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Assessment of slope stability
based on the improved entropy
weight-gray target theory
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!School of Civil Engineering, Nanyang Institute of Technology, Nanyang, China, °Nanyang Natural
Resources Research and Planning Institute, Nanyang, China, *School of Information Science and
Technology, Beijing Forestry University, Beijing, China

Landslides are a serious natural hazard globally. While the traditional grey
target model has long served as an effective tool for slope stability assessment,
its predictive accuracy remains questionable due to the inherent correlations
among evaluation indicators. To mitigate this limitation, this study introduces
an enhanced entropy weight-grey target theory for slope stability evaluation.
The proposed model innovates in two key aspects: first, it substitutes the
covariance matrix in the Mahalanobis distance calculation with a correlation
coefficient matrix, thereby addressing indicator interdependencies; second, it
adapts the positive and negative ideal solutions from the TOPSIS model to define
the corresponding target centers in the grey target framework. The improved
model's efficacy is validated through an engineering case study. The findings
confirm that the proposed method not only offers a feasible approach for slope
stability assessment but also demonstrates superior predictive accuracy to the
traditional grey target model. This research contributes a novel methodology
and conceptual framework for future slope stability evaluations.
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1 Introduction

Landslides are one of the most frequent accidents in opencast mines. They pose a direct
threat to people’s lives and property safety (Gu et al., 2021a; Zhao et al., 2021; Zhao et al,,
2023; Zhao et al., 2022a). Developing an accurate and applicable slope stability evaluation
model holds great theoretical significance and practical utility for mitigating landslide
risks. Due to the randomness, fuzziness, and variability of the factors influencing slope
stability, considerable uncertainty in slope stability evaluation exist, and this uncertainty
poses difficulties for the assessment and prediction of slope stability (Gu and Wu, 2019;
Zhao et al., 2019a; Zhao et al., 2019b; Zhao and Liu, 2012; Zhao et al., 2022b).

Currently, numerous scholars extensively employ methods such as the material point
method (WANG et al., 2017), set pair analysis (LIU, 2014), particle swarm optimization
(DONG, 2016), and artificial neural networks (Yuansong et al., 2013) to evaluate slope
stability. Yonggiang et al. (2007) also applied the Projection Pursuit Algorithm to
assess slope stability and proposed the Projection Pursuit Classification (PPC) evaluation
method. Wang et al. (2019) proposed an evaluation method based on genetic algorithm
and projection pursuit and conducted an empirical study on the slope stability of an
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opencast mine in the Tangshan area. Yang et al. (2018) introduced
the cloud model theory into the slope stability evaluation based
on the traditional fuzzy comprehensive evaluation method and
achieved better assessment results. Jianye et al. (2019) introduced
the concept of cloud into slope stability evaluation and established
a set pair cloud model to evaluate slope stability. Fang and Shang
(2019) established an evaluation model for slope stability of open-pit
mines based on game theory and the cloud model. Jun et al. (2016)
constructed a model for evaluating slope stability by utilizing the
harmonious particle swarm optimization algorithm in conjunction
with the feedforward neural network model. Botao et al. (2016)
proposed a material point strength reduction method for slope
stability evaluation from the perspective of stress and strain within
the slope. However, the influence factors of slope stability are
complex and highly uncertain, all of which can affect the accuracy
of an evaluation. The risk assessment of slope is essentially a multi-
indicator problem with uncertainties, so the grey target model
can be considered to evaluate the risk level of slope (Gu et al,
2021b; Gu et al., 2021c). However, the suggested model must still be
improved. In the traditional grey target model, the target distance
is calculated using Euclidean distance, without considering the
correlation between evaluation indicators, which may also affect the
accuracy of the evaluation results (Gu et al., 2022).

To overcome the above shortcomings, the improved entropy
weight-grey target theory is introduced to assess the slope stability.
It is a combination of the entropy weight method and grey target
theory. It can effectively handle complex, numerous, and highly
correlated research objects. To effectively combine the entropy
method with the grey target model (Gu and Wu, 2016), this article
improves the traditional grey target evaluation model from two
aspects: @ the correlation coefficient matrix is adopted to replace
the covariance matrix in the Mahalanobis distance; @ the positive
and negative ideal solutions in the TOPSIS model are introduced to
define the positive and negative target centers.

