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In complex structural zones shaped by multi-phase tectonic movements,
the coexistence of diverse structural origins and intricate hydrocarbon
accumulation conditions makes fracture prediction a critical technical challenge
in oil and gas exploration. Current methods face two key limitations:
conventional single-attribute seismic analysis falls short of satisfying high-
precision fracture detection requirements, while deep learning approaches,
despite their progress, suffer from poor generalization due to limited training
samples. To address these issues, this study proposes a multi-attribute
fusion method that synergistically combines Wasserstein GAN (WGAN) and
U-Net++. The proposed approach effectively enlarges the training dataset
while maintaining geological fidelity, empowering the trained network to
hierarchically extract fracture features across multiple scales. Field tests show
our method achieves precise alignment with well-log interpretations and
delivers superior performance to conventional attribute-based techniques
in both major and micro-fracture identification, demonstrating superior
noise resistance and generalizability for fracture prediction across different
study areas.

multi-attribute calculations, generate adversarial network, U-Net++, fault
characterization, dataset

1 Introduction

With accelerating development of the global economy, energy demand—particularly for
natural gas and crude oil—has surged significantly. Conventional hydrocarbon resources
are increasingly inadequate to meet evolving economic requirements, while persistent
international price escalation has rendered unconventional oil and gas exploration an
imperative research priority. Reservoir fracture systems, functioning as vital conduits and
storage spaces for hydrocarbon migration and accumulation, remain central to petroleum
geology and geophysical research. As exploration shifts toward deep, ultra-deep, and
unconventional reservoirs, fracture prediction technology faces unprecedented challenges
and opportunities. This study systematically investigates a hybrid multi-attribute deep
learning framework based on generative adversarial networks (GANSs), offering innovative
solutions to address key scientific challenges in contemporary fracture characterization.
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FIGURE 1
Multi-attribute fusion generative adversarial network flowchart.
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With the advancement of signal processing technology,
spectral analysis has emerged as an important supplementary
approach in fracture prediction as a nonlinear method for
extracting implicit frequency characteristics from seismic
data. In recent years, significant progress has been made
in the application research of spectral analysis for fracture
prediction (Lei et al., 2024; Marfurt et al., 1998) by uncovering
the implicit frequency-domain information in seismic data,
spectral analysis provides a novel perspective for fracture
prediction that differs from traditional geometric attributes,
demonstrating strong adaptability particularly in weak signal zones
or complex reservoirs (Cai et al, 2022). With the refinement
of spectral decomposition techniques (such as improved time-
frequency resolution), deeper understanding of absorption-
attenuation mechanisms, (Sun et al, 2024) and the integration
of artificial intelligence methods, spectral analysis is expected
to become an indispensable technical approach for fracture
prediction in the future, providing critical support for detailed
reservoir characterization and efficient hydrocarbon development
(Fu et al., 2024; Yuan et al., 2024).
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Advancements in computational technologies have significantly
propelled innovation in fault detection methodologies (Bi and
Wu, 2021). Traditional approaches typically involve linking
discontinuities in 2D seismic reflection horizons to construct fault
frameworks. Established techniques encompass coherence cube
analysis, variance analysis, edge detection (Dorigo et al., 1999),
post-stack target processing, and forward modeling. The core
fault identification technologies include coherence cube/volume
analysis, variance cube analysis, ant colony optimization algorithms,
and edge detection methodologies (Hocker and Fehmers, 2002;
Zhou et al., 2022). These approaches provide critical guidance for
fault interpretation with broad applicability, necessitating rigorous
methodological selection during practical implementations to
maximize positional accuracy. Ongoing technological progress
continues to transform fault identification practices (Chopra and
Marfurt, 2007). The synergistic integration of computer science
and seismological expertise enables enhanced characterization
of subsurface fault geometries (Gersztenkorn and Marfurt,
2002), offering crucial support for geological exploration
and resource development (Kingma and Ba, 2014). These
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FIGURE 2
Architecture diagram of generative adversarial networks.

FIGURE 3
Fracture prediction results: Maximum likelihood Attribute (a) and

refined maximum likelihood attribute (b).

Future advancements promise transformative breakthroughs in
this domain.

