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Snow cover is recognized as one of the most variable land cover parameters 
and plays a critical role in the global energy balance, climate change, 
and hydrological processes. Polar-orbiting satellites serve as the primary 
data source for monitoring both polar and global snow cover, providing 
wide coverage and high spatial resolution products. However, the utility of 
these snow cover products is significantly limited by data gaps caused by 
unfavorable observation conditions, such as cloud cover. Various reconstruction 
approaches are required to fill these gaps, depending on the snow cover 
product type (binary snow cover (BSC), normalized difference snow index 
(NDSI), or fractional snow cover (FSC)), snow characteristics, and availability 
of auxiliary datasets. This paper categorizes current reconstruction approaches 
into eight types: temporal filters, spatial filters, multisensor fusion, and the 
hidden Markov random field (HMRF) model for BSC mapping, as well as 
temporal and spatial interpolation methods, spatiotemporal reconstruction 
algorithms, machine learning-based reconstruction techniques, and data 
assimilation methods for NDSI or FSC mapping. This paper provides a 
comprehensive review of the principles, advantages, and limitations of these 
approaches and offers recommendations for their appropriate application. The 
discussion highlights that future improvements in snow cover reconstruction 
can be achieved through three key approaches. First, enhancing snow 
cover recognition algorithms will increase the accuracy of the original snow 
cover products, providing more reliable prior information for reconstruction. 
Second, careful consideration of spatiotemporal environmental factors, such 
as terrain, temperature, precipitation, solar radiation, and forest cover, along 
with the development of corresponding multisource data processing and fusion 
techniques, is essential. Third, further exploration of the synergy between 
machine learning and data assimilation could leverage their strengths in 
multisource data processing scenarios, offering novel insights for conducting 
snow monitoring and forecasting in complex environments. This review 
contributes to snow cover mapping and related research by offering a 
comprehensive analysis and guidelines for generating gap-filled snow cover 
products across a variety of spatiotemporal scales.
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1 Introduction

Snow cover is among the most dynamic natural components of 
the cryosphere and is crucial for the global energy balance, climate 
change, and the hydrological cycle (Tang et al., 2013; Li et al., 2018; 
Thackeray et al., 2019; Li et al., 2022). Snow cover enhances the 
surface albedo, reduces the absorption of solar shortwave radiation, 
and regulates the heat exchange process between the ground and 
the atmosphere. Moreover, it influences atmospheric circulation, 
serves as a key indicator for predicting regional precipitation, and 
plays a crucial feedback role in climate change (Dozier and Warren, 
1982; Warren, 1982; Zhang, 2005; Warren, 2019; You et al., 2020). 
Additionally, snowmelt supplies water to more than one-sixth of 
the global population, affecting both the quality and quantity of 
downstream river water and serving as a vital source of river 
runoff (Armstrong et al., 2019; Han P. et al., 2019; Qin et al., 
2020; Musselman et al., 2021; Yang et al., 2022). Consequently, 
as global warming alters the snow accumulation and snowmelt 
processes, the importance of snow cover monitoring becomes 
increasingly evident. Such monitoring procedures not only provide a 
critical foundation for scientific research, including snowmelt runoff 
forecasting and climate change assessment, but also offer essential 
support for disaster prevention, resource management, and water 
supply planning.

Currently, snow cover products derived from polar-orbiting 
satellites serve as crucial data sources for global snow cover 
monitoring and mapping, particularly in polar and high-latitude 
regions (Romanov et al., 2000; Dietz et al., 2012; Dixit et al., 
2019; Zhang et al., 2023). These products typically utilize optical 
remote sensing data, which are more accurate than microwave 
products in identifying snow cover areas (SCAs) under clear-
sky conditions, particularly in regions with shallow snow cover 
(Wang et al., 2008; Foster et al., 2011; Dietz et al., 2012). These 
optical products offer advantages such as near-global coverage, 
wide availability, high precision, high temporal resolution (ranging 
from daily to several days), and spatial resolution from 5 km to 
several meters (Dixit et al., 2019; Muhuri et al., 2021; Zhang et al., 
2023). Snow cover products derived from optical remote sensing 
are categorized into binary snow cover (BSC) products, normalized 
difference snow index (NDSI) products and fractional snow cover 
(FSC) products. BSC mapping is the traditional method used during 
the early stages of snow cover monitoring and involves simply 
classifying a pixel as either a snow or non-snow pixel, making 
it suitable for large-scale snow monitoring (Dobreva and Klein, 
2011; Riggs and Hall, 2010; Rittger et al., 2013; Gafurov et al., 
2016). With the development of remote sensing technology and 
algorithms, NDSI and FSC products, which provide continuous 
snow cover parameters, are becoming increasingly important in 
cryosphere and hydrology research. Specifically, the NDSI, which 
is the normalized difference between the green and shortwave 
infrared spectral bands, effectively distinguishes snow from clouds 
and other land features and can be used to generate both BSC 
and FSC products (Kulkarni et al., 2002; Salomonson and Appel, 
2004; Mishra et al., 2016; Riggs et al., 2017; Li X. et al., 2019). FSC 
provides a more precise estimate of the areal extent of snow cover 
by estimating the fraction of a snow-covered pixel, which directly 
reflects the snow conditions of mixed pixels in complex terrain 

(Dozier et al., 2008; Dobreva and Klein, 2011; Tang et al., 2013; 
Haseeb Azizi et al., 2024; Xiao et al., 2024; Huang et al., 2025).

In practical applications, the above snow cover products 
inevitably suffer from data gaps due to a variety of influencing 
factors (Figure 1); however, reconstruction methods can address 
this issue, thereby enhancing the quality and utility of snow 
cover products. Cloud cover represents the primary cause of data 
gaps in snow cover products. The global mean cloud cover level, 
which is derived from MODIS products, is approximately 66% 
(Mao et al., 2019). The cloud cover levels in key ice and snow 
regions, including the North and South Poles, range from 50% to 
80% (Kato et al., 2006), and the degree of cloud cover can reach 
70% during the snowmelt season in alpine regions (Da Ronco and 
De Michele, 2014), which significantly impacts the availability and 
long-term comparability of snow cover products. The impact of 
cloud cover is a global, persistent, and non-negligible issue, making 
it the primary concern addressed by most current reconstruction 
methods. Cloud-induced shadows further exacerbate data gaps, 
particularly in high-resolution snow cover monitoring applications. 
In addition, accurate observation of snow cover beneath canopies 
is challenging at the surface in forested areas (Yang et al., 2023). 
Snow cover in mountainous areas with complex terrain is affected 
by satellite observation angles and mountain shadows, which lead 
to observation blind spots (Zhang et al., 2023). Although the effects 
of forest cover and complex terrain are relatively localized, they 
significantly increase the uncertainty of snow cover monitoring 
in mountainous and forested areas, posing major challenges for 
accurate reconstruction at the local scale. Additionally, adverse 
lighting conditions may also degrade the quality of snow cover 
products. Intense sunlight reflected from snow cover can saturate 
the utilized sensor (Zhang Y. et al., 2020). At the North and 
South Poles, the prolonged periods of darkness caused by the 
polar night render traditional optical remote sensing ineffective for 
observation tasks. Although nighttime light remote sensing offers 
new opportunities for polar snow cover monitoring, clouds and 
auroras may still obscure the acquired data (Huang et al., 2022a; 
Liu et al., 2023). These unfavorable factors may occur simultaneously 
depending on geographic and observational conditions, leading to 
increased data gaps and further reduced reliability of snow cover 
products. To mitigate the effects of these factors on snow cover 
products and reconstruct missing data, researchers have developed 
a variety of snow cover reconstruction methods (Gao et al., 
2010a; Gao et al., 2010b; Richiardi et al., 2023). First, snow cover 
reconstruction enhances the continuity and timeliness of snow 
cover monitoring. Reconstructing historical snow cover datasets 
addresses issues such as the limited availability of remote sensing 
data and the insufficient number of observations acquired at remote 
mountain sites, analyzing snow cover characteristics across broad 
geographical areas over several decades, and providing long-term 
historical data for the operation and calibration of hydrological 
models (Gafurov et al., 2015). Second, the reconstructed snow cover 
products serve as crucial input data for estimating snow depth (SD), 
snow water equivalent (SWE) and other snow parameters, thereby 
reducing uncertainty in parameter retrieval. For example, recent 
snow depth products derived from Sentinel-1 SAR data utilize a 
gapless, daily binary snow cover product to indicate snow presence 
and minimize the influence of non-snow factors (Lievens et al., 2022; 
Hoppinen et al., 2024; Ying et al., 2025). The reconstructed snow 
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FIGURE 1
Factors contributing to data gaps.

cover results can also be used as a mask to constrain the target 
snow cover area and assist in downscaling SD and SWE products to 
higher spatial resolutions, which is important for evaluating regional 
snow resources, analyzing the spatial distribution of snow cover 
with its generation and dissipation processes, and predicting future 
snowmelt runoff (Molotch and Margulis, 2008; Hall et al., 2010;
Rittger et al., 2016).

To this end, we provide a review of various reconstruction 
methods for snow cover products from polar-orbiting satellites and 
organize the paper according to the flowchart in Figure 2. Although 
previous research has discussed related methods for MODIS 
BSC products (Coll and Li, 2018; Li X. et al., 2019; Gao Y. et al., 
2024), we broaden the scope of our exploration and address 
the following key points that have not been covered in
prior studies. 

1. First, we briefly introduce the six primary data sources for 
monitoring snow cover from polar-orbiting satellites. We 
discuss their basic accuracies and characteristics to establish 
a foundation for subsequent research.

2. We focus on a comprehensive analysis of four reconstruction 
methods for NDSI or FSC mapping while providing a 
brief overview of the reconstruction methods for BSC 
mapping. Specifically, we offer recommendations for the 
appropriate application of each method. These insights can 
assist researchers in selecting suitable methods or refining 
existing approaches.

3. By comparing current reconstruction methods, we highlight 
challenges within the existing research and propose future 
research directions, offering guidelines for generating gap-
filled snow cover products for related scientific studies.

2 Snow cover products derived from 
polar-orbiting satellites

Before snow cover is reconstructed, understanding the 
characteristics of different snow cover products, including 
their original accuracy and resolution, is essential for selecting 
appropriate reconstruction methods.

Various types of snow cover products are derived from polar-
orbiting satellites (Table 1). Most official products still contain 
significant numbers of cloud or missing pixels (hereafter referred 
to as cloud pixels), with a few gap-filled exceptions (such as 
MOD10A1F and MYD10A1F). Snow cover products provide 
accurate clear-sky observations that serve as reliable prior data, 
forming the foundation for performing snow cover reconstruction. 
The most widely used snow cover products come from the Moderate 
Resolution Imaging Spectroradiometer (MODIS) onboard the Terra 
and Aqua satellites (Hall et al., 2010; Hall et al., 2019). The MODIS 
products are characterized by easy accessibility, wide coverage, 
and excellent snow monitoring capabilities, with overall accuracies 
typically exceeding 85% (Hall et al., 2002; Hall and Riggs, 2007; 
Wang et al., 2008; Parajka et al., 2012; Hou et al., 2018; Liu et al., 
2020). The MODIS snow cover algorithm and products are also 
the foundation of the Visible Infrared Imaging Radiometer Suite 
(VIIRS) snow cover algorithms, ensuring the accuracy, continuity 
and consistency of the resulting snow cover datasets from the Suomi-
National Polar-orbiting Partnership (S-NPP), Joint Polar Satellite 
System-1 (JPSS-1, now known as NOAA-20) and JPSS-2 (now 
known as NOAA-21) (Riggs et al., 2017; Riggs and Hall, 2020; 
Liu A. et al., 2022; Stillinger et al., 2023; Román et al., 2024). 
According to the research by Zhang H. et al. (2020), the VNP10A1 
product from VIIRS performs as well as the MOD10A1 product 
from Terra, except on the Tibetan Plateau, and is significantly 
more accurate than the MYD10A1 data from Aqua in China. 
It is recommended to prioritize the use of snow cover products 
from VIIRS and Terra rather than snow cover products from 
Aqua because of the questionable observations of Band 6 in Aqua 
(Huang et al., 2018; Hall et al., 2019; Zhang H. et al., 2020). In 
addition, S-NPP VIIRS produced the VNP46A1 and VNP46A2 
products using nighttime light remote sensing data, achieving a 
classification accuracy exceeding 79% in Arctic ice and snow cover 
monitoring scenarios (Liu et al., 2023). The AVHRR snow cover 
products provided by the European Space Agency (ESA) achieved 
an overall accuracy of 94% in the Himalayas (Wu et al., 2021). 
The JASMES product, which was developed using NOAA AVHRR 
and MODIS data, attained an accuracy exceeding 82% (Hori et al., 
2017). Since 2008, China’s FY-3 series satellites, which are equipped 
with a Medium Resolution Spectral Imager (MERSI), Visible and 
InfraRed Radiometer (VIRR) and Microwave Radiation Imager 
(MWRI), have provided critical Earth observations. The accuracy 
of the multisensor fusion snow cover products (MULSS) derived 
from the FY-3 MERSI and VIRR data ranges from 83% to 87%, 
reflecting long-term snow cover trends in China (Min et al., 2021; 
Li et al., 2022). Optical and passive microwave imagery derived 
from the FY-3D MERSI and MWRI has also been integrated to 
generate new snow cover products, known as MULSS_SCM. In 
addition to the aforementioned snow cover products with spatial 
resolutions ranging from hundreds of meters to several kilometers, 
satellite data with spatial resolutions as fine as tens of meters are 
also available. For example, the United States Geological Survey 
(USGS) provides Landsat-8 L3-level data with a 30 m resolution 
and a 16-day temporal interval for the fractional Snow Covered 
Area (fSCA). The F1-score, the harmonic mean of precision 
and recall, for the Landsat-8 products reached 97.3%, slightly 
outperforming the metrics of MODIS and VIIRS, as validated 
by airborne lidar datasets in the western USA (Stillinger et al., 
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FIGURE 2
Flowchart of snow cover reconstruction.

2023). With respect to Sentinel-2 satellites, which have a high 
spatial resolution of 20 m, the empirical threshold-based method of 
the official processor (Sen2Cor) has achieved an overall accuracy 
of only 58% (Wang et al., 2022c). In contrast, enhanced Let-It-
Snow (LIS) algorithms and machine learning methods, such as 
random forests and U-Net models, can increase this accuracy 
to 90%–94% (Barrou Dumont et al., 2021; Richiardi et al., 2021;

Li et al., 2022). The Theia Snow Collection provides high-resolution 
snow cover maps (20–30 m) using Sentinel-2 and Landsat-8 data 
by incorporating the NDSI and snow lines. These maps serve as 
valuable references for evaluating MODIS snow cover products and 
data assimilation methods. The Sentinel-2 results from the Theia 
Snow Collection have achieved an overall accuracy of 94% and a 
kappa coefficient of 0.83 (Gascoin et al., 2019). Additionally, these 
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TABLE 1  Prominent snow cover products derived from polar-orbiting satellites.

Satellites Optical 
sensor

Launch year Spatial 
resolution

Temporal 
resolution

Snow cover product

Terra/Aqua MODIS 1999/2002

500 m

1 d MOD10A1/MYD10A1; 
MOD10A1F/MYD10A1F

8 d MOD10A2/MYD10A2

5 km

1 d MOD10C1/MYD10C1

8 d MOD10C2/MYD10C2

Monthly MOD10CM/MYD10CM

S-NPP/JPSS-1/JPSS-2 VIIRS 2011/2017/2022
375 m 1 d VNP10A1/VJ110A1; VNP10A1F/VJ110A1F

500 m 1 d VNP46A1; VNP46A2

NOAA series satellites AVHRR 1979 5 km 1 d JASMES; SnowCCI AVHRR products

Landsat series satellites TM/ETM+/OLI 1984 30 m 16 d
Theia Snow 
collection

Landsat SCA/fSCA

Sentinel-2 MSI 2015 20 m 5 d HRSI collection

FY-3 MERSI 2008
1 km 1 d MERSI/MULSS SNow Cover (SNC)

5 km 1 d FY-3 MULSS Snow Cover Merged (SCM)

Sentinel-2 results are more sensitive to in situ SD observations than 
are those of MODIS, as the optimal SD threshold for the former 
is close to 0 m, whereas for MODIS, the optimal SD threshold is 
0.15 m, at which the product achieves its best kappa coefficient 
(Gascoin et al., 2015; Gascoin et al., 2019). All the abovementioned 
snow cover products, which are available at different spatial and 
temporal resolutions, offer diverse data support for snow monitoring 
at both global and regional scales.

Therefore, snow cover reconstruction methods must be 
selected while carefully considering the detection characteristics 
of different satellites or constellations. For example, temporal 
methods that rely on continuous multiday snow cover information 
are challenging to apply to Landsat and Sentinel-2 products with 
low temporal resolutions. When nighttime light remote sensing 
data are utilized for snow cover monitoring in polar regions, it 
is essential to account for the impact of lunar phase changes on 
image brightness, and methods must be employed to remove clouds 
and auroras (Liu et al., 2023). Snow cover products with various 
spatial resolutions require different reconstruction strategies. 
For daily products with moderate spatial resolutions ranging 
from 1 km to 5 km (Table 1), the primary objective of snow 
cover reconstruction is to retrieve snow information obscured 
by cloud cover. For Landsat and Sentinel-2 satellite products, 
which have high spatial resolutions (<30 m) and long revisit 
intervals, daily snow cover maps may need to be generated using 
temporal interpolation methods, along with cloud gap filling. 
These factors illustrate the variations exhibited by snow cover 
reconstruction methods across different spatiotemporal scales and 
emphasize the significance of satellite observation characteristics 
in snow reconstruction algorithms.

Therefore, research on snow cover reconstruction must adopt 
more precise methods to increase the clear-sky accuracy and 
quality of the original products. Furthermore, the resolutions of 
snow cover products and their detection characteristics should be 
considered when an appropriate snow cover reconstruction method
is selected. 

3 Snow cover reconstruction methods

Snow cover reconstruction methods, which are also referred 
to as cloud removal approaches, are employed primarily to fill 
data gaps caused by cloud cover, cloud shadows, forest cover or 
detector saturation in snow cover products. These methods increase 
the reliability and continuity of snow cover products, facilitating 
their application in runoff forecasting and data assimilation systems 
(Hall et al., 2010; Coll and Li, 2018; Hall et al., 2019; Li et al., 
2020). Numerous researchers have conducted relevant studies on 
snow cover reconstruction based on the distinct characteristics 
of snow cover products. We classified snow cover reconstruction 
methods according to their predominant use for BSC and NDSI/FSC 
products in existing studies to better reflect common practices. Some 
methods—such as certain machine learning algorithms—classified 
under NDSI/FSC reconstruction have also been applied to BSC 
products and, in some cases, have generated both types of 
results simultaneously. Nevertheless, we still categorize them as 
NDSI/FSC methods to encourage the generation of continuous-
value outputs, which preserve more detailed snow information and 
can be readily converted to BSC products through appropriate
thresholding. 
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3.1 Reconstruction methods for BSC 
products

Based on the different gap-filling principles, the snow cover 
reconstruction methods that are commonly used for BSC products 
can be classified into temporal filters, spatial filters, multisource 
fusion, and the hidden Markov random field (HMRF) model (Coll 
and Li, 2018; Li X. et al., 2019; Gao Y. et al., 2024). As BSC products 
remain valuable data sources for large-scale snow monitoring and 
satisfy snow cover detection needs at coarse resolutions, these 
methods continue to evolve. In this paper, we provide a concise 
review of these methods.

