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Landslides are a serious natural hazard globally. While the traditional grey 
target model has long served as an effective tool for slope stability assessment, 
its predictive accuracy remains questionable due to the inherent correlations 
among evaluation indicators. To mitigate this limitation, this study introduces 
an enhanced entropy weight-grey target theory for slope stability evaluation. 
The proposed model innovates in two key aspects: first, it substitutes the 
covariance matrix in the Mahalanobis distance calculation with a correlation 
coefficient matrix, thereby addressing indicator interdependencies; second, it 
adapts the positive and negative ideal solutions from the TOPSIS model to define 
the corresponding target centers in the grey target framework. The improved 
model’s efficacy is validated through an engineering case study. The findings 
confirm that the proposed method not only offers a feasible approach for slope 
stability assessment but also demonstrates superior predictive accuracy to the 
traditional grey target model. This research contributes a novel methodology 
and conceptual framework for future slope stability evaluations.
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 1 Introduction

Landslides are one of the most frequent accidents in opencast mines. They pose a direct 
threat to people’s lives and property safety (Gu et al., 2021a; Zhao et al., 2021; Zhao et al., 
2023; Zhao et al., 2022a). Developing an accurate and applicable slope stability evaluation 
model holds great theoretical significance and practical utility for mitigating landslide 
risks. Due to the randomness, fuzziness, and variability of the factors influencing slope 
stability, considerable uncertainty in slope stability evaluation exist, and this uncertainty 
poses difficulties for the assessment and prediction of slope stability (Gu and Wu, 2019; 
Zhao et al., 2019a; Zhao et al., 2019b; Zhao and Liu, 2012; Zhao et al., 2022b).

Currently, numerous scholars extensively employ methods such as the material point 
method (WANG et al., 2017), set pair analysis (LIU, 2014), particle swarm optimization 
(DONG, 2016), and artificial neural networks (Yuansong et al., 2013) to evaluate slope 
stability. Yongqiang et al. (2007) also applied the Projection Pursuit Algorithm to 
assess slope stability and proposed the Projection Pursuit Classification (PPC) evaluation 
method. Wang et al. (2019) proposed an evaluation method based on genetic algorithm 
and projection pursuit and conducted an empirical study on the slope stability of an
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opencast mine in the Tangshan area. Yang et al. (2018) introduced 
the cloud model theory into the slope stability evaluation based 
on the traditional fuzzy comprehensive evaluation method and 
achieved better assessment results. Jianye et al. (2019) introduced 
the concept of cloud into slope stability evaluation and established 
a set pair cloud model to evaluate slope stability. Fang and Shang 
(2019) established an evaluation model for slope stability of open-pit 
mines based on game theory and the cloud model. Jun et al. (2016) 
constructed a model for evaluating slope stability by utilizing the 
harmonious particle swarm optimization algorithm in conjunction 
with the feedforward neural network model. Botao et al. (2016) 
proposed a material point strength reduction method for slope 
stability evaluation from the perspective of stress and strain within 
the slope. However, the influence factors of slope stability are 
complex and highly uncertain, all of which can affect the accuracy 
of an evaluation. The risk assessment of slope is essentially a multi-
indicator problem with uncertainties, so the grey target model 
can be considered to evaluate the risk level of slope (Gu et al., 
2021b; Gu et al., 2021c). However, the suggested model must still be 
improved. In the traditional grey target model, the target distance 
is calculated using Euclidean distance, without considering the 
correlation between evaluation indicators, which may also affect the 
accuracy of the evaluation results (Gu et al., 2022).

To overcome the above shortcomings, the improved entropy 
weight-grey target theory is introduced to assess the slope stability. 
It is a combination of the entropy weight method and grey target 
theory. It can effectively handle complex, numerous, and highly 
correlated research objects. To effectively combine the entropy 
method with the grey target model (Gu and Wu, 2016), this article 
improves the traditional grey target evaluation model from two 
aspects: ① the correlation coefficient matrix is adopted to replace 
the covariance matrix in the Mahalanobis distance; ② the positive 
and negative ideal solutions in the TOPSIS model are introduced to 
define the positive and negative target centers.