The integration of machine learning technology has ushered
in a new era of development. The inaugural application
of backpropagation neural networks (BP) to multi-attribute
fracture prediction significantly improved objectivity Subsequent
adoption of support vector machines (SVM) and random forests
nevertheless encountered inherent limitations due to shallow
learning architectures' constrained representational capacity for
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FIGURE 4

(a,b) Gradient structure tensor attribute prediction results.
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FIGURE 5

Maximum positive curvature attribute (a) and minimum negative
curvature attribute fracture prediction results (b).

complex fracture systems (Gibson et al, 2003) 2013-Present:
Deep Learning Revolution (Cui et al., 2025). The transformative
deployment of convolutional neural networks (CNNs) achieved
breakthroughs in North Sea oil field fault identification (Wang et al.,
2024). Generative adversarial networks (GANs) subsequently
addressed small-sample learning challenges (Marfurt et al., 1998).
Architectural innovations like U-Net and Transformer models
ushered in intelligent fracture recognition (Bhunia et al.,, 2018).
Recent advancements including 2.5D Transformer U-Net and Fault-
Seg-Net demonstrate significant advantages in complex fracture
scenarios (Chan et al., 2022; Xue et al, 2016). Notwithstanding
progress, deep learning confronts critical data scarcity constraints:
reliable fracture labels constitute <5% of total project data (Cao et al.,
2024; Liu et al, 2025). Conventional augmentation strategies
(rotational/flipping  transformations) inadequately  simulate
complex fracture geometries, impairing model generalization—a
particularly acute challenge in frontier basins with limited historical
datasets (Ledig et al., 2017; Zhang et al., 2025).

As a data-driven paradigm, deep learning offers automation
advantages and scalability. Modern machine/deep learning
frameworks enable automated feature extraction and optimization
(Lecun et al, 1998), achieving cross-industry adoption. This
study proposes an enhanced hybrid multi-attribute deep learning
framework that innovatively combines conventional attribute
prediction methodologies (Bhunia et al., 2018). The system aims

to improve exploration efficiency, optimize drilling success rates
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FIGURE 6
Fracture prediction results derived from frequency-dependent
coherent attribute analysis under different frequency bands.

through subsurface engineering data integration, and investigate
GAN-CNN synergies in fault identification while evaluating
geological science implications (Di et al., 2019).

2 Methods
2.1 Workflow

This study introduces a deep learning architecture that integrates
the Wasserstein Generative Adversarial Network (WGAN) and
U-Net++, constructing a multi-attribute fusion-based fracture
identification system (as shown in Figure 1) (Li et al, 2024).
The single-attribute fracture prediction results from actual
field data—including maximum likelihood attributes, coherent
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attributes, gradient structure tensor attributes, and curvature
attributes—are fed into the WGAN (Xu et al., 2024). This ensures
that the generated synthetic data exhibits geological plausibility
while addressing the issue of scarce labeled data. The outputs
from the WGAN are then processed by the U-Net++ network.
The high-fidelity synthetic data substantially improves the realism
and generalization capability during U-Net++ training. Once the
network reaches stability (Gan et al., 2025), it is applied to reprocess
the actual field data for fracture identification (Niu et al., 2024). The
resulting predictions align more closely with manual interpretations
and demonstrate markedly enhanced performance in detecting
small-scale fractures (Ding et al., 2025; Chopra and Marfurt, 2007).

2.2 Label generation using multi-attribute
fusion generative adversarial network

2.2.1 Wasserstein Generative Adversarial Network
(WGAN)

Goodfellow etal. proposed a novel architecture based on
in 2014, which
a fundamental departure from traditional neural networks

convolutional neural networks introduced

by comprising two components: a generator and a
discriminator. This framework was named Generative Adversarial
Networks (GAN) (Wu et al., 2021).

As illustrated in Figure 2 the input data includes “ingredients”
required to synthesize realistic data: original feature values (labels),
random noise, and raw data. Through the generator, new labeled
data is produced and passes the discriminator’s evaluation.
After iterative training, the network ultimately generates data
indistinguishable from real samples (Mao et al., 2017).

Traditional GANs employ KL divergence or JS divergence
for training, but these methods suffer from issues like gradient
vanishing and mode collapse. To address these problems, the
Wasserstein  Generative Adversarial Network (WGAN) was
proposed. The core innovation of WGAN lies in replacing traditional
divergence metrics with the Wasserstein distance to measure the
distance between probability distributions (Equation 1).

