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Introduction: Assessing ecosystem health and understanding its potential
environmental controls are critically important for effective revegetation of
mountainous areas where multiple agents may constrain ecosystem health and
ecosystem usually fragiled accordingly.

Methods: We applied the VOR framework (vigor–organization–resilience
model) to assess ecosystem health of a meso-scale mountainous watershed
of northern China (Xiaoluan River watershed), and quantified environmental
controls by integrating Ordinary Least Squares (OLS), Geographically Weighted
Regression (GWR) and Multiscale Geographically Weighted Regression (MGWR)
techniques.

Results: With the proceeding of revegetation, ecosystem health of the
watershed showed a slight improvement over 2006-2020 (p > 0.05), EHI
(ecosystem health index) varied from 0.49 to 0.57, and the ecosystem resilience
(ER) remained relatively low, with the mean ER over the years being only
0.19. Additionally, Moran's I showed strong spatially positive autocorrelations,
especially for the plant functional types (PFTs) of NETT (Needleleaf evergreen
tree, temperate) and BDTT (Broadleaf deciduous tree, temperate), indicative
of a proneness to abrupt transition in case of an environmental perturbation.
Both OLS and GWR (including MGWR) models suggested that thermal stress
and water stress both are primary constraints on the ecosystem health of
the watershed, and at seasonal scales, their controls alter by season, with T
dominating in the beginning of growing season, whilst P dominates in growing
season, well characterizing the major process controlling EHI of mountainous
watersheds in transitional zone of northern China.

Discussion: Given intensified climate change and widespread revegetation,
greater caution should be exercised when implementing large-scale
afforestation in the region to avoid potential ecosystem collapse under
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environmental disturbances. Strategies to enhance resilience and adapt
vegetation types to local hydrothermal conditions are recommended.

KEYWORDS

ecosystem health assessment, environmental controls, vigor–organization–resilience
framework, geographically weighted regression modeling, mountainous watershed

1 Introduction

Mountains are commonly one of the most fragile ecosystems
on earth, being easily affected by global environmental change
(Chu et al., 2019; Thakur et al., 2021; Zhai et al., 2023). Due to
global climate change and the increasing population, mountainous
areas are widely considered in various research studies of global
environmental change and ecological protection and restoration
(Wang et al., 2022). This is also true for northern China, where
the areas are often expected to provide ecosystem services,
such as supplying water resources to the downstream areas and
offering green shelters to the surrounding areas (Li et al., 2012;
Shao et al., 2023). However, due to limited rainfall availability
and poor soil quality, the areas are often constrained by the
unfavorable environment, especially with respect to ecological
development (Shao et al., 2023). In order to restore and maintain
the ecological environment of these areas, the Chinese government
has launched several restoration programs over the years, such as
the “Grain for Green project” and the “Three North Shelterbelt
Forest Program (TNSFP).” The TNSFP is reported to have
increased forest coverage from 5.05% in 1978 to 13.84% in 2024
(Zhai et al., 2023).

Several studies have been carried out to understand the change
in ecological quality of the region due to revegetation (Duan et al.,
2011; Jiang et al., 2021; Zhang and Zhang, 2024), and various
frameworks and/or approaches were used. In addition to directly
assessing the trend of vegetation variations using individual indices
such as normalized difference vegetation index (NDVI) (Martínez
and Gilabert, 2009; Ibrahim et al., 2015), vegetation drought is also
widely considered in the relevant research studies. For example,
Cunha et al. (2015) assessed vegetation drought in the semiarid
region of Brazil and suggested the vegetation supply water index,
which is closely related to rainfall and soil moisture. Won and Kim
(2023) introduced the EDCI-veg index to monitor the impact of
meteorological drought on vegetation, effectively exploring how
land covers respond to various drought conditions. Unlike the above
analysis, which is dedicated to revealing one aspect of vegetation
quality, the classical ecosystem vigor–organization–resilience
(VOR) assessment framework focuses on measuring ecosystem
integrity and natural ecosystem quality, and it has been successfully
employed to evaluate ecosystem health (Shen et al., 2021;
Yushanjiang et al., 2021; Bao et al., 2022; Ma et al., 2022; Yin et al.,
2024). Peng et al. (2017) used the traditional VORmodel to calculate
the index of regional ecosystem physical health and introduced
the coefficient of spatial neighborhood effect, generating the index
of integrated ecosystem health in Lijiang, China. On the basis of
the traditional VOR framework, Pan et al. (2021) proposed an
improved method that considers both ecological integrity and
ecosystem services demand and applied their new method in the
Yangtze River economic belt in China. Bao et al. (2022) introduced

more metrics into the VOR framework, aiming to optimize and
improve the VOR application. Although various frameworks
provide optional approaches for examining ecosystem quality and
ecological health, most have been limited to depicting vegetation
dynamics and vegetation health, while the dominant factors
controlling ecosystem health in these areas appear to be rarely
investigated.

In the study conducted by Ge et al. (2022), the authors used
the Geodetector model to examine the effects of various factors
on ecosystem health. The results show that the state of natural
balance maintenance in the Chinese land system, influenced
by social factors, is the main factor affecting ecosystem health,
along with interactions among various factors. Considering the
spatio-temporal variability in ecosystem health and its influencing
factors, Li K. M. et al. (2024) and Na et al. (2023) investigated
the spatial relationships between ecosystem health and its factors
concerning climate, socioeconomic status, and natural resource
endowment at the county level based on a geographically
weighted regression (GWR) model. Meanwhile, Ouyang et al.
(2024) integrated the extreme gradient boosting (XGBoost)
model and Shapley additive explanation (SHAP) model to
assess the impact of urbanization level and meteorological and
vegetation factors on ecological health. These methods not only
provide an explicit depiction of the impacts of the driving
factors but also offer a deeper understanding of the possible
mechanisms.

