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In complex structural zones shaped by multi-phase tectonic movements, 
the coexistence of diverse structural origins and intricate hydrocarbon 
accumulation conditions makes fracture prediction a critical technical challenge 
in oil and gas exploration. Current methods face two key limitations: 
conventional single-attribute seismic analysis falls short of satisfying high-
precision fracture detection requirements, while deep learning approaches, 
despite their progress, suffer from poor generalization due to limited training 
samples. To address these issues, this study proposes a multi-attribute 
fusion method that synergistically combines Wasserstein GAN (WGAN) and 
U-Net++. The proposed approach effectively enlarges the training dataset 
while maintaining geological fidelity, empowering the trained network to 
hierarchically extract fracture features across multiple scales. Field tests show 
our method achieves precise alignment with well-log interpretations and 
delivers superior performance to conventional attribute-based techniques 
in both major and micro-fracture identification, demonstrating superior 
noise resistance and generalizability for fracture prediction across different 
study areas.
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 1 Introduction

With accelerating development of the global economy, energy demand—particularly for 
natural gas and crude oil—has surged significantly. Conventional hydrocarbon resources 
are increasingly inadequate to meet evolving economic requirements, while persistent 
international price escalation has rendered unconventional oil and gas exploration an 
imperative research priority. Reservoir fracture systems, functioning as vital conduits and 
storage spaces for hydrocarbon migration and accumulation, remain central to petroleum 
geology and geophysical research. As exploration shifts toward deep, ultra-deep, and 
unconventional reservoirs, fracture prediction technology faces unprecedented challenges 
and opportunities. This study systematically investigates a hybrid multi-attribute deep 
learning framework based on generative adversarial networks (GANs), offering innovative 
solutions to address key scientific challenges in contemporary fracture characterization.
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FIGURE 1
Multi-attribute fusion generative adversarial network flowchart.

With the advancement of signal processing technology, 
spectral analysis has emerged as an important supplementary 
approach in fracture prediction as a nonlinear method for 
extracting implicit frequency characteristics from seismic 
data. In recent years, significant progress has been made 
in the application research of spectral analysis for fracture 
prediction (Lei et al., 2024; Marfurt et al., 1998) by uncovering 
the implicit frequency-domain information in seismic data, 
spectral analysis provides a novel perspective for fracture 
prediction that differs from traditional geometric attributes, 
demonstrating strong adaptability particularly in weak signal zones 
or complex reservoirs (Cai et al., 2022). With the refinement 
of spectral decomposition techniques (such as improved time-
frequency resolution), deeper understanding of absorption-
attenuation mechanisms, (Sun et al., 2024) and the integration 
of artificial intelligence methods, spectral analysis is expected 
to become an indispensable technical approach for fracture 
prediction in the future, providing critical support for detailed 
reservoir characterization and efficient hydrocarbon development 
(Fu et al., 2024; Yuan et al., 2024).

Advancements in computational technologies have significantly 
propelled innovation in fault detection methodologies (Bi and 
Wu, 2021). Traditional approaches typically involve linking 
discontinuities in 2D seismic reflection horizons to construct fault 
frameworks. Established techniques encompass coherence cube 
analysis, variance analysis, edge detection (Dorigo et al., 1999), 
post-stack target processing, and forward modeling. The core 
fault identification technologies include coherence cube/volume 
analysis, variance cube analysis, ant colony optimization algorithms, 
and edge detection methodologies (Höcker and Fehmers, 2002; 
Zhou et al., 2022). These approaches provide critical guidance for 
fault interpretation with broad applicability, necessitating rigorous 
methodological selection during practical implementations to 
maximize positional accuracy. Ongoing technological progress 
continues to transform fault identification practices (Chopra and 
Marfurt, 2007). The synergistic integration of computer science 
and seismological expertise enables enhanced characterization 
of subsurface fault geometries (Gersztenkorn and Marfurt, 
2002), offering crucial support for geological exploration 
and resource development (Kingma and Ba, 2014). These 
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FIGURE 2
Architecture diagram of generative adversarial networks.

FIGURE 3
Fracture prediction results: Maximum likelihood Attribute (a) and 
refined maximum likelihood attribute (b).

Future advancements promise transformative breakthroughs in
this domain.

The integration of machine learning technology has ushered 
in a new era of development. The inaugural application 
of backpropagation neural networks (BP) to multi-attribute 
fracture prediction significantly improved objectivity Subsequent 
adoption of support vector machines (SVM) and random forests 
nevertheless encountered inherent limitations due to shallow 
learning architectures' constrained representational capacity for 

FIGURE 4
(a,b) Gradient structure tensor attribute prediction results.

FIGURE 5
Maximum positive curvature attribute (a) and minimum negative 
curvature attribute fracture prediction results (b).

complex fracture systems (Gibson et al., 2003) 2013–Present: 
Deep Learning Revolution (Cui et al., 2025). The transformative 
deployment of convolutional neural networks (CNNs) achieved 
breakthroughs in North Sea oil field fault identification (Wang et al., 
2024). Generative adversarial networks (GANs) subsequently 
addressed small-sample learning challenges (Marfurt et al., 1998). 
Architectural innovations like U-Net and Transformer models 
ushered in intelligent fracture recognition (Bhunia et al., 2018). 
Recent advancements including 2.5D Transformer U-Net and Fault-
Seg-Net demonstrate significant advantages in complex fracture 
scenarios (Chan et al., 2022; Xue et al., 2016). Notwithstanding 
progress, deep learning confronts critical data scarcity constraints: 
reliable fracture labels constitute <5% of total project data (Cao et al., 
2024; Liu et al., 2025). Conventional augmentation strategies 
(rotational/flipping transformations) inadequately simulate 
complex fracture geometries, impairing model generalization—a 
particularly acute challenge in frontier basins with limited historical 
datasets (Ledig et al., 2017; Zhang et al., 2025).

As a data-driven paradigm, deep learning offers automation 
advantages and scalability. Modern machine/deep learning 
frameworks enable automated feature extraction and optimization 
(Lecun et al., 1998), achieving cross-industry adoption. This 
study proposes an enhanced hybrid multi-attribute deep learning 
framework that innovatively combines conventional attribute 
prediction methodologies (Bhunia et al., 2018). The system aims 
to improve exploration efficiency, optimize drilling success rates 
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FIGURE 6
Fracture prediction results derived from frequency-dependent 
coherent attribute analysis under different frequency bands.

through subsurface engineering data integration, and investigate 
GAN-CNN synergies in fault identification while evaluating 
geological science implications (Di et al., 2019). 