The article is organized as follows: in Section 2, theory and
methodology based on the entropy weight-grey target theory are
presented; in Section 3, the engineering background is introduced;
in Section 4, the assessment model is constructed, and the
assessment results are analyzed; in Section 5, conclusions are drawn.

2 Methodology

2.1 The improved entropy weight-grey
target model

Compared to the traditional model, the improved model can
enhance the predictive accuracy of slope risk level. The assessment
flowchart is plotted in Figure 1.

2.2 The entropy weight method

The basic principle of the entropy weight method (EW) (Zhang
and Yang, 2018) is to measure the randomness degree of a system
using entropy values. The more information the elements a system
contains, the less uncertainty there is. Namely, for each evaluation
indicator, the greater the data variability it contains, the more
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information it encompasses, and the greater its impact on the
evaluation results will be; consequently, a relatively higher weight is
assigned to it. Its calculative procedure is listed as follows:

® constructing the original matrix of X=
(x)(i=1,2,3,..,m55 = 1,2,3,..,n)

@ standardizing the original matrix

samples

The standardization is shown as follows:

B = (by)
For the benefit-type indicators (Jun et al., 2016):
a;— min(aij)

Y

max(a,-») —min (a-«)
i

; )
y

For the cost-type indicators:

max(a;) - 4,

b= :
m]ax((llj) - ﬂ'filn (a,])

3)

® the calculation of information entropy

2o i8iingy

E =— (i=12,..,m)

] Inn

)

1+bij
YR

Where E;-information entropy

()

glj—proportion of characteristic value

® The calculation of weight coefficients

1-E;

0 =—
i~ Zm
m j:lE/'

(6)

2.3 The Mahalanobis distance calculation
method based on the correlation
coefficient matrix

To accurately characterize the correlation between evaluation
indicators, the correlation coefficient matrix replaces the covariance
matrix in the Mahalanobis distance and is introduced into the
traditional grey target model. Simultaneously, during the calculation
process of the target center in the traditional grey target model, a
grey target is defined under the condition of no standard mode. The
ideal optimal value serves the target center (Xue-bin and Chang-
liang, 2007; Gu et al., 2025). The distances from each sample to
the target center are then calculated, and the sample ranking and
ordering are determined by comparing the sizes of these distances.
However, only a single ideal optimal value is the target center. In
that case, explaining the ranking and ordering of samples becomes
difficult when multiple samples have the same or similar distances to
the target center. Therefore, the positive and negative ideal solutions
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The risk assessment of slope

The building of assessment indicators

The entropy weight model

Determining the weight coefficients
of different indicators

establishment of improved
grey target model

The determination of ideal solution
in different levels

The determination of original decisive
matrix about the landslide

l

Determining the relative bullseys distance

Determining the risk level of slope

FIGURE 1
Evaluation flowchart of the improved grey target model.

are introduced from the TOPSIS model to define positive and
negative target centers. When multiple samples have the same or
similar distances to the target center, the ranking and ordering of
samples can be determined by further evaluating their distances to
the worst target center. Simultaneously, the Mahalanobis distance
based on the correlation coefficient is used to calculate the positive
and negative target center distances. The relative target center
distance is then defined to determine the risk level and ranking. The
calculation steps are as follows:

1. The construction of the sample matrix

It is assumed that there are m samples in the sample set
X=(x;, x x3 X,,). n evaluation indicators construct
the indicator set V=(v; v, 3 V).
The magnitude of sample x; for evaluation indicator v; is

assessment

ay(k=1,2,3,..,m),(I=1,2,3,..,n), assuming that the sample
indicator matrix of X to V'is

aq a, ay,
a a a
21 22 2n
A= 7)
A1 Am2 Aynn
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2. The normalization of the sample indicator matrix

A linear transformation is applied to the sample indicator matrix
A to perform standardization processing, unifying the dimensions of
evaluation indicators.

