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Lithology identification plays a pivotal role in logging interpretation during
drilling operations, directly influencing drilling decisions and efficiency.
Conventional lithology identification methods predominantly depend on
manual interpretation of formation physical property data, which is inherently
subjective and susceptible to inconsistency. To overcome these limitations, this
study proposes a novel lithology identification framework that synergistically
combines reinforcement learning (RL) for automated hyperparameter
optimization and feature selection with a Transformer-based model capable
of capturing complex temporal dependencies within large-scale well logging
data. The RL agent systematically explores the hyperparameter and feature
space to enhance model performance, while the Transformer encoder extracts
meaningful sequential patterns essential for accurate lithology classification.
Empirical evaluation on a dataset exceeding two million samples demonstrates
that the proposed method achieves a prediction accuracy of 94.89%,
evidencing its effectiveness and robustness. The results indicate that this
approach can provide rapid, objective, and reliable lithology recognition in
drilling environments, thereby facilitating improved operational efficiency and
reduced costs.

KEYWORDS

well logging interpretation, lithology identification, reinforcement learning,
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1 Introduction

Lithology identification plays a vital role in logging interpretation during drilling
(Shi et al., 2023; Xie et al., 2018). Traditionally, lithology identification relies on manual
analysis and empirical judgment, and is usually combined with measured formation physical
property data, such as gam-ma rays, density, resistivity, etc. For lithology classification
(Xu et al., 2021). However, this process is limited by reliance on human expertise and is
easily affected by subjective factors, and cannot ensure the accuracy and consistency of
lithology identification. In practical applications, the accuracy of lithology identification
is crucial for decision-making during drilling, which directly affects drilling efficiency
and safety (Ren et al.,, 2019).
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In recent years, with the rapid development of big data and
deep learning technology, lithology identification methods have
gradually developed in the direction of automation and intelligence
(Ren et al., 2023). Deep learning models, especially reinforcement
learning and Transformer (Cao et al., 2024), provide new ideas for
solving this problem with their powerful data processing and model
optimization capabilities (Qingfeng et al, 2023). Reinforcement
learning automatically optimizes the model’s hyperparameters and
feature selection by exploring different strategies, thereby improving
the model’s generalization ability and training efficiency; and
the Transformer algorithm’s advantage (Wang et al, 2022) in
processing time series data enables it to effectively capture long-term
dependencies in formation physical property data, providing a more
accurate solution for lithology identification.

Ren et al. (2022) combined fuzzy theory, decision tree
and K-means++ algorithm to pro-pose a new hybrid lithology
identification technology, which can better overcome the ambiguity
and uncertainty of logging data. In the actual data test, six
logging parameters were selected: density (RHOB), neutron porosity
(NPHI), natural gamma (GR), compressional wave velocity (VP),
shallow formation resistivity (LLS), and deep formation resistivity
(LLD). Then, the K-means++ clustering algorithm was used to
cluster the logging data. Finally, the triangular membership function
was selected according to the obtained cluster center point to
fuzzify the logging data and construct a fuzzy decision tree
lithology identification model. The model prediction accuracy
reached 93.92%. Li et al. (2022) pro-posed a lithology identification
characterization enhancement method for logging data based
on feature decomposition, selection and transformation, which
converted the original logging curve into an improved high-
dimensional representation with more effective information and
less noise. The local mean decomposition was used to extract the
change information of multiple depth scale logging curves and
superimposed it on the features of adjacent samples. Considering
the different contributions of features to lithology identification,
an optimized feature selection method based on Shapley additive
interpretation is designed to reduce the redundant and noisy
information in logging data. In order to mine the complementary
information between sequence features, a representation learning
model integrating feature transformation and lithology classification
is established by using multi-granularity scanning and cascade
extreme learning machine. The effective-ness and generalization
ability of the proposed method are verified on baseline and shale
oil field datasets. The results show that the proposed method
can enable logging data to obtain more effective information
through representation enhancement, thereby achieving high-
precision lithology identification. Hou et al. (2023) first improved
the target detection algorithm of the single multi-box detector by
adding residual network and adaptive moment estimation, and
constructed a lithology identification model. Secondly, based on
the above improved algorithm, combined with database technology
and geographic information system technology, a comprehensive
recognition method is proposed. Then the proposed method is
applied to 12 lithologies in Xingcheng area, China to test its
effective-ness and feasibility in field geological surveys. Finally,
the influence of learning rate and batch size on the recognition
effect with the increase of epoch number is discussed. The results
show that the average recognition rates of the improved single