2 Methods

2.1 Workflow

This study introduces a deep learning architecture that integrates 
the Wasserstein Generative Adversarial Network (WGAN) and 
U-Net++, constructing a multi-attribute fusion-based fracture 
identification system (as shown in Figure 1) (Li et al., 2024). 
The single-attribute fracture prediction results from actual 
field data—including maximum likelihood attributes, coherent 

attributes, gradient structure tensor attributes, and curvature 
attributes—are fed into the WGAN (Xu et al., 2024). This ensures 
that the generated synthetic data exhibits geological plausibility 
while addressing the issue of scarce labeled data. The outputs 
from the WGAN are then processed by the U-Net++ network. 
The high-fidelity synthetic data substantially improves the realism 
and generalization capability during U-Net++ training. Once the 
network reaches stability (Gan et al., 2025), it is applied to reprocess 
the actual field data for fracture identification (Niu et al., 2024). The 
resulting predictions align more closely with manual interpretations 
and demonstrate markedly enhanced performance in detecting 
small-scale fractures (Ding et al., 2025; Chopra and Marfurt, 2007). 

2.2 Label generation using multi-attribute 
fusion generative adversarial network

2.2.1 Wasserstein Generative Adversarial Network 
(WGAN)

Goodfellow et al. proposed a novel architecture based on 
convolutional neural networks in 2014, which introduced 
a fundamental departure from traditional neural networks 
by comprising two components: a generator and a 
discriminator. This framework was named Generative Adversarial 
Networks (GAN) (Wu et al., 2021).

As illustrated in Figure 2 the input data includes “ingredients” 
required to synthesize realistic data: original feature values (labels), 
random noise, and raw data. Through the generator, new labeled 
data is produced and passes the discriminator’s evaluation. 
After iterative training, the network ultimately generates data 
indistinguishable from real samples (Mao et al., 2017).

Traditional GANs employ KL divergence or JS divergence 
for training, but these methods suffer from issues like gradient 
vanishing and mode collapse. To address these problems, the 
Wasserstein Generative Adversarial Network (WGAN) was 
proposed. The core innovation of WGAN lies in replacing traditional 
divergence metrics with the Wasserstein distance to measure the 
distance between probability distributions (Equation 1).

W(Pr,Pg) = infγ∼∏(Pr,Pg)E(x,y)∼γ[∥ x− y ∥] (1)

In the above formula, ∏(Pr,Pg) represents the set of all joint 
distributions of Pr and Pg. For each possible joint distribution γ,the 
distance ∥ x− y ∥ between the real sample x and the fake sample 
y can be calculated. Then, the expected value E(x,y)∼γ[∥ x− y ∥] of 
the samples and the distance for the joint distribution γ can be 
computed. The lower bound infγ∼∏(Pr,Pg)E(x,y)∼γ[∥ x− y ∥] of the 
entire probability is the Wasserstein distance. It can be understood 
that E(x,y)∼γ[∥ x− y ∥] represents the energy consumption required 
to push Pr to Pg under the overall situation of γ and W(Pr,Pg) is the 
minimum consumption for the shortest distance.

Since the solution of infγ∼∏(Pr,Pg) cannot be obtained directly, it 
is changed to a Lipschitz - continuous form. That is, a restriction 
condition is added to the function to obtain an optimal solution that 
can be used as a substitute. As shown in Formula 2.

W(Pr,Pg) =
1
K

sup∥ f∥L≤K Ex∼Pr
[ f(x)] −Ex∼Pg

[ f(x)] (2)
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FIGURE 7
Augmented Labeled Dataset via WGAN Network (a–c):Labels generated from iterations 50 (d–i):Labels generated after network stabilization.

In the above - mentioned (Formula 3), K ≥ 0 and any two 
elements must satisfy.

| f(x1) − f(x2)| ≤ K|x1 − x2| (3)

which is indicated by the arrow (3). K is called the Lipschitz constant. 
Then, Formula 5 can be understood as taking the upper bound 
of Ex∼Pr
[ f(x)] −Ex∼Pg

[ f(x)] for all eligible under the condition of 
the constant K,and then shrinking it by K times. In generative 
adversarial networks, the parameter ω is needed to complete 
the update of the function f(ω), as shown in the following
Formula 4.

K ·W(Pr,Pg) ≈maxω:| fω|L≤K
Ex∼Pr
[ fω(x)] −Ex∼Pg

[ fω(x)] (4)

L = Ex∼Pr
[ fω(x)] −Ex∼Pg

[ fω(x)] (5)

The results obtained in the above formula are approximate 
to the Wasserstein distance between the real samples and the 
generated samples. By minimizing the Wasserstein distance, that 
is, minimizing L, the problem of gradient vanishing can be solved. 
Since the activation function in the last layer of the discriminator 
network in the original GAN is designed for a binary classification 
task, but now it is improved using the Wasserstein distance, there 
is no need to continue using the Sigmoid function as the activation 

function in the last layer. From Equations 6, 7, we can obtain the 
latest loss functions of the two networks.

LG = −Ex∼Pg
[ fω(x)] (6)

LD = Ex∼Pr
[ fω(x)] −Ex∼Pg

[ fω(x)] (7)

In summary, the key improvements of WGAN can be 
categorized into four principal aspects: (1) Removing the Sigmoid 
function in the last layer of the discriminator network; (2) Adopting 
the improved forms of the loss functions for both the generator 
and discriminator networks as mentioned above, instead of 
using the log - form; (3) Ensuring that the absolute value of the 
updated parameters does not exceed a fixed constant; (4) Selecting 
appropriate optimization algorithms. Sometimes, using momentum 
gradient descent and adaptive moment estimation algorithms may 
cause instability in the loss function, leading to substantial variations 
in the generated samples. 

2.2.2 Label data preparation
The utilization of highly geologically plausible and high-fidelity 

labeled data can significantly enhance the predictive performance 
of neural networks. This study employs a WGAN (Wasserstein 
Generative Adversarial Network) to generate high-quality labeled 
data. The process first requires obtaining prediction results from 
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FIGURE 8
U-Net++ convolutional neural network architecture.