There are four types of commonly used temporal filters: Terra 
and Aqua combination (TAC), adjacent temporal deduction (ATD), 
fixed and flexible multiday combination (MDC), and the snow 
cycle filter (SCFil). These methods are based on the temporal 
continuity of snow cover and the dynamic processes of snow 
accumulation and ablation. They assume that snow cover undergoes 
minimal change over certain periods, whereas cloud cover changes 
more rapidly. As a result, clouds can be effectively removed by 
combining multitemporal snow cover products within a temporal 
window. The typical size of this temporal window ranges from 
several hours (TAC) to tens of days (Liang TG. et al., 2008; 
Parajka and Blöschl, 2008; Gao et al., 2010b; Singh et al., 2021; 
Mattar et al., 2022; Wang J. et al., 2025). Generally, a larger temporal 
window reduces cloud contamination but also decreases the overall 
classification accuracy and temporal resolution. Therefore, selecting 
appropriate temporal windows for different regions and seasons is 
essential for balancing cloud removal efficiency with classification 
accuracy, ultimately improving the overall quality of the data. 
Gao et al. (2010b) reported that underestimation and overestimation 
errors typically remain low during stable snow-covered and non-
snow periods (generally December–March and July–September, 
depending on regional snow characteristics) when TAC, ATD, and 
MDC are used with temporal windows ≤8 days. However, larger 
temporal windows in the fixed MDC method result in increased 
overestimation errors during transitional periods. In contrast, the 
flexible MDC method provides an effective solution for improving 
reconstruction outcomes by adjusting the window size based on 
cloud cover percentage and a predefined maximum number of 
days (Gao et al., 2010b; Zhang et al., 2012; Chen et al., 2014; 
Yang et al., 2018). Notably, temporal filters are ineffective at 
completely removing clouds from BSC products, except for SCFil. 
However, the error of SCFil is the greatest among these methods, 
exceeding 10% (Gafurov and Bárdossy, 2009; Li X. et al., 2019). 
The SCFil method assumes that snow cover persists between the 
start day of snow accumulation and the day of complete snowmelt, 
during which all the cloud pixels are reclassified as snow-covered. 
In contrast, cloud pixels are classified as snow-free during other 
periods. The SCFil method is constrained by the accuracy of the 
estimated snow start and complete snowmelt days. Overall, the 
performance of the method is influenced by cloud cover dynamics 
and may be further diminished during periods of rapid snow 
change. Previous research has demonstrated that the SCFil method 
tends to overestimate snow cover on land pixels (Gafurov and 
Bárdossy, 2009). These temporal filters are generally suitable for 
scenes with frequent dynamic interference (e.g., clouds and auroras) 
and relatively stable snow cover. The higher the frequency of 

satellite observations is, the more effective the temporal filters are 
(Liang TG. et al., 2008; Parajka and Blöschl, 2008; Gafurov and 
Bárdossy, 2009; Gao et al., 2010b; Paudel and Andersen, 2011; 
Lindsay et al., 2015; Singh et al., 2021; Liu et al., 2023). Short-term 
snowfall or snowmelt events can reduce the accuracy of temporal 
filtering methods.

The spatial filters are primarily based on four orthogonal 
neighboring pixels, the elevation of eight neighboring pixels, locally 
weighted logistic regression (LWLR), and snow lines. Spatial filters 
rely primarily on snow cover information and the environmental 
association information of neighboring pixels within a specific 
spatial window to reclassify cloud pixels. Spatial filters based 
on four orthogonal neighboring pixels or the elevation of eight 
neighboring pixels achieve high classification accuracy but remove 
only a few cloud pixels (Gafurov and Bárdossy, 2009; Jain et al., 
2009; Tong et al., 2009; Paudel and Andersen, 2011; López-
Burgos et al., 2013; Grünewald et al., 2014; Hou et al., 2018; 
Li X. et al., 2019; Poussin et al., 2025). The LWLR method can reduce 
the cloud coverage rate from 39% to 15% (López-Burgos et al., 
2013) but exhibits significant temporal variations, with unstable 
cloud removal effects and high computational costs (Clark and 
Slater, 2006; López-Burgos et al., 2013). Different snow-line methods 
estimate snow and land boundaries in different ways based on 
snow distributions to reclassify cloud pixels (Guglielmin et al., 
2003; Gafurov and Bárdossy, 2009; Parajka et al., 2010; Paudel 
and Andersen, 2011; Qiu et al., 2017; Zhang et al., 2023). The 
most commonly used snow-line method is the regional snow-
line method (SNOWL) (Parajka et al., 2010; Dietz et al., 2014; 
Hüsler et al., 2014; Poussin et al., 2025), which is affected by 
the misclassification of cloud pixels as snow cover pixels and 
does not account for cloud shadows, making it difficult to apply 
this technique to snow cover products derived from high-spatial-
resolution satellites such as Landsat-8 and Sentinel-2. Therefore, 
Zhang et al. (2023) enhanced the SNOWL algorithm using the tools 
Fmask and Sen2Cor to identify cloud cover, cloud shadows and 
snow pixels precisely in Sentinel-2 images. Additionally, unstable 
snow cover areas were incorporated to improve the snow cover 
reconstruction process in mountainous regions affected by clouds 
and cloud shadows, making the method more suitable for Sentinel-
2 data (Zhang et al., 2023; Zhang et al., 2024). Considering that 
snow cover is influenced by various factors, Qiu et al. (2017) also 
employed multiple linear regression to model snow-line elevation 
data for reconstruction purposes, using the snow-line elevation 
as the dependent variable and the longitude, latitude and slope 
aspect as independent variables. This method has been widely 
applied to conduct snow monitoring over the Qinghai‒Tibet 
Plateau and the China‒Pakistan Economic Corridor (Qiu et al., 
2017; Yu, 2017; Hao et al., 2019). However, both the improper 
selection of subregions and the overfitting of regressions affect the 
cloud removal rate and classification accuracy of this method. In 
general, the above spatial filters perform best in areas with simple 
terrain and stable snow cover conditions over a wide range. They 
generally perform well in filling gaps caused by small, scattered 
clouds but are less effective in areas with extensive cloud cover 
(Huang et al., 2018; Yan et al., 2024).

Traditional multisource fusion methods involve the 
combination of BSC products derived from optical observations, 
SD or SWE products acquired from passive microwave 
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observations, and station observations. Owing to the coarse spatial 
resolution of microwave products, the SWE or SD needs to be 
sampled to align them with the spatial resolution of BSC products, 
and cloud pixels in BSC products are directly replaced with 
the corresponding reclassified SWE pixels (Liang T. et al., 2008; 
Gao et al., 2010a; Gao et al., 2010b; Foster et al., 2011; Bergeron et al., 
2014; Huang et al., 2016; Romanov, 2017; Hao et al., 2021). Station 
observations provide continuous, long-term and high-precision 
SD data but are limited to fixed locations. Therefore, integrating 
station observations with remote sensing products requires the 
consideration of additional spatial distribution characteristics of 
snow (Gafurov et al., 2015; Dong and Menzel, 2016; Gafurov et al., 
2016). When remote sensing images are scarce, the reconstruction 
of long time series and large-scale historical snow cover can be 
accomplished by constructing a probabilistic relationship between 
individual pixels and station data. However, data quality differences 
caused by the migration of ground stations, environmental changes, 
observation standard revisions, and unstable operations may 
negatively impact the accuracy of snow cover fusion products 
(Yang et al., 2013; Zhang et al., 2021). Additionally, some researchers 
have proposed integrating IMS snow and ice products with BSC 
products, as IMS products offer higher spatial resolutions (1–4 km) 
and can serve as alternatives to microwave products (Newfel et al., 
2013; Li Y. et al., 2019; Gao Z. et al., 2024; Hao et al., 2019; 
Wang J. et al., 2025). With the development of nighttime light 
remote sensing, the combination of snow cover products from both 
daytime and nighttime has shown significant promise in snow cover 
reconstruction. High spatial resolution snow cover products derived 
from VIIRS nighttime light data can be used not only for polar night 
monitoring but also as valuable complements to conventional optical 
products (such as MODIS BSC products). The integration of both 
daytime and nighttime products can reduce cloud cover by more 
than 30% and expand the observation range (Chen et al., 2023). 
Applying multiple temporal and spatial filters to reduce the number 
of cloud pixels before using multisource fusion methods can help 
minimize the degree of uncertainty in snow cover monitoring tasks 
(Newfel et al., 2013; Huang et al., 2014; Li Y. et al., 2019; Zheng and 
Cao, 2019; Wang et al., 2022a).

The HMRF model is a widely used framework for image 
segmentation tasks; it accounts for the mutual influences of adjacent 
observations and expresses a contextual relationship (Dubes and 
and Jain, 1989; Chatzis and Tsechpenakis, 2010). The HMRF 
model for snow cover reconstruction aims to integrate spectral, 
spatial, temporal, and environmental information; calculate the 
total spatiotemporal energy (probability) for each cloud pixel; and 
determine whether the target pixel corresponds to a snow or non-
snow pixel (Huang et al., 2018; Huang et al., 2022b). This method 
effectively and efficiently removes cloud cover from snow cover 
products, enhancing the cloud removal process during periods 
with unstable snow and in complex terrain areas. This method 
has demonstrated strong performance on both the MODIS and 
AVHRR datasets (Huang et al., 2018; Hao et al., 2021; Hao et al., 
2022; Wang, 2022; Huang and Xu, 2022; Gao Y. et al., 2024; 
Hao et al., 2025; Wang Q. et al., 2025). Additionally, Huang et al. 
(2022b) incorporated solar radiation as environmental background 
information into the HMRF method, replacing the conventional 
process of using surface elevation data. This approach more 
effectively captures the combined influence of factors such as slope, 

aspect and sunlight duration. Increased solar radiation results in a 
delayed onset of snow cover, faster snowmelt, and more rapid snow 
cover changes (Dombrovsky and Kokhanovsky, 2022). As a result, 
the HMRF method, which incorporates solar radiation, reduces 
commission and omission errors, with overall accuracies ranging 
from 0.91 to 0.98.

Among these approaches, temporal filters, spatial filters and 
multisource fusion are limited by insufficient cloud removal 
capabilities or reduced accuracy and are often combined into 
multistep methods to generate cloud-free BSC products. The HMRF 
method simultaneously accounts for the spatiotemporal correlation 
of snow cover, fully utilizing both spatial and temporal information 
to restore missing data. The HMRF model can be employed for snow 
cover reconstruction either independently or in combination with 
other methods. 

3.2 Reconstruction methods for the NDSI 
and FSC products

NDSI and FSC products are also commonly used snow cover 
products derived from optical remote sensing data. Unlike BSC 
products, NDSI and FSC products provide continuously varying 
snow parameters. NDSI or FSC values can be converted to BSC 
products using an appropriate threshold (such as NDSI = 0.5 
or FSC = 0.4), after which snow cover can be reconstructed 
via the methods described in Section 3.1. However, the NDSI 
and FSC provide more detailed snow cover information and 
are being increasingly used directly in related studies. Temporal 
and spatial interpolation methods, spatiotemporal reconstruction 
algorithms, machine learning-based reconstruction algorithms and 
data assimilation can be applied to NDSI and FSC data. 

3.2.1 Temporal and spatial interpolation methods
The simplest reconstruction methods for NDSI or FSC products 

are temporal and spatial interpolation methods, which evolve from 
temporal and spatial filters for BSC products. They still rely on 
the temporal or spatial continuity of snow cover, but each method 
considers only one of these characteristics at a time.

The temporal interpolation methods for NDSI or FSC products 
assume that the FSC gradually changes over a short period. 
Therefore, the predicted FSC value of a cloud pixel can be 
interpolated from FSC values within a temporal window. Like 
the TAC method used for BSC products, combining Terra and 
Aqua MODIS NDSI/FSC products represents a specific application 
of temporal interpolation methods. This approach typically uses 
maximum value composition, averaging, or valid-value selection 
from the two MODIS products—often prioritizing the more 
accurate Terra products (e.g., MOD10A1) when available (Hou et al., 
2019; Qiu and Wang, 2021; Hou et al., 2022). Hou et al. (2019) 
applied a more general method, adjacent temporal filtering (ATF), 
which replaced cloud-covered pixels with the nearest cloud-free 
FSC value from the previous 3 days. Similarly, Hou et al. (2022) 
used a variant of the ATF, averaging the NDSI values from adjacent 
days to fill missing pixels. Pan et al. (2024) replaced cloud pixels 
on the current day with the arithmetic mean of the observed 
FSC values on the previous and following days. Poussin et al. 
(2025) integrated data from Sentinel-2 and Landsat satellites to 
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generate monthly composites by selecting the maximum NDSI value 
for each pixel across all available images. Additionally, the linear 
interpolation, quadratic interpolation, cubic spline interpolation 
(CSI) or piecewise cubic Hermite interpolating polynomial (PCHIP) 
can be applied to clear-sky values within a fixed or adaptively 
changing temporal window to estimate the NDSI and FSC values 
for cloud pixels in segments (Dozier et al., 2008; Tang et al., 2013; 
Hao et al., 2014; Hou et al., 2022; Deng et al., 2024b; Hua et al., 
2025). However, the interpolation algorithm, which considers only 
the temporal continuity of snow cover, lacks sufficient effective data 
during extended periods of cloudy weather, making the interpolated 
values prone to outliers.

Spatial interpolation methods estimate NDSI or FSC values 
based on the values of cloud-free pixels surrounding a cloud pixel. 
If most of the neighboring pixels around a cloud pixel have valid 
values, the cloud pixel is assigned the interpolated value of the snow-
covered neighboring pixels. In the simplest case, the FSC value of 
a cloud pixel is the arithmetic mean of the effective FSC values of 
four or eight neighboring pixels (Pan et al., 2024). In addition, the 
inverse distance weight (IDW) interpolation algorithm within the 
selected spatial window also performs effectively. Researchers can 
further screen cloud-free pixels with appropriate altitude differences 
within the spatial window for IDW interpolation, leading to a mean 
absolute error of 0.10 in the FSC results (Pan et al., 2024). Like 
spatial filters, complex terrain and environmental factors can cause 
anomalies in the interpolation results. 

3.2.2 Spatiotemporal reconstruction algorithms
Spatiotemporal reconstruction algorithms aim to reconstruct 

NDSI or FSC values at cloud pixels by jointly leveraging the temporal 
and spatial continuity of snow cover. Unlike approaches that rely 
on only one of these dimensions, they simultaneously integrate 
both and are sometimes further refined with auxiliary topographic 
information such as DEM. These algorithms consider snow cover 
information within a spatiotemporal cube or image pairs from 
multiple dates.

To fully leverage the spatiotemporal snow cover information of 
a single product, five reconstruction algorithms can be employed 
to generate cloud-free NDSI or FSC products. These include 
a spatiotemporal fusion method based on the Gaussian kernel 
function and error correction (STF-GKF-EC) (Jing et al., 2019; 
Jing et al., 2022), a spatiotemporal similar pixel selecting algorithm 
(SPSA) (Li et al., 2020), a spatial and temporal adaptive gap-filling 
method (STAGFM) (Chen et al., 2020), a spatiotemporal cube cloud 
removal algorithm based on NDSI similarity (STNSI) (Guo et al., 
2024), and a spatiotemporal weighted method combined with CSI 
(CSI-STW) (Deng et al., 2024b). These methods generally follow 
similar principles: treating the target cloud pixel as the central 
pixel, determining similarity estimation rules, selecting the clear-
sky pixels with the highest similarity to the central pixel from the 
dynamic spatiotemporal cube, and calculating the NDSI of the 
central pixel by weighting the NDSI of the most similar clear-sky 
pixels based on their spatiotemporal distances (Figure 3).

Each method estimates similarity differently, but they all 
assume that similar pixels have similar NDSI values, consistent 
multitemporal changes, and spatial proximity overall. The STF-
GKF-EC method primarily uses a regional correlation coefficient 
(greater than 0.7) for the spatiotemporal blocks within a temporal 

window to select similar pixels. It subsequently employs a Gaussian 
kernel function to perform spatiotemporal weighted averaging on 
the selected similar pixels, thereby estimating the NDSI for cloud 
pixels (Jing et al., 2019). This method was enhanced to form the 
Spatio-Temporal Adaptive fusion method with erroR correction 
(STAR), which produces an NDSI collection with reduced omission 
errors (Jing et al., 2022). The SPSA provides a formula (SIMIP

Pi
) 

for calculating the NDSI similarity between pixels and incorporates 
multiyear variations as a constraint for predicting the NDSI value 
at a cloud pixel. Several clear-sky pixels with the highest similarity 
values are selected, and their arithmetic average NDSI is used to 
replace the cloud pixel (Li et al., 2020). STAGFM calculates the 
squared Euclidean distance of the NDSI between the central pixel 
and its spatially neighboring clear-sky pixels, selecting those with 
the smallest distances as similar pixels. The NDSI of the target cloud 
pixel can be predicted by a weighted average of the bias-corrected 
NDSI values of similar pixels, where the contribution of a pixel 
is inversely proportional to its geographic distance (Chen et al., 
2020). The STNSI method is somewhat similar to the STAGFM 
method, but it calculates NDSI differences and average NDSI 
errors for performing correction within a snow season rather than 
at the target and reference images, as in the STAGFM method 
(Guo et al., 2024). The CSI-STW method places greater emphasis 
on the spatiotemporal correlation of snow cover and incorporates 
elevation control conditions to constrain the process of selecting 
similar pixels (Deng et al., 2024b). It employs the Inverse Distance 
Weighted (IDW) method to reconstruct the NDSI of cloud pixels, 
with their weights determined by their temporal, geographic and 
elevational distances. In these methods, spatiotemporal cubes that 
are too small may limit the number of similar pixels available for 
reconstruction, whereas overly large cubes can significantly increase 
computational costs. Consequently, typical spatiotemporal cube 
sizes range from 3 × 3×t to 5 × 5×t, where t usually spans 5–17 days 
(Jing et al., 2022; Deng et al., 2024b; Guo et al., 2024). Additionally, 
the STAGFM algorithm adopts a 15 × 15 spatial window and 
selects 20 similar pixels to achieve optimal accuracy (Chen et al., 
2020). Future research may explore the use of dynamically adaptive 
window sizes to more effectively balance reconstruction accuracy 
and computational efficiency.