The article is organized as follows: in Section 2, theory and 
methodology based on the entropy weight-grey target theory are 
presented; in Section 3, the engineering background is introduced; 
in Section 4, the assessment model is constructed, and the 
assessment results are analyzed; in Section 5, conclusions are drawn. 

2 Methodology

2.1 The improved entropy weight-grey 
target model

Compared to the traditional model, the improved model can 
enhance the predictive accuracy of slope risk level. The assessment 
flowchart is plotted in Figure 1.

2.2 The entropy weight method

The basic principle of the entropy weight method (EW) (Zhang 
and Yang, 2018) is to measure the randomness degree of a system 
using entropy values. The more information the elements a system 
contains, the less uncertainty there is. Namely, for each evaluation 
indicator, the greater the data variability it contains, the more 

information it encompasses, and the greater its impact on the 
evaluation results will be; consequently, a relatively higher weight is 
assigned to it. Its calculative procedure is listed as follows: 

① constructing the original matrix of samples X =
(xij)(i = 1,2,3, ...,m; j = 1,2,3, ...,n)

② standardizing the original matrix

The standardization is shown as follows:

Bnm = (bij) (1)

For the benefit-type indicators (Jun et al., 2016):

bij =
aij −min(aij)

max
j
(aij) −min

j
(aij)

(2)

For the cost-type indicators:

bij =
max(aij) − aij

max
j
(aij) −min

j
(aij)

(3)

③ the calculation of information entropy

Ej = −
∑n

i=1
gij lngij

lnn
(j = 1,2, ...,m) (4)

gij =
1+ bij

∑n
i=1
(1+ bij)

(5)

Where Ej-information entropy
gij-proportion of characteristic value 

④ The calculation of weight coefficients

ωj =
1−Ej

m−∑m
j=1

Ej
(6)

 

2.3 The Mahalanobis distance calculation 
method based on the correlation 
coefficient matrix

To accurately characterize the correlation between evaluation 
indicators, the correlation coefficient matrix replaces the covariance 
matrix in the Mahalanobis distance and is introduced into the 
traditional grey target model. Simultaneously, during the calculation 
process of the target center in the traditional grey target model, a 
grey target is defined under the condition of no standard mode. The 
ideal optimal value serves the target center (Xue-bin and Chang-
liang, 2007; Gu et al., 2025). The distances from each sample to 
the target center are then calculated, and the sample ranking and 
ordering are determined by comparing the sizes of these distances. 
However, only a single ideal optimal value is the target center. In 
that case, explaining the ranking and ordering of samples becomes 
difficult when multiple samples have the same or similar distances to 
the target center. Therefore, the positive and negative ideal solutions 
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FIGURE 1
Evaluation flowchart of the improved grey target model.

are introduced from the TOPSIS model to define positive and 
negative target centers. When multiple samples have the same or 
similar distances to the target center, the ranking and ordering of 
samples can be determined by further evaluating their distances to 
the worst target center. Simultaneously, the Mahalanobis distance 
based on the correlation coefficient is used to calculate the positive 
and negative target center distances. The relative target center 
distance is then defined to determine the risk level and ranking. The 
calculation steps are as follows: 

1. The construction of the sample matrix

It is assumed that there are m samples in the sample set 
X = (x1 x2 x3 ... xm). n evaluation indicators construct 
the assessment indicator set V = (v1 v2 v3 ... vn). 
The magnitude of sample xk for evaluation indicator vl is 
akl(k = 1,2,3, ...,m), (l = 1,2,3, ...,n), assuming that the sample 
indicator matrix of X to V is

A =

[[[[[[[

[

a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...

am1 am2 ... amn

]]]]]]]

]

(7)

2. The normalization of the sample indicator matrix

A linear transformation is applied to the sample indicator matrix 
A to perform standardization processing, unifying the dimensions of 
evaluation indicators.