FIGURE 9
Fracture interpretation results manually identified by experts.

actual seismic data processed through single-attribute analysis 
within the target area, which serves as the “raw material” for training 
the WGAN. For validation purposes the North Sea F3 Block in the 
Netherlands, a publicly available seismic dataset collected in 1987, 
is widely referenced in studies on AI-based seismic fault detection. 
This dataset contains numerous faults with distinct characteristics, 

making it an excellent benchmark for validating the model’s training 
effectiveness.

First, the seismic data is processed using the single-attribute 
method (Figures 3–6), and its prediction results are input into the 
WGAN network. Through multiple iterations, this generates labeled 
data that more closely resembles real geological samples.
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FIGURE 10
Fracture prediction results using manually labeled data.

FIGURE 11
Fracture prediction results using labels generated by the multi-attribute fusion generative adversarial network.

After processing the single-attribute-generated results through 
slicing and grayscale/binary image processing, geologically 
realistic labeled samples are obtained. These pseudo-labeled 
samples are then input into the generator network. The generated 
pseudo-labeled data and real data are subsequently assessed for 
authenticity by the discriminator network. Through iterative 
refinement, the gap between the generator’s output and the 
real data gradually diminishes until high-quality labeled data 
meeting research requirements is achieved, thereby completing 
the expansion of the labeled dataset.

The WGAN-generated label samples successfully mitigate 
the issue of sample scarcity in previous methods. As 
demonstrated in the figure below, which depicts label 
samples obtained from the trained network, the generated 
labels exhibit enhanced realism and diversity. Unlike prior 
approaches that were constrained to detecting only prominent 
fractures and simplistic/linear labels, these improved results 
demonstrate finer structural details and more natural 
variations, thereby achieving closely alignmen with real-world 
geological features (Figure 7). 
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FIGURE 12
Comprehensive Fracture Evaluation of Well 1 vs. Imaging Well Logging-Based Fracture Development.

2.3 Fracture prediction network 
architecture

U-Net++ is an advanced segmentation model proposed in 
previous studies, first developed for medical image segmentation 
and conceptually extended from the U-Net architecture. It belongs 
to a deeply supervised “encoder-decoder” network structure. 
Building upon the U-Net convolutional neural network, it enhances 
the architecture through deeply supervised encoder-decoder 
mechanisms, with the specific structure illustrated in Figure 8 
(Zhu et al., 2017). The U-Net++ network integrates sub-U-Net 
structures at different hierarchical levels and introduces dense 
connections and multi-scale feature fusion mechanisms into the 
original U-Net design (Xue et al., 2016). These improvements 
enable the network to more effectively extract features at multiple 
scales from images and propagate them to subsequent layers. The 
dense connections and skip connections reduce information loss 
during network transmission, better preserving image details. The 
architectural enhancements in U-Net++ improve its generalization 
capability, making it more adaptable to diverse image datasets and 
increasing the model’s versatility (Xu et al., 2021).

The high-quality label data generated via the aforementioned 
Wasserstein Generative Adversarial Network (WGAN), after iterative 
refinement, provide an extensive dataset of accurate and stable 
synthetic labels. These labels constitute the primary training data for 
the U-Net++ network. Consequently, the trained network achieves 
substantially enhanced accuracy, enabling precise identification of 
most fine fractures. Results will be presented in subsequent sections. 

3 Results and discussion

3.1 Test data

The performance of current deep learning-based fracture 
detection methods is primarily contingent upon the quality of 
training samples. Model training requires large volumes of labeled 
data, and only datasets containing comprehensive fracture types can 
ensure accurate predictions. The multi-attribute fusion generative 
adversarial network (WGAN)-based fracture prediction method 
proposed in this study focuses on generating high-quality synthetic 
data that mirrors the quality of the input training samples, thereby 
significantly improving model precision. Final predictions are 
subsequently performed using the U-Net++ network model.

In this study, we input pre-prepared single-attribute-generated 
label datasets into the Wasserstein GAN for training. After network 
stabilization, the U-Net++ model is trained to obtain fracture 
prediction results. During the training process of the Wasserstein 
Generative Adversarial Network (WGAN), the generated dataset 
evolves with increasing iteration epochs. After selecting an optimal 
iteration count, the generated dataset undergoes normalization and 
is formatted into uniformly sized samples suitable for input into the 
U-Net++ network, thereby constructing its training dataset. This 
approach eliminates the labor-intensive manual annotation process 
while concurrently boosting the model’s generalization capability.

To establish a performance benchmark, we additionally train 
the U-Net++ model using manually labeled datasets and Fracture 
interpretation results manually identified by experts (as a control 
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FIGURE 13
(a) Rose diagram of fracture orientations in well 1; (b) histogram of fracture inclination angles in well 1; (c) rose diagram of fracture orientations in well 
2; (d) histogram of fracture inclination angles in well 2; (e) rose diagram of fracture orientations in well 3; (f) histogram of fracture inclination 
angles in well 3.

group). As shown in Figures 9–11, the proposed WGAN-based 
method demonstrates superior performance in identifying small 
fault features compared to the manual labeling approach. Given the 
complex structural characteristics of the study area, this advantage 
is particularly pronounced.

Through comparative experiments, significant differences were 
observed between the fracture prediction results of the U-Net++ 
network trained solely on manually labeled data and those trained 
on WGAN-augmented labeled datasets. The U-Net++ model 

trained with manually labeled data demonstrates the capability to 
effectively identify prominent faults and large fractures but exhibits 
limited precision in capturing subtle features, making it insufficient 
for comprehensive fracture characterization. In contrast, the model 
trained on WGAN-generated labels produces more refined and 
complete results. When benchmarked against manual fracture 
identification, our method achieves detailed characterization of 
small fractures. These comparative results further validate the 
effectiveness and practicality of the proposed approach. 
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FIGURE 14
Spectral analysis of the seismic data volume.

FIGURE 15
Seismic data profiles before (a) and after (b) structure-oriented filtering.

FIGURE 16
Frequency-decomposed coherence attributes based on matching pursuit. (a) 30 HZ, (b) 40 Hz, (c) 50 Hz, (d) 60 Hz.
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FIGURE 17
Fracture distribution based on maximum likelihood attributes for T3X2

2、T3X2
4. (a,b) Maximum likelihood attribute fracture distribution. (c,d) Refined 

maximum likelihood attribute fracture distribution.