Let the mean of the evaluation indicator be

m
1
C=— Z Ay (8)
ComGg

For the cost-type indicator (Zhou et al., 2021):

€1~ Ay

T = 9)
max( max (ay) — ¢;,¢;— min (“kz))
1<k<m 1<k<m
For the benefit-type indicator:
G
Ty = (10)

max{ max (ay) -y~ min (ay) )

According to the characteristics of the evaluation indicators, the
sample indicator matrix A can be transformed into a standardized
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FIGURE 2
The location of the survey area.

sample indicator matrix R using Equations 8-10:

" T2 Tin
1 T "on

R= (11)
L L) Tan

3. The determination of the negative and positive target centers

Let 7 = max{ry|l <k <n}(I=1,2,..,n), then

+ +

=, 1y .. 1) (12)

Where r* is the positive ideal solution; namely, it is the positive
target center distance.
Let ] = min{ry[l <k <n}(l=1,2,..,n), then:

)
Where ™ is the positive ideal solution; namely, it is the negative
target center distance;

=, 1, .

4. The determination of positive and negative target
center distance
Let:
. . . . T
i=w(ng=r)I=(iy i, iy) (13)
. _ . . N\T
Jir=wi(rg - 7 1I=01 J Jn) (14)
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Where I and ] represent the weighted differences between sample
x; and the positive and negative target centers, respectively.

The distance from sample x; to the positive target center, that
is, the positive target center distance, is calculated based on the
correlation coefficient matrix as follows:

“1n12
e =TT '1)" (15)
Likely, the negative target center distance is
- —17\1/2
&=0"TT")" (16)

Where II denotes the correlation coefficient matrix of the
standardized sample indicator matrix R.

5. Determination of the relative target center distance

The bigger the relative target distance &, the higher the risk level.
The relative target center distance of the kth indicator is

17)

6. The classification of risk level

7. Let the set ¢ represent the collection of relative target distances
for all evaluation samples, namely, ¢= (¢, &) &)
The set D is defined as the ordered intervals obtained
by partitioning set ¢ based on t risk levels, namely, D=
(d, 4, d)). Let 1 < ¢ < t, and ¢ is the positive integer.
Then, the clinic value of dih risk level y, = max{d¢},;1¢ =
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TABLE 1 The monitoring magnitude for the estimated sample.

Xe  Actual
level

1 0015 | 30 25 107 | 038 188 I
2 0.055 | 36 45 239 | 025 | 25 I
3 0025 | 13 22 107 | 035 | 204 I
4 0033 11 16 457 | 02 | 204 %
5 0063 | 32 | 445 239 | 025 25 I
6 0063 | 32 46 300 | 025 | 25 I
7 0014 | 25 20 | 305 | 045 188 I
8 0.007 30 31 768 | 038 @ 215 i
9 0.048 | 40 45 330 | 025 | 25 I
10 0069 | 37 | 475 263 | 025 313 I
11 0012 | 26 30 88 045 | 14 I
12 0.024 30 42 20 0.12 18 1
13 0069 | 37 47 270 | 025 | 313 v
14 0069 | 355 | 475 = 438 | 025 313 v
15 0.1 40 45 15 025 | 224

16 0.02 36 45 50 05 20

17 0.068 | 37 47 360 | 025 | 313

18 0068 | 37 8 3055 | 025 | 313

19 0.005 | 30 20 8 030 18

20 0035 | 35 42 359 | 025 | 27

min {d¢}, and the level classification Y of the improved grey
target model is

(18)

b

Iy=pyy+ (L=p)ng,u € (0,1)

d
0<d <z, fi<dy <2z <d < +00

|

3 Engineering background

The Shizibao landslide is located in Fengjie County,
Chonggqing Province (Figure 2). It is situated in Tiefo Village, Kangle
Town, and is distributed along the slope on the right bank of the
Meixi River, a first-tier tributary of the Yangtze River. The landslide

is divided into three independent units (Landslide #I, Landslide
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#II, and Landslide #III) based on their genetic relationships and
main sliding directions. The total volume of the landslide is 102.5 x
10* m?; it is categorized as a large-scale shallow soil landslide.