Let the mean of the evaluation indicator be

Ci =
1
m

m

∑
k=1

akl (8)

For the cost-type indicator (Zhou et al., 2021):

rkl =
cl − akl

max(max
1≤k≤m
(akl) − cl,cl − min

1≤k≤m
(akl))

(9)

For the benefit-type indicator:

rkl =
akl − cl

max(max
1≤k≤m
(akl) − cl,cl − min

1≤k≤m
(akl))

(10)

According to the characteristics of the evaluation indicators, the 
sample indicator matrix A can be transformed into a standardized 
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FIGURE 2
The location of the survey area.

sample indicator matrix R using Equations 8–10:

R =

[[[[[[[

[

r11 r12 ... r1n

r21 r22 ... r2n

... ... ... ...

rn1 rn2 ... rnn

]]]]]]]

]

(11)

3. The determination of the negative and positive target centers

Let r+l = max{ rkl|1 ≤ k ≤ n}(l = 1,2, ...,n), then

r+ = (r+1 , r+2 ..., r+n) (12)

Where r+ is the positive ideal solution; namely, it is the positive 
target center distance.

Let r+l = min{ rkl|1 ≤ k ≤ n}(l = 1,2, ...,n), then:

r− = (r−1 , r−2 ..., r−n)

Where r− is the positive ideal solution; namely, it is the negative 
target center distance; 

4. The determination of positive and negative target 
center distance

Let:

il = ωi(rkl − r+i ), I = (i1 i2 ... in)T (13)

jl = ωi(rkl − r−i ), J = (j1 j2 ... jn)
T (14)

Where I and J represent the weighted differences between sample 
xk and the positive and negative target centers, respectively.

The distance from sample xk to the positive target center, that 
is, the positive target center distance, is calculated based on the 
correlation coefficient matrix as follows:

ε+k = (I
T∏−1I)1/2 (15)

Likely, the negative target center distance is

ε−k = (J
T∏−1J)1/2 (16)

Where II denotes the correlation coefficient matrix of the 
standardized sample indicator matrix R. 

5. Determination of the relative target center distance

The bigger the relative target distance ξk, the higher the risk level. 
The relative target center distance of the kth indicator is

ε∗k =
ε−k

ε+k + ε−k
(17)

6. The classification of risk level
7. Let the set ε represent the collection of relative target distances 

for all evaluation samples, namely, ε = (ε1
∗, ε2
∗ ... εm

∗). 
The set D is defined as the ordered intervals obtained 
by partitioning set ε based on t risk levels, namely, D =
(d1 d2 ... dl). Let 1 ≤ ϕ < t, and ϕ is the positive integer. 
Then, the clinic value of dth risk level γϕ = max{dϕ},ηϕ =
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TABLE 1  The monitoring magnitude for the estimated sample.

Sample X1 X2 X3 X4 X5 X6 Actual 
level

1 0.015 30 25 10.7 0.38 18.8 I

2 0.055 36 45 239 0.25 25 I

3 0.025 13 22 10.7 0.35 20.4 I

4 0.033 11 16 45.7 0.2 20.4 V

5 0.063 32 44.5 239 0.25 25 I

6 0.063 32 46 300 0.25 25 I

7 0.014 25 20 30.5 0.45 18.8 I

8 0.007 30 31 76.8 0.38 21.5 II

9 0.048 40 45 330 0.25 25 I

10 0.069 37 47.5 263 0.25 31.3 III

11 0.012 26 30 88 0.45 14 III

12 0.024 30 42 20 0.12 18 I

13 0.069 37 47 270 0.25 31.3 IV

14 0.069 35.5 47.5 438 0.25 31.3 IV

15 0.1 40 45 15 0.25 22.4 -

16 0.02 36 45 50 0.5 20 -

17 0.068 37 47 360 0.25 31.3 -

18 0.068 37 8 305.5 0.25 31.3 -

19 0.005 30 20 8 0.30 18 -

20 0.035 35 42 359 0.25 27 -

min{dϕ}, and the level classification Y of the improved grey 
target model is

Iϕ = μγϕ + (1− μ)ηϕ+1,μ ∈ (0,1) (18)