FIGURE 18
Fracture distribution based on multi-frequency coherence attribute fusion for T3X2

2 (a), T3X2
4 (b).

3.2 Field data

3.2.1 Study area
The study area is located in the middle-northern segment of 

the Western Sichuan Depression, within the Xujiahe Formation, 
extending in a near-east-west direction. Its boundaries are defined 
by the Xiaquan Structural Belt, Fenggu Structural Belt, Zitong Sag, 

Chengdu Sag, and its eastern margin (Wang et al., 2024). This region 
has undergone multiple tectonic events since the Late Triassic, 
forming a complex ancient large uplifted region (Deng et al., 2022; 
Zhao et al., 2024). The Xujiahe Formation in the Western Sichuan 
Depression has experienced successive tectonic movements during 
the Indosinian, Yanshanian, and Himalayan orogenic periods, 
ultimately shaping a regional structural framework characterized 
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FIGURE 19
Fracture distribution based on gradient structure tensor attributes for T3X2

2 (a), T3X2
4 (b).

FIGURE 20
Fracture distribution based on curvature attributes for T3X2

2, T3X2
4 (a,b) maximum positive curvature attribute fracture distribution (c,d) minimum 

negative curvature attribute fracture distribution.

by high relief in the northwest and low-lying topography in the 
southeast (Zhao et al., 2017).

Well logging interpretation is essential for fracture prediction, as 
it provides insights into fracture development. This study primarily 
utilizes well logging data to conduct comparative interpretations 

with seismic attributes and deep learning methods, thereby verifying 
the accuracy of our fracture prediction results. The presence 
of fractures induces anomalous responses in conventional well 
logging curves (Figure 12), such as distinctive patterns in acoustic 
curves at fracture intervals. While imaging well logging offers 
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superior fracture identification capabilities, its high cost limits data 
availability in the study area. Consequently, this research combines 
conventional well logging data with supplementary imaging well 
logging data to enhance fracture identification.

Through conventional well logging and imaging well logging 
methods, comprehensive interpretations have been conducted 
to describe fracture feature variations across different regions. 
Below are detailed analyses of two representative wells. Figure 13 
illustrates the rose diagram of fracture orientations and inclination 
angle distribution histogram for Well 1. The results indicate that 
fractures in Well one and Well three predominantly exhibit SE-
NW (120°–130°) and SWW-NEE (70°–90°) orientations. Fracture 
inclinations are primarily 0°–10°, with moderate-to-high-angle 
fractures (10°–30°) also well-developed. Additionally, fracture 
aperture increases progressively with depth. Figure 13 displays the 
rose diagram and inclination angle distribution histogram for Well 
2. Fractures in this well are dominated by low-angle orientations 
(10°–20°), while moderate-angle fractures are underdeveloped, and 
high-angle fractures are absent. In the Xu2 Member, fracture linear 
density initially increases with depth and then fluctuates downward.

Based on calculating the linear density of fractures in the target 
stratigraphic interval (Xu2 Member of the Xujiahe Formation), 
high-value zones of fracture density are identified within the three-
stage tectonic stress integration region. The well logging results 
will serve as the primary validation basis for subsequent fracture 
prediction outcomes derived from multi-attribute prediction and 
the multi-attribute fusion generative adversarial network (WGAN) 
method. Through integration with well logging interpretations 
and fracture development characteristics, the final fracture 
characterization results will achieve greater credibility. 

3.2.2 Conventional attribute-based fracture 
prediction

Seismic data with distinct attribute characteristics play a crucial 
role in fracture identification. The Xujiahe Formation primarily 
consists of tight sandstone deposits, and its seismic data exhibit 
high quality, with notable resolution and frequency attributes. 
As shown in Figure 14, the seismic bandwidth is 63 Hz, and 
spectral analysis reveals that the dominant frequencies are primarily 
distributed between 20 Hz and 80 Hz.

The identification results of fractures vary under different 
frequency characteristics. In this study, we employ Matching Pursuit 
Spectral Decomposition (MPSD) processing within the effective 
frequency band to obtain distinct frequency-component volumes. 
Subsequently, structure-oriented filtering is applied to these 
frequency volumes to enhance the detectability of fault dip strength 
and azimuth attributes (Figure 15). This integrated approach 
yields results that more accurately characterize fracture features, 
as the frequency-dependent processing better captures fracture-
related seismic responses while structural filtering improves the 
continuity and interpretability of fracture systems. The methodology 
demonstrates superior performance in identifying multi-scale 
fractures compared to conventional full-spectrum approaches, 
particularly in complex tight sandstone reservoirs where fracture 
manifestations vary significantly across frequency bands.

As illustrated in Figure 16, this study selects frequency-
component volumes at 30 Hz, 40 Hz, 50 Hz, and 60 Hz 

for coherence attribute processing, yielding distinct fracture 
identification outcomes.

As shown in the figure above, different frequency bands 
exhibit distinct responses to fractures of varying scales. 
Coherence processing of low-frequency components can effectively 
characterize medium-to-large scale fractures, while coherence 
processing of high-frequency components can delineate small-
scale fractures and fractures zones (Bahorich and Farmer, 1995). 
Through coherence slices at different scales, it can be observed 
that low-frequency components mainly reflect the macro-scale 
distribution of fracture development, whereas high-frequency 
components can provide more detailed characterization of 
small-scale fractures (Gersztenkorn and Marfurt, 2002).

To evaluate the method proposed in this study, we performed 
additional fracture identification using four attributes (Huang et al., 
2025). The specific results are shown below (All the result values 
in the figure are obtained after standardized processing using 
this method (Niu et al., 2025; Ren et al., 2024). The larger 
the value, the greater the probability of fracture distribution 
(Li et al., 2024; Zhang et al., 2025).

Fracture prediction based on maximum likelihood attributes 
demonstrates that both standard and refined maximum likelihood 
approaches achieve comprehensive delineation of large fractures. 
Particularly noteworthy is that the refined maximum likelihood 
method enhances the identification of small fractures (Figure 17).

The fundamental principle of fracture prediction based on 
coherence attributes lies in delineating fractures by analyzing lateral 
variations in seismic waveform continuity. This method enables 
clear identification of large-scale fractures within the seismic dataset 
(Figure 18; Kurt et al., 2012).