In addition to the aforementioned spatiotemporal 
reconstruction methods employed for single remote sensing 
products, some studies have explored the complementary 
spatiotemporal characteristics of multisource images and developed 
spatiotemporal fusion algorithms for generating high-accuracy 
and high-resolution snow products. Unlike spatiotemporal 
reconstruction algorithms for individual products, spatiotemporal 
fusion algorithms evaluate the similarity between pixels of coarse 
and fine products using a sliding window and calculate the 
transformation coefficients based on spatiotemporal weights. The 
coarse-resolution products are downscaled and integrated with the 
fine-resolution products. For example, Bousbaa et al. (2022) selected 
ESTARFM, FSDAF and preclassification FSDAF from various 
spatiotemporal data fusion algorithms (Zhu et al., 2010; Zhu et al., 
2016) and combined Sentinel-2 and Landsat-8 images to generate 
10-m NDSI products, effectively filling data gaps caused by cloud 
cover and cloud shadows. The root mean square error (RMSE) of 
the fused NDSI generated by the preclassification FSDAF algorithm 
was only 0.12, demonstrating the highest accuracy. Because the 
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FIGURE 3
NDSI reconstruction algorithms based on spatiotemporal information.

preclassification FSDAF algorithm employs a supervised machine 
learning technique instead of the unsupervised classification process 
used in FSDAF, it obtains more accurate input BSC data as a 
constraint for spatiotemporal fusion. This approach effectively 
integrates spatiotemporal fusion methods with machine learning. 
Gao et al. (2022) developed an enhanced spatiotemporal fusion 
method, iESTARFM, for integrating Landsat and MODIS products. 
This method distinguishes snow pixels from non-snow pixels using 
NDSI and DEM thresholds and calculates similarity values based on 
pixel categories. The iESTARFM algorithm achieved a correlation 
coefficient greater than 0.9 in the visible and near-infrared bands, 
indicating a high level of agreement with the actual conditions and 
enhancing the accuracy of the NDSI calculations. Dong et al. (2024) 
employed the FSDAF method to integrate MODIS and Sentinel-2 
data, generating daily NDSI products at a 20-m spatial resolution. 
Their findings indicate that the reliability of the FSDAF model in 
regions with persistent cloud cover requires further investigation, 
as the NDSI values were significantly underestimated in heavily 
clouded areas. This highlights the importance of further enhancing 
cloud removal and NDSI reconstruction during the spatiotemporal 
integration process. Xiao et al. (2024) developed a spatiotemporal 
fusion framework that integrates microwave data with MODIS 
optical data to generate 1-km daily FSC products, achieving overall 
accuracies of 0.92–0.94 across various land covers, including 
grasslands, wetlands, farmlands, and urban areas. Guo et al. 
(2025) employed the ESTARFM algorithm to combine MODIS and 
Sentinel-2 NDSI, producing 10-m NDSI products and enhancing the 
accuracy of snow cover mapping in the eastern Qilian Mountains. 
These fusion algorithms aim to integrate both coarse and fine 
products, improve temporal and spatial resolution, enhance 
reconstruction accuracy, and increase applicability. However, their 
explanations of complex environmental factors remain insufficient, 
and their accuracies are influenced by the selection of reference 
images from both products in algorithm construction.

Spatiotemporal reconstruction algorithms typically require 
similarity evaluations between pixels in remote sensing 
spatiotemporal images, and their overall accuracy generally exceeds 
90%. However, less prior snow information becomes available when 
cloud coverage persists for longer periods, reducing the accuracy 
of spatiotemporal reconstruction algorithms. Although methods 
such as CSI-STW have been optimized for use under prolonged 
cloudy conditions, they still struggle to account for complex factors 

such as slope, aspect, land cover, and vegetation cover. Extremely 
rapid and fluctuating snow variations may introduce errors during 
reconstruction, leading to inconsistencies between the selected 
similar pixels and cloud pixels. Additionally, the accuracy of original 
snow cover products inherently constrains the performance of 
reconstruction algorithms. Applying machine learning techniques 
to snow cover identification, extracting accurate prior information, 
and subsequently reconstructing snow cover can be effective 
strategies for improving the accuracy of reconstructed NDSI or FSC 
products (Zhu et al., 2016; Bousbaa et al., 2022; Gao et al., 2022). 

3.2.3 Machine learning-based reconstruction 
algorithms

Advancements in image processing and computing technology 
have enabled machine learning to introduce innovative strategies for 
reconstructing snow cover.

First, machine learning-based reconstruction methods can 
further analyze the spatiotemporal characteristics of snow cover, 
efficiently incorporate auxiliary environmental data such as 
meteorological and geographic information, and increase the 
accuracy of reconstructed snow cover products. For example, 
Hou et al. (2019) developed a nonlocal spatiotemporal filtering 
(NSTF) algorithm via the fast elitist nondominated sorting genetic 
algorithm for multi-objective optimization (NSGA-II) (Hou and 
Huang, 2016). The NSTF algorithm integrates MODIS snow 
products with geographic information, including land cover, 
elevation, slope and aspect information, to reconstruct snow cover. 
This method retained 0.52% of the cloud cover while achieving an 
overall accuracy of 93.7%, outperforming the CSI method. Xing et al. 
(2022) proposed a U-Net model with partial convolutions (PU-
Net) that utilizes spatiotemporal information to reconstruct the 
MODIS NDSI, achieving an MAE of less than 0.15 under simulated 
conditions. However, heterogeneous and rapidly changing snow 
cover reduces the reconstruction accuracy of PU-Net, and the 
absence of auxiliary data, such as topography and temperature, 
limits its performance. Hou et al. (2022) developed three methods 
based on long short-term memory (LSTM) deep neural networks, 
namely, forward, backward and bidirectional LSTM, and applied 
them to reconstruct MODIS NDSI products by following the 
TAC method. This study revealed that the bidirectional LSTM 
model performed best, enabling snow cover reconstruction to be 
implemented in complex mountainous regions by learning temporal 
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NDSI features and incorporating spatially assisted information 
derived via the IDW. The overall accuracy of this method reached 
89.9% in the source region of the Yellow River. Yatheendradas 
and Kumar (2022) utilized topographic, precipitation, SWE, leaf 
area index, MODIS snow albedo and surface temperature data as 
input variables. A three-layer legacy superresolution convolutional 
neural network (SRCNN) was trained to reconstruct the snow 
cover in the MOD10A1 dataset. This method can produce snow 
cover reconstructions even when data gaps are inconsistent across 
multisource datasets, enabling its widespread application. Zhu 
(2022) developed a snow grain size gap-filling model based 
on a spatiotemporal extra tree by utilizing geographical and 
meteorological information acquired from the Kaidu River Basin. 
The results indicated that among the seven widely used machine 
learning methods, the spatiotemporal extra tree achieved the 
most effective reconstruction effect, reducing the annual average 
cloud coverage level by approximately 18% compared with that of 
MOD10A1 products (Zhu et al., 2023). Xiao et al. (2021) applied 
Random Forest (RF) in combination with optical and passive 
microwave data to avoid the influences of cloud contamination 
and estimate the FSC. Their work inspired Du (2024) to apply the 
RF model to generate binary snow cover maps using brightness 
temperature data and MODIS reference products, demonstrating 
its effectiveness in reconstructing nighttime snow cover and 
mitigating overestimation in high-altitude regions. In addition, 
when machine learning is integrated with high-resolution (1–5 m) 
satellite images, the vegetation index and other auxiliary data 
enhance the snow monitoring capabilities of the utilized algorithms 
in challenging areas, including canopy edges, forest gaps, and even 
areas beneath dense canopies. This advancement is crucial for 
improving the snow cover reconstruction process in forested regions 
(John et al., 2022; Yang et al., 2023). Additionally, Ye et al. (2024) 
proposed a spatiotemporal extreme gradient boosting (STXGBoost) 
model to generate a gap-filled NDSI dataset, achieving a mean 
absolute error of 0.011 by incorporating multisource auxiliary 
data, including surface albedo. Dong et al. (2025) developed a 
LightGBM-based NDSI reconstruction method, suggesting that the 
incorporation of snow-related spatiotemporal and environmental 
information significantly improved the quality and accuracy of the 
reconstructed products. In addition to the models mentioned above, 
the application of Transformer models in image reconstruction has 
recently attracted increasing interest from researchers. Xu et al. 
(2025) proposed the MAT-MS model, which employs a Swin 
Transformer-based encoder and a CNN-based decoder, integrating 
topographic and temperature data to reconstruct the MODIS NDSI. 
Furthermore, MAT-MS incorporates a novel mask-aware technique 
to address inaccuracies and mitigate unnatural transitions at data 
gap boundaries. Compared with the CNN, LSTM, and U-Net 
models, the MAT-MS model demonstrates superior performance, 
with average MAE and RMSE values of 1.585 and 5.531, respectively.

Second, when machine learning techniques are applied to 
snow cover reconstruction tasks, they can perform spatiotemporal 
downscaling simultaneously, thereby significantly increasing the 
availability and applicability of snow cover products. For example, 
Wang et al. (2022b) developed the STDFA-matching-Pix2pix-GAN 
(SMPG) algorithm, which integrates a spatial-temporal data fusion 
approach (STDFA) with the pix2pixGAN to fuse MODIS and 
Landsat images, compute the NDSI, and generate daily snow cover 

maps with a spatial resolution of 30 m. A performance evaluation 
against four benchmark methods—STARFM, FSDAF, SwinSTFM 
(Swin spatiotemporal fusion model), and GAN-STFM (GAN-
based spatiotemporal fusion model)—demonstrates the superior 
performance of SMPG, which effectively reduces the spectral 
distortion of the fused images and achieves the highest average 
correlation coefficient of 0.962. Richiardi et al. (2023) developed 
a two-stage RF algorithm to integrate MODIS and Sentinel-2 
products, generating daily cloud-free snow cover products at a 
spatial resolution of 20 m and providing both NDSI and BSC 
values. In this method, the first-stage RF model fills the gaps 
observed in the MODIS products, whereas the second-stage 
RF model performs multisource data fusion and downscaling. 
The overall accuracy of the generated products exceeded 92%. 
Zakeri and Mariethoz (2024) employed the K-nearest neighbor 
(KNN) classification algorithm, which integrates meteorological 
data to address the low temporal resolutions of Landsat and 
Sentinel-2 data and produces high-resolution daily snow cover 
images at 30 m. This method generates both BSC and NDSI 
products. A comprehensive analysis indicated that machine learning 
reconstruction algorithms achieve multisource data fusion and 
downscaling, effectively mitigating the limitations posed by cloud 
contamination in high-spatial-resolution remote sensing data (e.g., 
Landsat-8/9 or Sentinel-2 data). These approaches typically provide 
products with the highest spatiotemporal resolution, enabling the 
precise monitoring of snow cover dynamics (Revuelto et al., 2021; 
Rittger et al., 2021; Kollert et al., 2024).

To achieve reconstruction, machine learning-based 
reconstruction algorithms can rapidly integrate geographic 
information, meteorological observations and weather forecasts 
alongside spatiotemporal information of snow cover. These 
algorithms incorporate meteorological and climatic factors that 
influence snow accumulation and snowmelt processes rather than 
relying solely on the spatiotemporal distribution of snow cover, 
as is done in spatiotemporal reconstruction algorithms. As a 
result, machine learning-based reconstruction algorithms can not 
only generate high-precision and high-resolution cloud-free snow 
cover products but also enable the historical reconstruction and 
future prediction of snow cover in scenarios that lack remote 
sensing observations, thus demonstrating significant application 
potential (Koehler et al., 2022). However, machine learning typically 
relies on high-quality training samples that adequately represent 
the characteristics of the target domain. Inadequate sample size, 
excessive noise, or overly complex model structures can lead 
to overfitting, whereas overly simplistic models or insufficient 
features may result in underfitting. A sufficient quantity of high-
quality training samples and optimized network architectures are 
crucial for improving the generalizability of machine learning-based 
algorithms. For example, Hou et al. (2022) reported that 21 hidden 
layer nodes in their bidirectional LSTM-based algorithm optimally 
balanced underfitting (with fewer nodes) and overfitting (with 
more nodes) for snow cover reconstruction. Moreover, challenges 
such as persistent snow cover, cloud cover, varying training time 
spans, and different land cover types further complicate machine 
learning-based reconstruction efforts (Hou et al., 2019; Dong et al., 
2025). Therefore, the generalizability of machine learning models to 
large-scale snow monitoring scenarios worldwide, as well as their 
reconstruction accuracy under complex surface conditions, requires 
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further testing and evaluation (Hou et al., 2022). Although effective 
in multisource data processing, these models face interpretability 
challenges. Researchers often conduct extensive literature reviews 
before modeling to identify candidate input variables based on 
snow physical characteristics. Because many factors influence snow 
distribution, considering all of them is impractical, and excessive 
variables may reduce model generalizability. Current strategies 
include manually determining and testing different variable 
combinations (John et al., 2022; Ye et al., 2024), progressively 
incorporating additional data sources (Xu et al., 2025), applying 
importance-based feature selection (Xiao et al., 2021; Dong et al., 
2025), and using SHAP analysis to improve interpretability. 
Zhu et al. (2023) demonstrated that altitude, as the most influential 
topographic factor, had the highest importance score (0.192). 
Xu et al. (2025) reported that incorporating DEM into their MAT-
MS model significantly improved performance, reducing the RMSE 
by 0.611. For Dong et al. (2025), the top five ranked variables 
were spatiotemporal interpolation, shortwave radiation, cumulative 
shortwave radiation over 3 days, latitude, and elevation.

In general, the effective combination of remote sensing data, 
meteorological data and machine learning has promoted the 
advancement of snow cover reconstruction methods, resulting in 
higher accuracy and improved product resolution. This approach 
is expected to provide better cloud-free snow cover products for 
meteorological and hydrological models. 

3.2.4 Data assimilation methods
Data assimilation (DA) methods feed remote sensing-based 

snow cover products into hydrological, land surface, meteorological, 
and climate models, accounting for consistency constraints as 
well as physical and dynamic properties (Pandya et al., 2022). 
This approach improves the simulation of snow cover parameters 
and facilitates snow cover reconstruction. DA methods include 
direct insertion (DI), Cressman interpolation, optimal interpolation 
(OI), the ensemble Kalman filter (EnKF), and the particle filter 
(PF), among others. OI and the EnKF are the most common 
snow data assimilation methods (Helmert et al., 2018). In 
recent years, the particle batch smoother (PBS) has also been 
widely used to conduct data assimilation on MODIS snow cover 
observations, making it well suited for simulating snow cover in 
data-scarce regions (Alonso-González et al., 2021).

Researchers have conducted extensive research on snow data 
assimilation. One of the most notable examples is the American 
Snow Data Assimilation System (SNODAS) (Barrett, 2003). Since 
2003, the SNODAS system has provided daily snow products at a 
1-km resolution for the United States and its surrounding regions 
and is widely utilized because of its strong real-time performance. 
The system primarily integrates meteorological information derived 
from numerical weather prediction models and the NOHRSC 
Snow Model (NSM) and employs a simple nudging or Newtonian 
relaxation procedure to assimilate satellite, airborne and ground-
based snow cover observations (Barrett, 2003; Vuyovich et al., 
2014; Lv et al., 2019). Owing to the insufficient representation of 
blowing snow processes and snow interception by forest canopies 
in the NSM, SNODAS results in significant deviations in certain 
regions (Vuyovich et al., 2014; Lv et al., 2019). Lv et al. (2019) 
demonstrated that further assimilating SNODAS products into the 
Cold Region Hydrological Model (CRHM) could effectively increase 

the accuracy of snow cover estimation. With advancements in 
DA, various innovative approaches have emerged. Arsenault et al. 
(2013) assimilated MOD10A1 into the Community Land Model 
(CLM2) using the DI and the EnKF, respectively, revealing accuracy 
differences across various altitudes. Zhang et al. (2023) developed 
a multivariate land snow data assimilation system for the Northern 
Hemisphere that integrates the Data Assimilation Research Testbed 
(DART) and CLM4. After the MODIS snow cover products 
were assimilated, the system exhibited reduced errors in snow 
parameters such as the FSC and SD (Zhang and Yang, 2016). 
In addition, the NASA High Mountain Asia Team (HiMAT) 
developed a Bayesian snow reanalysis framework and employed the 
PBS method to assimilate snow cover data derived from Landsat 
and MODIS, producing the High Mountain Asia (HMA) Snow 
Reanalysis (HMASR) dataset (Margulis et al., 2019; Liu et al., 
2021). By utilizing the HMASR as a reference to evaluate eight 
global snow cover datasets, the study revealed that the global 
datasets generally underestimated the peak snow storage levels in 
HMA (Liu Y. et al., 2022). As reported by Fiddes et al. (2019), 
assimilating MODIS products via the PBS method improved the 
accuracy of snow cover estimation at multiple spatial scales and 
reduced the biases induced during downscaling processes. Similarly, 
the snow reanalysis product (ICAR_assim) produced by Alonso-
González et al. (2021) employs the PBS method and strongly agrees 
with gap-filled snow cover products derived from MODIS data. 
Subsequently, Alonso-González et al. (2022) developed the Multiple 
Snow Data Assimilation System (MuSA), which incorporates 
six data assimilation algorithms, including the EnKF. In MuSA 
computational benchmarks, different data assimilation algorithms 
exhibit substantial variation in computational cost. Overall, those 
derived from the EnKF are more time-consuming than those 
derived from the PF. For instance, when the computational cost 
of the PBS, measured in wall-clock time, is 39s, that of EnKF-
MDA reaches 270s (Alonso-González et al., 2022). MuSA enables 
the joint assimilation of FSC and land surface temperature (LST) 
products derived from MODIS, which can enhance the snow 
cover monitoring and reconstruction processes in the absence of 
sunlight during the polar night, as the LST provides supplementary 
thermodynamic information (Thiebault and Young, 2020; Alonso-
González et al., 2022). More importantly, MuSA is an open-
source collaborative project that is conducive to promoting further 
research on the topic of snow. MuSA has been used in snow cover 
simulations over the Heihe River Basin, assimilating the MODIS 
NDSI product into the Flexible Snow Model, effectively filling data 
gaps and reducing errors in snow cover monitoring (Deng et al., 
2024a). In addition, reanalysis datasets (e.g., ERA5, MERRA-2, and 
NCEP/NCAR) can provide snow parameters, including snow cover. 
However, the accuracy of snow monitoring is not optimal without 
specific optimization of snow cover (Brown et al., 2010; Baba et al., 
2021). Generally, the complexity of data assimilation and models 
affects their computational efficiency, particularly in high-resolution 
and large-scale snow cover monitoring scenarios, where a rational 
method selection process is essential.

In general, snow data assimilation aims to comprehensively 
assess the properties of snow and generate high-precision, gridded 
snow parameters, including snow cover, SD, SWE and snow 
density. Additionally, it systematically evaluates the uncertainties 
associated with models, algorithms and data products. Snow cover 
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reconstruction is merely one of the outcomes of DA. Given the 
significant potential of integrating remote sensing observations 
with numerical models, DA represents a crucial direction for the 
future development of snow monitoring and forecasting techniques 
(Girotto et al., 2020; Alonso-González et al., 2022). 

4 Validation and evaluation methods

4.1 Reference data for validation and 
evaluation

The validation and evaluation of snow cover reconstruction 
datasets constitute critical steps in demonstrating the reliability 
and robustness of reconstruction methods in snow cover research. 
Various types of reference data can be used for this purpose, 
including in situ SD observations, snow cover maps, field survey 
measurements, and airborne lidar datasets.