W(Pr’Pg) - inf7~l'I(PnPg) Eeyyll 2=y ] )

In the above formula, [] (P,,Pg) represents the set of all joint
distributions of P, and P,. For each possible joint distribution y,the
distance || x—y || between the real sample x and the fake sample
y can be calculated. Then, the expected value E(x,y)~y[|| x=y|] of
the samples and the distance for the joint distribution y can be
computed. The lower bound infy~1‘[(P,,Pg) E(x,y)~y[” x—y|] of the
entire probability is the Wasserstein distance. It can be understood
that E(, [l x—y [I] represents the energy consumption required
to push P, to P, under the overall situation of y and W(P,, Pg) is the
minimum consumption for the shortest distance.

Since the solution of infy~l—[(P”Pg) cannot be obtained directly, it
is changed to a Lipschitz - continuous form. That is, a restriction
condition is added to the function to obtain an optimal solution that
can be used as a substitute. As shown in Formula 2.

W(P,Py) = 3 5uby, e B, LFOO1 - Eup [fD] )
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FIGURE 7

Augmented Labeled Dataset via WGAN Network (a—c):Labels generated from iterations 50 (d—i):Labels generated after network stabilization.

In the above - mentioned (Formula 3), K>0 and any two
elements must satisfy.

|f(x1)_f(x2)| SK|xl_xQ| (3)

which is indicated by the arrow (3). Kis called the Lipschitz constant.
Then, Formula 5 can be understood as taking the upper bound
of E, p [f(x)] —E%Pq[f(x)] for all eligible under the condition of
the constant K,and then shrinking it by K times. In generative
adversarial networks, the parameter w is needed to complete
the update of the function f(w), as shown in the following
Formula 4.

K- W(Pr’Pg> = maxw:lfw‘LSKE ~P, [fw(x)] - Ex~Pg [fw(x)] (4)

L:EX~P,[fw(x)] _Ex~Pg[fa)(x)] (5

The results obtained in the above formula are approximate
to the Wasserstein distance between the real samples and the
generated samples. By minimizing the Wasserstein distance, that
is, minimizing L, the problem of gradient vanishing can be solved.
Since the activation function in the last layer of the discriminator
network in the original GAN is designed for a binary classification
task, but now it is improved using the Wasserstein distance, there
is no need to continue using the Sigmoid function as the activation
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function in the last layer. From Equations 6, 7, we can obtain the
latest loss functions of the two networks.

Lg=- x~Pg[fw(x)] (6)

Lp=E, p [fo(0)] - Ex~Pg (fo)] (7)

In summary, the key improvements of WGAN can be
categorized into four principal aspects: (1) Removing the Sigmoid
function in the last layer of the discriminator network; (2) Adopting
the improved forms of the loss functions for both the generator
and discriminator networks as mentioned above, instead of
using the log - form; (3) Ensuring that the absolute value of the
updated parameters does not exceed a fixed constant; (4) Selecting
appropriate optimization algorithms. Sometimes, using momentum
gradient descent and adaptive moment estimation algorithms may
cause instability in the loss function, leading to substantial variations
in the generated samples.

2.2.2 Label data preparation

The utilization of highly geologically plausible and high-fidelity
labeled data can significantly enhance the predictive performance
of neural networks. This study employs a WGAN (Wasserstein
Generative Adversarial Network) to generate high-quality labeled
data. The process first requires obtaining prediction results from

frontiersin.org
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FIGURE 8
U-Net++ convolutional neural network architecture.

CDP

FIGURE 9
Fracture interpretation results manually identified by experts.

actual seismic data processed through single-attribute analysis  making it an excellent benchmark for validating the models training
within the target area, which serves as the “raw material” for training  effectiveness.

the WGAN. For validation purposes the North Sea F3 Block in the First, the seismic data is processed using the single-attribute
Netherlands, a publicly available seismic dataset collected in 1987,  method (Figures 3-6), and its prediction results are input into the
is widely referenced in studies on AI-based seismic fault detection. =~ WGAN network. Through multiple iterations, this generates labeled
This dataset contains numerous faults with distinct characteristics, ~ data that more closely resembles real geological samples.
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FIGURE 10
Fracture prediction results using manually labeled data.

FIGURE 11

Fracture prediction results using labels generated by the multi-attribute fusion generative adversarial network.