The surveyed area belongs to the landform of low mountains
and valleys formed by erosion. The overall terrain is higher in
the southwest and lower in the northeast, with a wavy, undulating
landscape. The highest point is located in the southwest, with an
elevation of approximately 560 m. The lowest point is located in the
Meixi River valley, with a water surface elevation of approximately
160 m and a relative height difference of 400 m. The rear part of the
slope is a natural bedrock slope with a gradient of 35°-42°, while the
front part of the slope is the bedrock bank slope of the Meixi River,
with a gradient of 28°-46°. In some areas, gentle slopes with slope
angles of 15°-22° are formed due to accumulations. Certain gullies
in the exploration area are relatively developed, with narrow valley
slopes and seasonal water flow within the gullies.

4 Establishing the assessment model
4.1 Constructing the indicator system

Numerous factors affect slope stability. Previous studies have
primarily focused on balancing hazards and management, with an
emphasis on the latter. However, preventing accidents is more about
addressing the root causes of the problem. Indicators can be selected
from three aspects of the inherent properties of slopes: rock mass
structural planes, topography and landforms, and rock mechanical
properties. Therefore, to establish an indicator system for slope
stability, based on previous research findings (Zhou et al., 2008;
Shou et al., 2024), six indicators that have a significant impact on
slope stability are selected: cohesion (X;), internal friction angle
(X,), slope angle (X;), slope height (X,), pore water pressure ratio
(X;5), and natural unit weight (X;). The original data of the six
indicators are shown in Table 1. The six assessment indicators are
classified into five levels: extremely stable (I), stable (II), basic stable
(IIT), unstable (IV), and extremely unstable (V).

In Table 1, the first 14 samples are selected as the training data,
and the last six are chosen as the testing samples.

4.2 Standardizing the sample matrix

The sample data are standardized. Slope angle (X)), slope height
(X,), and pore water pressure ratio (X;) belong to the benefit-
type indicators; cohesion (X,), internal friction angle (X;), and
natural unit weight (X;) belong to the cost-type indicators. They are
standardized based on Equations 7, 11, respectively. The matrix R
is shown in Table 2.

4.3 Calculating weight coefficients

The correlation coefficient matrix is depicted in Table 3. It was
calculated using SPSS software and in combination with Table 1.

Table 4 uses Equations 1-5 to show the information entropy
matrix of a separate index.

Based on Equation6, the weight coeflicients can be
obtained in Table 5.
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TABLE 2 Standardized sample matrix R.

2 0.4359 0.3436 —-0.4271 —-0.2611 0.2417 0.1864
3 —-0.4615 —-0.8925 0.7047 0.5865 —-0.3417 —-0.3097
4 —-0.2222 -1 1 0.4566 0.5333 —-0.3097
5 0.6752 0.1286 —-0.4025 —-0.2611 0.2417 0.1864
6 0.6752 0.1286 —-0.4763 —-0.4876 0.2417 —0.1864
7 -0.7906 -0.2476 0.8032 0.513 -0.925 —-0.4823
8 -1 0.0211 0.2619 0.3411 —-0.5167 —-0.1911
9 0.2265 0.5585 -0.4271 -0.599 0.2417 0.1864
10 0.8547 0.3973 —-0.5501 —-0.3502 0.2417 0.8659
11 —-0.8504 -0.1939 0.3111 0.2995 -0.925 -1

12 —-0.4915 0.0211 —-0.2794 0.552 1 —-0.5686
13 0.8547 0.3973 —-0.5255 —-0.3762 0.2417 0.8659
14 0.8547 0.3167 —-0.5501 -1 0.2417 0.8659

TABLE 3 The correlation coefficient matrix.