In situ SD observations are a primary source of reference data for 
validating and evaluating snow cover reconstruction datasets. These 
measurements are typically collected from regional meteorological 
stations (Qiu et al., 2017; Huang et al., 2018; Hou et al., 
2018; Hou et al., 2019; Huang et al., 2022b), Natural Resources 
Conservation Service (NRCS) Snow Telemetry (SNOTEL) sites 
(Gao et al., 2010b; López-Burgos et al., 2013; Huang et al., 
2018), or ground-based GNSS stations (Hua et al., 2025). For 
validation purposes, SD values should be converted into a binary 
snow/non-snow format, with thresholds typically set at 1 cm or 
3 cm. Values exceeding the selected threshold are classified as 
snow-covered, whereas those below are considered non-snow. The 
number and temporal coverage of stations are determined by the 
specific requirements of the study. Depending on the study area 
and the density of stations, the number of stations can range 
from a few to several thousand. Stations with substantial amounts 
of invalid data may be excluded, and additional screening may 
be applied where appropriate (Dong et al., 2025). For example, 
Pan et al. (2024) excluded stations with SD values greater than 
1 cm but fewer than 20 snow-covered days to better illustrate 
the accuracy of snow identification. The validation period can 
range from several months to multiple decades and may cover 
the entire year or focus solely on snow seasons on an annual 
basis. However, a scale mismatch exists between point-based station 
observations and pixel-based snow cover products (Hall et al., 
2019), and the spatial distribution of meteorological stations is 
often highly uneven. Stations are primarily concentrated in low-
elevation valleys with human settlements, whereas high-elevation 
snow-covered regions remain sparsely monitored (Li et al., 2020). 
Therefore, in situ station data alone cannot adequately represent 
entire regions, making evaluation based on snow cover maps 
necessary to validate the spatial accuracy of snow cover products
(Richiardi et al., 2023).

Evaluation based on snow cover maps generally follows two 
main approaches. The first involves the use of snow cover maps 
derived from other sources, such as higher-resolution products 
generated from Landsat, Sentinel, or GF satellite imagery through 
clear-sky NDSI calculations, or existing datasets such as IMS 
products (Dietz et al., 2014; Huang et al., 2018; Huang et al., 2022b; 
Richiardi et al., 2023; Zhang et al., 2023; Zhu et al., 2023; Deng et al., 

2024b; Guo et al., 2024; Pan et al., 2024; Zhang et al., 2024; Xu et al., 
2025). These snow cover maps are resampled to match the spatial 
resolution of the reconstructed snow cover products. The second 
approach is based on the cloud mask assumption. In this method, 
cloud masks are extracted from original cloudy remote sensing 
images and applied to cloud-free images, which are regarded as 
the ground truth (Gafurov and Bárdossy, 2009; Hou et al., 2019; 
Li et al., 2020; Chen et al., 2020; Xing et al., 2022; Dong et al., 2025). 
The reconstruction results are subsequently generated from the 
masked images and compared with the original cloud-free images 
for evaluation.

Field survey measurements refer to snow data collected during 
in situ snow observation experiments within the study area, 
whereas airborne LiDAR datasets are obtained from Airborne Snow 
Observatory (ASO) campaigns (Stillinger et al., 2023; Yang et al., 
2023). Field measurements and airborne remote sensing campaigns 
require substantial resources. Although these datasets are highly 
reliable and valuable, they are difficult to obtain and are often 
constrained in both temporal and spatial coverage. 

4.2 Evaluation metrics and validation 
results

For BSC products, commonly used evaluation metrics include 
overall accuracy (OA), precision (PC), recall (RC), F1-score, 
and the Kappa coefficient (Table 2; Equations 1–5). Additional 
metrics, such as MU and MO, are employed to represent 
underestimated and overestimated snow events (Equations 6, 7) 
(Qiu et al., 2017; Xing et al., 2022; Zhu et al., 2023; Dong et al., 
2025). When using SD data from in situ stations, survey 
measurements, or airborne lidar datasets to validate reconstructed 
NDSI/FSC products, the SD values must first be converted 
into binary snow cover (BSC) format before validation is
conducted.

OA = (TP+TN) ÷ (TP+TN+ FP+ FN) × 100% (1)

PC = TP÷ (TP+ FP) × 100% (2)

RC = TP÷ (TP+ FN) × 100% (3)

F1− score = 2×PC×RC÷ (PC+RC) × 100% (4)

Kappa =
po − pe

1− pe
,

po =OA,pe =
(TP+ FP) (TP+ FN) + (FN+TN) (FP+TN)

(TP+TN+ FP+ FN)2
(5)

MU = FN÷ (TP+TN+ FP+ FN) × 100% (6)

MO = FP÷ (TP+TN+ FP+ FN) × 100% (7)

When the NDSI/FSC products are validated using snow cover 
maps, the commonly used metrics include the coefficient of 
determination (R2), root mean square error (RMSE), mean absolute 
error (MAE), correlation coefficient (r), and mean difference error 
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TABLE 2  Confusion matrix comparing reconstructed products with 
reference data.

Reconstruction

Referencemets 

Snow Non-snow

Snow TP FP

Non-snow FN TN

(Bias) (Equations 8–12) (Hou et al., 2019; Hou et al., 2022; Zhu et al., 
2023; Ye et al., 2024; Dong et al., 2025).

R2 = 1−
∑n

i=1
(Si

ref − Si
rec)

2

∑n
i=1
(Si

ref − Sref)
2 , (8)

RMSE = √
∑n

i=1
(Si

rec − Si
ref)

2

n
, (9)

MAE = 1
n

n

∑
i=1
|Si

rec − Si
ref| (10)

r =
∑n

i=1
(Si

ref − Sref)(Si
rec − Srec)

√∑n
i=1
(Si

ref − Sref)
2∑n

i=1
(Si

rec − Srec)
2

(11)

Bias = 1
n

n

∑
i=1
(Si

rec − Si
ref) (12)

where n denotes the number of sample pixels, Si
rec and Si

ref
represent the NDSI/FSC values of the i th pixel in the reconstructed 
product and the reference dataset, respectively, and Srec and 
are thecorrespondingmeanNDSI/FSCvalues.

To further account for spatial accuracy, a bias-insensitive metric 
called spatial efficiency (SPAEF, Equation 13) (Hou et al., 2019) 
and Robert’s edge detection (Equation 14) have been used for 
snow cover spatial evaluation (Dong et al., 2025). The SPAEF 
metric integrates three components: the correlation coefficient (A) 
between the reconstructed and reference images, the fraction of 
the coefficient of variation (B), and the percentage of histogram 
intersection (C); an optimal SPAEF value of 1 indicates perfect 
agreement between the two images. For Robert’s edge evaluation, 
Dx,y denotes the pixel value at the x th row and y th column; a 
value of 0 represents a perfectly fused image, negative values indicate 
excessive smoothing of edge features, and positive values indicate 
oversharpening (Zhu et al., 2022).

SPAEF = 1−√(A− 1)2 + (B− 1)2 + (C− 1)2 (13)

Edge = |Dx,y‐Dx+1,y+1| + |Dx,y+1‐Dx+1,y| (14)

These evaluation metrics facilitate cross-method validation 
experiments, and some of the results are summarized in Tables 3, 4. 
Compared with the temporal CSI method, the NSTF-based method 
achieved OA, MU, and MO values that were 2% higher, 1.92% lower, 
and 0.04% lower, respectively (Hou et al., 2019). The spatiotemporal 
extra tree method of Zhu et al. (2023) and the HRMF-based method 
of Hao et al. (2022) each excelled on different validation dates; 

the former generally performed better on days 3 and 4. Moreover, 
the LightGBM-based method proposed by Dong et al. (2025) 
achieved an OA of around 83-86% and an F1-score of 53-61%, 
outperforming the CGF NDSI (Deng et al., 2024b) and matching the 
performance of the STAR NDSI (Jing et al., 2022). Compared with 
the spatiotemporal interpolation (SI) method, the LightGBM-based 
method also showed improved numerical and spatial accuracy with 
an R2 of 0.82 and an Edge of −0.47. Wang et al. (2025b) evaluated 
four snow cover reconstruction methods: MOD10A1F, the HMRF-
based method (Hao et al., 2022), the STAR method (Jing et al., 2022), 
and the stepwise cloud-removal approach (Qiu and Wang, 2021). 
They found that the HMRF-based product consistently delivered 
the best performance, and the STAR product's performance varied 
with terrain complexity and cloud conditions. In comparison, the 
stepwise cloud-removal approach generally performed the worst. 
Under the most challenging conditions, its F1-score dropped to 
as low as 41.2%, whereas the other methods maintained F1-scores 
in the range of 63-68%. These validation and evaluation results 
suggest that, while the HMRF model, spatiotemporal reconstruction 
algorithms (e.g., STAR), and machine learning-based algorithms 
may each have advantages under different conditions, they generally 
outperform simpler methods such as temporal and spatiotemporal 
interpolation.

5 Discussion

Snow cover products derived from polar-orbiting satellites 
offer extensive global coverage, high spatial resolution, and broad 
applicability, making them indispensable for global snow cover 
monitoring. However, factors such as cloud cover, cloud shadows, 
forest cover and undetected data often result in data gaps in 
snow cover products. Consequently, reconstruction methods are 
needed to restore snow cover information, enhancing the reliability 
and continuity of snow cover products. This strategy provides 
comprehensive and accurate data support for studies on climate 
change and related fields.

The essence of snow cover reconstruction lies in inferring 
and estimating the values of uninformative pixels using existing 
observational data. Reconstruction methods typically analyze the 
spatiotemporal distribution characteristics of snow cover to impose 
additional assumptions that constrain the estimated values of cloud-
covered pixels (Figure 4). They may also incorporate multisource 
snow observations to fill data gaps or integrate various auxiliary 
environmental variables that influence snow accumulation and 
melt—such as solar radiation, slope, aspect, land cover type, 
topographic relief index (TRI), topographic position index (TPI), 
temperature and precipitation—to enrich the information available 
for reconstruction. Accordingly, reconstruction accuracy improves 
with more stable spatiotemporal snow cover characteristics, more 
realistic assumptions, greater availability of multisource data, and 
more effective data utilization.

For the BSC and NDSI/FSC products, each snow cover 
reconstruction method has specific applications, along with 
their respective characteristics (Table 5). According to previous 
studies, temporal and spatial filters, multisource fusion methods, 
and temporal and spatial interpolation methods are generally 
straightforward and easy to implement, making them suitable 
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TABLE 3  Comparison between the NSTF-based method and the temporal CSI method (compiled from Hou et al., 2019; CC BY 4.0).

Research Methods Validation Data Time Range Study Area OA MU MO

Hou et al. (2019)
The proposed NSTF-based method

Meteorological Stations’ SD Observations 2001—2016 North Xinjiang
87 6.85 6.30

The temporal CSI method 85 8.77 6.34

TABLE 4  Comparison between the methods based on the spatiotemporal extra tree and the HMRF model (adapted from Zhu et al., 2023; CC BY 4.0).

Research Methods Validation 
Data

Time 
Range

Study 
Area

OA PC RC F1-score Kappa

Zhu et al. 
(2023)

The 
proposed 

spatiotemporal 
extra tree 

model
Cloud 

Assumption 
of Original 
Snow Cover 

Data

8 October 
2015

20 April 
2016

25 April 
2018

1 June 2018

Kaidu River 
Basin

92.89
86.99
91.44
95.77

70.12
87.55
80.34
73.13

90.40
54.69
90.84
76.21

78.98
67.32
85.27
74.64

74.78
59.74
79.26
72.33

The HRMF-
based 

method 
(Hao et al., 

2022)

94.43
92.58
89.45
94.96

75.23
78.54
69.02
63.72

87.65
91.52
96.62
65.80

80.97
84.53
80.52
64.75

77.72
79.69
73.56
62.03

FIGURE 4
General workflow for snow cover reconstruction based on multiple features and data sources.

for monitoring remote sensing data at medium and low spatial 
resolutions (≥1 km) over large stable snow cover areas. While the 
computational complexity of the HMRF model, spatiotemporal 
reconstruction algorithms, machine learning-based methods, and 
data assimilation techniques is relatively high, these approaches 
generally yield more stable results. Among them, spatiotemporal 
reconstruction algorithms enhance accuracy by thoroughly 
exploring the spatiotemporal similarity among snow-covered pixels 
and weighting the contributions of similar pixels accordingly. 
However, these algorithms depend primarily on the snow cover 
products themselves and the assumption of spatiotemporal 
consistency. Their limited use of auxiliary data—aside from 
elevation—reduces their effectiveness under unstable conditions, 
such as prolonged cloud cover or rapidly fluctuating snow dynamics. 
In contrast, the HMRF model, machine learning-based methods, 
and data assimilation techniques typically incorporate a richer set 
of environmental variables as input features or explicitly account 
for them in the modeling process. Therefore, in complex terrains 
with strong snow heterogeneity, limited observations, nighttime 

conditions, or forested regions—where other methods tend to 
underperform—these approaches often yield more accurate and 
robust monitoring results. Notably, the distinction between snow 
cover reconstruction methods for BSC and NDSI/FSC products 
is not absolute. For instance, reconstructed NDSI/FSC products 
can be converted into BSC outputs using appropriate thresholds, 
whereas certain methods developed for NDSI/FSC reconstruction 
may likewise be adapted for binary snow cover estimation with 
appropriate modifications. Moreover, reconstruction approaches 
designed for either BSC or NDSI/FSC products may inspire the 
development of methods for the other product type.

In practice, most studies employ more than one method to 
achieve snow cover reconstruction. For example, Gafurov and 
Bárdossy (2009) proposed a six-step procedure involving TAC, 
MDC, SNOWL, spatial filters based on four and eight neighboring 
pixels, and SCFil. Huang et al. (2018) applied an HMRF-based 
spatiotemporal modeling approach after merging Terra and Aqua 
snow products. Wang J. et al. (2025) developed a four-step method 
of TAC, ATD, spatial filters, and the integration of MODIS and 
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TABLE 5  Characteristics and applicability of snow cover reconstruction methods.

Products Snow cover reconstruction 
methods

Complete cloud removal Applicability and suggestions

BSC

Temporal Filters Generally, no

(1) Temporal filters are suitable for relatively stable 
snow-covered regions with dynamic phenomena, 
such as clouds and aurora.
(2) The original snow cover products must have high 
temporal resolution (typically 1 day).
(3) TAC and ATD are recommended as 
preprocessing steps before applying other snow 
cover reconstruction methods.
(4) SCFil completely removes all cloud pixels, but its 
accuracy is relatively low. The use of this method 
needs to be carefully considered.

Spatial Filters No

(1) Spatial filters are suitable for open landscapes 
with simple terrain, uniform land cover (such as 
large expanses of bare soil), and stable snow cover.
(2) The original products should have moderate or 
low cloud cover rates and high spatial resolution 
(preferably ≤1 km).
(3) Spatial filters based on four or eight neighboring 
pixels generally have low cloud removal rates. They 
are not recommended for use alone but can serve as 
preprocessing steps before applying other methods.

Multisource Fusion Methods Yes

(1) The combination of BSC and SD/SWE products 
is suitable for open scenes with stable snow cover and 
relatively low spatial resolution requirements. This 
method can be used as the final step after applying 
other methods to address the remaining cloud pixels.
(2) The combination of remote sensing and station 
observations reconstructs historical datasets in 
remote mountainous regions with limited 
observations.
(3) The combination of daytime and nighttime snow 
cover products represents a promising development 
direction due to the high resolution of the products.

HMRF Yes
It has broad applicability and is suitable for 
mountainous regions with unstable snow cover and 
complex terrain, such as the Qinghai‒Tibet Plateau.

NDSI/FSC

Temporal and Spatial Interpolation Methods Generally, no

The application of these methods is similar to that of 
temporal and spatial filters. They are better suited as 
preprocessing steps before applying other snow 
cover reconstruction methods.

Spatiotemporal Reconstruction Algorithms Yes

(1) These reconstruction algorithms are commonly 
used for NDSI or FSC products when only snow 
cover products are available, with little or no 
geographic data (such as land use or DEM).
(2) The spatiotemporal fusion method facilitates the 
integration of both coarse and fine products, 
improving reconstruction accuracy and enhancing 
applicability.

Machine Learning-Based Reconstruction 
Algorithms

Yes

(1) These methods can rapidly utilize auxiliary 
spatiotemporal and environmental information. 
They have broad applicability and potential, 
particularly in areas with complex terrain, forest 
cover, and at night.
(2) When a high spatiotemporal resolution is 
needed, this type of method can be used to conduct 
downscaling work through the introduction of 
multiple auxiliary datasets.
(3) A reliable reference derived from actual 
observations must be used for training and testing.

(Continued on the following page)
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TABLE 5  (Continued) Characteristics and applicability of snow cover reconstruction methods.

Products Snow cover reconstruction 
methods

Complete cloud removal Applicability and suggestions

Data Assimilation Methods Yes

(1) Their applicability is broad. Considering the 
computational cost, these methods are 
recommended for regions with rapid snow cover 
changes and complex terrain or surfaces.
(2) They are suitable for conducting research on 
various snow properties beyond snow cover, such as 
the SD, SWE and snow grain size.

IMS data to generate a daily snow cover dataset for Central 
Eurasia. Poussin et al. (2025) employed a seven-step gap-filling 
procedure that included SNOWL and spatial filters. Dong et al. 
(2025) first used TAC to reduce missing pixels and then used 
a spatiotemporal cube neighborhood interpolation method to 
construct spatiotemporal features, followed by filling missing NDSI 
values with a LightGBM model. This multistep strategy varies 
depending on several factors. First, some methods, although 
reasonably accurate, cannot completely remove the clouds. These 
methods, including most temporal and spatial filters as well as 
temporal and spatial interpolation methods, must be combined 
with other methods to remove cloud contamination step by step 
until no cloud-covered pixels remain. Second, multisource fusion 
methods have the problems of inconsistent accuracy and scale 
among multiple data sources. If used, they are usually placed as the 
last step to mitigate the impacts. The HMRF model, spatiotemporal 
reconstruction algorithms and machine learning-based methods 
consider various factors simultaneously and can achieve complete 
cloud removal. However, researchers prefer to use appropriate 
combinations of TAC, ATD, and spatial filters based on four 
neighboring pixels for BSC products and simple temporal and spatial 
interpolation methods for NDSI/FSC products as preprocessing 
steps before using the HMRF model, spatiotemporal reconstruction 
algorithms or machine learning-based methods. These methods are 
simple and easy to implement, and their accuracy is relatively high. 
The most crucial point is that they can initially reduce a portion of 
the missing information as a constraint for subsequent processing. 
Excessive lack of information may increase the risk of generating 
extreme outliers. Although errors may accumulate across multiple 
steps, most of these errors are acceptable when compared with the 
potential extreme outliers.