After processing the single-attribute-generated results through
slicing and grayscale/binary image processing, geologically
realistic labeled samples are obtained. These pseudo-labeled
samples are then input into the generator network. The generated
pseudo-labeled data and real data are subsequently assessed for
authenticity by the discriminator network. Through iterative
refinement, the gap between the generator’s output and the
real data gradually diminishes until high-quality labeled data
meeting research requirements is achieved, thereby completing
the expansion of the labeled dataset.

Frontiers in Earth Science

The WGAN-generated label samples successfully mitigate
the issue of sample methods. As
demonstrated in the which  depicts  label
samples obtained from the trained network, the generated

scarcity in previous
figure below,

labels exhibit enhanced realism and diversity. Unlike prior
approaches that were constrained to detecting only prominent
fractures and simplistic/linear labels, these improved results
demonstrate finer structural details and more natural
variations, thereby achieving closely alignmen with real-world
geological features (Figure 7).
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FIGURE 12
Comprehensive Fracture Evaluation of Well 1 vs. Imaging Well Logging-Based Fracture Development.

2.3 Fracture prediction network
architecture

U-Net++ is an advanced segmentation model proposed in
previous studies, first developed for medical image segmentation
and conceptually extended from the U-Net architecture. It belongs
to a deeply supervised network structure.
Building upon the U-Net convolutional neural network, it enhances

“encoder-decoder”

the architecture through deeply supervised encoder-decoder
mechanisms, with the specific structure illustrated in Figure 8
(Zhu et al, 2017). The U-Net++ network integrates sub-U-Net
structures at different hierarchical levels and introduces dense
connections and multi-scale feature fusion mechanisms into the
original U-Net design (Xue et al, 2016). These improvements
enable the network to more effectively extract features at multiple
scales from images and propagate them to subsequent layers. The
dense connections and skip connections reduce information loss
during network transmission, better preserving image details. The
architectural enhancements in U-Net++ improve its generalization
capability, making it more adaptable to diverse image datasets and
increasing the model’s versatility (Xu et al., 2021).

The high-quality label data generated via the aforementioned
Wasserstein Generative Adversarial Network (WGAN), after iterative
refinement, provide an extensive dataset of accurate and stable
synthetic labels. These labels constitute the primary training data for
the U-Net++ network. Consequently, the trained network achieves
substantially enhanced accuracy, enabling precise identification of
most fine fractures. Results will be presented in subsequent sections.

Frontiers in Earth Science

3 Results and discussion

3.1 Test data

The performance of current deep learning-based fracture
detection methods is primarily contingent upon the quality of
training samples. Model training requires large volumes of labeled
data, and only datasets containing comprehensive fracture types can
ensure accurate predictions. The multi-attribute fusion generative
adversarial network (WGAN)-based fracture prediction method
proposed in this study focuses on generating high-quality synthetic
data that mirrors the quality of the input training samples, thereby
significantly improving model precision. Final predictions are
subsequently performed using the U-Net++ network model.

In this study, we input pre-prepared single-attribute-generated
label datasets into the Wasserstein GAN for training. After network
stabilization, the U-Net++ model is trained to obtain fracture
prediction results. During the training process of the Wasserstein
Generative Adversarial Network (WGAN), the generated dataset
evolves with increasing iteration epochs. After selecting an optimal
iteration count, the generated dataset undergoes normalization and
is formatted into uniformly sized samples suitable for input into the
U-Net++ network, thereby constructing its training dataset. This
approach eliminates the labor-intensive manual annotation process
while concurrently boosting the model’s generalization capability.

To establish a performance benchmark, we additionally train
the U-Net++ model using manually labeled datasets and Fracture
interpretation results manually identified by experts (as a control

frontiersin.org


https://doi.org/10.3389/feart.2025.1642287
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

Zhang et al. 10.3389/feart.2025.1642287
N=146
0-10 1020 20-30 30-40 40-50 50-60 60-70 70-80 80-90
Fracture dip angle
45.00
40.00 N=223
35.00
30.00
525.00
=
g’ 20.00
15.00
10.00
5.00
0.00
0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90
( d) Fracture dip angle
45
N=144
‘o -
3Bk
0 b
-
25
2
Z20r
—
15+
10
..I . 0-10 1020 2030 3040 4050 5060 60-70 70-80 80-90
( e) } 210 0 ' ( f) Fracture dip angle
FIGURE 13

angles in well 3.