Y = { d
0 ≤ d1 < z1, f1 ≤ d2 < z2,...,zi−1 ≤ dt < +∞

} (19)

 

3 Engineering background

The Shizibao landslide is located in Fengjie County, 
Chongqing Province (Figure 2). It is situated in Tiefo Village, Kangle 
Town, and is distributed along the slope on the right bank of the 
Meixi River, a first-tier tributary of the Yangtze River. The landslide 
is divided into three independent units (Landslide #I, Landslide 

#II, and Landslide #III) based on their genetic relationships and 
main sliding directions. The total volume of the landslide is 102.5 × 
104 m3; it is categorized as a large-scale shallow soil landslide.

The surveyed area belongs to the landform of low mountains 
and valleys formed by erosion. The overall terrain is higher in 
the southwest and lower in the northeast, with a wavy, undulating 
landscape. The highest point is located in the southwest, with an 
elevation of approximately 560 m. The lowest point is located in the 
Meixi River valley, with a water surface elevation of approximately 
160 m and a relative height difference of 400 m. The rear part of the 
slope is a natural bedrock slope with a gradient of 35°–42°, while the 
front part of the slope is the bedrock bank slope of the Meixi River, 
with a gradient of 28°–46°. In some areas, gentle slopes with slope 
angles of 15°–22° are formed due to accumulations. Certain gullies 
in the exploration area are relatively developed, with narrow valley 
slopes and seasonal water flow within the gullies. 

4 Establishing the assessment model

4.1 Constructing the indicator system

Numerous factors affect slope stability. Previous studies have 
primarily focused on balancing hazards and management, with an 
emphasis on the latter. However, preventing accidents is more about 
addressing the root causes of the problem. Indicators can be selected 
from three aspects of the inherent properties of slopes: rock mass 
structural planes, topography and landforms, and rock mechanical 
properties. Therefore, to establish an indicator system for slope 
stability, based on previous research findings (Zhou et al., 2008; 
Shou et al., 2024), six indicators that have a significant impact on 
slope stability are selected: cohesion (X1), internal friction angle 
(X2), slope angle (X3), slope height (X4), pore water pressure ratio 
(X5), and natural unit weight (X6). The original data of the six 
indicators are shown in Table 1. The six assessment indicators are 
classified into five levels: extremely stable (I), stable (II), basic stable 
(III), unstable (IV), and extremely unstable (V).

In Table 1, the first 14 samples are selected as the training data, 
and the last six are chosen as the testing samples. 

4.2 Standardizing the sample matrix

The sample data are standardized. Slope angle (X1), slope height 
(X2), and pore water pressure ratio (X3) belong to the benefit-
type indicators; cohesion (X4), internal friction angle (X5), and 
natural unit weight (X6) belong to the cost-type indicators. They are 
standardized based on Equations 7, 11, respectively. The matrix R
is shown in Table 2. 

4.3 Calculating weight coefficients

The correlation coefficient matrix is depicted in Table 3. It was 
calculated using SPSS software and in combination with Table 1.

Table 4 uses Equations 1–5 to show the information entropy 
matrix of a separate index.

Based on Equation 6, the weight coefficients can be 
obtained in Table 5. 
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TABLE 2  Standardized sample matrix R.