Frontiers in Earth Science

02

10.3389/feart.2025.1595574

multi-frame detection method and the integrated method are
89.4% and 98.4%, respectively, and the highest recognition rate
can reach 100%. The recognition results are evaluated by accuracy,
precision, recall, F1 score and average precision. The results show
that compared with other neural network methods, the integrated
method has stronger recognition ability. Yan et al. (2024) aimed
at the problems of difficulty in feature information extraction, low
accuracy of thin layer recognition and limited model applicability
in intelligent lithology recognition, and tried to improve the
comprehensive performance of the lithology recognition model
from three aspects: data feature extraction, class balance and model
design. A real-time intelligent lithology recognition model based
on dynamic felling strategy weighted random forest algorithm
(DFW-RF) was proposed. According to the feature selection results,
gamma ray and 2 MHz phase resistivity are the logging while
drilling (LWD) parameters that have a significant impact on
lithology recognition. The comprehensive performance of the DFW-
RF lithology recognition model was verified in the application of 3
wells in different regions. By comparing the prediction results of five
typical lithology identification algorithms, the DFW-RF model has
higher lithology identification accuracy and F1 score.

This study proposes a lithology intelligent identification method
that combines reinforcement learning and Transformer algorithm,
aiming to improve the accuracy and efficiency of lithology
identification and further reduce construction costs by optimizing
hyperparameters and feature selection processes. This method
optimizes the hyperparameters and features of the model through
reinforcement learning, and combines the Trans-former model’s
ability to process time series data to ensure high accuracy of lithology
identification.

2 Methodology

In this study, we combined the Actor-Critic algorithm and the
Transformer algorithm in reinforcement learning to solve the two
major problems of the difficulty in optimizing a large amount of
field data and the lack of consideration of time series in the lithology
identification process.

2.1 Reinforcement learning optimization
process

In lithology identification, feature selection and hyperparameter
optimization are key factors affecting model performance. We use
reinforcement learning (RL) to automate this optimization process
(Zhang et al., 2024). Specifically, the RL agent dynamically adjusts
the hyperparameters (such as learning rate, batch size, regularization
coefficient, etc.) and feature selection strategies of the lithology
identification model by interacting with the training environment
(Perrusquia and Yu, 2021). The agents reward mechanism is based
on the performance of the model on the validation set, and the agent
gradually optimizes the strategy to achieve the best performance
of the lithology identification task. One of the key issues in
reinforcement learning is how to efficiently learn a strategy so that
the agent can maximize long-term rewards in a given environment.
In traditional reinforcement learning methods, the two common
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methods are value-based methods, which find the optimal strategy
by learning an action-value function. And policy-based methods,
which directly optimize the policy function and improve the reward
through gradient ascent (Martinsen, Lekkas, and Gros, 2020).

The Actor-Critic algorithm (Oh et al.,, 2021) used in this study
combines the advantages of these two methods, using the value
function (Critic) to estimate the performance of the current strategy,
and optimizing the strategy through the policy gradient (Actor),
so as to achieve the purpose of dimensionality reduction and
optimization of the feature data before the lithology identification
model and improve the prediction efficiency. In the Actor-Critic
algorithm, Actor and Critic are two different components. Among
them, Actor is responsible for generating strategies and determining
the actions to be taken in a given state. It is usually a policy
function ry(als) based on a parameterized model, and optimizes the
strategy through gradient ascent. Critic: Responsible for evaluating
the quality of the current strategy, giving a value function Vj(s) or
a state-action value function Qg(s,a), and using this value to guide
the update of the Actor. Critic provides feedback to the Actor by
calculating the value of each state or state-action pair, and the Actor
adjusts the strategy based on these feedbacks.