(a) Rose diagram of fracture orientations in well 1; (b) histogram of fracture inclination angles in well 1; (c) rose diagram of fracture orientations in well
2; (d) histogram of fracture inclination angles in well 2; (e) rose diagram of fracture orientations in well 3; (f) histogram of fracture inclination

group). As shown in Figures 9-11, the proposed WGAN-based
method demonstrates superior performance in identifying small
fault features compared to the manual labeling approach. Given the
complex structural characteristics of the study area, this advantage
is particularly pronounced.

Through comparative experiments, significant differences were
observed between the fracture prediction results of the U-Net++
network trained solely on manually labeled data and those trained
on WGAN-augmented labeled datasets. The U-Net++ model

Frontiers in Earth Science 09

trained with manually labeled data demonstrates the capability to
effectively identify prominent faults and large fractures but exhibits
limited precision in capturing subtle features, making it insufficient
for comprehensive fracture characterization. In contrast, the model
trained on WGAN-generated labels produces more refined and
complete results. When benchmarked against manual fracture
identification, our method achieves detailed characterization of
small fractures. These comparative results further validate the
effectiveness and practicality of the proposed approach.
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FIGURE 15
Seismic data profiles before (a) and after (b) structure-oriented filtering.

FIGURE 16
Frequency-decomposed coherence attributes based on matching pursuit. (a) 30 HZ, (b) 40 Hz, (c) 50 Hz, (d) 60 Hz.
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Fracture distribution based on multi-frequency coherence attribute fusion for TzX,2 (a), TsX,* (b).

3.2 Field data

3.2.1 Study area

The study area is located in the middle-northern segment of
the Western Sichuan Depression, within the Xujiahe Formation,
extending in a near-east-west direction. Its boundaries are defined
by the Xiaquan Structural Belt, Fenggu Structural Belt, Zitong Sag,

Frontiers in Earth Science

Chengdu Sag, and its eastern margin (Wang et al., 2024). This region
has undergone multiple tectonic events since the Late Triassic,
forming a complex ancient large uplifted region (Deng et al., 2022;
Zhao et al., 2024). The Xujiahe Formation in the Western Sichuan
Depression has experienced successive tectonic movements during
the Indosinian, Yanshanian, and Himalayan orogenic periods,
ultimately shaping a regional structural framework characterized
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Fracture distribution based on gradient structure tensor attributes for TsX,? (a), TsX,* (b).
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Fracture distribution based on curvature attributes for TsX,?, TsX,* (a,b) maximum positive curvature attribute fracture distribution (c,d) minimum

by high relief in the northwest and low-lying topography in the
southeast (Zhao et al., 2017).

Well logging interpretation is essential for fracture prediction, as
it provides insights into fracture development. This study primarily
utilizes well logging data to conduct comparative interpretations
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with seismic attributes and deep learning methods, thereby verifying
the accuracy of our fracture prediction results. The presence
of fractures induces anomalous responses in conventional well
logging curves (Figure 12), such as distinctive patterns in acoustic
curves at fracture intervals. While imaging well logging offers
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superior fracture identification capabilities, its high cost limits data
availability in the study area. Consequently, this research combines
conventional well logging data with supplementary imaging well
logging data to enhance fracture identification.

Through conventional well logging and imaging well logging
methods, comprehensive interpretations have been conducted
to describe fracture feature variations across different regions.
Below are detailed analyses of two representative wells. Figure 13
illustrates the rose diagram of fracture orientations and inclination
angle distribution histogram for Well 1. The results indicate that
fractures in Well one and Well three predominantly exhibit SE-
NW (120°-130°) and SWW-NEE (70°-90°) orientations. Fracture
inclinations are primarily 0°-10°, with moderate-to-high-angle
fractures (10°-30°) also well-developed. Additionally, fracture
aperture increases progressively with depth. Figure 13 displays the
rose diagram and inclination angle distribution histogram for Well
2. Fractures in this well are dominated by low-angle orientations
(10°-20°), while moderate-angle fractures are underdeveloped, and
high-angle fractures are absent. In the Xu2 Member, fracture linear
density initially increases with depth and then fluctuates downward.