In our analysis, the Xiaoluan River watershed is located in
the transitional zone between the Inner Mongolia Plateau and
the North China Plain, featuring plateau characteristics in the
upstream region and a typical mountainous and hilly region in the
middle and downstream areas. As one of the typical areas serving
as both an ecological barrier and a nature reserve, its ecological
health directly affects the ecological security of downstream areas,
especially in terms of maintaining biodiversity and conserving soil
and water, and holds strategic significance for resource supply
and ecological protection, particularly for regions such as Beijing.
With ongoing revegetation efforts and global climate warming, it
is necessary to understand the development of ecosystem health
in the region and the dominant factors influencing it, which
would contribute to the management of the natural watershed,
ensuring healthy and sustainable development of the regional
ecosystem.

The purpose of this study is to assess the change in
ecosystem health of the natural watershed using the traditional
VOR framework and uncover the potential environmental
controls that mediate the variations in ecosystem health of
the region. Specifically, we aimed to i) evaluate the spatial
and temporal variations of ecosystem health of the watershed,
ii) diagnose the clustering pattern of the ecological health,
and iii) identify the dominant constraints of ecosystem
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FIGURE 1
Geographical location of the Xiaoluan River watershed.

health with respect to climatic, topographic, and pedological
aspects.

2 Methods

2.1 Study area

The Xiaoluan River watershed is located in the transitional
zone between the Inner Mongolia Plateau and the mountains of
northern Hebei (Figure 1). It is situated between 116°30′ E–117°30′

E and 41°30′ N–42°30′ N, with an altitude of 768 m–1,904 m. The
drainage area of the watershed is 1,980 km2, and the mean annual
temperature and precipitation during the study period are 3.54 °C
± 1.77 °C and 414.64 mm ± 15.32 mm, respectively. This area is a
typical transition zone between forests and grasslands. The main
land use types are mainly forest and grassland, with forests mainly
distributed in the lower reaches of the watershed and grassland in
the middle and upper reaches.

Soils in the middle and upper reaches are mainly gravelly
and sandy texture in texture, while the middle and lower
reaches contain more medium-textured soils. The watershed
is located in a Quaternary accumulation zone, characterized

predominantly by Quaternary wind-blown deposits and sediment
cover (Houyun et al., 2020).

2.2 Data availability

We obtained monthly precipitation and temperature data from
2006 to 2020 (Table 1), which were used to calculate the annual
average precipitation and temperature variability; these variables
were then included in the regression model to investigate their
potential influence on ecosystem health. Spatial grid vegetation
datasets for the same time period, including the enhanced vegetation
index (EVI) and NDVI, were acquired from LAADS DAAC. Land
surface temperature (LST) was from Landsat 5, Landsat 7, and
Landsat 8 series remote-sensing images and was synthesized on the
GEE platform. Land-use information was from the Earth System
Science Data. Considering the discrepancy in the resolution of
various sources, the inverse distance weighting (IDW) method was
used to interpolate the dataset into a uniform grid of 250 m ×
250 m. The maximum distance was set to the diagonal length of
the analysis extent, and the search radius type was adjusted based
on the number of points, while all other parameters were kept at
their default settings in ArcGIS 10.2. These datasets were all used
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TABLE 1 Data sources and their spatiotemporal resolution.

Data categories Spatial and temporal resolutions Sources Usages

Precipitation
2006–2020; monthly

1,000 m

National Tibetan Plateau Data Center (https://zenodo.
org/records/3114194; https://data.tpdc.ac.cn/en/data/71ab4677-

b66c-4fd1-a004-b2a541c4d5bf/) (Peng, 2024a; Peng, 2024b)
c1, c2, OLS, and GWR

Temperature

EVI 250 m; 2006–2020, 16-day Level-1 and Atmosphere Archive and Distribution System
Distributed Active Archive Center (LAADS DAAC)

(https://ladsweb.modaps.eosdis.nasa.gov/)

EV

NDVI 250 m; 2006–2020, 16-day Level-1 and Atmosphere Archive and Distribution System
Distributed Active Archive Center (LAADS DAAC)

(https://ladsweb.modaps.eosdis.nasa.gov/)

ER

LST 250 m; 2006–2020, 16-day Interpretation and analysis of Landsat 5, 7, and 8 remote sensing
image datasets

EV

Land use 30 m; 2006–2020, annual Earth System Science Data Discussions (Yang and Huang, 2021) EO and ER

Soil 1,000 m National Tibetan Plateau Data Center (https://poles.tpdc.ac.
cn/zh-hans/data/844010ba-d359-4020-bf76-2b58806f9205/)

(Meng and Wang, 2018)

OLS and GWR

DEM 30 m Geospatial Data Cloud (https://www.gscloud.cn/) OLS and GWR

PFTs 1,000 m A Big Earth Data Platform for Three Poles (https://poles.tpdc.ac.
cn/zh-hans/data/ab193a70-63a5-4df6-9bc1-d9b5ac5fb044/) (Ran,

2019)

in the VOR framework analysis. Additionally, in order to explore the
potential topographic and pedological controls on ecosystem health,
datasets on soil properties and digital elevationmodels (DEMs)were
also included in the construction of the regression models.

2.3 VOR framework for ecosystem health
assessment

The classic VOR framework developed by Costanza et al. (1997)
is widely used for assessing ecosystem health (Ma et al., 2022), which
combines ecosystem vigor (EV), ecosystem organizational capacity
(EO), and ecosystem resilience (ER) into the EHI (Equation 1).

EHI = 3√EV×EO×ER. (1)

EV, EO, and ER all range from 0 to 1, with 0 indicating a poor
condition and 1 indicating a good condition.

2.3.1 EV
EV is the most visual component of the VOR model,

representing ecosystem health. Various approaches were often
employed to quantify this component (e.g., NDVI (Peng et al.,
2017), NPP (Pan et al., 2021), GPP (Yushanjiang et al., 2021),
or a combination of metrics (Bao et al., 2022)). Considering that
the combination of the vegetation condition index and thermal
condition index is a good indicator of soil moisture content,
along with reflecting the condition of vegetation and the health
of the ecosystem (Cunha et al., 2015), both EVI and LST were
included in our case to characterize EV. EV is calculated using

Equation 2 as follows:

EV = α
EVI−EVImin

EVImax −EVImin
+ (1− α)

LST− LSTmin

LSTmax − LSTmin
, (2)

where α is a weight parameter that is usually set
as α = 0.5 (Bento et al., 2018).

