constraint for subsequent processing.
Excessive lack of information may increase the risk of generating
extreme outliers. Although errors may accumulate across multiple
steps, most of these errors are acceptable when compared with the
potential extreme outliers.

The future development of snow cover reconstruction
techniques can be approached from three perspectives: snow
cover observations, characteristics and reconstruction methods.
First, with respect to observations, the accuracy of the original
snow cover products needs to be enhanced. The snow cover
reconstruction process heavily depends on prior information about
the original snow cover products. Although the accuracy of many
original products has been validated using station observations, the
regional representativeness of these stations is limited, and errors
caused by misclassifications and omissions continue to impact
the reconstruction results. Therefore, more stringent strategies
must be implemented to extract snow cover from satellite spectral
images to maximize the accuracy of snow recognition (Zhu et al,
2016; Bousbaa et al.,, 2022; Gao et al, 2022). Approaches may
include developing novel deep learning models, exploring the

Frontiers in Earth Science

16

potential of deep semantic segmentation networks for cloud-snow
discrimination, creating automated and adaptive snow detection
methods with dynamic adjustment for seasonal and regional
variability, and integrating spectral and texture features for improved
snow identification (Han L. et al., 2019; Wu et al., 2019; Wang et al.,
2022d; Wang et al,, 2023; Ding et al., 2024). Second, based on
an analysis of snow cover characteristics, the effectiveness of a
snow cover reconstruction procedure relying solely on a single
characteristic is typically suboptimal. During the process of snow
cover reconstruction, comprehensively considering complex terrain,
temperature, precipitation, solar radiation, vegetation cover, and
other spatial and temporal environmental factors can significantly
improve the accuracy and resolution of the reconstruction results.
As a result, multisource heterogeneous data, which provide rich
spatial and temporal environmental information, will become
crucial supplements. However, several issues persist, including
spatial and temporal resolution discrepancies, geographical
positioning differences and the high processing complexity
associated with multisource products. It is essential to thoroughly
evaluate the reliability of multisource data while strengthening
the data quality control and verification processes. In addition,
ensuring the alignment, correction and unified processing of
multisource data is crucial. This can be achieved through feature
identification, appropriate transformations and resampling, ortho-
rectification, geometric correction, and super-resolution techniques
(Samadzadegan et al., 2025). Standardized preprocessing, multi-
level (pixel, feature, and decision) data fusion, and open, shared
snow datasets for algorithm validation and comparison can further
enhance the effectiveness of multisource data fusion (Ghamisi et al.,
2019; Samadzadegan et al., 2025; Yang et al., 2025). Among the
various snow cover reconstruction methods, machine learning-
based reconstruction algorithms and DA are being increasingly
recognized as important techniques because of their significant
advantages in processing multisource data. These methods can not
only efficiently process multisource data independently but also
have the potential for integration. For example, the cost function
employed in four-dimensional variational data assimilation (4D-
Var) is equivalent to the loss function used by neural networks,
both of which can be unified under a Bayesian framework.
This theoretical commonality enables the integration of machine
learning and DA (Geer, 2021). Machine learning can complement
DA by performing tasks such as model error correction, parameter
estimation, and observation bias correction. In turn, DA provides
physical constraints for machine learning, thereby mitigating
the associated overfitting issues. The combination of these two
methods can maximize the utilization of increasing remote sensing
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observations, harmonize data with various resolutions
to generate gridded products, and enhance both the

estimation and prediction of snow cover and the related

snow characteristics while also resulting in improved
computational efficiency. This integrated approach offers a
novel perspective for snow cover monitoring and forecasting
in complex environments, with significant potential for broader

application.

6 Conclusion

Snow cover reconstruction methods have made significant
progress in addressing data gaps in snow cover products derived
from polar-orbiting satellites. Traditional approaches, such as
temporal and spatial filters, multisource fusion methods, and
temporal and spatial interpolation methods, remain effective
for large-scale applications, whereas emerging techniques,
such as HMRF models, spatiotemporal algorithms, machine
learning, and data assimilation, demonstrate potential in complex
environments. Method selection depends on product resolution,
snow characteristics, cloud contamination, and the balance between
accuracy and computational cost, with hybrid approaches often
proving most effective. Future developments should focus on
three key directions. First, improving snow detection algorithms
to enhance the quality of baseline products is a prerequisite for
reliable reconstruction. Second, topography, climate, vegetation, and
other spatiotemporal environmental factors should be systematically
integrated, and comprehensive multisource data fusion frameworks
should be constructed, while strengthening quality control
and uncertainty assessment. Third, the integration of machine
learning and data assimilation methods should be advanced to
maximize the value of expanding remote sensing datasets. To
support future research and algorithm development in snow cover
reconstruction, a list of open-access datasets and related source
codes of potential interest to researchers is provided in the Appendix
of the Supplementary file. Progress in these areas will enable the
production of gridded, gap-free snow products that are reliable,
accessible, and user-friendly, supporting snow monitoring across
diverse environments. Overall, this review provides a foundation
for long-term monitoring and detailed analysis of snow cover,
offering critical support for research on the cryosphere and water
resources.
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