Sample X1 X2 X3 X4 X5 X6

1 −0.7607 0.0211 0.5571 0.5865 −0.5167 0.4823

2 0.4359 0.3436 −0.4271 −0.2611 0.2417 0.1864

3 −0.4615 −0.8925 0.7047 0.5865 −0.3417 −0.3097

4 −0.2222 −1 1 0.4566 0.5333 −0.3097

5 0.6752 0.1286 −0.4025 −0.2611 0.2417 0.1864

6 0.6752 0.1286 −0.4763 −0.4876 0.2417 −0.1864

7 −0.7906 −0.2476 0.8032 0.513 −0.925 −0.4823

8 −1 0.0211 0.2619 0.3411 −0.5167 −0.1911

9 0.2265 0.5585 −0.4271 −0.599 0.2417 0.1864

10 0.8547 0.3973 −0.5501 −0.3502 0.2417 0.8659

11 −0.8504 −0.1939 0.3111 0.2995 −0.925 −1

12 −0.4915 0.0211 −0.2794 0.552 1 −0.5686

13 0.8547 0.3973 −0.5255 −0.3762 0.2417 0.8659

14 0.8547 0.3167 −0.5501 −1 0.2417 0.8659

TABLE 3  The correlation coefficient matrix.

Correlation X1 X2 X3 X4 X5 X6

X1 1 0.541 0.787 0.867 −0.588 0.893

X2 0.541 1 0.859 0.708 −0.217 0.587

X3 0.787 0.859 1 0.824 −0.537 0.714

X4 0.867 0.708 0.824 1 −0.374 0.828

X5 −0.589 −0.217 −0.537 −0.374 1 −0.449

X6 0.893 0.587 0.714 0.828 −0.449 1

TABLE 4  The information entropy matrix.

Indicator X1 X2 X3 X4 X5 X6

Information 
entropy

0.9304 0.9827 0.98 0.857 0.9808 0.9905

TABLE 5  The weight coefficient matrix.

Indicator X1 X2 X3 X4 X5 X6

Information 
entropy

0.2497 0.0623 0.0717 0.5134 0.0689 0.0341

4.4 Determining the relative target center 
distance

Relative target distance refers to the risk assessment 
index of a landslide. A larger magnitude indicates a higher 
risk level of the evaluated sample, and conversely, a lower 
risk level. According to Table 3 and Equations 12–14, the 
positive target center of the samples is determined as r+ =
(0.8547 0.5585 0.5501 0.5865 1 1), and the negative 
target center is r− = (−1 −1 −1 −0.599 −0.925 −0.8659). 
The correlation coefficient matrix among evaluation indicators can 
be obtained based on the standardized sample indicator matrix R; it 
is shown in Table 4.
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TABLE 6  The synthetic target center distance.

Sample number The relative 
target center 
distance ξ

∗
k 

Sample number The relative 
target center 
distance ε

∗
K 

Sample number The relative 
target center 
distance ε

∗
K 

1 0.2781 6 0.2302 11 0.5049

2 0.2387 7 0.2595 12 0.2647

3 0.2204 8 0.4237 13 0.6326

4 0.7971 9 0.1683 14 0.6267

5 0.2353 10 0.4619

FIGURE 3
The classification target figure of slope risk grade.

TABLE 7  The classification of risk level.

Risk level Relative target center 
distance ε

∗
K

Description

I 0–0.3509 extremely stable

II 0.3509–0.4428 stable

III 0.4428–0.5655 basic stable

IV 0.5655–0.7463 unstable

V 0.7463– +∞ extremely unstable

Table 4 shows that evaluation indicator X1 has a strong 
correlation with X4 and X6; evaluation indicator X2 has a strong 
correlation with X3; X3 has a strong correlation with X4; X4 has a 
strong correlation with X6. To eliminate the impact caused by the 
correlation among evaluation indicators, the correlation coefficient 
matrix is introduced into the calculation of the relative target-
heart distance.

The target center distance is calculated using Equations 15–17 
and shown in Table 6. 