2.3.2 EO
EO refers to the structural stability of an ecosystem (see

Equation 3), including the landscape connectivity (LC), landscape
heterogeneity (LH), and connectivity of essential patches (IC)
(Abbas et al., 2022). Following the method of Bao et al. (2022), we
estimatedEO according to Equation 3, inwhich LC, LH, and ICwere
estimated using Fragstats 4.2:

EO = 0.35× LH+ 0.3× LC+ 0.35×CC. (3)

2.3.3 ER
ER is defined by the ecosystem’s resistance to external

disturbance and its capacity for recovery (see Equation 4)
(López et al., 2013; Yushanjiang et al., 2021):

ER = λ · μ ·ECOres,

= λ · SHDI ·NDVI
c1 · c2

· SHDI ·
m

∑
i=1

Si ·Ai. (4)

Here, λ is the regulation coefficient, which is generally assigned
a value of 0.1 (Liu et al., 2016; Yushanjiang et al., 2021); μ
is the ecosystem resilience strength coefficient; ECOres is the

Frontiers in Earth Science 04 frontiersin.org

https://doi.org/10.3389/feart.2025.1614748
https://zenodo.org/records/3114194
https://zenodo.org/records/3114194
https://data.tpdc.ac.cn/en/data/71ab4677-b66c-4fd1-a004-b2a541c4d5bf/
https://data.tpdc.ac.cn/en/data/71ab4677-b66c-4fd1-a004-b2a541c4d5bf/
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://poles.tpdc.ac.cn/zh-hans/data/844010ba-d359-4020-bf76-2b58806f9205/
https://poles.tpdc.ac.cn/zh-hans/data/844010ba-d359-4020-bf76-2b58806f9205/
https://www.gscloud.cn/
https://poles.tpdc.ac.cn/zh-hans/data/ab193a70-63a5-4df6-9bc1-d9b5ac5fb044/
https://poles.tpdc.ac.cn/zh-hans/data/ab193a70-63a5-4df6-9bc1-d9b5ac5fb044/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Qu et al. 10.3389/feart.2025.1614748

ecosystem resilience limit; c1 and c2 are the annual temperature and
rainfall variability, respectively (Yushanjiang et al., 2021); Ai is the
percentage area coverage of land type i; and Si is the elasticity score
of land type i (Liu and Dong, 2006).

2.4 Spatial autocorrelation analysis

Moran’s I is usually used to investigate the spatial autocorrelation
for understanding the spatial distribution pattern of variables and
the clustering status of an ecosystem (Song et al., 2024). Both
Shi et al. (2022) and Fu et al. (2014) used Moran’s I to quantify
the spatial correlations of the investigated variables in their research
areas. However, Wu et al. (2024) and Song et al. (2024) usedMoran’s
I to identify spatial clustering in the ecosystems of the investigated
areas. In our analysis, we attempted to use global Moran’s I (see
Equations 5–7) to identify the spatial correlation of ecosystemhealth
and understand the resilience of ecosystem health in the Xiaoluan
River watershed (Wu et al., 2024).

GlobalMoran′s I =
∑n

i=1
∑n

j=1
wij(EHIi −EHI)(EHIj −EHI)

S2∑n
i=1
∑n

j=1
wij

, (5)

S2 = 1
n

n

∑
i=1
(EHIi −EHI), (6)

EHI = 1
n

n

∑
i=1

EHIi. (7)

Here, S2 represents the sample variance,wij represents the spatial
weight, and n is the number of spatial entities. Moran’s I ranges
from −1 to 1; a positive value means a positive correlation, and the
closer the absolute value is to 1, the stronger the spatial dependence
between the areas.

Considering that when global Moran’s I is 1, there may
not necessarily be local spatial clustering, local Moran’s I (see
Equations 8–10) was also estimated in our analysis to reveal the
difference in spatial dependence of ecosystem health between areas.
The local Moran’s I can reveal the distribution of high and low EHI
values within a region, thereby screening out statistically significant
spatial clusters of high values (hot spots), low values (cold spots),
and spatial outliers (Zhang et al., 2008; Fu et al., 2014). For instance,
HH is representative of the areas with high EHI surrounded by
neighboring areas of high EHI; LL is representative of the areas
with low EHI surrounded by neighboring areas with low EHI; LH is
representative of the areas with low EHI surrounded by neighboring
areas with high EHI; and HL is representative of the areas with high
EHI surrounded by neighboring areas with low EHI. The last two
clustering types represent the negative autocorrelations of the EHI.
Zhou et al. (2022) elucidated the patterns of spatial autocorrelation
of ecological health using local Moran’s I. In this study, we also tried
to use localMoran’s I to identify local spatial clustering patterns and
spatial outliers (Harries, 2006; Fu et al., 2014).

LocalMoran′s I =
(EHIi −EHI)∑

n
j=1

wij(EHIi −EHI)(EHIj −EHI)

S2 ,

(8)

S2 = 1
n

n

∑
i=1
(EHIi −EHI), (9)

EHI = 1
n

n

∑
i=1

EHIi. (10)

Here, S2 denotes sample variance,wij is the spatial weightmatrix,
and n is the number of spatial entities.