Based on calculating the linear density of fractures in the target
stratigraphic interval (Xu2 Member of the Xujiahe Formation),
high-value zones of fracture density are identified within the three-
stage tectonic stress integration region. The well logging results
will serve as the primary validation basis for subsequent fracture
prediction outcomes derived from multi-attribute prediction and
the multi-attribute fusion generative adversarial network (WGAN)
method. Through integration with well logging interpretations
and fracture development characteristics, the final fracture
characterization results will achieve greater credibility.

3.2.2 Conventional attribute-based fracture
prediction

Seismic data with distinct attribute characteristics play a crucial
role in fracture identification. The Xujiahe Formation primarily
consists of tight sandstone deposits, and its seismic data exhibit
high quality, with notable resolution and frequency attributes.
As shown in Figure 14, the seismic bandwidth is 63 Hz, and
spectral analysis reveals that the dominant frequencies are primarily
distributed between 20 Hz and 80 Hz.

The identification results of fractures vary under different
frequency characteristics. In this study, we employ Matching Pursuit
Spectral Decomposition (MPSD) processing within the effective
frequency band to obtain distinct frequency-component volumes.
Subsequently, structure-oriented filtering is applied to these
frequency volumes to enhance the detectability of fault dip strength
and azimuth attributes (Figure 15). This integrated approach
yields results that more accurately characterize fracture features,
as the frequency-dependent processing better captures fracture-
related seismic responses while structural filtering improves the
continuity and interpretability of fracture systems. The methodology
demonstrates superior performance in identifying multi-scale
fractures compared to conventional full-spectrum approaches,
particularly in complex tight sandstone reservoirs where fracture
manifestations vary significantly across frequency bands.

As illustrated in Figure 16, this study selects frequency-
30 Hz, 40Hz, 50Hz, and 60 Hz

component volumes at
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for coherence attribute processing, yielding distinct fracture
identification outcomes.

As shown in the figure above, different frequency bands
exhibit distinct responses to fractures of varying scales.
Coherence processing of low-frequency components can effectively
characterize medium-to-large scale fractures, while coherence
processing of high-frequency components can delineate small-
scale fractures and fractures zones (Bahorich and Farmer, 1995).
Through coherence slices at different scales, it can be observed
that low-frequency components mainly reflect the macro-scale
distribution of fracture development, whereas high-frequency
components can provide more detailed characterization of
small-scale fractures (Gersztenkorn and Marfurt, 2002).

To evaluate the method proposed in this study, we performed
additional fracture identification using four attributes (Huang et al.,
2025). The specific results are shown below (All the result values
in the figure are obtained after standardized processing using
this method (Niu et al, 2025; Ren et al, 2024). The larger
the value, the greater the probability of fracture distribution
(Li et al., 2024; Zhang et al., 2025).

Fracture prediction based on maximum likelihood attributes
demonstrates that both standard and refined maximum likelihood
approaches achieve comprehensive delineation of large fractures.
Particularly noteworthy is that the refined maximum likelihood
method enhances the identification of small fractures (Figure 17).

The fundamental principle of fracture prediction based on
coherence attributes lies in delineating fractures by analyzing lateral
variations in seismic waveform continuity. This method enables
clear identification of large-scale fractures within the seismic dataset
(Figure 18; Kurt et al., 2012).

Compared with coherence attributes and maximum likelihood
attributes, the fracture layering description derived from gradient
structure tensor attributes provides clearer delineation of fracture
angles and large-scale structural features (Chen et al, 2012).
However, it exhibits limitations in characterizing small fractures
(Wang et al., 2018). In essence, this approach yields more accurate
information on the overall fracture trends within the Xujiahe
Formation (Figure 19; Chopra and Marfurt, 2007; Lou et al., 2022).

Fracture prediction based on curvature attributes exhibits a
strong response to linear features, enabling clear characterization
of fault structures and fracture delineation. Among the commonly
used methods, maximum positive curvature and minimum negative
curvature attributes yield the most effective results (Roberts,
2001). The curvature calculations of both approaches enhance
the description of stratal bending, produce stronger responses at
fracture locations, and provide richer geometric information about
the formations (Figure 20; Suo et al.,, 2012).

TABLE 1 Neural network architecture and hyperparameters.

Parameter Value
Epochs 500
Initial Learning Rate 0.005
Batch Size 5
LeakyReLU 0.2
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(a) U-Net++ accuracy curve; (b) U-Net++ loss curve.
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FIGURE 22
Comparison of manual interpretation (a) and multi-attribute fusion generative adversarial network model identification results (b) (Crossline = 2,830).