The future development of snow cover reconstruction 
techniques can be approached from three perspectives: snow 
cover observations, characteristics and reconstruction methods. 
First, with respect to observations, the accuracy of the original 
snow cover products needs to be enhanced. The snow cover 
reconstruction process heavily depends on prior information about 
the original snow cover products. Although the accuracy of many 
original products has been validated using station observations, the 
regional representativeness of these stations is limited, and errors 
caused by misclassifications and omissions continue to impact 
the reconstruction results. Therefore, more stringent strategies 
must be implemented to extract snow cover from satellite spectral 
images to maximize the accuracy of snow recognition (Zhu et al., 
2016; Bousbaa et al., 2022; Gao et al., 2022). Approaches may 
include developing novel deep learning models, exploring the 

potential of deep semantic segmentation networks for cloud-snow 
discrimination, creating automated and adaptive snow detection 
methods with dynamic adjustment for seasonal and regional 
variability, and integrating spectral and texture features for improved 
snow identification (Han L. et al., 2019; Wu et al., 2019; Wang et al., 
2022d; Wang et al., 2023; Ding et al., 2024). Second, based on 
an analysis of snow cover characteristics, the effectiveness of a 
snow cover reconstruction procedure relying solely on a single 
characteristic is typically suboptimal. During the process of snow 
cover reconstruction, comprehensively considering complex terrain, 
temperature, precipitation, solar radiation, vegetation cover, and 
other spatial and temporal environmental factors can significantly 
improve the accuracy and resolution of the reconstruction results. 
As a result, multisource heterogeneous data, which provide rich 
spatial and temporal environmental information, will become 
crucial supplements. However, several issues persist, including 
spatial and temporal resolution discrepancies, geographical 
positioning differences and the high processing complexity 
associated with multisource products. It is essential to thoroughly 
evaluate the reliability of multisource data while strengthening 
the data quality control and verification processes. In addition, 
ensuring the alignment, correction and unified processing of 
multisource data is crucial. This can be achieved through feature 
identification, appropriate transformations and resampling, ortho-
rectification, geometric correction, and super-resolution techniques 
(Samadzadegan et al., 2025). Standardized preprocessing, multi-
level (pixel, feature, and decision) data fusion, and open, shared 
snow datasets for algorithm validation and comparison can further 
enhance the effectiveness of multisource data fusion (Ghamisi et al., 
2019; Samadzadegan et al., 2025; Yang et al., 2025). Among the 
various snow cover reconstruction methods, machine learning-
based reconstruction algorithms and DA are being increasingly 
recognized as important techniques because of their significant 
advantages in processing multisource data. These methods can not 
only efficiently process multisource data independently but also 
have the potential for integration. For example, the cost function 
employed in four-dimensional variational data assimilation (4D-
Var) is equivalent to the loss function used by neural networks, 
both of which can be unified under a Bayesian framework. 
This theoretical commonality enables the integration of machine 
learning and DA (Geer, 2021). Machine learning can complement 
DA by performing tasks such as model error correction, parameter 
estimation, and observation bias correction. In turn, DA provides 
physical constraints for machine learning, thereby mitigating 
the associated overfitting issues. The combination of these two 
methods can maximize the utilization of increasing remote sensing
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observations, harmonize data with various resolutions 
to generate gridded products, and enhance both the 
estimation and prediction of snow cover and the related 
snow characteristics while also resulting in improved 
computational efficiency. This integrated approach offers a 
novel perspective for snow cover monitoring and forecasting 
in complex environments, with significant potential for broader
application. 

6 Conclusion

Snow cover reconstruction methods have made significant 
progress in addressing data gaps in snow cover products derived 
from polar-orbiting satellites. Traditional approaches, such as 
temporal and spatial filters, multisource fusion methods, and 
temporal and spatial interpolation methods, remain effective 
for large-scale applications, whereas emerging techniques, 
such as HMRF models, spatiotemporal algorithms, machine 
learning, and data assimilation, demonstrate potential in complex 
environments. Method selection depends on product resolution, 
snow characteristics, cloud contamination, and the balance between 
accuracy and computational cost, with hybrid approaches often 
proving most effective. Future developments should focus on 
three key directions. First, improving snow detection algorithms 
to enhance the quality of baseline products is a prerequisite for 
reliable reconstruction. Second, topography, climate, vegetation, and 
other spatiotemporal environmental factors should be systematically 
integrated, and comprehensive multisource data fusion frameworks 
should be constructed, while strengthening quality control 
and uncertainty assessment. Third, the integration of machine 
learning and data assimilation methods should be advanced to 
maximize the value of expanding remote sensing datasets. To 
support future research and algorithm development in snow cover 
reconstruction, a list of open-access datasets and related source 
codes of potential interest to researchers is provided in the Appendix 
of the Supplementary file. Progress in these areas will enable the 
production of gridded, gap-free snow products that are reliable, 
accessible, and user-friendly, supporting snow monitoring across 
diverse environments. Overall, this review provides a foundation 
for long-term monitoring and detailed analysis of snow cover, 
offering critical support for research on the cryosphere and water
resources.

Author contributions

JZ: Writing – review and editing, Resources, Conceptualization. 
XZ: Formal Analysis, Investigation, Writing – review and editing, 
Writing – original draft. JW: Writing – review and editing, 
Formal Analysis, Methodology. JL: Writing – review and editing. 
ZX: Writing – review and editing, Conceptualization, Project 
administration. 

Funding

The author(s) declare that financial support was received for 
the research and/or publication of this article. This research was 
supported by China Yangtze Power Co., Ltd under Grant [number 
Z242302024]. The funder was not involved in the study design, 
collection, analysis, interpretation of data, the writing of this article, 
or the decision to submit it for publication.

Acknowledgments

The authors would like to thank Zhaojun Zheng of the National 
Satellite Meteorological Center (National Centre for Space Weather) 
for helpful discussions on this work.

Conflict of interest

Author JZ was employed by China Yangtze Power Co., Ltd.
The remaining authors declare that the research was 

conducted in the absence of any commercial or financial 
relationships that could be construed as a potential conflict of
interest.

Generative AI statement

The author(s) declare that Generative AI was used in the creation 
of this manuscript. The authors used ChatGPT solely to improve 
the language and subsequently reviewed and edited the content to 
ensure accuracy and clarity.

Any alternative text (alt text) provided alongside figures in 
this article has been generated by Frontiers with the support of 
artificial intelligence and reasonable efforts have been made to 
ensure accuracy, including review by the authors wherever possible. 
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those 
of the authors and do not necessarily represent those of 
their affiliated organizations, or those of the publisher, 
the editors and the reviewers. Any product that may be 
evaluated in this article, or claim that may be made by 
its manufacturer, is not guaranteed or endorsed by the
publisher.

Supplementary material

The Supplementary Material for this article can be 
found online at: https://www.frontiersin.org/articles/10.3389/
feart.2025.1649808/full#supplementary-material

Frontiers in Earth Science 17 frontiersin.org

https://doi.org/10.3389/feart.2025.1649808
https://www.frontiersin.org/articles/10.3389/feart.2025.1649808/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2025.1649808/full#supplementary-material
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhang et al. 10.3389/feart.2025.1649808

References

Alonso-González, E., Gutmann, E., Aalstad, K., Fayad, A., Bouchet, M., and Gascoin, 
S. (2021). Snowpack dynamics in the Lebanese mountains from quasi-dynamically 
downscaled ERA5 reanalysis updated by assimilating remotely sensed fractional snow-
covered area. Hydrol. Earth Syst. Sci. 25 (8), 4455–4471. doi:10.5194/hess-25-4455-2021

Alonso-González, E., Aalstad, K., Baba, M. W., Revuelto, J., López-Moreno, J. I., 
Fiddes, J., et al. (2022). The multiple snow data assimilation system (MuSA v1.0). Geosci. 
Model Dev. 15 (24), 9127–9155. doi:10.5194/gmd-15-9127-2022

Armstrong, R. L., Rittger, K., Brodzik, M. J., Racoviteanu, A., Barrett, A. P., Khalsa, 
S.-J. S., et al. (2019). Runoff from glacier ice and seasonal snow in High Asia: 
separating melt water sources in river flow. Reg. Environ. Change 19 (5), 1249–1261. 
doi:10.1007/s10113-018-1429-0

Arsenault, K. R., Houser, P. R., De Lannoy, G. J. M., and Dirmeyer, P. A. (2013). 
Impacts of snow cover fraction data assimilation on modeled energy and moisture 
budgets. J. Geophys. Res. Atmos. 118 (14), 7489–7504. doi:10.1002/jgrd.50542

Baba, M. W., Boudhar, A., Gascoin, S., Hanich, L., Marchane, A., and Chehbouni, A. 
(2021). Assessment of MERRA-2 and ERA5 to model the snow water equivalent in the 
high Atlas (1981–2019). Water 13 (7), 890. doi:10.3390/w13070890

Barrett, A. P. (2003). National operational hydrologic remote sensing center SNOw data 
assimilation system (SNODAS) products at NSIDC NSIDC special Report 11. Boulder, 
CO, USA: National Snow and Ice Data Center. Available online at:  https://nsidc.org/
sites/default/files/nsidc_special_report_11.pdf.

Barrou Dumont, Z., Gascoin, S., Hagolle, O., Ablain, M., Jugier, R., Salgues, G., et al. 
(2021). Brief communication: evaluation of the snow cover detection in the copernicus 
high resolution snow & ice monitoring service. Cryosphere 15 (10), 4975–4980. 
doi:10.5194/tc-15-4975-2021

Bergeron, J., Royer, A., Turcotte, R., and Roy, A. (2014). Snow cover estimation 
using blended MODIS and AMSR-E data for improved watershed-scale spring 
streamflow simulation in Quebec, Canada. Hydrol. Process. 28 (16), 4626–4639. 
doi:10.1002/hyp.10123

Bousbaa, M., Htitiou, A., Boudhar, A., Eljabiri, Y., Elyoussfi, H., Bouamri, H., et al. 
(2022). High-resolution monitoring of the snow cover on the Moroccan atlas through 
the spatio-temporal fusion of Landsat and sentinel-2 images. Remote Sens. (Basel). 14, 
5814. doi:10.3390/rs14225814

Brown, R., Derksen, C., and Wang, L. (2010). A multi-data set analysis of variability 
and change in Arctic spring snow cover extent, 1967–2008. J. Geophys. Res. Atmos. 115 
(D16). doi:10.1029/2010jd013975

Chatzis, S. P., and Tsechpenakis, G. (2010). The infinite hidden Markov random field 
model. IEEE Trans. Neural Netw. 21 (6), 1004–1014. doi:10.1109/tnn.2010.2046910

Chen, S., Wang, X., Guo, H., Xie, P., and Sirelkhatim, A. M. (2020). Spatial 
and temporal adaptive gap-filling method producing daily cloud-free NDSI time 
series. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 13, 2251–2263. 
doi:10.1109/jstars.2020.2993037

Chen, S., Yang, Q., Xie, H., Zhang, H., Lu, P., and Zhou, C. (2014). Spatiotemporal 
variations of snow cover in northeast China based on flexible multiday combinations of 
moderate resolution imaging spectroradiometer snow cover products. J. Appl. Remote 
Sens. 8 (1), 084685. doi:10.1117/1.jrs.8.084685

Chen, B., Zhang, X., Ren, M., Chen, X., and Cheng, J. (2023). Snow cover mapping 
based on SNPP-VIIRS day/night band a case study in Xinjiang, China. Remote Sens. 15 
(12), 3004. doi:10.3390/rs15123004

Clark, M. P., and Slater, A. G. (2006). Probabilistic quantitative precipitation 
estimation in complex terrain. J. Hydrometeorol. 7 (1), 3–22. doi:10.1175/jhm474.1

Coll, J., and Li, X. (2018). Comprehensive accuracy assessment of MODIS daily snow 
cover products and gap filling methods. ISPRS J. Photogrammetry Remote Sens. 144, 
435–452. doi:10.1016/j.isprsjprs.2018.08.004

Da Ronco, P., and De Michele, C. (2014). Cloud obstruction and snow cover in 
Alpine areas from MODIS products. Hydrol. Earth Syst. Sci. 18 (11), 4579–4600. 
doi:10.5194/hess-18-4579-2014

Deng, G., Liu, X., Shen, Q., Zhang, T., Chen, Q., and Tang, Z. (2024a). Remote sensing 
data assimilation to improve the seasonal snow cover simulations over the Heihe River 
Basin, northwest China. Int. J. Climatol. 44 (15), 5621–5640. doi:10.1002/joc.8656

Deng, G., Tang, Z., Dong, C., Shao, D., and Wang, X. (2024b). Development and 
evaluation of a cloud-gap-filled MODIS normalized difference snow index product over 
High Mountain Asia. Remote Sens. (Basel). 16, 192. doi:10.3390/rs16010192

Dietz, A. J., Kuenzer, C., Gessner, U., and Dech, S. (2012). Remote sensing of 
snow – a review of available methods. Int. J. Remote Sens. 33 (13), 4094–4134. 
doi:10.1080/01431161.2011.640964

Dietz, A. J., Conrad, C., Kuenzer, C., Gesell, G., and Dech, S. (2014). Identifying 
changing snow cover characteristics in central Asia between 1986 and 2014 from remote 
sensing data. Remote Sens. 6 (12), 12752–12775. doi:10.3390/rs61212752

Ding, L., Xia, M., Lin, H., and Hu, K. (2024). Multi-level attention interactive 
network for cloud and snow detection segmentation. Remote Sens. 16 (1), 112. 
doi:10.3390/rs16010112

Dixit, A., Goswami, A., and Jain, S. (2019). Development and evaluation of a new 
“snow water index (SWI)” for accurate snow cover delineation. Remote Sens. 11 (23), 
2774. doi:10.3390/rs11232774

Dobreva, I. D., and Klein, A. G. (2011). Fractional snow cover mapping through 
artificial neural network analysis of MODIS surface reflectance. Remote Sens. Environ.
115 (12), 3355–3366. doi:10.1016/j.rse.2011.07.018

Dombrovsky, L. A., and Kokhanovsky, A. A. (2022). Deep heating of a snowpack by 
solar radiation. Front. Therm. Eng. 2, 882941. doi:10.3389/fther.2022.882941

Dong, C., and Menzel, L. (2016). Producing cloud-free MODIS snow cover products 
with conditional probability interpolation and meteorological data. Remote Sens. 
Environ. 186, 439–451. doi:10.1016/j.rse.2016.09.019

Dong, L., Zhou, H., Xu, J., Tang, Y., Teng, X., Ni, J., et al. (2024). BI or IB: which 
better generates high spatiotemporal resolution NDSI by fusing sentinel-2A/B and 
MODIS data? IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 17, 3314–3333. 
doi:10.1109/jstars.2023.3347202

Dong, L., Zhou, H., Gu, Q., Xu, J., Hua, R., Yu, B., et al. (2025). A novel approach 
for cloud-free MODIS NDSI reconstruction on the Tibetan plateau combining 
spatiotemporal cube and environmental features. IEEE Trans. Geoscience Remote Sens.
63, 1–14. doi:10.1109/tgrs.2025.3542095

Dozier, J., and Warren, S. G. (1982). Effect of viewing angle on the infrared 
brightness temperature of snow. Water Resour. Res. 18 (5), 1424–1434. 
doi:10.1029/wr018i005p01424

Dozier, J., Painter, T. H., Rittger, K., and Frew, J. E. (2008). Time–space continuity of 
daily maps of fractional snow cover and albedo from MODIS. Adv. Water Resour. 31 
(11), 1515–1526. doi:10.1016/j.advwatres.2008.08.011

Du, J. (2023). Snow mapping from passive microwave brightness temperature and 
MODIS snow product with machine learning approaches. (master’s thesis). University 
of Waterloo. Available online at:  https://uwspace.uwaterloo.ca/items/3e595db9-0882-
44b5-b7d8-8a8a826f669a.

Dubes, R. C., and And Jain, A. K. (1989). Random field models in image analysis. J. 
Appl. Statistics 16 (2), 131–164. doi:10.1080/02664768900000014

Fiddes, J., Aalstad, K., and Westermann, S. (2019). Hyper-resolution ensemble-based 
snow reanalysis in mountain regions using clustering. Hydrol. Earth Syst. Sci. 23 (11), 
4717–4736. doi:10.5194/hess-23-4717-2019

Foster, J. L., Hall, D. K., Eylander, J. B., Riggs, G. A., Nghiem, S. V., 
Tedesco, M., et al. (2011). A blended global snow product using visible, passive 
microwave and scatterometer satellite data. Int. J. Remote Sens. 32 (5), 1371–1395. 
doi:10.1080/01431160903548013

Gafurov, A., and Bárdossy, A. (2009). Cloud removal methodology from MODIS 
snow cover product. Hydrol. Earth Syst. Sci. 13 (7), 1361–1373. doi:10.5194/hess-13-
1361-2009

Gafurov, A., Vorogushyn, S., Farinotti, D., Duethmann, D., Merkushkin, A., and 
Merz, B. (2015). Snow-cover reconstruction methodology for mountainous regions 
based on historic in situ observations and recent remote sensing data. Cryosphere 9 (2), 
451–463. doi:10.5194/tc-9-451-2015

Gafurov, A., Lüdtke, S., Unger-Shayesteh, K., Vorogushyn, S., Schöne, T., Schmidt, 
S., et al. (2016). MODSNOW-Tool: an operational tool for daily snow cover 
monitoring using MODIS data. Environ. Earth Sci. 75 (14), 1078. doi:10.1007/
s12665-016-5869-x

Gao, Y., Xie, H., Lu, N., Yao, T., and Liang, T. (2010a). Toward advanced daily 
cloud-free snow cover and snow water equivalent products from Terra–Aqua 
MODIS and Aqua AMSR-E measurements. J. Hydrology 385 (1), 23–35. 
doi:10.1016/j.jhydrol.2010.01.022

Gao, Y., Xie, H., Yao, T., and Xue, C. (2010b). Integrated assessment on multi-
temporal and multi-sensor combinations for reducing cloud obscuration of MODIS 
snow cover products of the Pacific Northwest USA. Remote Sens. Environ. 114 (8), 
1662–1675. doi:10.1016/j.rse.2010.02.017

Gao, M., Gu, X., Liu, Y., Zhan, Y., Wei, X., Yu, H., et al. (2022). An 
improved spatiotemporal data fusion method for snow-covered mountain areas 
using snow index and elevation information. Sensors 22 (21), 8524. doi:10.3390/
s22218524

Gao, Y., Wang, X., Mou, N., Dai, Y., Che, T., and Yao, T. (2024a). Evaluating 
MODIS cloud-free snow cover datasets using massive spatial benchmark data 
in the Tibetan Plateau. Sci. Total Environ. 949, 175245. doi:10.1016/j.scitotenv.
2024.175245

Gao, Z., Liu, Z., Han, P., and Zhang, C. (2024b). Investigating spatial-temporal 
trend of snow cover over the three provinces of Northeast China based on a cloud-
free MODIS snow cover product. J. Hydrology 645, 132044. doi:10.1016/j.jhydrol.
2024.132044

Gascoin, S., Hagolle, O., Huc, M., Jarlan, L., Dejoux, J. F., Szczypta, C., et al. (2015). 
A snow cover climatology for the Pyrenees from MODIS snow products. Hydrol. Earth 
Syst. Sci. 19 (5), 2337–2351. doi:10.5194/hess-19-2337-2015