Correlation

X, 0.541 1 0.859 0.708 -0.217 0.587
X, 0.787 0.859 1 0.824 -0.537 0.714
X, 0.867 0.708 0.824 1 -0.374 0.828
X; -0.589 -0.217 -0.537 -0.374 1 -0.449
X 0.893 0.587 0.714 0.828 -0.449 1
TABLE 4 The information entropy matrix. 4.4 Determining the relative target center
. distance
Indicator
Information 09304 | 09827 098 0857 = 09808  0.9905 Relative target distance refers to the risk assessment
entropy index of a landslide. A larger magnitude indicates a higher

risk level of the evaluated sample, and conversely, a lower
risk level. According to Table3 and Equations 12-14, the
positive target center of the samples is determined as r" =
(0.8547 0.5585 0.5501 0.5865 1 1), and the negative
Indicator target center is ¥~ = (-1 -1 -1 -0.599 -0.925 —0.8659).
T || The correlation coefficient matrix among evaluation indicators can
be obtained based on the standardized sample indicator matrix R; it

TABLE 5 The weight coefficient matrix.

Information 0.2497 0.0623 0.0717 0.5134 0.0689 0.0341
entropy
is shown in Table 4.
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TABLE 6 The synthetic target center distance.

The relative
target center
distance ¢,

The relative
target center
distance ¢,

The relative
target center
distance ¢,

Sample number

Sample number Sample number

1 0.2781 6 0.2302 11 0.5049
2 0.2387 7 0.2595 12 0.2647
3 0.2204 8 0.4237 13 0.6326
4 0.7971 9 0.1683 14 0.6267
5 0.2353 10 0.4619

TABLE 7 The classification of risk level.

Risk level

Relative target center

Description
distance ¢,

I 0-0.3509 extremely stable

11 0.3509-0.4428 stable

11 0.4428-0.5655 basic stable

v 0.5655-0.7463 unstable

0.7463- +00 extremely unstable

Table 4 shows that evaluation indicator X; has a strong
correlation with X, and X; evaluation indicator X, has a strong
correlation with X3; X; has a strong correlation with X,; X, has a
strong correlation with X,. To eliminate the impact caused by the
correlation among evaluation indicators, the correlation coefficient
matrix is introduced into the calculation of the relative target-
heart distance.
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The target center distance is calculated using Equations 15-17
T T T T and shown in Table 6.
V [0.7463 +00)
06}
04 I - - . -
4.5 Determining the classification standard
0.2}
10 03500] Table 7 shows the relative target center distance standard based
or y on Tables 5, 6, in combination with Equations 18, 19.
0 Its classification target is plotted in Figure 3.
-0.4 1
el 4.6 Predicting the model
o8 05 0f 102 0 02 o7 os os The last six groups of data in Table 1 are selected as the training
sample. The risk level of samples can be determined based on
FIGURE 3 . . . . .
The classification target figure of slope risk grade. the risk level classification, as shown in Table 7, and the relative
target-center distances. The risk level obtained by the improved grey

target model is consistent with the actual risk level. The actual risk
level of this testing sample was determined based on geological
data and exploration information. The comparison of results is
presented in Table 8.

According to the comparative results of the assessment model
in Table 8, conclusions can be drawn that the results obtained
by the suggested method are entirely consistent with the actual
risk level for six different samples. Its accuracy reaches 100% for
the proposed approach. So, the conclusion demonstrates that it is
feasible to estimate slope stability. Its accuracy is higher than the
traditional grey target theory (Zhenhua et al., 2014) (the accuracy
of the conventional theory is 83%). This is mainly because the
traditional grey target model neglects the correlation between
evaluation indicators during the evaluation process. This results
in repeated computation of information and a reduction in the
accuracy of evaluation results. For example, the positive correlation
coeflicient between the evaluation indicator X, and X, reaches 0.867.
It can also be found in Table 8 that the risk levels of the slope stability
from 15 to 20# samples are different; the risk level at slope sample #17
is IV, which means that slope sample #17 is unstable. Slope sample
#20 is extremely unstable, so the corresponding consolidation
measurement should be performed. For other samples, the slope is
extremely stable; therefore, any measurements need not be taken.
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TABLE 8 The risk grade prediction of slope stability.