Compared with coherence attributes and maximum likelihood 
attributes, the fracture layering description derived from gradient 
structure tensor attributes provides clearer delineation of fracture 
angles and large-scale structural features (Chen et al., 2012). 
However, it exhibits limitations in characterizing small fractures 
(Wang et al., 2018). In essence, this approach yields more accurate 
information on the overall fracture trends within the Xujiahe 
Formation (Figure 19; Chopra and Marfurt, 2007; Lou et al., 2022).

Fracture prediction based on curvature attributes exhibits a 
strong response to linear features, enabling clear characterization 
of fault structures and fracture delineation. Among the commonly 
used methods, maximum positive curvature and minimum negative 
curvature attributes yield the most effective results (Roberts, 
2001). The curvature calculations of both approaches enhance 
the description of stratal bending, produce stronger responses at 
fracture locations, and provide richer geometric information about 
the formations (Figure 20; Suo et al., 2012). 

TABLE 1  Neural network architecture and hyperparameters.

Parameter Value

Epochs 500

Initial Learning Rate 0.005

Batch Size 5

LeakyReLU 0.2
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FIGURE 21
(a) U-Net++ accuracy curve; (b) U-Net++ loss curve.

FIGURE 22
Comparison of manual interpretation (a) and multi-attribute fusion generative adversarial network model identification results (b) (Crossline = 2,830).

3.3 Fracture prediction results using the 
multi-attribute fusion generative 
adversarial network

Since the prediction results of seismic data attributes (e.g., 
maximum likelihood attributes, coherence attributes, gradient 
structure tensor attributes, and curvature attributes) exhibit 
higher authenticity compared to manually labeled data, the labels 
generated by the Wasserstein generative adversarial network 
(WGAN) can serve as reliable ground-truth labels for real 
seismic data (Kosters et al., 2008). After further optimization 
through the U-Net++ network architecture, the predicted results 
achieve significantly improved geological authenticity and reliability.

The model parameters are configured as Table 1, the stochastic 
gradient descent (SGD) algorithm is selected as the optimizer with 
an initial learning rate of 0.005, which is reduced by half every 50 
epochs. The discriminator network employs a LeakyReLU activation 
function with the negative slope parameter set to 0.2.

Building on the multi-attribute analysis results in this chapter, 
we input all single-attribute fracture prediction results into 
the Wasserstein Generative Adversarial Network (WGAN) to 
generate and augment synthetic data, thereby addressing the 
insufficiency of conventional network datasets. The network 
is optimized by adjusting parameters such as loss rate and 
accuracy. Once stabilized, the synthetic data stored in the WGAN 
generator is extracted and integrated with multi-attribute fracture 
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FIGURE 23
Comparison of manual interpretation (a) and multi-attribute fusion generative adversarial network model identification results (b) (inline = 1,290).

FIGURE 24
T3X2

2 (a), T3X2
4 (b) fracture-structure overlay map.

identification results to train the U-Net++ network for fracture
prediction.

The U-Net++ network was trained using a dataset comprising 
180 samples, including 150 training datasets and 30 testing 

datasets. The curves of loss rate and accuracy during training are 
presented in Figure 21.

Figures 22, 23 present integrated results of fracture prediction 
via the multi-attribute fusion generative adversarial network
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(WGAN) fused with seismic cross-sections. Extracted cross-
sectional data from xline = 2,800 and inline = 1,390 are 
benchmarked against human-expert fault interpretations. The 
predicted fractures, including major discontinuities corroborated 
by field operations, exhibit substantial concordance with expert 
interpretations. Notably, the WGAN framework demonstrates 
enhanced resolution of minor fractures, effectively identifying 
fine-scale fractures that are challenging for conventional manual 
methods. Validation via well log interpretations and multi-attribute 
prediction benchmarks confirms the method’s robust accuracy and 
adaptability in fracture characterization.

To better visualize fractures in the Xujiahe Formation, we 
performed stratigraphic slicing on the final results and overlaid them 
with structural maps to demonstrate fracture distribution (Figure 24). 
The structural-fracture overlay analysis reveals that neural network 
mapping effectively resolves both the overall morphology and internal 
details of fractures, confirming the accuracy and reliability of the 
proposed method. Planar views derived from the slices clearly delineate 
fracture networks, providing precise spatial characterization within 
the study area. Furthermore, profile views align predicted fractures 
with actual drilling data, offering additional validation of the method’s 
robustness in capturing subsurface fracture systems. 

4 Conclusion

This study proposes a fracture prediction method based on 
a multi-attribute fusion generative adversarial network (WGAN-
U-Net++). By integrating multi-attribute prediction results, the 
approach first employs the Wasserstein generative adversarial 
network (WGAN) to generate augmented samples, followed 
by the U-Net++ network to achieve high-resolution fracture 
characterization in the Xujiahe Formation. Experimental results 
demonstrate that this method outperforms traditional approaches 
and well-log data in both profile and slice interpretations, enabling 
precise delineation of complex fracture networks.

Focusing on the tight sandstone reservoirs of the Xujiahe 
Formation in the Western Sichuan Foreland Basin (characterized 
by continental deposition and multiphase tectonic superposition), 
this research addresses the application of deep learning in 
fracture identification. The study area exhibits complex fracture 
systems and weakened distribution patterns due to multiphase 
tectonic activities, coupled with strong heterogeneity in sedimentary 
environments and hydrocarbon accumulation conditions, rendering 
conventional methods ineffective for high-precision prediction. 
To tackle the challenge of deep learning’s reliance on high-
quality labeled datasets, the proposed WGAN-U-Net++ framework 
integrates multi-attribute fusion and sample augmentation, thereby 
significantly improving the reliability of fracture identification in 
tight sandstones. This framework presents a novel approach for 
fracture prediction in complex geological settings.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material, further inquiries can be directed 
to the corresponding author.

Author contributions

YZ: Conceptualization, Writing – original draft, Investigation, 
Methodology, Writing – review and editing, Data curation. XW: 
Funding acquisition, Conceptualization, Supervision, Writing – 
review and editing. YL: Writing – original draft, Methodology, 
Validation. XJ: Conceptualization, Writing – review and editing. HZ: 
Validation, Formal Analysis, Writing – original draft. 