Frontiers in Earth Science 18 frontiersin.org

https://doi.org/10.3389/feart.2025.1649808
https://doi.org/10.5194/hess-25-4455-2021
https://doi.org/10.5194/gmd-15-9127-2022
https://doi.org/10.1007/s10113-018-1429-0
https://doi.org/10.1002/jgrd.50542
https://doi.org/10.3390/w13070890
https://nsidc.org/sites/default/files/nsidc_special_report_11.pdf
https://nsidc.org/sites/default/files/nsidc_special_report_11.pdf
https://doi.org/10.5194/tc-15-4975-2021
https://doi.org/10.1002/hyp.10123
https://doi.org/10.3390/rs14225814
https://doi.org/10.1029/2010jd013975
https://doi.org/10.1109/tnn.2010.2046910
https://doi.org/10.1109/jstars.2020.2993037
https://doi.org/10.1117/1.jrs.8.084685
https://doi.org/10.3390/rs15123004
https://doi.org/10.1175/jhm474.1
https://doi.org/10.1016/j.isprsjprs.2018.08.004
https://doi.org/10.5194/hess-18-4579-2014
https://doi.org/10.1002/joc.8656
https://doi.org/10.3390/rs16010192
https://doi.org/10.1080/01431161.2011.640964
https://doi.org/10.3390/rs61212752
https://doi.org/10.3390/rs16010112
https://doi.org/10.3390/rs11232774
https://doi.org/10.1016/j.rse.2011.07.018
https://doi.org/10.3389/fther.2022.882941
https://doi.org/10.1016/j.rse.2016.09.019
https://doi.org/10.1109/jstars.2023.3347202
https://doi.org/10.1109/tgrs.2025.3542095
https://doi.org/10.1029/wr018i005p01424
https://doi.org/10.1016/j.advwatres.2008.08.011
https://uwspace.uwaterloo.ca/items/3e595db9-0882-44b5-b7d8-8a8a826f669a
https://uwspace.uwaterloo.ca/items/3e595db9-0882-44b5-b7d8-8a8a826f669a
https://doi.org/10.1080/02664768900000014
https://doi.org/10.5194/hess-23-4717-2019
https://doi.org/10.1080/01431160903548013
https://doi.org/10.5194/hess-13-1361-2009
https://doi.org/10.5194/hess-13-1361-2009
https://doi.org/10.5194/tc-9-451-2015
https://doi.org/10.1007/ s12665-016-5869-x
https://doi.org/10.1007/ s12665-016-5869-x
https://doi.org/10.1016/j.jhydrol.2010.01.022
https://doi.org/10.1016/j.rse.2010.02.017
https://doi.org/10.3390/ s22218524
https://doi.org/10.3390/ s22218524
https://doi.org/10.1016/j.scitotenv.2024.175245
https://doi.org/10.1016/j.scitotenv.2024.175245
https://doi.org/10.1016/j.jhydrol.2024.132044
https://doi.org/10.1016/j.jhydrol.2024.132044
https://doi.org/10.5194/hess-19-2337-2015
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhang et al. 10.3389/feart.2025.1649808

Gascoin, S., Grizonnet, M., Bouchet, M., Salgues, G., and Hagolle, O. (2019). Theia 
Snow collection: high-resolution operational snow cover maps from Sentinel-2 and 
Landsat-8 data. Earth Syst. Sci. Data 11 (2), 493–514. doi:10.5194/essd-11-493-2019

Geer, A. J. (2021). Learning earth system models from observations: machine 
learning or data assimilation? Philosophical Trans. R. Soc. A Math. Phys. Eng. Sci. 379 
(2194), 20200089. doi:10.1098/rsta.2020.0089

Ghamisi, P., Rasti, B., Yokoya, N., Wang, Q., Hofle, B., Bruzzone, L., et al. (2019). 
Multisource and multitemporal data fusion in remote sensing: a comprehensive 
review of the state of the art. IEEE Geoscience Remote Sens. Mag. 7 (1), 6–39. 
doi:10.1109/mgrs.2018.2890023

Girotto, M., Musselman, K. N., and Essery, R. L. H. (2020). Data assimilation 
improves estimates of climate-sensitive seasonal snow. Curr. Clim. Change Rep. 6 (3), 
81–94. doi:10.1007/s40641-020-00159-7

Grünewald, T., Bühler, Y., and Lehning, M. (2014). Elevation dependency of 
mountain snow depth. Cryosphere 8 (6), 2381–2394. doi:10.5194/tc-8-2381-2014

Guglielmin, M., Aldighieri, B., and Testa, B. (2003). PERMACLIM: a model for the 
distribution of mountain permafrost, based on climatic observations. Geomorphology
51 (4), 245–257. doi:10.1016/s0169-555x(02)00221-0

Guo, H., Wang, X., Shen, Y., Han, C., Li, Z., Zheng, Z., et al. (2024). Development 
of a cloud-free MODIS NDSI dataset (2001–2020) over Northeast China. Int. J. Digital 
Earth. 17 (1). doi:10.1080/17538947.2024.2398062

Guo, H., Wang, X., Ouyang, Z., Chen, S., Che, T., and Zheng, Z. (2025). 
Application of the ESTARFM algorithm for fusing Sentinel-2 and MODIS NDSI 
series in the eastern Qilian Mountains. J. Hydrology Regional Stud. 57, 102103. 
doi:10.1016/j.ejrh.2024.102103

Hall, D. K., and Riggs, G. A. (2007). Accuracy assessment of the MODIS snow 
products. Hydrol. Process. 21 (12), 1534–1547. doi:10.1002/hyp.6715

Hall, D. K., Riggs, G. A., Salomonson, V. V., Digirolamo, N. E., and Bayr, K. 
J. (2002). MODIS snow-cover products. Remote Sens. Environ. 83 (1), 181–194. 
doi:10.1016/s0034-4257(02)00095-0

Hall, D. K., Riggs, G. A., Foster, J. L., and Kumar, S. V. (2010). Development 
and evaluation of a cloud-gap-filled MODIS daily snow-cover product. Remote Sens. 
Environ. 114 (3), 496–503. doi:10.1016/j.rse.2009.10.007

Hall, D. K., Riggs, G. A., Digirolamo, N. E., and Román, M. O. (2019). Evaluation 
of MODIS and VIIRS cloud-gap-filled snow-cover products for production of an Earth 
science data record. Hydrol. Earth Syst. Sci. 23 (12), 5227–5241. doi:10.5194/hess-23-
5227-2019

Han, L., Wu, T., Liu, Z., and Liu, Q. (2019a). Cloud detection in Landsat imagery using 
the fractal summation method and spatial point-pattern analysis in Geo-informatics 
in Sustainable Ecosystem and Society. GSES 2018. Communications in Computer and 
Information Science. Editors Y. Xie, A. Zhang, H. Liu, and L. Feng (Singapore: Springer), 
980. doi:10.1007/978-981-13-7025-0_21

Han, P., Long, D., Han, Z., Du, M., Dai, L., and Hao, X. (2019b). Improved 
understanding of snowmelt runoff from the headwaters of China’s Yangtze River using 
remotely sensed snow products and hydrological modeling. Remote Sens. Environ. 224, 
44–59. doi:10.1016/j.rse.2019.01.041

Hao, X., Huang, X., Zhang, Y., Tang, Z., and Li, X. (2014). “HiWATER:Dataset of 
fractional snow cover area in the Heihe River Basin,” in National Tibetan plateau data 
center. Editor C. National Tibetan Plateau Data. doi:10.3972/hiwater.218.2014.db

Hao, X., Luo, S., Che, T., Wang, J., Li, H., Dai, L., et al. (2019). Accuracy assessment 
of four cloud-free snow cover products over the Qinghai-Tibetan Plateau. Int. J. Digital 
Earth 12 (4), 375–393. doi:10.1080/17538947.2017.1421721

Hao, X., Huang, G., Che, T., Ji, W., Sun, X., Zhao, Q., et al. (2021). The NIEER AVHRR 
snow cover extent product over China – a long-term daily snow record for regional 
climate research. Earth Syst. Sci. Data 13 (10), 4711–4726. doi:10.5194/essd-13-4711-
2021

Hao, X., Huang, G., Zheng, Z., Sun, X., Ji, W., Zhao, H., et al. (2022). Development 
and validation of a new MODIS snow-cover-extent product over China. Hydrol. Earth 
Syst. Sci. 26 (8), 1937–1952. doi:10.5194/hess-26-1937-2022

Hao, X., Dai, L., and Che, T. (2025). “A dataset of 5km snow cover area on the Qinghai 
Tibet Plateau (1980-2020),” in National Tibetan plateau data center. Editor C. National 
Tibetan Plateau Data doi:10.11888/Cryos.tpdc.302491

Haseeb Azizi, A., Akhtar, F., Kusche, J., Tischbein, B., Borgemeister, C., and Agumba 
Oluoch, W. (2024). Machine learning-based estimation of fractional snow cover in 
the Hindukush Mountains using MODIS and Landsat data. J. Hydrology 638, 131579. 
doi:10.1016/j.jhydrol.2024.131579

Helmert, J., Şensoy Şorman, A., Alvarado Montero, R., De Michele, C., De Rosnay, P., 
Dumont, M., et al. (2018).  Review of snow data assimilation methods for hydrological, 
land surface, meteorological and climate models: results from a COST HarmoSnow 
survey. Geosciences 8, 489. doi:10.3390/geosciences8120489

Hoppinen, Z., Palomaki, R. T., Brencher, G., Dunmire, D., Gagliano, E., Marziliano, 
A., et al. (2024). Evaluating snow depth retrievals from Sentinel-1 volume scattering 
over NASA SnowEx sites. Cryosphere 18 (11), 5407–5430. doi:10.5194/tc-18-5407-2024

Hori, M., Sugiura, K., Kobayashi, K., Aoki, T., Tanikawa, T., Kuchiki, K., et al. (2017). 
A 38-year (1978–2015) Northern Hemisphere daily snow cover extent product derived 

using consistent objective criteria from satellite-borne optical sensors. Remote Sens. 
Environ. 191, 402–418. doi:10.1016/j.rse.2017.01.023

Hou, J., and Huang, C. (2016). Cloud removal for MODIS Fractional Snow 
Cover products by similar pixel replacement guild with modified non-dominated 
sorting genetic algorithm (Beijing, China: IEEE International Geoscience and 
Remote Sensing Symposium (IGARSS)), 4913–4916. doi:10.1109/IGARSS.2016.
7730282

Hou, X., Zheng, Z., Li, S., Chen, X., and Cui, Y. (2018). Generation of daily cloudless 
snow cover product in the past 15 years in Xinjiang and accuracy validation. Remote 
Sens. Land and Resour. 30 (2), 214–222. doi:10.6046/gtzyyg.2018.02.29

Hou, J., Huang, C., Zhang, Y., Guo, J., and Gu, J. (2019). Gap-filling of 
MODIS fractional snow cover products via non-local spatio-temporal filtering based 
on machine learning techniques. Remote Sens. (Basel). 11 (1), 90. doi:10.3390/
rs11010090

Hou, J., Huang, C., Zhang, Y., and You, Y. (2022). Reconstructing a gap-free MODIS 
normalized difference snow index product using a long short-term memory network. 
IEEE Trans. Geoscience Remote Sens. 60, 1–14. doi:10.1109/tgrs.2022.3178421

Hua, X., Bian, J., and Yin, G. (2025). Satellite-based assessment of snow dynamics and 
climatic drivers in the changbai mountain region (2001–2022). Remote Sens. (Basel). 17, 
442. doi:10.3390/rs17030442

Huang, Y., and Xu, J. (2022). HMRFS-TP: long-term daily gap-free snow cover 
products over the Tibetan Plateau (2002–2024). Natl. Tibet. Plateau/Third Pole Environ. 
Data Cent. doi:10.11888/Cryos.tpdc.272204

Huang, X., Hao, X., Feng, Q., Wang, W., and Liang, T. (2014). A new MODIS daily 
cloud free snow cover mapping algorithm on the Tibetan Plateau. Sci. Cold Arid Regions
6 (2), 116–123. doi:10.3724/SP.J.1226.2014.00116

Huang, X., Deng, J., Ma, X., Wang, Y., Feng, Q., Hao, X., et al. (2016). Spatiotemporal 
dynamics of snow cover based on multi-source remote sensing data in China. 
Cryosphere 10 (5), 2453–2463. doi:10.5194/tc-10-2453-2016

Huang, Y., Liu, H., Yu, B., Wu, J., Kang, E. L., Xu, M., et al. (2018). Improving 
MODIS snow products with a HMRF-based spatio-temporal modeling technique in the 
Upper Rio Grande Basin. Remote Sens. Environ. 204, 568–582. doi:10.1016/j.rse.2017.
10.001

Huang, Y., Song, Z., Yang, H., Yu, B., Liu, H., Che, T., et al. (2022a). Snow cover 
detection in mid-latitude mountainous and polar regions using nighttime light data. 
Remote Sens. Environ. 268, 112766. doi:10.1016/j.rse.2021.112766

Huang, Y., Xu, J., Xu, J., Zhao, Y., Yu, B., Liu, H., et al. (2022b). HMRFS–TP: long-
term daily gap-free snow cover products over the Tibetan Plateau from 2002 to 2021 
based on hidden Markov random field model. Earth Syst. Sci. Data 14 (9), 4445–4462. 
doi:10.5194/essd-14-4445-2022

Huang, J., Jiang, L., Pan, F., Zhong, B., Wu, S., and Cui, H. (2025). Estimation and 
evaluation of the FY-3D/MERSI-II fractional snow cover in China. IEEE J. Sel. Top. Appl. 
Earth Observations Remote Sens. 18, 2497–2511. doi:10.1109/jstars.2024.3517845

Hüsler, F., Jonas, T., Riffler, M., Musial, J. P., and Wunderle, S. (2014). A satellite-based 
snow cover climatology (1985–2011) for the European Alps derived from AVHRR data. 
Cryosphere 8 (1), 73–90. doi:10.5194/tc-8-73-2014

Jain, S. K., Goswami, A., and Saraf, A. K. (2009). Role of elevation and aspect 
in snow distribution in western himalaya. Water Resour. Manag. 23 (1), 71–83. 
doi:10.1007/s11269-008-9265-5

Jing, Y., Shen, H., Li, X., and Guan, X. (2019). A two-stage fusion framework 
to generate a spatio–temporally continuous MODIS NDSI product over the Tibetan 
plateau. Remote Sens. (Basel). 11, 2261. doi:10.3390/rs11192261

Jing, Y., Li, X., and Shen, H. (2022). STAR NDSI collection: a cloud-free MODIS 
NDSI dataset (2001–2020) for China. Earth Syst. Sci. Data 14 (7), 3137–3156. 
doi:10.5194/essd-14-3137-2022

John, A., Cannistra, A. F., Yang, K., Tan, A., Shean, D., Hille Ris Lambers, J., 
et al. (2022). High-resolution snow-covered area mapping in forested mountain 
ecosystems using PlanetScope imagery. Remote Sens. 14 (14), 3409. doi:10.3390/
rs14143409

Kato, S., Loeb, N. G., Minnis, P., Francis, J. A., Charlock, T. P., Rutan, D. A., et al. 
(2006). Seasonal and interannual variations of top-of-atmosphere irradiance and cloud 
cover over polar regions derived from the CERES data set. Geophys. Res. Lett. 33 (19). 
doi:10.1029/2006gl026685

Koehler, J., Bauer, A., Dietz, A. J., and Kuenzer, C. (2022). Towards forecasting future 
snow cover dynamics in the European alps—the potential of long optical remote-
sensing time series. Sens. Time Ser. 14 (18), 4461. doi:10.3390/rs14184461

Kollert, A., Mayr, A., Dullinger, S., Hülber, K., Moser, D., Lhermitte, S., et al. (2024). 
Downscaling MODIS NDSI to Sentinel-2 fractional snow cover by random forest 
regression. Remote Sens. Lett. 15 (4), 363–372. doi:10.1080/2150704x.2024.2327084

Kulkarni, A. V., Srinivasulu, J., Manjul, S. S., and P, M. (2002). Field based spectral 
reflectance studies to develop NDSI method for snow cover monitoring. J. Indian Soc. 
Remote Sens. 30 (1), 73–80. doi:10.1007/bf02989978

Li, C., Su, F., Yang, D., Tong, K., Meng, F., and Kan, B. (2018). Spatiotemporal variation 
of snow cover over the Tibetan Plateau based on MODIS snow product, 2001–2014. Int. 
J. Climatol. 38 (2), 708–728. doi:10.1002/joc.5204

Frontiers in Earth Science 19 frontiersin.org

https://doi.org/10.3389/feart.2025.1649808
https://doi.org/10.5194/essd-11-493-2019
https://doi.org/10.1098/rsta.2020.0089
https://doi.org/10.1109/mgrs.2018.2890023
https://doi.org/10.1007/s40641-020-00159-7
https://doi.org/10.5194/tc-8-2381-2014
https://doi.org/10.1016/s0169-555x(02)00221-0
https://doi.org/10.1080/17538947.2024.2398062
https://doi.org/10.1016/j.ejrh.2024.102103
https://doi.org/10.1002/hyp.6715
https://doi.org/10.1016/s0034-4257(02)00095-0
https://doi.org/10.1016/j.rse.2009.10.007
https://doi.org/10.5194/hess-23-5227-2019
https://doi.org/10.5194/hess-23-5227-2019
https://doi.org/10.1007/978-981-13-7025-0_21
https://doi.org/10.1016/j.rse.2019.01.041
https://doi.org/10.3972/hiwater.218.2014.db
https://doi.org/10.1080/17538947.2017.1421721
https://doi.org/10.5194/essd-13-4711-2021
https://doi.org/10.5194/essd-13-4711-2021
https://doi.org/10.5194/hess-26-1937-2022
https://doi.org/10.11888/Cryos.tpdc.302491
https://doi.org/10.1016/j.jhydrol.2024.131579
https://doi.org/10.3390/geosciences8120489
https://doi.org/10.5194/tc-18-5407-2024
https://doi.org/10.1016/j.rse.2017.01.023
https://doi.org/10.1109/IGARSS.2016.7730282
https://doi.org/10.1109/IGARSS.2016.7730282
https://doi.org/10.6046/gtzyyg.2018.02.29
https://doi.org/10.3390/ rs11010090
https://doi.org/10.3390/ rs11010090
https://doi.org/10.1109/tgrs.2022.3178421
https://doi.org/10.3390/rs17030442
https://doi.org/10.11888/Cryos.tpdc.272204
https://doi.org/10.3724/SP.J.1226.2014.00116
https://doi.org/10.5194/tc-10-2453-2016
https://doi.org/10.1016/j.rse.2017.10.001
https://doi.org/10.1016/j.rse.2017.10.001
https://doi.org/10.1016/j.rse.2021.112766
https://doi.org/10.5194/essd-14-4445-2022
https://doi.org/10.1109/jstars.2024.3517845
https://doi.org/10.5194/tc-8-73-2014
https://doi.org/10.1007/s11269-008-9265-5
https://doi.org/10.3390/rs11192261
https://doi.org/10.5194/essd-14-3137-2022
https://doi.org/10.3390/ rs14143409
https://doi.org/10.3390/ rs14143409
https://doi.org/10.1029/2006gl026685
https://doi.org/10.3390/rs14184461
https://doi.org/10.1080/2150704x.2024.2327084
https://doi.org/10.1007/bf02989978
https://doi.org/10.1002/joc.5204
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhang et al. 10.3389/feart.2025.1649808

Li, X., Jing, Y., Shen, H., and Zhang, L. (2019a). The recent developments in cloud 
removal approaches of MODIS snow cover product. Hydrol. Earth Syst. Sci. 23 (5), 
2401–2416. doi:10.5194/hess-23-2401-2019