Sample number

Relative bullseye

The risk level in the

10.3389/feart.2025.1612042

The risk level in the Actual risk level

distance traditional grey suggested method
target model
15 0.0658 I I
16 0.2782 1 I
17 0.6606 v v
18 0.2981 1 I
19 02562 1 I
20 0.9076 v v

5 Conclusion

1. An assignment method based on the characteristics of slope
risk assessment was constructed based on the entropy weight
theory. The correlation coefficient matrix was adopted to
replace the covariance matrix in the Mahalanobis distance
and was introduced into the traditional grey target model.
A risk evaluation index system for the slope was established
based on the root causes of slope prevention and management.
The positive and negative target center distances using the
Mahalanobis distance based on correlation coefficients are
calculated, the relative target center distance is defined, and the
slope risk levels are classified.

2. Considering the influence of the correlation among evaluation
indicators, the correlation coefficient matrix is adopted to
replace the covariance matrix in the Mahalanobis distance.
It is introduced into the traditional grey target model, which
can characterize the correlation among evaluation indicators,
and therefore, the improved method enhances the accuracy of
evaluation results. Meanwhile, the positive and negative ideal
solutions in the TOPSIS model are introduced to define the
positive and negative target centers. Thus, the drawback of the
original grey target model is overcome, where only a single
ideal optimal value is taken as the target core.

3. When the improved grey target model is applied to evaluate
the practical slope risk level, the risk levels obtained from
the enhanced model are consistent with the actual risk levels.
From the perspective of considering indicator correlations,
the validity and rationality of the improved grey target model
in slope risk evaluation have been verified, indicating the
enhanced grey target model’s feasibility in evaluating slope
risk level.

4. The results obtained by the suggested method are entirely
consistent with the actual risk level for six different samples.
Its accuracy reaches 100% for the proposed approach. Its
accuracy is higher than the accuracy of the conventional
theory, which is 83%.

The suggested model predicts the slope stability accurately. In
the future, due to its advantages, the model can be applied to
environmental assessment, rock burst prediction, and surrounding

Frontiers in Earth Science

rock quality evaluation, etc. Therefore, the theory will provide great
application prospects.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material; further inquiries can be directed
to the corresponding author.

Author contributions

BZ: Writing - original draft, Formal Analysis, Funding
acquisition. NL: Conceptualization, Writing - review and editing,
Investigation. YC: Project administration, Supervision, Writing -
review and editing. X-BG: Writing - original draft, Methodology.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work is supported by
the Opening Project of Sichuan Province University Key Laboratory
of Bridge Non-destruction Detecting and Engineering Computing
(2022QYJ02, 2022QYY02), Key scientific research projects of
colleges and universities in Henan province (23B560019).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

frontiersin.org


https://doi.org/10.3389/feart.2025.1612042
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

Zhao et al.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

References

Botao, S., Zhang, Y., and Zhang, W. (2016). Material point strength reduction method
for slope stability analysis. Chin. J. Geotechnical Eng. 38 (9), 1678-1684.

Dong, J. (2016). Slope stability analysis based on improved particle swarm optimization
algorithm. Anshan: University of Science and Technology Liaoning.

Fang, Q., and Shang, L. (2019). Stability analysis of open-pit rock slope based on game
theory-cloud model. J. Saf. Environ. 19 (1), 8-13.

Gu, X. B, and Wu, Q H. (2016). The application of nonordinary, state-based
peridynamic theory on the damage process of the Advances in Materials Science and
Engineering rock-like materials. Math. Problems Eng. 3 (8), 1-9.