Suppose we have a Markov decision process (MDP) (Wari et al.,
2023) containing a state space S, an action space A, a state
transition probability P(s’ls,a), a reward function r(s,a), and a
policy function 7(als). Our goal is to maximize the total reward
J(mr). In the AC algorithm, we train by optimizing the following
objectives (Equation 1):

J(m)=E (1)

T-1
z Ytrt}
t=0

Among them, E represents the mathematical expectation, T
represents the current time step, r, is the reward obtained at time
t,and yt is the discount factor at time ¢.

The task of the Critic is to evaluate the value of the
current strategy, which is usually represented by the state value
function V(s) or the state-action value function Q(s|a). Generally
speaking, the time difference (TD) method is used to update the
value function (Equation 2):

8 =1+ yV(spr) = V(sy) (2)

Among them, §, is the time difference error, which represents
the difference between the current estimate and the actual return.
The update rule of Critic is (Equation 3):

V(s,) & V(s,) + 8, (3)

Where a, is the learning rate of the value function.

The goal of an actor is to maximize the expected reward
by gradient ascent. We want to update the parameters by policy
gradient. The calculation of policy gradient is implemented by the
advantage function (Yao et al., 2025), which measures how much
better an action a, is than other actions in state s,. The advantage
function is defined as (Equation 4):

(spar) = Q(spa) = V(s,) (4)

Among them, Q(s,,a,) is the state-action value function, and
V(s,) is the state value function.
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FIGURE 1
Actor-critic algorithm process.

)

Output strategies and training results

Using the above formula, Actor optimizes the policy parameter
0 through gradient ascent (Equation 5):

0 — 0+ a,VyJ(n) (5)

Where «, is the policy learning rate.

Since the Critic provides feedback by estimating the value
function, the Actor-Critic algorithm is usually more stable than
the pure policy gradient method. At the same time, compared
with value-based Q-learning, Actor-Critic is usually able to use
samples more efficiently, especially in high-dimensional space.
However, although Actor-Critic has high sample efficiency, it
may lead to slow convergence due to the large calculation
variance of the policy gradient. The need to adjust multiple
hyperparameters (such as learning rate, discount factor, etc.) may
lead to instability in the learning process. The Actor-Critic algorithm
flow is shown in Figure 1.

Although our optimization task does not involve dynamic state
transitions or sequential decision-making in the traditional sense
of reinforcement learning, it can still be modeled as an episodic
Markov Decision Process (MDP) with deterministic transitions. In
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Data distribution before processing.
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this setting, each episode represents a complete evaluation cycle of
a proposed configuration (i.e., feature subset and hyperparameters),
where the agent takes an action (selects a configuration), evaluates
the model on a validation set, and receives a scalar reward based on
the performance (e.g., accuracy, Fl-score).

This episodic and static environment formulation is similar to
recent RL-based approaches in AutoML and Neural Architecture
Search (NAS), where the reinforcement learning agent interacts with
a meta-optimization problem rather than a dynamic environment.
The Actor network proposes new configurations (policies), while
the Critic provides feedback on their performance to guide policy
updates. This design allows our method to adaptively explore
the high-dimensional search space of configurations in a sample-
efficient manner, leveraging the strengths of the Actor-Critic
framework for black-box optimization tasks.

To clarify this design, we emphasize that the role of
reinforcement learning in our study is not for time-series prediction
but to optimize the combination of features and hyperparameters
through episodic reward-driven learning.