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This paper is supported 
by National Natural Science Foundation of China (Grant No. 
42074163).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the 
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in 
this article has been generated by Frontiers with the support of 
artificial intelligence and reasonable efforts have been made to 
ensure accuracy, including review by the authors wherever possible. 
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

References

Bahorich, M., and Farmer, S. (1995). 3-D seismic discontinuity for faults 
and stratigraphic features: the coherence cube. Lead. Edge 14 (10), 1053–1058. 
doi:10.1190/1.1437077

Bhunia, A. K., Banerjee, P., Konwer, A., Bhowmick, A., Roy, P. P., Pal, U., 
et al. (2018). “Word level font-to-font imagetranslation using convolutional 
recurrent generative adversarial networks,” in 24th international conference 

Frontiers in Earth Science 16 frontiersin.org

https://doi.org/10.3389/feart.2025.1642287
https://doi.org/10.1190/1.1437077
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhang et al. 10.3389/feart.2025.1642287

on pattern recognition (ICPR), 2018, 3645–3650. doi:10.1109/ICPR.2018.
8545184

Bi, Z., and Wu, X. (2021). Improving fault surface construction with inversion-based 
methods. Geophysics 86 (1), IM1–IM14. doi:10.1190/geo2019-0832.1

Cai, J., Ding, S., Zhang, Q., Liu, R., Zeng, D., and Zhou, L. (2022). Broken ice 
circumferential crack estimation via image techniques. Ocean. Eng. 259, 111735. 
doi:10.1016/j.oceaneng.2022.111735

Cao, D., Zeng, L., Gomez-Rivas, E., Gong, L., Liu, G., Bons, P. D., et al. (2024). 
Correction of linear fracture density and error analysis using underground borehole 
data. J. Struct. Geol. 184, 105152. doi:10.1016/j.jsg.2024.105152

Chan, S., Huang, C., Bai, C., Ding, W., and Chen, S. (2022). Res2-UNeXt: a novel 
deep learning framework for few-shot cell image segmentation. Multimedia Tools Appl.
81 (10), 13275–13288. doi:10.1007/s11042-021-10536-5

Chen, X., Yang, W., He, Z., Zhong, W. L., and Wen, X. T. (2012). The algorithm of 
3D multi-scale volumetric curvature and its application. Appl. Geophys. 9 (1), 65–72. 
doi:10.1007/s11770-012-0315-7

Chopra, S., and Arfut, K. J. (2010). Ntegration of coherence and volumetric curvature 
images i. Lead. Edge 29 (9), 1092–1107. doi:10.1190/1.3485769

Chopra, S., and Marfurt, K. J. (2007). Seismic attributes for prospect identification 
and Reservoir characterization. Society of Exploration Geophysicists, 10 (11), 457–464.

Chopra, S., and Marfurt, K. J. (2007). Seismic attributes for prospect identification and 
Reservoir characterization. Society of Exploration Geophysicists.

Cui, X., Liu, Y., Du, X., Xiao, H., Xu, H., and Du, Y. (2025). Effect of fault dislocation 
on the deformation and damage behavior of ballastless track structures in tunnels. 
Transp. Geotech. 52, 101561. doi:10.1016/j.trgeo.2025.101561

Deng, J., Liu, M., Ji, Y., Tang, D., Zeng, Q., Song, L., et al. (2022). Controlling factors of 
tight sandstone gas accumulation and enrichment in the slope zone of foreland basins: 
the Upper Triassic Xujiahe Formation in Western Sichuan Foreland Basin, China. J. 
Petroleum Sci. Eng. 214, 110474. 0920-4105. doi:10.1016/j.petrol.2022.110474

Di, H., Zhao, T., Vikram, J., Wu, X., Huang, L., AlRegib, G., et al. (2019). Introduction 
to special section: machine learning in seismic data analysis. Interpretation 7 (3), 
T351–T359. doi:10.1190/int-2019-0609-spseintro.1

Ding, C., Guo, X., Xiao, C., Sui, Z., and Yang, Y. (2025). Experimental Study on 
the influence of blast hole bottom cushion medium on blasting damage characteristics 
and strain evolution of rock mass. Rock Mech. Rock Eng. 58 (2), 1895–1909. 
doi:10.1007/s00603-024-04276-9

Dorigo, M., Caro, G. D., and Gambardella, M. L. (1999). Ant algorithms for discrete 
optimization. Artif. Life 5 (2), 137–172, April. doi:10.1162/106454699568728

Fu, L., Guo, J., Shen, W., Wang, X., Liu, X., Chen, X., et al. (2024). Geophysical 
evidence of the collisional suture zone in the prydz Bay, East Antarctica. Geophys. Res. 
Lett. 51 (2), e2023GL106229. doi:10.1029/2023GL106229

Gan, B., Li, Z., Huo, W., Zhang, Y., Li, Z., Fan, R., et al. (2025). Phase 
transitions of CH4 hydrates in mud-bearing sediments with oceanic laminar 
distribution: mechanical response and stabilization-type evolution. Fuel 380, 133185. 
doi:10.1016/j.fuel.2024.133185

Gersztenkorn, A., and Marfurt, K. J. (2002). Eigenstructure‐based coherence 
computations as an aid to 3-D structural and stratigraphic mapping. Geophysics 64 (5), 
1468–1479. doi:10.1190/1.1444651

Gibson, D., Spann, M., and Turner, J. (2003). Automatic fault detection for 3D seismic 
Data[C]//DICTA, 821–830.

Höcker, C., and Fehmers, G. (2002). Fast structural interpretation with structure-
oriented filtering. Lead. Edge 21 (3), 238–243. doi:10.1190/1.1463775

Huang, L., Guan, W., Guan, Y., Zhao, H., Zhang, Z., and Wen, Y. (2025). Overburden 
movement law in strip filling mining of upward mining faces. Sci. Rep. 15 (1), 1378. 
doi:10.1038/s41598-024-82930-6

Kingma, D. P., and Ba, J. (2014). Adam: a method for stochastic optimization. 
Comput. ence. CoRR, abs/1412.6980.