Li, Y., Chen, Y., and Li, Z. (2019b). Developing daily cloud-free snow composite 
products from MODIS and IMS for the tienshan mountains. Earth Space Sci. 6 (2), 
266–275. doi:10.1029/2018ea000460

Li, L., Zhang, J., Sun, Z., Liu, Q., Bai, Y., Zhang, S., et al. (2022). Spatiotemporal 
dynamics of snow cover in typical regions of China based on FY-3 meteorological 
satellite. Trans. Atmos. Sci. 45 (06), 879–889. doi:10.13878/j.cnki.dqkxxb.20211228001

Li, M., Zhu, X., Li, N., and Pan, Y. (2020). Gap-filling of a MODIS normalized 
difference snow index product based on the similar pixel selecting algorithm: 
a case study on the Qinghai–Tibetan Plateau. Remote sens. 12 (7), 1077. 
doi:10.3390/rs12071077

Liang, T., Zhang, X., Xie, H., Wu, C., Feng, Q., Huang, X., et al. (2008a). 
Toward improved daily snow cover mapping with advanced combination of 
MODIS and AMSR-E measurements. Remote Sens. Environ. 112 (10), 3750–3761. 
doi:10.1016/j.rse.2008.05.010

Liang, T. G., Huang, X. D., Wu, C. X., Liu, X. Y., Li, W. L., Guo, Z. G., et al. 
(2008b). An application of MODIS data to snow cover monitoring in a pastoral area: 
a case study in Northern Xinjiang, China. Remote Sens. Environ. 112 (4), 1514–1526. 
doi:10.1016/j.rse.2007.06.001

Lievens, H., Brangers, I., Marshall, H. P., Jonas, T., Olefs, M., and De Lannoy, G. 
(2022). Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European 
Alps. Cryosphere 16 (1), 159–177. doi:10.5194/tc-16-159-2022

Lindsay, C., Zhu, J., Miller, A. E., Kirchner, P., and Wilson, T. L. (2015). Deriving 
snow cover metrics for alaska from MODIS. Remote Sens. 7 (10), 12961–12985. 
doi:10.3390/rs71012961

Liu, C., Li, Z., Zhang, P., Zeng, J., Gao, S., and Zheng, Z. (2020). An assessment and 
error analysis of MOD10A1 snow product using Landsat and ground observations over 
China during 2000–2016. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 13, 
1467–1478. doi:10.1109/jstars.2020.2983550

Liu, Y., Fang, Y., and Margulis, S. A. (2021). Spatiotemporal distribution of seasonal 
snow water equivalent in High Mountain Asia from an 18-year Landsat–MODIS 
era snow reanalysis dataset. Cryosphere 15 (11), 5261–5280. doi:10.5194/
tc-15-5261-2021

Liu, A., Che, T., Huang, X., Dai, L., Wang, J., and Deng, J. (2022a). Effect of cloud mask 
on the consistency of snow cover products from MODIS and VIIRS. Remote sens. 14 (23), 
6134. doi:10.3390/rs14236134

Liu, Y., Fang, Y., Li, D., and Margulis, S. A. (2022b). How well do global snow 
products characterize snow storage in High Mountain Asia? Geophys. Res. Lett. 49 (16), 
e2022GL100082. doi:10.1029/2022gl100082

Liu, D., Shen, Y., Wang, Y., Wang, Z., Mo, Z., and Zhang, Q. (2023). Monitoring 
the spatiotemporal dynamics of arctic winter snow/ice with moonlight remote 
sensing: systematic evaluation in svalbard. Remote Sens. (Basel). 15, 1255. 
doi:10.3390/rs15051255

López-Burgos, V., Gupta, H. V., and Clark, M. (2013). Reducing cloud obscuration 
of MODIS snow cover area products by combining spatio-temporal techniques 
with a probability of snow approach. Hydrol. Earth Syst. Sci. 17 (5), 1809–1823. 
doi:10.5194/hess-17-1809-2013

Lv, Z., Pomeroy, J. W., and Fang, X. (2019). Evaluation of SNODAS snow water 
equivalent in western Canada and assimilation into a Cold region hydrological model. 
Water Resour. Res. 55 (12), 11166–11187. doi:10.1029/2019wr025333

Mao, K., Yuan, Z., Zuo, Z., Xu, T., Shen, X., and Gao, C. (2019). Changes in global 
cloud cover based on remote sensing data from 2003 to 2012. Chin. Geogr. Sci. 29 (2), 
306–315. doi:10.1007/s11769-019-1030-6

Margulis, S. A., Liu, Y., and Baldo, E. (2019). A joint Landsat- and MODIS-based 
reanalysis approach for midlatitude montane seasonal snow characterization. Front. 
Earth Sci. 7, 272–6463. doi:10.3389/feart.2019.00272

Mattar, C., Fuster, R., and Perez, T. (2022). Application of a cloud removal algorithm 
for snow-covered areas from daily MODIS imagery over andes mountains. Atmos. 
(Basel). 13, 392. doi:10.3390/atmos13030392

Min, W., Pen, J., and Li, S. (2021). The evaluation of FY-3C snow products 
in the Tibetan Plateau. Remote Sens. Land and Resour. 33 (01), 145–151. 
doi:10.6046/gtzyyg.2020102

Mishra, P., Zaphu, V. V., Monica, N., Bhadra, A., and Bandyopadhyay, A. (2016). 
Accuracy assessment of MODIS fractional snow cover product for eastern himalayan 
catchment. J. Indian Soc. Remote Sens. 44 (6), 977–985. doi:10.1007/s12524-016-0548-7

Molotch, N. P., and Margulis, S. A. (2008). Estimating the distribution of snow 
water equivalent using remotely sensed snow cover data and a spatially distributed 
snowmelt model: a multi-resolution, multi-sensor comparison. Adv. Water Resour. 31 
(11), 1503–1514. doi:10.1016/j.advwatres.2008.07.017

Muhuri, A., Gascoin, S., Menzel, L., Kostadinov, T. S., Harpold, A. A., Sanmiguel-
Vallelado, A., et al. (2021). Performance assessment of optical satellite-based operational 
snow cover monitoring algorithms in forested landscapes. IEEE J. Sel. Top. Appl. Earth 
Observations Remote Sens. 14, 7159–7178. doi:10.1109/jstars.2021.3089655

Musselman, K. N., Addor, N., Vano, J. A., and Molotch, N. P. (2021). Winter melt 
trends portend widespread declines in snow water resources. Nat. Clim. Change 11 (5), 
418–424. doi:10.1038/s41558-021-01014-9

Newfel, M., Ahmet, E. T., Hongjie, X., Hatim, I. S., and Almoutaz, A. E. H. (2013). 
Assessment of ice mapping system and moderate resolution imaging spectroradiometer 
snow cover maps over Colorado Plateau. J. Appl. Remote Sens. 7 (1), 073540. 
doi:10.1117/1.jrs.7.073540

Pan, F., Jiang, L., Wang, G., Pan, J., Huang, J., Zhang, C., et al. (2024). MODIS 
daily cloud-gap-filled fractional snow cover dataset of the Asian Water Tower 
region (2000–2022). Earth Syst. Sci. Data 16 (5), 2501–2523. doi:10.5194/essd-16-
2501-2024

Pandya, D., Vachharajani, B., and Srivastava, R. (2022). A review of data assimilation 
techniques: applications in engineering and agriculture. Mater. Today Proc. 62, 
7048–7052. doi:10.1016/j.matpr.2022.01.122

Parajka, J., and Blöschl, G. (2008). Spatio-temporal combination of MODIS images – 
potential for snow cover mapping. Water Resour. Res. 44 (3). doi:10.1029/2007wr006204

Parajka, J., Pepe, M., Rampini, A., Rossi, S., and Blöschl, G. (2010). A regional snow-
line method for estimating snow cover from MODIS during cloud cover. J. Hydrology
381 (3), 203–212. doi:10.1016/j.jhydrol.2009.11.042

Parajka, J., Holko, L., Kostka, Z., and Blöschl, G. (2012). MODIS snow cover mapping 
accuracy in a small mountain catchment - comparison between open and forest sites. 
Hydrol. Earth Syst. Sci. 16 (7), 2365–2377. doi:10.5194/hess-16-2365-2012

Paudel, K. P., and Andersen, P. (2011). Monitoring snow cover variability in an 
agropastoral area in the Trans Himalayan region of Nepal using MODIS data with 
improved cloud removal methodology. Remote Sens. Environ. 115 (5), 1234–1246. 
doi:10.1016/j.rse.2011.01.006

Poussin, C., Peduzzi, P., Chatenoux, B., and Giuliani, G. (2025). A 37 years 
[1984–2021] Landsat/Sentinel-2 derived snow cover time-series for Switzerland. Sci. 
Data 12 (1), 632. doi:10.1038/s41597-025-04961-6

Qin, Y., Abatzoglou, J. T., Siebert, S., Huning, L. S., Aghakouchak, A., Mankin, J. 
S., et al. (2020). Agricultural risks from changing snowmelt. Nat. Clim. Change 10 (5), 
459–465. doi:10.1038/s41558-020-0746-8

Qiu, Y., and Wang, X. (2021). Daily fractional snow cover dataset over High Asia during 
2002 to 2018. National Cryosphere Desert Data Center. doi:10.11922/sciencedb.457

Qiu, Y., Zhang, H., Chu, D., Zhang, X., Yu, X., and Zheng, Z. (2017). Cloud removing 
algorithm for the daily cloud free MODIS-based snow cover product over the Tibetan 
Plateau. J. Glaciol. Geocryol. 39 (03), 515–526. doi:10.7522/j.issn.1000-0240.2017.0058

Revuelto, J., Alonso-González, E., Gascoin, S., Rodríguez-López, G., and López-
Moreno, J. I. (2021). Spatial downscaling of MODIS snow cover observations using 
sentinel-2 snow products. Remote Sens. 13 (22): 4513. doi:10.3390/rs13224513

Richiardi, C., Blonda, P., Rana, F. M., Santoro, M., Tarantino, C., Vicario, S., et al. 
(2021). A revised snow cover algorithm to improve discrimination between snow and 
clouds: a case study in gran paradiso national Park. Remote Sens. (Basel). 13, 1957. 
doi:10.3390/rs13101957

Richiardi, C., Siniscalco, C., and Adamo, M. (2023). Comparison of three different 
random forest approaches to retrieve daily high-resolution snow cover maps from 
MODIS and sentinel-2 in a mountain area, gran paradiso national park (NW alps). 
Remote Sens. 15 (2), 343. doi:10.3390/rs15020343

Riggs, G., and Hall, D. (2010). MODIS snow and ice products, and their assessment 
and applications. in Land Remote Sensing and Global Environmental Change. Remote 
Sensing and Digital Image Processing. Editors B. Ramachandran, C. Justice, and M. 
Abrams. (New York, NY: Springer) 12. doi:10.1007/978-1-4419-6749-7_30

Riggs, G., and Hall, D. (2020). Continuity of MODIS and VIIRS snow cover extent 
data products for development of an Earth science data record. Remote Sens. 12 (22), 
3781. doi:10.3390/rs12223781

Riggs, G. A., Hall, D. K., and Román, M. O. (2017). Overview of NASA’s MODIS 
and visible infrared imaging radiometer suite (VIIRS) snow-cover earth system data 
Records. Earth Syst. Sci. Data 9 (2), 765–777. doi:10.5194/essd-9-765-2017

Rittger, K., Painter, T. H., and Dozier, J. (2013). Assessment of methods 
for mapping snow cover from MODIS. Adv. Water Resour. 51, 367–380. 
doi:10.1016/j.advwatres.2012.03.002

Rittger, K., Bair, E. H., Kahl, A., and Dozier, J. (2016). Spatial estimates 
of snow water equivalent from reconstruction. Adv. Water Resour. 94, 345–363. 
doi:10.1016/j.advwatres.2016.05.015

Rittger, K., Krock, M., Kleiber, W., Bair, E. H., Brodzik, M. J., Stephenson, T. R., et al. 
(2021). Multi-sensor fusion using random forests for daily fractional snow cover at 30 
m. Remote Sens. Environ. 264, 112608. doi:10.1016/j.rse.2021.112608

Román, M. O., Justice, C., Paynter, I., Boucher, P. B., Devadiga, S., Endsley, 
A., et al. (2024). Continuity between NASA MODIS collection 6.1 and VIIRS 
collection 2 land products. Remote Sens. Environ. 302, 113963. doi:10.1016/j.rse.2023.
113963

Romanov, P. (2017). Global multisensor automated satellite-based snow and ice 
mapping system (GMASI) for cryosphere monitoring. Remote Sens. Environ. 196, 
42–55. doi:10.1016/j.rse.2017.04.023

Frontiers in Earth Science 20 frontiersin.org

https://doi.org/10.3389/feart.2025.1649808
https://doi.org/10.5194/hess-23-2401-2019
https://doi.org/10.1029/2018ea000460
https://doi.org/10.13878/j.cnki.dqkxxb.20211228001
https://doi.org/10.3390/rs12071077
https://doi.org/10.1016/j.rse.2008.05.010
https://doi.org/10.1016/j.rse.2007.06.001
https://doi.org/10.5194/tc-16-159-2022
https://doi.org/10.3390/rs71012961
https://doi.org/10.1109/jstars.2020.2983550
https://doi.org/10.5194/ tc-15-5261-2021
https://doi.org/10.5194/ tc-15-5261-2021
https://doi.org/10.3390/rs14236134
https://doi.org/10.1029/2022gl100082
https://doi.org/10.3390/rs15051255
https://doi.org/10.5194/hess-17-1809-2013
https://doi.org/10.1029/2019wr025333
https://doi.org/10.1007/s11769-019-1030-6
https://doi.org/10.3389/feart.2019.00272
https://doi.org/10.3390/atmos13030392
https://doi.org/10.6046/gtzyyg.2020102
https://doi.org/10.1007/s12524-016-0548-7
https://doi.org/10.1016/j.advwatres.2008.07.017
https://doi.org/10.1109/jstars.2021.3089655
https://doi.org/10.1038/s41558-021-01014-9
https://doi.org/10.1117/1.jrs.7.073540
https://doi.org/10.5194/essd-16-2501-2024
https://doi.org/10.5194/essd-16-2501-2024
https://doi.org/10.1016/j.matpr.2022.01.122
https://doi.org/10.1029/2007wr006204
https://doi.org/10.1016/j.jhydrol.2009.11.042
https://doi.org/10.5194/hess-16-2365-2012
https://doi.org/10.1016/j.rse.2011.01.006
https://doi.org/10.1038/s41597-025-04961-6
https://doi.org/10.1038/s41558-020-0746-8
https://doi.org/10.11922/sciencedb.457
https://doi.org/10.7522/j.issn.1000-0240.2017.0058
https://doi.org/10.3390/rs13224513
https://doi.org/10.3390/rs13101957
https://doi.org/10.3390/rs15020343
https://doi.org/10.1007/978-1-4419-6749-7_30
https://doi.org/10.3390/rs12223781
https://doi.org/10.5194/essd-9-765-2017
https://doi.org/10.1016/j.advwatres.2012.03.002
https://doi.org/10.1016/j.advwatres.2016.05.015
https://doi.org/10.1016/j.rse.2021.112608
https://doi.org/10.1016/j.rse.2023.113963
https://doi.org/10.1016/j.rse.2023.113963
https://doi.org/10.1016/j.rse.2017.04.023
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhang et al. 10.3389/feart.2025.1649808

Romanov, P., Gutman, G., and Csiszar, I. (2000). Automated monitoring of snow 
cover over North America with Multispectral satellite data. J. Appl. Meteorology 39 (11), 
1866–1880. doi:10.1175/1520-0450(2000)039<1866:amosco>2.0.co;2

Salomonson, V. V., and Appel, I. (2004). Estimating fractional snow cover from 
MODIS using the normalized difference snow index. Remote Sens. Environ. 89 (3), 
351–360. doi:10.1016/j.rse.2003.10.016

Samadzadegan, F., Toosi, A., and Dadrass Javan, F. (2025). A critical review on multi-
sensor and multi-platform remote sensing data fusion approaches: current status and 
prospects. Int. J. Remote Sens. 46 (3), 1327–1402. doi:10.1080/01431161.2024.2429784

Singh, M. K., Thayyen, R. J., and Jain, S. K. (2021). Snow cover change assessment in 
the upper Bhagirathi basin using an enhanced cloud removal algorithm. Geocarto Int.
36 (20), 2279–2302. doi:10.1080/10106049.2019.1704069

Stillinger, T., Rittger, K., Raleigh, M. S., Michell, A., Davis, R. E., and Bair, E. H. 
(2023). Landsat, MODIS, and VIIRS snow cover mapping algorithm performance 
as validated by airborne lidar datasets. Cryosphere 17 (2), 567–590. doi:10.5194/
tc-17-567-2023

Tang, Z., Wang, J., Li, H., and Yan, L. (2013). Spatiotemporal changes of snow 
cover over the Tibetan plateau based on cloud-removed moderate resolution imaging 
spectroradiometer fractional snow cover product from 2001 to 2011. J. Appl. Remote 
Sens. 7, 073582. doi:10.1117/1.jrs.7.073582

Thackeray, C. W., Derksen, C., Fletcher, C. G., and Hall, A. (2019). Snow and climate: 
feedbacks, Drivers, and Indices of change. Curr. Clim. Change Rep. 5 (4), 322–333. 
doi:10.1007/s40641-019-00143-w

Thiebault, K., and Young, S. (2020). Snow cover change and its relationship with land 
surface temperature and vegetation in northeastern North America from 2000 to 2017. 
Int. J. Remote Sens. 41 (21), 8453–8474. doi:10.1080/01431161.2020.1779379

Tong, J., Déry, S. J., and Jackson, P. L. (2009). Interrelationships between 
MODIS/Terra remotely sensed snow cover and the hydrometeorology of the Quesnel 
River Basin, British Columbia, Canada. Hydrol. Earth Syst. Sci. 13 (8), 1439–1452. 
doi:10.5194/hess-13-1439-2009

Vuyovich, C. M., Jacobs, J. M., and Daly, S. F. (2014). Comparison of passive 
microwave and modeled estimates of total watershed SWE in the continental United 
States. Water Resour. Res. 50 (11), 9088–9102. doi:10.1002/2013wr014734

Wang, J. (2022). Preparation of AVHRR snow cover extent dataset in the Northern 
Hemisphere and characteristics of snow phenology. (master’s thesis). Taiyuan University 
of Technology. doi:10.27352/d.cnki.gylgu.2022.000607

Wang, X., Xie, H., and Liang, T. (2008). Evaluation of MODIS snow cover and cloud 
mask and its application in Northern Xinjiang, China. Remote Sens. Environ. 112 (4), 
1497–1513. doi:10.1016/j.rse.2007.05.016

Wang, J., Hao, X., He, D., Wang, J., Li, H., and Zhao, Q. (2022a). Snow discrimination 
algorithm in the Northern Hemisphere based on AVHRR image. J. Glaciol. Geocryol. 44 
(1), 316–326. doi:10.7522/j.issn.1000-0240.2022.0039