2.2 Clarification of RL formulation

In our approach, the reinforcement learning (RL) agent does
not interact with a dynamic, sequential environment in the
traditional sense. Instead, the feature selection and hyperparameter
optimization process is formulated as an episodic Markov Decision

Frontiers in Earth Science

Process (MDP) with deterministic transitions. Each episode
corresponds to a complete evaluation of a candidate feature subset
and hyperparameter configuration. The agent selects a configuration
(action), trains the model, and receives a scalar reward based
on validation performance (e.g., accuracy, Fl-score). This static,
episodic RL formulation is consistent with recent RL-based AutoML
and Neural Architecture Search (NAS) frameworks, where the agent
optimizes over a meta-learning landscape rather than a temporally
evolving environment.

We acknowledge that this differs from standard RL settings
involving sequential decision-making and environment transitions.
However, the Actor-Critic framework remains effective for black-
box optimization tasks, as it enables efficient exploration of high-
dimensional configuration spaces. The agent’s policy is updated
based on the reward signal from model evaluation, allowing adaptive
search for optimal feature and hyperparameter combinations.

2.3 Transformer model application

Lithology identification tasks usually involve a large amount of
time series data, especially logging data collected during drilling.
These logging data include but are not limited to sequence data
of physical properties such as gamma rays, density, porosity,
and natural gamma. Each type of logging data carries important
geological information and can be used to distinguish different
lithology types. In addition, other formation physical property data
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such as formation pressure, temperature, and fluid properties can
also provide strong support for lithology identification.

In order for the model to better understand the inherent
relationship of these data, we need to preprocess the input data and
select features. By standardizing different types of logging data, or
extracting features that help distinguish lithology through feature
engineering. On this basis, the Transformer model can automatically
identify important features and establish relationships between
these features.

The core advantage of the Transformer model lies in its
self-attention mechanism, which can efficiently capture the
dependencies between elements in sequence data, especially long-
distance dependencies. Compared with traditional recurrent neural
networks (RNNs) (Zhang et al., 2023) and long short-term memory
networks (LSTMs) (Huang et al., 2022), Transformers have higher
parallel processing capabilities, so the training speed is greatly
improved when processing large-scale time series data.

The basic structure of Transformer consists of two main parts:
encoder and decoder. In the lithology recognition task, we mainly
use the encoder part of Transformer to extract the contextual
information of the input features. The encoder consists of multiple
self-attention layers and a feed-forward network (FFN) (Hu et al,
2022). Each self-attention layer aggregates the information of all
elements in the sequence by calculating the attention weights
between each element in the input sequence. Multiple self-attention
heads enable the model to focus on different subspaces in the
sequence, thereby learning richer feature representations. By adding
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a multi-head attention mechanism, the model can automatically
focus on the most important part of the input data by calculating
the correlation between different positions. The calculation formula
for self-attention is as follows (Equation 6).

QK"

dy

Attention(Q, K, V) = softmax (6)

Q is query matrix, which represents the query value we want to
find relevance.

Kis key matrix, which represents the content related to the query.

V is value matrix, which represents the final weighted
information.

dy is the dimension of query and key, which is used to scale the
calculation results to avoid too large values.

In the lithology identification task, this means that the model
can automatically identify which well logging data or formation
physical property data have an important impact on the prediction
of lithology type and ignore irrelevant information. At the same
time, since the Transformer does not rely on the temporal structure,
it is necessary to capture the order information of the data in the
sequence through position encoding. This is achieved by adding the
position encoding to the feature vector of the input data to ensure
that the model can understand the order relationship of the input
data. There is a feed-forward neural network after each encoder layer
to further learn the nonlinear characteristics of the data. This process
enhances the model’s expressiveness in complex tasks.
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Heat map of pearson correlation coefficients between model parameters.