3.3 Fracture prediction results using the The model parameters are configured as Table 1, the stochastic
multi-attribute fusion generative gradient descent (SGD) algorithm is selected as the optimizer with
adversarial network an initial learning rate of 0.005, which is reduced by half every 50

epochs. The discriminator network employs a LeakyReLU activation
Since the prediction results of seismic data attributes (e.g.,  function with the negative slope parameter set to 0.2.

maximum likelihood attributes, coherence attributes, gradient Building on the multi-attribute analysis results in this chapter,
structure tensor attributes, and curvature attributes) exhibit ~ we input all single-attribute fracture prediction results into
higher authenticity compared to manually labeled data, the labels ~ the Wasserstein Generative Adversarial Network (WGAN) to
generated by the Wasserstein generative adversarial network  generate and augment synthetic data, thereby addressing the
(WGAN) can serve as reliable ground-truth labels for real insufficiency of conventional network datasets. The network
seismic data (Kosters et al., 2008). After further optimization is optimized by adjusting parameters such as loss rate and
through the U-Net++ network architecture, the predicted results  accuracy. Once stabilized, the synthetic data stored in the WGAN
achieve significantly improved geological authenticity and reliability. ~ generator is extracted and integrated with multi-attribute fracture
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FIGURE 23
Comparison of manual interpretation (a) and multi-attribute fusion generative adversarial network model identification results (b) (inline = 1,290).
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FIGURE 24
T3X,2 (a), TsX,* (b) fracture-structure overlay map.

identification results to train the U-Net++ network for fracture  datasets. The curves of loss rate and accuracy during training are
prediction. presented in Figure 21.

The U-Net++ network was trained using a dataset comprising Figures 22, 23 present integrated results of fracture prediction
180 samples, including 150 training datasets and 30 testing  via the multi-attribute fusion generative adversarial network
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(WGAN) fused with seismic cross-sections. Extracted cross-
1,390 are
benchmarked against human-expert fault interpretations. The

sectional data from xline = 2,800 and inline =

predicted fractures, including major discontinuities corroborated
by field operations, exhibit substantial concordance with expert
interpretations. Notably, the WGAN framework demonstrates
enhanced resolution of minor fractures, effectively identifying
fine-scale fractures that are challenging for conventional manual
methods. Validation via well log interpretations and multi-attribute
prediction benchmarks confirms the method’s robust accuracy and
adaptability in fracture characterization.

To better visualize fractures in the Xujiahe Formation, we
performed stratigraphic slicing on the final results and overlaid them
with structural maps to demonstrate fracture distribution (Figure 24).
The structural-fracture overlay analysis reveals that neural network
mapping effectively resolves both the overall morphology and internal
details of fractures, confirming the accuracy and reliability of the
proposed method. Planar views derived from the slices clearly delineate
fracture networks, providing precise spatial characterization within
the study area. Furthermore, profile views align predicted fractures
with actual drilling data, offering additional validation of the method’s
robustness in capturing subsurface fracture systems.

4 Conclusion

This study proposes a fracture prediction method based on
a multi-attribute fusion generative adversarial network (WGAN-
U-Net++). By integrating multi-attribute prediction results, the
approach first employs the Wasserstein generative adversarial
network (WGAN) to generate augmented samples, followed
by the U-Net++ network to achieve high-resolution fracture
characterization in the Xujiahe Formation. Experimental results
demonstrate that this method outperforms traditional approaches
and well-log data in both profile and slice interpretations, enabling
precise delineation of complex fracture networks.

Focusing on the tight sandstone reservoirs of the Xujiahe
Formation in the Western Sichuan Foreland Basin (characterized
by continental deposition and multiphase tectonic superposition),
this research addresses the application of deep learning in
fracture identification. The study area exhibits complex fracture
systems and weakened distribution patterns due to multiphase
tectonic activities, coupled with strong heterogeneity in sedimentary
environments and hydrocarbon accumulation conditions, rendering
conventional methods ineffective for high-precision prediction.
To tackle the challenge of deep learnings reliance on high-
quality labeled datasets, the proposed WGAN-U-Net++ framework
integrates multi-attribute fusion and sample augmentation, thereby
significantly improving the reliability of fracture identification in
tight sandstones. This framework presents a novel approach for
fracture prediction in complex geological settings.
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