Wang, Y., Gu, L., Li, X., Gao, F., Jiang, T., and Ren, R. (2022b). An improved 
spatiotemporal fusion algorithm for monitoring daily snow cover changes 
with high spatial resolution. IEEE Trans. Geoscience Remote Sens. 60, 1–17. 
doi:10.1109/tgrs.2022.3224126

Wang, Y., Su, J., Zhai, X., Meng, F., and Liu, C. (2022c). Snow coverage mapping by 
learning from sentinel-2 satellite multispectral images via machine learning algorithms. 
Remote Sens. 14 (3), 782. doi:10.3390/rs14030782

Wang, Z., Fan, B., Tu, Z., Li, H., and Chen, D. (2022d). Cloud and snow identification 
based on DeepLab V3+ and CRF combined model for GF-1 WFV images. Remote Sens. 
(Basel). 14, 4880. doi:10.3390/rs14194880

Wang, Y., Gu, L., Li, X., Gao, F., and Jiang, T. (2023). Coexisting cloud and snow 
detection based on a hybrid features network applied to remote sensing images. IEEE 
Trans. Geoscience Remote Sens. 61, 1–15. doi:10.1109/tgrs.2023.3299617

Wang, J., Li, B., Li, Y., Lian, L., Dong, F., Zhu, Y., et al. (2025a). A daily snow cover 
dataset for central eurasia during autumn from 2004 to 2021. Geoscience Data J. 12 (3), 
e70017. doi:10.1002/gdj3.70017

Wang, Q., Ma, Y., Xu, Z., and Li, J. (2025b). Accuracy assessment of cloud removal 
methods for Moderate-resolution Imaging Spectroradiometer (MODIS) snow data in 
the Tianshan Mountains, China. J. Arid Land 17 (4), 457–480. doi:10.1007/s40333-025-
0098-3

Warren, S. G. (1982). Optical properties of snow. Rev. Geophys. 20 (1), 67–89. 
doi:10.1029/rg020i001p00067

Warren, S. G. (2019). Optical properties of ice and snow. Philosophical Trans. R. Soc. 
A Math. Phys. Eng. Sci. 377 (2146), 20180161. doi:10.1098/rsta.2018.0161

Wu, T., Han, L., and Liu, Q. (2019). A novel algorithm for differentiating cloud 
from snow sheets using Landsat 8 OLI imagery. Adv. Space Res. 64 (1), 79–87. 
doi:10.1016/j.asr.2019.03.014

Wu, X., Naegeli, K., Premier, V., Marin, C., Ma, D., Wang, J., et al. (2021). Evaluation 
of snow extent time series derived from Advanced Very High Resolution Radiometer 
global area coverage data (1982–2018) in the Hindu Kush Himalayas. Cryosphere 15 (9), 
4261–4279. doi:10.5194/tc-15-4261-2021

Xiao, X., Liang, S., He, T., Wu, D., Pei, C., and Gong, J. (2021). Estimating fractional 
snow cover from passive microwave brightness temperature data using MODIS snow 

cover product over North America. Cryosphere 15 (2), 835–861. doi:10.5194/tc-15-835-
2021

Xiao, X., He, T., Liang, S., Liang, S., Liu, X., Ma, Y., et al. (2024). Towards a gapless 1 
km fractional snow cover via a data fusion framework. ISPRS J. Photogrammetry Remote 
Sens. 215, 419–441. doi:10.1016/j.isprsjprs.2024.07.018

Xing, D., Hou, J., Huang, C., and Zhang, W. (2022). Spatiotemporal reconstruction 
of MODIS normalized difference snow index products using U-net with partial 
convolutions. Remote Sens. (Basel). 14, 1795. doi:10.3390/rs14081795

Xu, J., Hua, R., Wang, S., Lhermitte, S., Gu, Q., Yu, B., et al. (2025). MAT-
MS: a mask-aware transformer for constructing gap-free MODIS normalized 
difference snow index products. ISPRS J. Photogrammetry Remote Sens. 227, 775–788. 
doi:10.1016/j.isprsjprs.2025.07.004

Yan, D., Zhang, Y., and Gao, H. (2024). Development of a daily cloud-free snow-cover 
dataset using MODIS-based snow-cover probability for High Mountain Asia during 
2000–2020. Remote Sens. (Basel). 16, 2956. doi:10.3390/rs16162956

Yang, Y., Chen, R., Liu, G., Liu, Z., and Wang, X. (2022). Trends and variability 
in snowmelt in China under climate change. Hydrol. Earth Syst. Sci. 26 (2), 305–329. 
doi:10.5194/hess-26-305-2022

Yang, K., John, A., Shean, D., Lundquist, J. D., Sun, Z., Yao, F., et al. 
(2023). High-resolution mapping of snow cover in montane meadows and 
forests using Planet imagery and machine learning. Front. Water 5, 1128758. 
doi:10.3389/frwa.2023.1128758

Yang, J., Jiang, Y., Song, Q., Wang, Z., Hu, Y., Li, K., et al. (2025). An approach 
for multi-source land use and land cover data fusion considering spatial correlations. 
Remote Sens. (Basel). 17, 1131. doi:10.3390/rs17071131

Yang, Q., Song, K., Hao, X., Chen, S., and Zhu, B. (2018). An assessment of 
snow cover duration variability among three basins of songhua river in northeast 
China using binary decision tree. Chin. Geogr. Sci. 28 (6), 946–956. doi:10.1007/
s11769-018-1004-0

Yang, Y.-J., Wu, B.-D., Shi, C.-E., Zhang, J.-H., Li, Y.-B., et al. (2013). Impacts 
of Urbanization and Station-relocation on Surface Air Temperature Series in Anhui 
Province, China. Pure Appl. Geophys. 170 (11), 1069–1083. doi:10.1007/s00024-012-
0619-9

Yatheendradas, S., and Kumar, S. (2022). A novel machine learning–based gap-
filling of fine-resolution remotely sensed snow cover fraction data by combining 
downscaling and regression. J. Hydrometeorol. 23 (5), 637–658. doi:10.1175/jhm-d-20-
0111.1

Ye, F., Cheng, Q., Hao, W., and Yu, D. (2024). Reconstructing MODIS normalized 
difference snow index product on Greenland ice sheet using spatiotemporal 
extreme gradient boosting model. J. Hydrology 645, 132277. doi:10.1016/j.jhydrol.
2024.132277

Ying, J. J., Yang, J. W., Jiang, L. M., Pan, J. M., Zhang, C., Xiong, C., et al. 
(2025). Evaluation of the sentinel-1 SAR-based snow depth product over the northern 
Hemisphere. J. Hydrology 661, 133593. doi:10.1016/j.jhydrol.2025.133593

You, Q., Wu, T., Shen, L., Pepin, N., Zhang, L., Jiang, Z., et al. (2020). Review of snow 
cover variation over the Tibetan Plateau and its influence on the broad climate system. 
Earth-Science Rev. 201, 103043. doi:10.1016/j.earscirev.2019.103043

Yu, X. (2017). Cloud removing method and accuracy verification of snow extent product 
in high Asia area. (master’s thesis). Liaoning Technical University. Available online at:  
h t t p s : / / k n s . c n k i . n e t / k c m s 2 / a r t i c l e / a b s t r a c t ? v = Z s c d H 8 N a P i _ n 4 J T u k E 5 B L V 0 
 s b G L j k N Y m 7 _ i H z H t T Z 4 s 2 J 6 M s H E K v x 8 U q - G e q U t U B Y S m _ r P B j n c o _ 
 f Z d p z s n v r 7 r s K J o g 2 1 M 6 L s q w I d X I a w H 4 w k X t s x C m 6 4 P 7 U c I U H 7 8 e 8 M s k 9 r Y E l B 
 b J V 3 j t 3 t i A u n i T R w U j 8 0 c Q L I A u n l n S 1 B i c _ w 7 0 u n S m _ g = = & 
u n i p l a t f o r m = N Z K P T & l a n g u a g e = C H S.

Zakeri, F., and Mariethoz, G. (2024). Synthesizing long-term satellite imagery 
consistent with climate data: application to daily snow cover. Remote Sens. Environ. 300, 
113877. doi:10.1016/j.rse.2023.113877

Zhang, T. (2005). Influence of the seasonal snow cover on the ground thermal regime: 
an overview. Rev. Geophys. 43 (4). doi:10.1029/2004rg000157

Zhang, Y.-F., and Yang, Z.-L. (2016). Estimating uncertainties in the newly developed 
multi-source land snow data assimilation system. J. Geophys. Res. Atmos. 121 (14), 
8254–8268. doi:10.1002/2015jd024248

Zhang, G., Xie, H., Yao, T., Liang, T., and Kang, S. (2012). Snow cover dynamics of 
four lake basins over Tibetan Plateau using time series MODIS data (2001–2010). Water 
Resour. Res. 48 (10). doi:10.1029/2012wr011971

Zhang, H., Zhang, F., Che, T., and Wang, S. (2020a). Comparative evaluation of 
VIIRS daily snow cover product with MODIS for snow detection in China based 
on ground observations. Sci. Total Environ. 724, 138156. doi:10.1016/j.scitotenv.2020.
138156

Zhang, Y., Qin, X., Li, X., Zhao, J., and Liu, Y. (2020b). Estimation of shortwave solar 
radiation on clear-sky days for a valley glacier with sentinel-2 time series. Remote Sens. 
(Basel). 12, 927. doi:10.3390/rs12060927

Zhang, Y., Song, Y., Ye, C., and Liu, J. (2023). An integrated approach to 
reconstructing snow cover under clouds and cloud shadows on Sentinel-
2 Time-Series images in a mountainous area. J. Hydrology 619, 129264. 
doi:10.1016/j.jhydrol.2023.129264

Frontiers in Earth Science 21 frontiersin.org

https://doi.org/10.3389/feart.2025.1649808
https://doi.org/10.1175/1520-0450(2000)039<1866:amosco>2.0.co;2
https://doi.org/10.1016/j.rse.2003.10.016
https://doi.org/10.1080/01431161.2024.2429784
https://doi.org/10.1080/10106049.2019.1704069
https://doi.org/10.5194/ tc-17-567-2023
https://doi.org/10.5194/ tc-17-567-2023
https://doi.org/10.1117/1.jrs.7.073582
https://doi.org/10.1007/s40641-019-00143-w
https://doi.org/10.1080/01431161.2020.1779379
https://doi.org/10.5194/hess-13-1439-2009
https://doi.org/10.1002/2013wr014734
https://doi.org/10.27352/d.cnki.gylgu.2022.000607
https://doi.org/10.1016/j.rse.2007.05.016
https://doi.org/10.7522/j.issn.1000-0240.2022.0039
https://doi.org/10.1109/tgrs.2022.3224126
https://doi.org/10.3390/rs14030782
https://doi.org/10.3390/rs14194880
https://doi.org/10.1109/tgrs.2023.3299617
https://doi.org/10.1002/gdj3.70017
https://doi.org/10.1007/s40333-025-0098-3
https://doi.org/10.1007/s40333-025-0098-3
https://doi.org/10.1029/rg020i001p00067
https://doi.org/10.1098/rsta.2018.0161
https://doi.org/10.1016/j.asr.2019.03.014
https://doi.org/10.5194/tc-15-4261-2021
https://doi.org/10.5194/tc-15-835-2021
https://doi.org/10.5194/tc-15-835-2021
https://doi.org/10.1016/j.isprsjprs.2024.07.018
https://doi.org/10.3390/rs14081795
https://doi.org/10.1016/j.isprsjprs.2025.07.004
https://doi.org/10.3390/rs16162956
https://doi.org/10.5194/hess-26-305-2022
https://doi.org/10.3389/frwa.2023.1128758
https://doi.org/10.3390/rs17071131
https://doi.org/10.1007/ s11769-018-1004-0
https://doi.org/10.1007/ s11769-018-1004-0
https://doi.org/10.1007/s00024-012-0619-9
https://doi.org/10.1007/s00024-012-0619-9
https://doi.org/10.1175/jhm-d-20-0111.1
https://doi.org/10.1175/jhm-d-20-0111.1
https://doi.org/10.1016/j.jhydrol.2024.132277
https://doi.org/10.1016/j.jhydrol.2024.132277
https://doi.org/10.1016/j.jhydrol.2025.133593
https://doi.org/10.1016/j.earscirev.2019.103043
https://kns.cnki.net/kcms2/article/abstract?v=ZscdH8NaPi_n4JTukE5BLV0sbGLjkNYm7_iHzHtTZ4s2J6MsHEKvx8Uq-GeqUtUBYSm_rPBjnco_fZdpzsnvr7rsKJog21M6LsqwIdXIawH4wkXtsxCm64P7UcIUH78e8Msk9rYElBbJV3jt3tiAuniTRwUj80cQLIAunlnS1Bic_w70unSm_g==&uniplatform=NZKPT&language=CHS
https://kns.cnki.net/kcms2/article/abstract?v=ZscdH8NaPi_n4JTukE5BLV0sbGLjkNYm7_iHzHtTZ4s2J6MsHEKvx8Uq-GeqUtUBYSm_rPBjnco_fZdpzsnvr7rsKJog21M6LsqwIdXIawH4wkXtsxCm64P7UcIUH78e8Msk9rYElBbJV3jt3tiAuniTRwUj80cQLIAunlnS1Bic_w70unSm_g==&uniplatform=NZKPT&language=CHS
https://kns.cnki.net/kcms2/article/abstract?v=ZscdH8NaPi_n4JTukE5BLV0sbGLjkNYm7_iHzHtTZ4s2J6MsHEKvx8Uq-GeqUtUBYSm_rPBjnco_fZdpzsnvr7rsKJog21M6LsqwIdXIawH4wkXtsxCm64P7UcIUH78e8Msk9rYElBbJV3jt3tiAuniTRwUj80cQLIAunlnS1Bic_w70unSm_g==&uniplatform=NZKPT&language=CHS
https://kns.cnki.net/kcms2/article/abstract?v=ZscdH8NaPi_n4JTukE5BLV0sbGLjkNYm7_iHzHtTZ4s2J6MsHEKvx8Uq-GeqUtUBYSm_rPBjnco_fZdpzsnvr7rsKJog21M6LsqwIdXIawH4wkXtsxCm64P7UcIUH78e8Msk9rYElBbJV3jt3tiAuniTRwUj80cQLIAunlnS1Bic_w70unSm_g==&uniplatform=NZKPT&language=CHS
https://kns.cnki.net/kcms2/article/abstract?v=ZscdH8NaPi_n4JTukE5BLV0sbGLjkNYm7_iHzHtTZ4s2J6MsHEKvx8Uq-GeqUtUBYSm_rPBjnco_fZdpzsnvr7rsKJog21M6LsqwIdXIawH4wkXtsxCm64P7UcIUH78e8Msk9rYElBbJV3jt3tiAuniTRwUj80cQLIAunlnS1Bic_w70unSm_g==&uniplatform=NZKPT&language=CHS
https://kns.cnki.net/kcms2/article/abstract?v=ZscdH8NaPi_n4JTukE5BLV0sbGLjkNYm7_iHzHtTZ4s2J6MsHEKvx8Uq-GeqUtUBYSm_rPBjnco_fZdpzsnvr7rsKJog21M6LsqwIdXIawH4wkXtsxCm64P7UcIUH78e8Msk9rYElBbJV3jt3tiAuniTRwUj80cQLIAunlnS1Bic_w70unSm_g==&uniplatform=NZKPT&language=CHS
https://doi.org/10.1016/j.rse.2023.113877
https://doi.org/10.1029/2004rg000157
https://doi.org/10.1002/2015jd024248
https://doi.org/10.1029/2012wr011971
https://doi.org/10.1016/j.scitotenv.2020.138156
https://doi.org/10.1016/j.scitotenv.2020.138156
https://doi.org/10.3390/rs12060927
https://doi.org/10.1016/j.jhydrol.2023.129264
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhang et al. 10.3389/feart.2025.1649808

Zhang, Y., Ning, G., Chen, S., and Yang, Y. (2021). Impact of rapid urban sprawl on 
the local meteorological observational environment based on remote sensing images 
and GIS technology. doi:10.3390/rs13132624

Zhang, Y., Ye, C., Yang, R., and Li, K. (2024). Reconstructing snow cover under clouds 
and cloud shadows by combining sentinel-2 and Landsat 8 images in a mountainous 
region. Remote Sens. (Basel). 16, 188. doi:10.3390/rs16010188

Zheng, Z., and Cao, G. (2019). Snow cover dataset based on multi-source 
remote sensing products blended with 1km spatial resolution on the Qinghai-
Tibet Plateau (1995-2018). Natl. Tibet. Plateau/Third Pole Environ. Data Cent. 
doi:10.11888/Snow.tpdc.270102

Zhu, L. (2022). Snow-cover reconstruction at the watershed scale with 
fine spatial and temporal resolution based on machine learning. (doctoral 
dissertation). Nanjing University of Information Science and Technology. 
doi:10.27248/d.cnki.gnjqc.2022.000020

Zhu, X., Chen, J., Gao, F., Chen, X., and Masek, J. G. (2010). An enhanced 
spatial and temporal adaptive reflectance fusion model for complex heterogeneous 
regions. Remote Sens. Environ. 114 (11), 2610–2623. doi:10.1016/j.rse.2010.
05.032

Zhu, X., Helmer, E. H., Gao, F., Liu, D., Chen, J., and Lefsky, M. A. (2016). A flexible 
spatiotemporal method for fusing satellite images with different resolutions. Remote 
Sens. Environ. 172, 165–177. doi:10.1016/j.rse.2015.11.016

Zhu, X., Zhan, W., Zhou, J., Chen, X., Liang, Z., Xu, S., et al. (2022). 
A novel framework to assess all-round performances of spatiotemporal 
fusion models. Remote Sens. Environ. 274, 113002. doi:10.1016/j.rse.2022.
113002

Zhu, L., Ma, G., Zhang, Y., Wang, J., and Kan, X. (2023). Reconstruction of snow cover 
in Kaidu River Basin via snow grain size gap-filling based on machine learning. Water 
(Basel). 15, 3726. doi:10.3390/w15213726

Frontiers in Earth Science 22 frontiersin.org

https://doi.org/10.3389/feart.2025.1649808
https://doi.org/10.3390/rs13132624
https://doi.org/10.3390/rs16010188
https://doi.org/10.11888/Snow.tpdc.270102
https://doi.org/10.27248/d.cnki.gnjqc.2022.000020
https://doi.org/10.1016/j.rse.2010.05.032
https://doi.org/10.1016/j.rse.2010.05.032
https://doi.org/10.1016/j.rse.2015.11.016
https://doi.org/10.1016/j.rse.2022.113002
https://doi.org/10.1016/j.rse.2022.113002
https://doi.org/10.3390/w15213726
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

	1 Introduction
	2 Snow cover products derived from polar-orbiting satellites
	3 Snow cover reconstruction methods
	3.1 Reconstruction methods for BSC products
	3.2 Reconstruction methods for the NDSI and FSC products
	3.2.1 Temporal and spatial interpolation methods
	3.2.2 Spatiotemporal reconstruction algorithms
	3.2.3 Machine learning-based reconstruction algorithms
	3.2.4 Data assimilation methods


	4 Validation and evaluation methods
	4.1 Reference data for validation and evaluation
	4.2 Evaluation metrics and validation results

	5 Discussion
	6 Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