Based on the representation of the output of the encoder part
of the Transformer, the model can predict lithology types or other
related geological features. In the lithology recognition task, the
output of Transformer is usually a vector of fixed dimension, which
represents the semantic understanding of the input logging data in
context. Based on this vector, we can use a fully connected layer to
map it to different lithology categories. In some more complex tasks,
the output may also need to be post-processed. For example, the
output can be converted into a probability distribution through a
SoftMax layer, and finally the predicted probability of each lithology
is obtained. In addition, for multi-classification problems, the cross-
entropy loss function can also be used to train the model.

In our implementation, the input to the Transformer encoder
consists of sequential logging measurements (e.g., GR, Density, RT,
Depth) sampled at regular depth intervals. Each input sequence
corresponds to a window of consecutive depth samples, preserving
the spatial (depth-wise) order of the data.

To enable the model to capture positional information, we
add sinusoidal positional encoding to the input feature vectors,
following the original Transformer design. This allows the model
to distinguish between measurements at different depths and learn
depth-dependent patterns.

The Transformer encoder is trained from scratch on our
lithology dataset, as no suitable pre-trained models exist for this

Frontiers in Earth Science 06

domain. The model consists of 4 encoder layers, each with 8
attention heads and a hidden size of 128. The output of the encoder
is aggregated via global average pooling and passed to a fully
connected classification head.

This architecture enables the model to capture both local and
long-range dependencies in the logging data, which is critical for
accurate lithology identification in complex geological settings.

3 Results and discussion

In this section, we present and discuss the experimental
results of our lithology identification method based on Actor-Critic
and Transformer algorithms. We first quantitatively analyze the
performance of our model, then compare it with other existing
methods, and finally discuss the advantages, limitations, and future
improvements of our model.

3.1 Model parameters
In this study, in order to verify the effectiveness of the

lithology identification method based on reinforcement learning
and Transformer algorithm, we used a real well logging data
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set collected during the drilling process. This data set contains
lithology characteristics of multiple different formations and
covers measurements at multiple depths and different geological
conditions.

The original data set for this study collected data including
basic static parameters of wells, logging, and manual interpretation
results. Among them, static data includes well location coordinates.
Logging data includes gamma rays, porosity, rock density, resistivity,
etc. Measured while drilling. Manual interpretation data includes
formation data of drilled wells. The changes in these parameters
can not only reflect the characteristics of different lithological layers,
but also reveal the laws of lithological distribution under formation
depth and geological conditions. Therefore, it is very appropriate
to use these parameters for lithology identification. Our data set
contains measurement data obtained from multiple wells, covers
lithology information at different depths, and covers a variety of
different geological environments. The diversity and complexity of
the data provide sufficient challenges for the model.

In order to use the dataset for model training and evaluation,
we first performed data preprocessing (Cetin and Yildiz, 2022),
including the following steps: Missing value processing: In some
logging data, there may be missing values due to instrument
failure or other reasons. We used interpolation to fill these missing
values to ensure the integrity of the data. Data standardization: In
order to avoid the unbalanced impact of measurements of different
dimensions on model training, we standardized all input features so
that the mean of each feature is zero and the standard deviation is
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one (Li et al., 2025). This can help the model converge better and
avoid affecting the model performance due to the large numerical
range of a certain feature. The comparison of data before and after
processing is shown in Figures 2, 3 respectively.

From the comparison results before and after data processing, we
can see that the data distribution is messy and contains many outliers
before data processing. However, after data processing, the data
values remain in a relatively stable range and there are no outliers.

Data partitioning: In order to verify the generalization ability of
the model, we divided the entire dataset into a training set and a
test set in a ratio of 7:3. The training set is used for model training,
and the test set is used to evaluate the performance of the model in
practical applications.

In the lithology identification task, feature selection is a key step
that affects the model performance. Well logging datasets usually
contain a large number of features, some of which contribute more
to lithology classification, while others may be redundant or noisy.
In order to improve the efficiency and accuracy of the model, we
introduced the Actor-Critic algorithm to automatically optimize the
feature parameters that affect lithology identification. The Actor-
Critic algorithm performs intelligent search in the feature space
through a reinforcement learning framework to automatically select
the optimal feature subset. This process not only helps us reduce
the dimension of the features, but also im-proves the generalization
ability of the model.