Gu, X. B., and Wu, Q. H. (2019). Seismic stability analysis of waterfront rock slopes
using the modified pseudodynamic method. Geotech. Geol. Eng. 37 (3), 1743-1753.
doi:10.1007/s10706-018-0718-1

Gu, X. B,, Ma, Y., Wu, Q. H., Ji, X. J., and Bai, H. (2021a). The risk assessment of
landslide hazards in Shiwangmiao based on intuitionistic fuzzy sets-Topsis model. Nat.
Hazards 111, 283-303. doi:10.1007/s11069-021-05053-5

Gu, X. B, Shao, J. L., Wu, S. T., Wu, Q. H., and Bai, H. (2021b). The risk assessment
of debris flow hazards in zhouqu based on the projection pursuit classification model.
Geotechnical Geol. Eng. 8,4-17.

Gu, X. B, Wy, S. T, Ji, X. J., and Zhu, Y. H. (2021¢). The risk assessment of debris flow
hazards in Banshanmen gully based on the entropy weight normal cloud method. Adv.
Civ. Eng. 2021, 8841310-8841311. doi:10.1155/2021/8841310

Gu, X. B., Wang, L., and Wu, Q. H. (2022). The risk assessment of debris flow in the
duba river watershed using intuitionistic fuzzy sets: TOPSIS model. Math. Problems Eng.
2022, 1-12. doi:10.1155/2022/2031907

Gu, X.-B., Wu, Q.-H., and Ma, Y. (2025). Risk assessment of the rockburst intensity
in a hydraulic tunnel using an intuitionistic fuzzy sets-TOPSIS model. Adv. Mater. Sci.
Eng. 2022, 1-14. doi:10.1155/2022/4774978

Jianye, Y. A. O., Zhang, S., and Hao, G. (2019). Slope stability evaluation based on set
pair cloud model. Coal Geol. Explore 47 (1), 162-167.

Jun, H. U,, Dong, J., and Wang, K. (2016). Research on CPSO-BP model of slope
stability. Rock Soil Mech. 37 (S1), 577-582.

Liu, G. (2014). Application of set pair model of game theory comprehensive weighting
in risk analysis of rock and soil slope stability[D]. Hengyang, Hunan, China: University
of South China.

Shou, Y., Guo, L., and Zhou, X. (2024). Development of the rolling extrusion rock
bolt with constant resistance and large deformation. Deep Resour. Eng. 1 (1), 100004.
doi:10.1016/j.deepre.2024.100004

Wang, B., Xiating, E, and Pan, P. (2017). Application research of material point
method in slope stability evaluation. Chin. J. Rock Mech. Eng. 36 (9), 2 146-2 155.

Wang, H., Zhang, Y., and Haiyue, M. A. (2019). Comprehensive evaluation of
open-pit mine slope stability based on GA-PP model. Min. Res. Dev. 39 (2), 30-33.

Frontiers in Earth Science

09

10.3389/feart.2025.1612042

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

Xue-bin, and Chang-liang, P. A. N. (2007). Rock burst prediction method based on
grey whitenization weight function cluster theory. J. Hunan Univ. Nat. Sci. 34 (8), 16-20.

Yang, W,, Dong, Y., and Xie, Q. (2018). Slope risk assessment method based on cloud
model and its application. J. Huazhong Univ. Sci. Technol. 46 (4), 30-34.

Yonggiang, J., Huaizhi, S., and Ziyang, L. (2007). Slope stability projection pursuit
clustering analysis based on harmonic search. J. Hydraulic Eng. 38 (S1), 682-686.

Yuansong, L., Chen, W,, and Xinping, L. I. (2013). Slope stability evaluation method
based on fuzzy neural network. J. Wuhan Univ. Technol. 35 (1), 113-118.