2.5 Potential variables affecting variance of
ecosystem health

The spatial and temporal variance of ecosystem health is often
the result of multiple driving processes. In addition to the influence
of climatic variables (Cartwright et al., 2020; Jiang et al., 2021;
Teng et al., 2023), various other factors have also shown their
importance in different ecological processes. For example, soil
moisture is a key variable in the soil–plant–atmosphere system
(Wang et al., 2018), while the topographic wetness index (TWI)
is moderately well-correlated with observed soil moisture patterns
(Buchanan et al., 2014) and is often used as a proxy for soil moisture
(Kopecký et al., 2021). The interaction between topographic and
pedological processes is usually found to exert a dominant influence
on the EHI (Cartwright et al., 2020; Huang et al., 2023; Li M. et al.,
2023; Bandak et al., 2024). In addition, human activities such
as socio-economic development and policies also play a role in
mediating EHI (Ge et al., 2022; Li K. M. et al., 2024). Given that the
study area is a natural watershed with minimal human interference,
only climatic, soil, and topographic variables were included in
the analysis to explore their potential influence on variations in
the EHI (Table 2). Both ordinary least squares (OLS) and GWR
regression techniques were utilized to examine the relationships
between ecosystem health and the potential affecting variables.
All the variables were standardized to eliminate the impacts of
magnitude, dimension, and positive and negative orientations.

2.5.1 Global linear regression
The OLS technique can screen identify independent variables

that have a significant impact on the EHI from the independent
variables, providing a simple and effective method for revealing the
influence of potential predictors on the response variable (Yu and
Peng, 2019; Gao et al., 2022; Kalwa et al., 2023). Several studies
have successfully applied OLS models to analyze the effects of the
various morphological variables on LST from a global perspective
(He et al., 2019; Gao et al., 2022; Khalid et al., 2024). Assuming
that a linear relationship exists between the EHI and the potential
explanatory variables, we established annual global linear regression
models for the watershed using the OLS technique. The variables
related to soil properties, topography, and climate were considered
the explanatory variables, and EHI was the dependent variable. Six
variables including soil bulk density (SBD), upper soil silt content
(USI), upper soil clay content (UCL), deep soil silt content (DSI),
deep soil sand content (DSA), and deep soil pH value (DpH) were
excluded from the OLS models to control the variance inflation
factor (VIF) within a reasonable range, and the remaining variables
that were retained in the OLS models were upper soil pH value
(UpH), USA, TWI, relief degree of land surface (RDLS), T, P,
deep soil clay content (DCL), and available water capacity (AWC),
with most of their VIF values being lower than 10, except for
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TABLE 2 Indicators of factors influencing ecosystem health.

Variable Indicators References

Topography Relief degree of land surface (RDLS)
Topographic wetness index (TWI)

Geospatial Data Cloud (https://www.gscloud.cn/) (Shen et al., 2020;
Kopecký et al., 2021)

Soil property Soil available water capacity (AWC)
Soil bulk density (SBD)
Uppera soil silt content (USI)
Upper soil clay content (UCL)
Upper soil sand content (United States)
Upper soil organic matter content (UO)
Upper soil pH value (UpH)
Deepb soil silt content (DSI)
Deep soil clay content (DCL)
Deep soil sand content (DSA)
Deep soil organic matter content (DO)
Deep soil pH value (DpH)

National Tibetan Plateau Data Center (https://poles.tpdc.ac.cn/zh-
hans/data/844010ba-d359-4020-bf76-2b58806f9205/) (Meng and Wang,
2018)

Climate Annual average precipitation (P)
Annual average temperature (T)

National Tibetan Plateau Data Center (https://zenodo.org/records/3114194;
https://data.tpdc.ac.cn/en/data/71ab4677-b66c-4fd1-a004-b2a541c4d5bf/)
(Peng, 2024a; Peng, 2024b)

aUpper indicates a depth of 0–30 mm.
bDeep indicates a depth of 30–100 mm.

USA and DCL (being 12.90 and 11.96, respectively). In order to
understand the possible differences in environmental controls on
the EHI among different plant functional types (PFTs), separate
regression models were established for each PFT.

2.5.2 Geographically weighted regression model
In contrast to OLS models, which may overlook spatially

dependent and heterogeneous relationships among variables, the
GWR model is usually employed to account for spatial dependence
and heterogeneity in the factors influencing the EHI (Xu and Lin,
2017; Shi et al., 2022). It is an effective method for detecting spatial
non-stationarity between the explanatory and dependent variables
(Brunsdon et al., 2010; Zhu et al., 2020). The essence of GWR
modeling is to establish multiple regression models within the
investigated areas by accounting for spatially varied weights for the
variables (see Equation 11) (Xu and Lin, 2017; Yu and Peng, 2019;
Khalid et al., 2024). Xu and Lin (2017) successfully applied the
GWR model to quantify the relationship between the carbon sink
of cropland and its influencing factors at various scales. Li M. et al.
(2024) investigated the spatially varied effects of potential variables
on ecological risk using the GWR model.

EHI = β0(ui,vi) +
n

∑
j=1

βj(ui,vi)xij + εi. (11)

Here, xij is the jth explanatory variable at position i, εi is
the random error at the corresponding position, β0(ui,vi) is the
intercept of the model derived for the position i, βj(ui,vi) denotes
the estimated coefficient for the explanatory variable of j, (ui,vi)
specifies the spatial coordinates of the sample point i, and n is the
total number of independent variables.

We first established GWR models for the grids of the
watershed. The kernel type used was the bi-square kernel, with
an adaptive bandwidth determined using the golden section
search method. The optimal bandwidth represents the spatial
scale at which processes influencing the dependent variable

operate. Considering that various processes may not operate at
the same scale, in contrast to the assumption of the classical
GWR modeling approach (Fotheringham et al., 2017), multiscale
geographically weighted regression (MGWR) models were also
employed. The influence of explanatory variables on the EHI was
compared between the GWR and MGWR models.

The performance of both the GWR and OLS models was
evaluated using the −2 log-likelihood (−2LL), residual sum of
squares (RSS), and Akaike’s information criterion corrected (AICc)
methods. A smaller RSS means a better fit, as do smaller AICc and
−2LL. Conversely, a higher adjusted R2 indicates a better fit.