Kosters, M., Hague, P. F., Hofmann, R. A., and Hughes, B. (2008). “Integrated 
modeling of karstification of a Central Luconia Field Sarawak[C],” Paper presented 
at the International Petroleum Technology Conference (Kuala Lumpur, Malaysia), 3–5. 
doi:10.2523/IPTC-12327-MS

Kurt, J., Marfurt, R., Lynn, K., and Steven, L. (2012). 3-D seismic attributes 
using a semblance‐based coherency algorithm. Geophysics 63 (4), P1150–P1165. 
doi:10.1190/1.144415

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning 
applied to document recognition. Proc. IEEE 86 (11), 2278–2324. doi:10.1109/5.726791

Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., et al. 
(2017). “Photo-realistic single image super-resolution using a generative adversarial 
network[C],” in The lEEE conference on computer vision and pattern recognition (CVPR). 
doi:10.48550/arXiv.1609.04802

Lei, J., Fang, H., Zhu, Y., Chen, Z., Wang, X., Xue, B., et al. (2024). GPR detection 
localization of underground structures based on deep learning and reverse time 
migration. NDT and E Int. 143, 103043. doi:10.1016/j.ndteint.2024.103043

Li, Y., Jia, D., Wang, S., Qu, R., Qiao, M., and Liu, H. (2024). Surrogate model 
for reservoir performance prediction with time-varying well control based on depth 
generative network. Petroleum Explor. Dev. 51 (5), 1287–1300. doi:10.1016/S1876-
3804(25)60541-6

Li, L., Jin, H., Tu, W., and Zhou, Z. (2024). Study on the minimum safe 
thickness of water inrush prevention in karst tunnel under the coupling effect 
of blasting power and water pressure. Tunn. Undergr. Space Technol. 153, 105994. 
doi:10.1016/j.tust.2024.105994

Liu, G., Kang, J., Zhong, Z., Bo, W., Fan, H., and Yang, C. (2025). Laboratory 
experiments and 3D DDA Numerical simulations on rockfall movement characteristics. 
Rock Mech. Rock Eng. 58 (8), 9747–9769. doi:10.1007/s00603-025-04648-9

Liu, Z., Song, C., Cai, H., Yao, X., and Hu, G. (2017). Enhanced coherence using 
principal component analysis. Interpretation 5(3), T351–T359. doi:10.1190/int-2016-
0194.1

Lou, Y., Zhang, H., Liu, N., Liu, R., and Sun, F. (2022). Multiscale coherence attribute 
and its application on seismic discontinuity description. IEEE Geoscience Remote Sens. 
Lett. 19, 1–5. doi:10.1109/LGRS.2021.3132358

Mao, X., Li, Q., Xie, H., Lau, R. Y. K., Wang, Z., and Smolley, S. P. (2017). 
“Least squares generative adversarial networks[C],” in Proceedings of the IEEE 
international conference on computer vision and pattern recognition, 2794–2802. 
doi:10.48550/arXiv.1611.04076

Marfurt, K. J., Kirlin, R. L., Farmer, S. L., and Bahorich, M. S. (1998). 3D 
seismic attributes using a semblance-based coherency algorithm. Geophysics 63 (04), 
1150–1165. doi:10.1190/1.1444415

Niu, Q., Hu, M., Chang, J., Wang, W., Yuan, W., Wang, Q., et al. (2024). 
Explosive fracturing mechanism in low-permeability sandstone-type uranium 
deposits considering different acidification reactions. Energy 312, 133676. 
doi:10.1016/j.energy.2024.133676

Niu, Q., Zhao, X., Chang, J., Qi, X., Shangguan, S., Wang, W., et al. (2025). 
Numerical simulation on physical composite stimulation and geothermal development 
performance of hot dry rock: a case study from Matouying Uplift, China. Appl. Therm. 
Eng. 267, 125714. doi:10.1016/j.applthermaleng.2025.125714

Ren, Q., Li, L., Wang, J., Jiang, R., Li, M., and Feng, J. W. (2024). Dynamic evolution 
mechanism of the fracturing fracture system—Enlightenments from hydraulic 
fracturing physical experiments and finite element numerical simulation. Petroleum Sci.
21 (6), 3839–3866. doi:10.1016/j.petsci.2024.09.004

Roberts, A. (2001). Curvature attributes and their application to 3D interpreted 
horizons. First Break 19, 85–100. doi:10.1046/j.0263-5046.2001.00142.x

Sun, H., Wang, Y., Jia, L., Lin, Z., and Yu, H. (2024). Theoretical and numerical 
methods for predicting the structural stiffness of unbonded flexible riser for deep-
sea mining under axial tension and internal pressure. Ocean. Eng. 310, 118672. 
doi:10.1016/j.oceaneng.2024.118672

Suo, C., Peng, S., Chang, S., Duan, R., and Wang, G. (2012). A new calculating 
method of the curvature to predicting the Reservoir fractures. Procedia Environ. Sci.
12, 576–582. doi:10.1016/j.proenv.2012.01.320

Wang, S., Yuan, S., Wang, T., Gao, J., and Li, S. (2018). Three-dimensional geosteering 
coherence attributes for deep-formation discontinuity detection. Geophysics 83 (6), 
O105–O113. doi:10.1190/geo2017-0642.1

Wang, A., Liu, J., Liu, Z., Xiao, K., Huang, Y., Fan, L., et al. (2024). Genetic 
mechanisms of high-quality tight siliciclastic reservoirs: a case study from the Upper 
Triassic Xujiahe Formation in the Yuanba area, Sichuan Basin, China. Energy Geosci. 5, 
100290. doi:10.1016/j.engeos.2024.100290

Wu, X., and Dave, H. (2016). 3D seismic image processing for faults. Geophysics 81 
(2), IM1–IM11. doi:10.1190/geo2015-0380.1

Wu, Y., Shuai, H., Tam, Z., and Chiu, H. (2021). “Gradient normalization for 
generative adversarial networks[C],” in Proceedings of the IEEE/CVF international 
conference on computer vision, 6373–6382. doi:10.48550/arXiv.2109.02235

Xu, W., Long, C., Wang, R., and Wang, G. (2021). “DRB-GAN: a dynamic resblock 
generative adversarial network for artistic style transfer[C],” in Proceedings 
of the IEEE/CVF international conference on Computer Vision, 6383–6392. 
doi:10.48550/arXiv.2108.07379

Xu, D., Jiang, L., Qin, Y., Shen, H., and Ji, B. (2024). High-precision FBG-
based sensor for soil settlement monitoring: a comparative study with magnetic 
settlement gauges and PIV technique. Sensors Actuators A Phys. 366, 114935. 
doi:10.1016/j.sna.2023.114935

Xue, Y., Chang, F., Zhang, D., and Chen, Y. (2016). Simultaneous sources separation 
via an iterative rank-increasing method. IEEE Geoscience Remote Sens. Lett. 13 (12), 
1915–1919. doi:10.1109/lgrs.2016.2617338