Zhang, J., and Yang, T. (2018). Study of a roof water inrush prediction model in
shallow seam mining based on an analytic hierarchy process using a grey relational
analysis method. Arab. J. Geosci. 11, 153. d0i:10.1007/s12517-018-3498-2

Zhao, Y., and Liu, H. (2012). An elastic stress-strain relationship for porous
rock under anisotropic stress conditions. Rock Mech. Rock Eng. 45, 389-399.
doi:10.1007/s00603-011-0193-y

Zhao, Y., He, P, Zhang, Y., and Wang, C. (2019a). A new criterion for a toughness-
dominated hydraulic fracture crossing a natural frictional interface. Rock Mech. Rock
Eng. 52, 2617-2629. doi:10.1007/s00603-018-1683-y

Zhao, Y., Wang, C., Zhang, Y., and Liu, Q. (2019b). Experimental study of adsorption
effects on shale permeability. Nat. Resour. Res. 28, 1575-1586. d0i:10.1007/s11053-019-
09476-7

Zhao, Y., B, J., Wang, C., and Liu, P. (2021). Effect of unloading rate on the mechanical
behavior and fracture characteristics of sandstones under complex triaxial stress
conditions. Rock Mech. Rock Eng. 54, 4851-4866. doi:10.1007/s00603-021-02515-x

Zhao, Yu, Wang, C,, Lin, N., Zhao, H., and Bi, J. (2022a). Pore and fracture
development in coal under stress conditions based on nuclear magnetic resonance and
fractal theory. Fuel 309, 122112. doi:10.1016/j.fuel.2021.122112

Zhao, Y., Zhang, Y., Wang, C., and Liu, Q. (2022b). Hydraulic fracturing
characteristics and evaluation of fracturing effectiveness under different anisotropic
angles and injection rates: an experimental investigation in absence of confining
pressure. J. Nat. Gas Sci. Eng. 97, 104343. doi:10.1016/j.jngse.2021.104343

Zhao, Y., Wang, C., and Bi, J. (2023). Analysis of fractured rock permeability evolution
under unloading conditions by the model of elastoplastic contact between rough
surfaces. Rock Mech. Rock Eng. 53, 5795-5808. doi:10.1007/s00603-020-02224-x

Zhenhua, X, Shasha, L., and Zhang, X. (2014). Early warning method for instability
of open pit slope based on RBF neural network. Metal. Mine 32 (9), 7-10.

Zhou, X. P, Zhang, Y. X,, Ha, Q. L., and Zhu, K. S. (2008). Micromechanical
modelling of the complete stress—strain relationship for crack weakened rock subjected
to compressive loading. Rock Mech. Rock Eng. 41 (5), 747-769. doi:10.1007/s00603-007-
0130-2

Zhou, X. P, Pan, X. K, and Cheng, H. (2021). The nonlinear creep behaviors of
sandstone under the different confining pressures based on NMR Technology. Rock
Mech. Rock Eng. 54 (9), 4889-4904. doi:10.1007/s00603-021-02557-1

frontiersin.org


https://doi.org/10.3389/feart.2025.1612042
https://doi.org/10.1007/s10706-018-0718-1
https://doi.org/10.1007/s11069-021-05053-5
https://doi.org/10.1155/2021/8841310
https://doi.org/10.1155/2022/2031907
https://doi.org/10.1155/2022/4774978
https://doi.org/10.1016/j.deepre.2024.100004
https://doi.org/10.1007/s12517-018-3498-2
https://doi.org/10.1007/s00603-011-0193-y
https://doi.org/10.1007/s00603-018-1683-y
https://doi.org/10.1007/s11053-019-09476-7
https://doi.org/10.1007/s11053-019-09476-7
https://doi.org/10.1007/s00603-021-02515-x
https://doi.org/10.1016/j.fuel.2021.122112
https://doi.org/10.1016/j.jngse.2021.104343
https://doi.org/10.1007/s00603-020-02224-x
https://doi.org/10.1007/s00603-007-0130-2
https://doi.org/10.1007/s00603-007-0130-2
https://doi.org/10.1007/s00603-021-02557-1
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

	1 Introduction
	2 Methodology
	2.1 The improved entropy weight-grey target model
	2.2 The entropy weight method
	2.3 The Mahalanobis distance calculation method based on the correlation coefficient matrix

	3 Engineering background
	4 Establishing the assessment model
	4.1 Constructing the indicator system
	4.2 Standardizing the sample matrix
	4.3 Calculating weight coefficients
	4.4 Determining the relative target center distance
	4.5 Determining the classification standard
	4.6 Predicting the model

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