In order to examine whether the EHI of different PFTs differed
and how environmental controls varied across PFTs, in addition
to the analysis for the entire watershed, we also carried out
a stratified analysis with respect to EHI estimation and GWR
modeling using the five plant function types of the watershed,
namely, needleleaf evergreen tree, temperate (NETT); broadleaf
deciduous tree, temperate (BDTT); broadleaf deciduous tree, boreal
(BDTB); broadleaf deciduous shrub, temperate (BDST); and C3
grass (C3).

3 Results

3.1 Spatial and temporal variance of
ecosystem health

3.1.1 EV
Unexpectedly, the EV of the watershed showed a slightly

decreasing trend (p > 0.05) from 2006 to 2020, probably due to the
significant (p < 0.05) decrease in the EVI. The average annual EV of
the watershed was 0.50. Governed by the land uses, EV displayed
a spatially varied distribution. The grassland located mainly in the
northwest area generally had lower EV values with higher standard
deviations, while the forest land generally showed relatively higher
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FIGURE 2
Spatial distribution of the average annual (A) EV, (B) EO, (C) ER, and (D) EHI over 2006–2020. X represents the average value of the index, and σ
represents the standard deviation of the index.

EV values and lower standard deviations (Figure 2). Stratifying the
EV values by PFTs, the plant type of BDTT had the highest EV,
followed by BDTB,NETT, BDST, andC3, with their EV values being
0.55, 0.57, 0.55, 0.53, and 0.48, respectively (Figure 3A). Except for
NETT and BDTB, there were significant differences in EV between
the other types.

3.1.2 EO
The mean annual EO of the watershed was 0.65, suggesting

a moderate landscape heterogeneity and connectivity of the
watershed. EO did not show an obvious spatial pattern across the
whole watershed (Figure 2). Except for the areas along the river
network,whichweremainly cropland, the remaining areas displayed
higher EO values. No significant difference was found in EO values
among different PFTs.

3.1.3 ER
The mean annual ER of the watershed was 0.19, with an

insignificant increasing trend (p > 0.05) from 2006 to 2020. ER
also exhibited an obvious spatially divergent distribution, with lower

values in the upper half of the watershed and higher values in the
lower half (Figure 2). This pattern was assumed to be influenced
by both land use type and temperature. ER showed a relatively
stable state over the years across almost the whole watershed, with
the mean SD values of 0.01, which is indicative of a very constant
resilience level (Figure 3). When the five plant types were examined,
both BDTT and NETT exhibited stronger resistance, with their
ER values at 0.31 ± 0.09 and 0.28 ± 0.13, respectively; these were
followed by BDTB, BDST, andC3, with ER values of 0.26 ± 0.08, 0.21
± 0.15, and 0.12 ± 0.07, respectively (Figure 3B).There is a significant
(p < 0.05) difference in ER between the five PFTs.

3.1.4 EHI
The spatially averaged annual EHI of the watershed varied

ranged 0.36 to 0.39 from 2006 to 2020, showing no significant (p >
0.05) increasing trend over the period. Governed by EV and ER, the
EHI also showed a spatially varied distribution. The lower portion
of the watershed usually had higher EHI values, while the upper
portion of the area had lower EHI values (Figure 2). The SD values
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FIGURE 3
Box plots for (A) EV, (B) ER, and (C) EHI for the five PFTs. The box represents the interquartile range (IQR) of EV, EO, ER, and EHI; the whiskers refer to
the range within the first and third quartiles; the line inside represents the median; the hollow square indicates the mean value of the data.

of the EHI during the investigated time period were lower across
the watershed, indicating a relatively stable level with respect to the
ecosystem health over the years.

Among the five dominant PFTs, the vegetation type with the
highest EHI is still BDTT (EHI being 0.52 ± 0.03), followed by
BDTB, NETT, BDST, and C3 (EHI being 0.45 ± 0.06, 0.44 ± 0.12,
0.38 ± 0.13, and 0.32 ± 0.06, respectively). There are significant (p <
0.05) differences in the EHI among the five PFTs. It is worth noting
that the EHI in the upstream areas of the watershed was generally
lower than that in the downstream areas, even for the same PFT.
One of the possible reasons is that the watershed exhibited distinct
climatic conditions between the upstream and downstream areas,
with the vegetation being greatly influenced by the availability of
thermal resources. As the elevation increased in upstream areas,
temperature greatly decreased, thereby constraining vegetation
productivity accordingly. A detailed explanation is provided in the
discussion section.

3.2 Spatial autocorrelation of ecosystem
health

Global Moran’s I analysis suggests that the distribution of
ecosystem health of the Xiaoluan River watershed is not randomly
developed. The EHI value showed a strong spatially positive
autocorrelation, with a mean global Moran’s I of 0.92 ± 0.01, and
no significant trend was detected from 2006 to 2020.

Among the five PFTs, BDTT had the highest EHI, with the
mean annual global Moran’s I being 0.55, and it was significantly
lower than those of the others (0.96 for NETT, 0.87 for BDTB,
0.97 for BDST, and 0.96 for C3). The relatively lower Moran’s I
value for BDTT suggests weaker spatial dependence on surrounding
areas with respect to its ecosystem health. This is mainly because
the distribution of BDTT in the watershed is much more
concentrated (Ran, 2019) and the EHI varies considerably within
these concentrated areas; in contrast, the other PFTs aremore widely
dispersed across the watershed, with smoother EHI variations, thus
resulting in stronger spatial autocorrelation.

In line with global Moran’s I, local Moran’s I suggests that
the ecosystem health of the watershed exhibited strong spatially
positive autocorrelations (Figure 4) as both the HH and LL areas
accounted for 26.0% and 17.8% of the whole watershed. The
mean local Moran’s I for the HH clustering was 1.90, and it
was highly concentrated in the southern part and partially in the
northeastern part of the watershed, with the land use type mainly
being forest (Figure 4B). Meanwhile, the LL clustering had a mean
localMoran’s I of 1.66 and was primarily distributed in the northern
part of the watershed and along the river network (Figure 4C),
where the dominant land use type was agricultural land. HL areas
have relatively good local ecosystem health, but their surrounding
areas are comparatively poor. LH areas have relatively poor local
ecosystem health, but their surrounding areas are comparatively
good. Both occur infrequently and are sporadically distributed in
certain regions during specific years (Figures 4A, D).