Yongshi, W., Yang, G., and Zhengwei, F. (2021). Pore throat structure and 
classification of Paleogene tight reservoirs in jiyang depression, Bohai Bay Basin, China. 
Petroleum Explor. Dev. Online 48(2), 308–322. doi:10.1016/s1876-3804(21)60025-3

Yuan, Y., Qin, G., Li, D., Zhong, M., Shen, Y., and Ouyang, Y. (2024). Real-
Time joint filtering of gravity and gravity gradient data based on improved 
kalman filter. IEEE Trans. Geoscience Remote Sens. 62, 1–12. doi:10.1109/TGRS.2024.
3452038

Frontiers in Earth Science 17 frontiersin.org

https://doi.org/10.3389/feart.2025.1642287
https://doi.org/10.1109/ICPR.2018.8545184
https://doi.org/10.1109/ICPR.2018.8545184
https://doi.org/10.1190/geo2019-0832.1
https://doi.org/10.1016/j.oceaneng.2022.111735
https://doi.org/10.1016/j.jsg.2024.105152
https://doi.org/10.1007/s11042-021-10536-5
https://doi.org/10.1007/s11770-012-0315-7
https://doi.org/10.1190/1.3485769
https://doi.org/10.1016/j.trgeo.2025.101561
https://doi.org/10.1016/j.petrol.2022.110474
https://doi.org/10.1190/int-2019-0609-spseintro.1
https://doi.org/10.1007/s00603-024-04276-9
https://doi.org/10.1162/106454699568728
https://doi.org/10.1029/2023GL106229
https://doi.org/10.1016/j.fuel.2024.133185
https://doi.org/10.1190/1.1444651
https://doi.org/10.1190/1.1463775
https://doi.org/10.1038/s41598-024-82930-6
https://doi.org/10.2523/IPTC-12327-MS
https://doi.org/10.1190/1.144415
https://doi.org/10.1109/5.726791
https://doi.org/10.48550/arXiv.1609.04802
https://doi.org/10.1016/j.ndteint.2024.103043
https://doi.org/10.1016/S1876-3804(25)60541-6
https://doi.org/10.1016/S1876-3804(25)60541-6
https://doi.org/10.1016/j.tust.2024.105994
https://doi.org/10.1007/s00603-025-04648-9
https://doi.org/10.1190/int-2016-0194.1
https://doi.org/10.1190/int-2016-0194.1
https://doi.org/10.1109/LGRS.2021.3132358
https://doi.org/10.48550/arXiv.1611.04076
https://doi.org/10.1190/1.1444415
https://doi.org/10.1016/j.energy.2024.133676
https://doi.org/10.1016/j.applthermaleng.2025.125714
https://doi.org/10.1016/j.petsci.2024.09.004
https://doi.org/10.1046/j.0263-5046.2001.00142.x
https://doi.org/10.1016/j.oceaneng.2024.118672
https://doi.org/10.1016/j.proenv.2012.01.320
https://doi.org/10.1190/geo2017-0642.1
https://doi.org/10.1016/j.engeos.2024.100290
https://doi.org/10.1190/geo2015-0380.1
https://doi.org/10.48550/arXiv.2109.02235
https://doi.org/10.48550/arXiv.2108.07379
https://doi.org/10.1016/j.sna.2023.114935
https://doi.org/10.1109/lgrs.2016.2617338
https://doi.org/10.1016/s1876-3804(21)60025-3
https://doi.org/10.1109/TGRS.2024.3452038
https://doi.org/10.1109/TGRS.2024.3452038
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhang et al. 10.3389/feart.2025.1642287

Zhang, H., Bao, X., Zhao, H., Hao, Y., Huang, H., Dai, M., et al. (2025). High-Precision 
deblending of 3-D simultaneous source data based on prior information constraint. 
IEEE Geoscience Remote Sens. Lett. 22, 1–5. doi:10.1109/LGRS.2025.3526972

Zhang, C., Zhu, Z., Dai, L., Wang, S., and Shi, C. (2025). The incompatible 
deformation mechanism of underground tunnels crossing fault conditions in the 
southwest edge strong seismic zone of the Qinghai-Tibet Plateau: a study of 
shaking table test. Soil Dyn. Earthq. Eng. 197, 109482. doi:10.1016/j.soildyn.2025.
109482

Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. (2017). “Pyramid scene parsing network 
[C],” in Proceedings of the IEEE conference on computer vision and pattern recognition 
(CVPR). Honolulu, HI: United States, 2881–2890. doi:10.1109/CVPR.2017.660

Zhao, Y., Huang, G., Liang, Q., and Chen, Q. (2024). Study on microscopic 
characteristics and rock mechanical properties of tight sandstone after 
acidification–supercritical CO2 composite action: case study from Xujiahe Formation, 
China. Appl. 14, 4108. doi:10.3390/app14104108

Zhou, G., Wang, Z., and Li, Q. (2022). Spatial negative co-location pattern 
directional mining algorithm with join-based prevalence. Remote Sens. 14 (9), 2103. 
doi:10.3390/rs14092103

Zhu, Y., Park, T., Isola, P., and Efros, A. A. (2017). “Unpaired image-to-
image translation using cycle-consistentadversarial networks, ” in 2017 IEEE 
International Conference on Computer Vision ICCV, 2242–2251. doi:10.1109/ICCV.
2017.244

Frontiers in Earth Science 18 frontiersin.org

https://doi.org/10.3389/feart.2025.1642287
https://doi.org/10.1109/LGRS.2025.3526972
https://doi.org/10.1016/j.soildyn.2025.109482
https://doi.org/10.1016/j.soildyn.2025.109482
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.3390/app14104108
https://doi.org/10.3390/rs14092103
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1109/ICCV.2017.244
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

	1 Introduction
	2 Methods
	2.1 Workflow
	2.2 Label generation using multi-attribute fusion generative adversarial network
	2.2.1 Wasserstein Generative Adversarial Network (WGAN)
	2.2.2 Label data preparation

	2.3 Fracture prediction network architecture

	3 Results and discussion
	3.1 Test data
	3.2 Field data
	3.2.1 Study area
	3.2.2 Conventional attribute-based fracture prediction

	3.3 Fracture prediction results using the multi-attribute fusion generative adversarial network

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