4.5 Determining the classification standard

Table 7 shows the relative target center distance standard based 
on Tables 5, 6, in combination with Equations 18, 19.

Its classification target is plotted in Figure 3. 

4.6 Predicting the model

The last six groups of data in Table 1 are selected as the training 
sample. The risk level of samples can be determined based on 
the risk level classification, as shown in Table 7, and the relative 
target-center distances. The risk level obtained by the improved grey 
target model is consistent with the actual risk level. The actual risk 
level of this testing sample was determined based on geological 
data and exploration information. The comparison of results is 
presented in Table 8.

According to the comparative results of the assessment model 
in Table 8, conclusions can be drawn that the results obtained 
by the suggested method are entirely consistent with the actual 
risk level for six different samples. Its accuracy reaches 100% for 
the proposed approach. So, the conclusion demonstrates that it is 
feasible to estimate slope stability. Its accuracy is higher than the 
traditional grey target theory (Zhenhua et al., 2014) (the accuracy 
of the conventional theory is 83%). This is mainly because the 
traditional grey target model neglects the correlation between 
evaluation indicators during the evaluation process. This results 
in repeated computation of information and a reduction in the 
accuracy of evaluation results. For example, the positive correlation 
coefficient between the evaluation indicator X1 and X4 reaches 0.867. 
It can also be found in Table 8 that the risk levels of the slope stability 
from 15 to 20# samples are different; the risk level at slope sample #17 
is IV, which means that slope sample #17 is unstable. Slope sample 
#20 is extremely unstable, so the corresponding consolidation 
measurement should be performed. For other samples, the slope is 
extremely stable; therefore, any measurements need not be taken. 
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TABLE 8  The risk grade prediction of slope stability.

Sample number Relative bullseye 
distance

The risk level in the 
traditional grey 

target model

The risk level in the 
suggested method

Actual risk level

15 0.0658 I I I

16 0.2782 I I I

17 0.6606 V IV IV

18 0.2981 I I I

19 0.2562 I I I

20 0.9076 V V V

5 Conclusion

1. An assignment method based on the characteristics of slope 
risk assessment was constructed based on the entropy weight 
theory. The correlation coefficient matrix was adopted to 
replace the covariance matrix in the Mahalanobis distance 
and was introduced into the traditional grey target model. 
A risk evaluation index system for the slope was established 
based on the root causes of slope prevention and management. 
The positive and negative target center distances using the 
Mahalanobis distance based on correlation coefficients are 
calculated, the relative target center distance is defined, and the 
slope risk levels are classified.

2. Considering the influence of the correlation among evaluation 
indicators, the correlation coefficient matrix is adopted to 
replace the covariance matrix in the Mahalanobis distance. 
It is introduced into the traditional grey target model, which 
can characterize the correlation among evaluation indicators, 
and therefore, the improved method enhances the accuracy of 
evaluation results. Meanwhile, the positive and negative ideal 
solutions in the TOPSIS model are introduced to define the 
positive and negative target centers. Thus, the drawback of the 
original grey target model is overcome, where only a single 
ideal optimal value is taken as the target core.

3. When the improved grey target model is applied to evaluate 
the practical slope risk level, the risk levels obtained from 
the enhanced model are consistent with the actual risk levels. 
From the perspective of considering indicator correlations, 
the validity and rationality of the improved grey target model 
in slope risk evaluation have been verified, indicating the 
enhanced grey target model’s feasibility in evaluating slope 
risk level.

4. The results obtained by the suggested method are entirely 
consistent with the actual risk level for six different samples. 
Its accuracy reaches 100% for the proposed approach. Its 
accuracy is higher than the accuracy of the conventional 
theory, which is 83%.

The suggested model predicts the slope stability accurately. In 
the future, due to its advantages, the model can be applied to 
environmental assessment, rock burst prediction, and surrounding 

rock quality evaluation, etc. Therefore, the theory will provide great 
application prospects.
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