As shown in Table 3, stratifying the clustering results by the
PFTs indicated strong spatial autocorrelation in ecosystem health
for both NETT and BDTT. HH clustering accounted for 75% and
97% of their corresponding total areas, with themean localMoran’s I
values of 1.89 and 2.47 for NETT and BDTT, respectively. BDST also
displayed a spatially positive correlation, with themean localMoran’s
I values of 1.81 and 2.61 for HH and LL clusters, accounting for 45%
and 37% of the areas, respectively. BDTB showed a different spatial
clustering pattern. In addition to the HH clustering type, nearly
half of the areas (47%) showed no significant spatial relationship,
suggesting a lower degree of spatial dependence in ecosystem health
across those areas.

3.3 Potential environmental controls on
the EHI

3.3.1 OLS models
Except for variables DO and UO, the other variables, including

RDLS, TWI, AWC, USA, UpH, DCL, T, and P, had significant
impacts (p < 0.05) on ecosystem health. T had the most prominent
positive control on the EHI, and the mean regression coefficient
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FIGURE 4
Frequency for the occurrence of each cell identified with either hot or cold spots from 2006 to 2020. (A) HL, (B) HH, (C) LL, and (D) LH. The values of
the frequency were estimated using the number of years exhibited with either hot or cold spots for each cell divided by the total number of years.
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TABLE 3 Percentage of the area (%) occupied by different clustering
types for each PFT. The values were estimated using the areas of each
clustering type (i.e., HH, LL, HL, and LH) divided by the total areas of the
corresponding PFT (NS means not significant).

Clustering
type

NETT BDTT BDTB BDST C3

HH 75.05 97.33 50.74 45.30 5.88

HL 0.00 0.00 0.00 0.00 0.00

LH 0.00 0.00 0.00 0.00 0.01

LL 17.33 0.00 2.32 37.33 25.71

NS 7.62 2.67 46.93 17.37 68.40

was as high as 0.70 ± 0.04 (Figure 5). This is mainly because the
area is characterized by a long winter season, commonly ranging
from the end of October to the middle of April, with a mean annual
temperature of 3.54 °C ± 1.77 °C, and the recorded minimum air
temperature over the period of 2006–2020 being −10.64 °C only.
The long-term available energy, therefore, predominantly controlled
the recovery of ecosystem health of the watershed. P also showed
a positive control on the EHI of the watershed, with the mean
annual regression coefficient of 0.13 ± 0.03, suggesting its dominant
control on the ecosystem health of the areas. Both soil variables,
USA and DCL, exhibited a positive and fair share of controls on
the EHI, with their regression coefficients being 0.18 ± 0.03 and
0.11 ± 0.01, respectively. Unexpectedly, both TWI and AWC, which
are commonly representative of soil wetness, showed weaker control
over the EHI, with the mean annual regression coefficients even
being negative, i.e., −0.06 ± 0.01 and −0.07 ± 0.02, respectively.
We suggest that the lack of positive correlations between the EHI
and these two variables may be partially attributed to limited data
recorded forAWCof the areas in theHSWDdataset and the inability
of the TWI to differentiate soil wetness at the spatial scale of the
investigated watershed. A detailed explanation is provided in the
discussion section.

3.3.2 GWR models
Compared withOLSmodels, the RSS values of the GWRmodels

reduced by 24.4%, the –2LL value reduced by 12.1%, and the
AICc value reduced by 11.3%, while the adjusted R2 values were
enhanced by 3.62% (Figure 6). The improved performance of the
GWR models suggests that the GWR approach is more effective in
capturing both the environmental controls on the EHI and its locally
specific variations across the study area.

The local regression coefficients (LRCs) of the explanatory
variables from the GWR models are shown in Figure 7. The greater
the absolute value, the stronger the variable’s control over the EHI.
In line with the results of the OLS models, T showed a dominant
control on the EHI across the watershed, with the LRC values in
the northern area being as high as 0.94 (Figure 7g). P also played
an important role in affecting EHI variation, but its magnitude was
less than that of T, with the spatially averaged LRC value across the
areas being 0.15 ± 0.05 (Figure 7h).

Primarily due to the spatially divergent distribution of soil
texture of the watershed (Figure 8), the variables of soil properties,

FIGURE 5
Regression coefficients of the explanatory variables for estimating
annual EHI using the OLS technique. The bar is the mean value of the
estimated coefficients during 2006–2020, and the whisker denotes
the standard deviation of the coefficient estimations.

including USA, DCL, and UpH, exhibited moderate but spatially
varied controls on the EHI. For example, USA had negative effects
on the EHI in the upstream areas of the watershed, while it
showed positive effects in the middle-stream areas (Figure 7d),
with a spatially averaged LRC of −0.22 ± 0.23. Both UpH
(Figure 7e) and DCL (Figure 7f) also showed spatially variable
influences on the EHI, with average LRC values of 0.01 ± 0.11 and
−0.04 ± 0.12, respectively.

The effects of the topography variable (i.e., RDLS) on the
EHI were comparable to those of soil variables (see Figure 7a),
with a spatially averaged LRC value of 0.13 ± 0.04. Higher LRC
values were predominantly observed in the central area, mainly
characterized by a flat terrain and covered with C3. In contrast,
in other areas commonly covered with arboreal forest, the LRC
values were relatively lower regardless of RDLS, indicating weaker
topographic control on the EHI of arboreal forests in the region.

Both TWI and AWC, usually used as proxies for soil moisture
(Bertoldi et al., 2014), have shown moderate and slight controls on
the EHI, respectively (Figures 7b, c), with their spatially averaged
LRC values of −0.00 ± 0.08 for TWI and −0.012 ± 0.04 for AWC.
We suggest that the negative influence of the TWI on the EHI
is mainly due to the relatively high clay content (29%) in the
watershed’s soil, especially in the downstream areas (Figure 8b),
resulting in unfavorable soil moisture conditions for vegetation
growth in depressions.

The results of MGWR were generally consistent with those of
GWR. Specifically, the climatic variable T presented a dominant
control on ecosystem health in the study area, with average LRC
values from the GWR models as high as 0.69 ± 0.20, and in
comparison, the LRC value for P was 0.18 ± 0.01 (Figure 9). The
variables, TWI and AWC, representing soil moisture condition,
displayed moderate and slight controls on the EHI, with their
averaged LRC values being −0.08 ± 0.02 and −0.03 ± 0.00,
respectively. The topography variable of RDLS has shown moderate
effects on the EHI, with the LRC value being 0.06 ± 0.01. As for the
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FIGURE 6
The evaluation results of OLS and GWR models using (A) RSS, (B) -2LL, (C) AICc, and (D) adjusted R2.

FIGURE 7
Spatially distributed LRC values for (a) RDLS, (b) TWI, (c) AWC, (d) USA, (e) UpH, (f) DCL, (g) T, and (h) P derived from the GWR models over 2006–2020.
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FIGURE 8
Spatial distribution of (A) USA (B) DCL, and (C) UpH in the Xiaoluan River watershed.

FIGURE 9
Comparison of regression coefficients for explanatory variables
between the GWR and MGWR models. The bar shows the regression
coefficients, and the whisker denotes the standard deviation of the
coefficient estimations.

soil variable, except for UpH, both DCL and USA showed positive
effects on the EHI, which were significantly distinct from those of
GWR.Wemainly ascribe the difference to the scales of theGWRand
MGWR models estimated. In other words, the MGWR technique
used a larger bandwidth to establish models than the GWR did
in our case.

To understand the differences in environmental controls on the
EHI among different functional types, the results of GWR models
were further stratified by PFTs. T remains the most prominent
control, regardless of the vegetation type. The LRC values of
the variable T differed between the PFTs, with mean values of
0.67 ± 0.16 and 0.66 ± 0.21 for C3 and BDST, respectively,
which were significantly higher (p < 0.05) than those of NETT,
BDTT, and BDTB (Figure 10). The climatic variable P also exerted
considerable influence on the EHI. There was no significant
difference in the controls of P among the three arboreal vegetation
types, with the LRCs being 0.19 ± 0.04, 0.20 ± 0.00, and 0.20 ± 0.02
for NETT, BDTT, and BDTB, respectively, while for BDST and C3,
they are 0.17 ± 0.04 and 0.11 ± 0.05, respectively, suggesting less
dependence on P compared to arboreal vegetation types.The control
USA on the EHI appeared more discernable for BDST and C3, with
mean LRC values of −0.16 ± 0.16 for BDST and −0.29 ± 0.15 for C3.
The controls DCL andUpHon the EHI were insignificantly different
among various PFTs. Unfavorable effects of TWI or AWC on EHI
were found for all the PFTs, and non-significant differences were
found in LRC values among the PFTs, either for TWI or for AWC.

4 Discussion

4.1 Environmental controls on the EHI of
the region

Understanding the environmental controls on ecosystem
health is a prerequisite for effective ecosystem restoration
in the area (Rodriguez-Flores et al., 2025). We have used the OLS,
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FIGURE 10
Stratified LRC values of the explanatory variables using the five PFTs. The box represents the IQR of LRC; the whiskers refer to the range within the first
and third quartiles; the line inside the box represents the median; the hollow square indicates the mean value of the data; and the solid dots refer to
outliers, which are anomalies that are significantly distant from the remaining data points. Different colors represent the LRC of explanatory variables
for different PFTs.

GWR, andMGWR techniques to explore the potential environmental
controls on the EHI in our natural watershed ecosystem.

Our study watershed is located in a transitional zone between
the semi-arid and semi-humid regions of northern China. Although
water stress is often considered a primary constraint on ecosystems
of northern China (Xie et al., 2020; Huang et al., 2021; Zhang et al.,
2022), our modeling analysis suggests that thermal stress is a major
constraint on the development of ecosystem health in the Xiaoluan
River watershed, irrespective of the PFTs, with a spatially average
LRCvalue of 0.63 ± 0.15 across the area, which is considerably higher
than that of other environmental variables. This result aligns with
the findings of Guo et al. (2023), who found that temperature had a
stronger influence on the spatial variation of vegetation productivity
in similar areas than precipitation. The thermal stress of EHI herein
can be easily understood because the vegetation growth and/or
productivity in mountainous areas or humid bio-climates usually
relies more heavily on available thermal resources (Karnieli et al.,
2010; Bento et al., 2018; Veena et al., 2023).Moreover, our watershed
is characterized by a mountainous terrain with elevations ranging
from 769 m to 1,902 m, and it experiences a prolonged winter
season, usually from October to mid-April, with a mean annual
temperature of only 3.54 °C ± 1.77 °C.

We highlighted the primary key constraint of thermal stress on
the EHI of the areas, but it does not follow that precipitation is
irrelevant to the ecosystem of the watershed. This is especially true
for tree plantations as the LRC values of P for arboreal vegetation
were consistently higher than those for shrubs and C3 (Figure 9).
Water stress was usually a major constraint for vegetation growth
and/or productivity in arid and semi-arid areas (Miranda et al.,
2011; Wu et al., 2020; Bai et al., 2023). Our watershed had limited
water availability, with the mean annual precipitation being 414.6
± 15.3 mm. This explains why the variable P, alongside T, had a
considerable effect on the ecosystem in the area. However, due to
the frequent occurrence of snowpack (Li et al., 2020), snowmelt
water partially alleviated the constraining effects of precipitation on

ecosystem health (Zhou et al., 2025), leading to the LRC values of P
being relatively lower than those of T.

Although both T and P are the most pronounced controls on
the EHI of the areas, we suggest that the two variables alternatively
dominate the areas by season. By further examining seasonal
models of the EHI, we found that the controls P and T differed
by season (Figure 11). In other words, ecosystem health during
the growing season was mainly controlled by P, while at the
beginning of the growing season, the control shifted to T, which is
critically important for leaf unfolding and sap flow, especially for the
arboreal vegetation, potentially determining vegetation productivity
for the year.

One may note that both variables, TWI and AWC, which are
widely considered proxies for soil moisture conditions (Raduła et al.,
2018; Ladányi et al., 2021), exhibited negative effects on ecosystem
health in the area. As mentioned previously, the high percentage
of clay in the soil may partially explain the negative effects of
the two variables on ecosystem health. Additionally, both Larix
gmelinii and Pinus sylvestris are key species for revegetation, and
both preferentially thrive in well-drained soil properties (Li D. et al.,
2023); therefore, it is reasonable to believe that they exert a negative
influence on the EHI of the area.

Regarding the soil variables, USA, UpH, and DCL, we found
that they generally hadminor effects onmediating ecosystem health
in the area. This is particularly true for the PFTs NETT, BDTT,
and BDTB (see Figure 9), where the LRC values are almost 0,
suggesting minimal constraints imposed by sandy soil texture on
vegetation health for tree species, which is in agreement with the
findings of Cheng et al. (2023).

4.2 Implications for the resilience of
ecosystem health

Ecosystem resilience has recently received increasing attention
from researchers (Holling, 1973; Oliver et al., 2015; Anderegg et al.,
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FIGURE 11
Seasonal distribution of LRC values of explanatory variables. The box represents the IQR of LRC; the whiskers refer to the range within the first and third
quartiles; the line inside the box represents the median; the hollow square indicates the mean value of the data; the solid dots refer to outliers, which
are anomalies that are significantly distant from the remaining data points. LRC values of explanatory variables representing different seasons with
different colors.

2018; Wu et al., 2024). Various methods and/or frameworks were
employed for resilience analysis. In the analysis performed by
Wu et al. (2024), the authors utilized the NDVI as a proxy to
estimate ecological resilience by combining a vegetation sensitivity
index with the adaptability index and found that the resilience of
their investigated area had improved overall from 2000 to 2020,
but there were significant regional differences. Oliver et al. (2015)
investigated how ecosystem resilience responds to biodiversity and
the underlying mechanisms using redundancy analysis and path
analysis based on controlled field experiments. Anderegg et al.
(2018) analyzed ecosystem resilience at the stand scale and found
that diversity in the hydraulic traits of the trees mediates ecosystem
resilience to drought.

In our case, although we did not carry out a thorough analysis of
resilience as in the above studies, the low ER value in the EHI—only
0.19—well-illustrated the relatively low level of ecosystem resilience
in the area, likely due to the high temperature variability in the
region. Moreover,Moran’s I of the EHI in the watershed was as high
as 0.92 ± 0.01, showing a strong spatially positive autocorrelation.
According to Sankaran et al. (2019), systems with strong positive
spatial correlation are usually more prone to undergo abrupt
transitions and exhibit lower resistance to system perturbations.
Therefore, the high Moran’s I of the Xiaoluan River watershed
actually indicates a lower level of resilience of the ecosystem health.
This is in agreement with the results of the ER component in
EHI analysis.

Both T and Pwere two primary controls on the ecosystemhealth
of the watershed. Considering that climate change may be more
intensified in future, with the increasing variability in temperature
and precipitation (Hansen et al., 2013; He and Li, 2018; Cai et al.,
2022), it should not be overlooked in relation to the ecosystem
resilience of the watershed. As mentioned previously in the local
Moran’s I section, both NETT and BDTT in the area were
typically derived from man-made plantations and exhibited very
strong positive spatial correlations within the watershed; the HH

clustering areas accounted for as much as 75.05% and 97.33%,
respectively, indicating a proneness to abrupt transitions in the
event of environmental anomalies. We, therefore, suggest that more
caution should be exercised with these PFTs when implementing
revegetation activities to avoid possible ecosystem collapse and
protect the ecosystem health of the natural watershed.

5 Conclusion

Assessing ecosystem health and understanding its
environmental controls are valuable for effectively restoring natural
ecosystems in mountainous areas and enhancing their resilience to
environmental perturbations. We assessed the ecosystem health of a
natural watershed (Xiaoluan River watershed) in the mountainous
areas of northern China using the traditional VOR framework
combined with Moran’s I analysis and explored environmental
controls on ecosystem health using OLS, GWR, and MGWR
modeling techniques.

We found that the ecosystem health of the Xiaoluan River
watershed showed a slightly increasing trend from 2006 to 2020
as revegetation progressed, with the EHI varying from 0.49 to
0.57. However, the resilience of the ecosystem health of the
watershed remained relatively low as the mean value of ER over
the years was only 0.19. A strong positive spatial autocorrelation
was identified using global Moran’s I, especially for the vegetation
types NETT and BDTT, suggesting a proneness to abrupt transitions
in the event of environmental perturbations. Both thermal stress
and water stress were found to be dominant constraints on the
variation in ecosystem health in the areas, with temperature mainly
dominating at the beginning of the growing season and alternating
with precipitation, which is dominant during the growing season.
Regarding the pedological variables such as soil texture and other
soil wetness variables, they had relatively less effect on vegetation
health, especially for arboreal vegetation.
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We concluded that, for the mountainous areas that are mainly
revegetated with man-made plantations in northern China, the
ecosystem health might not have increased as profoundly as
anticipated since the ecosystem resilience of the areas remained
at a relatively lower level, particularly in the planted forests. In
the future, in the face of global climate change, greater caution
should be exercisedwithman-made plantationswhen implementing
revegetation policies in the area in order to avoid possible ecosystem
collapse and enhance ecosystem resilience more effectively.
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