The specific process of applying the Actor-Critic algorithm for
feature selection in lithology identification is as follows: First, define
the state space.

In the Actor-Critic algorithm, the state space represents the
feature set selected by the current model (Cheng et al, 2022).
Each state is a configuration of feature selection, indicating which
features are currently selected into the model and which features
are excluded. For the lithology identification task, the state space
is defined as follows: The state space contains the features in all
logging data sets, such as gamma rays (GR), porosity (Porosity),
density (Density), etc. Each state can be regarded as a binary vector,
where each position corresponds to a feature. If the position is 1, it
means that the feature is selected; if it is 0, it means that the feature
is not selected.

Then define the action space. In the Actor-Critic algorithm, the
action space represents possible feature selection behaviors. At each
time step, the Actor selects an action based on the current state,
that is, decides whether to add or remove a feature from the current
feature set. For example, if the current state is to select gamma rays
and porosity, then the action space selection is to add density features
or remove gamma ray features.

Finally, the reward function needs to be designed. The reward
function is a key part of the Actor-Critic algorithm, which is used to
measure the quality of the feature selection strategy. In the lithology
recognition task, the reward function we designed is based on the
classification performance of the model on the validation set. The
reward function can be defined as the accuracy, Fl-score, or the
combined score of precision and recall of the model. Specifically, the
reward function can be expressed as (Equation 7):

R=ACC+axF1+pxSp (7)

Where ACC is accuracy, Sp is specificity, a and p are weight
factors that can be adjusted according to the specific requirements
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of the task. The reward function is designed to enable the Actor to
not only consider accuracy when selecting features, but also balance
the precision and recall of the model, thereby improving the overall
performance of lithology recognition.

Finally, the Actor-Ciritic algorithm updates the feature selection
strategy through the following steps: First, randomly initialize the
Actor’s strategy and the Critic’s value function. Second, in each
round of training, the Actor selects a feature selection strategy (i.e.,a
feature set) based on the current state, and then trains the lithology
recognition model. Then the Critic calculates the value of the current
strategy based on the performance of the lithology recognition
model under the current feature set (such as accuracy, F1-score, etc.),
and feeds it back to the Actor as a reward signal.

Finally, the Actor updates its strategy based on the Critic’s
feedback, and uses optimization algorithms such as gradient descent

Frontiers in Earth Science

to adjust the feature selection strategy, gradually improving the
quality of feature selection.

Repeating the above process, the Actor and Critic continuously
optimize alternately until they converge to an optimal feature
selection strategy.

The Actor-Critic algorithm was used to optimize the 9
parameters collected previously, and the correlation coefficients
between the parameters were calculated (Figure 4).

As shown in Figure 4, the horizontal and vertical axes represent
model parameters, and the numbers in the matrix indicate the
correlation coefficients between them. A higher absolute value
denotes a stronger correlation. Based on this analysis, formation
interpretation results (RT), depth (Depth), gamma ray (GR), and
density were selected as the model input features. Gamma radiation,
porosity, and density logs provide complementary information
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TABLE 1 Comprehensive performance of lithology prediction.

Lithology class ‘ Precision Recall ’ F1-score

Sandstone 0.95 0.93 0.94
Mudstone 0.92 0.95 0.93
Carbonate 0.96 0.94 0.95

Others 0.91 0.9 0.9

that is critical for lithology identification. Specifically, GR logs
measure the natural radioactivity of formations, primarily reflecting
the presence of clay minerals and potassium-bearing feldspars
(Bhuyan and Passey, 1994). High GR values usually indicate
shale-rich or clay-rich intervals, whereas low GR values are
characteristic of cleaner sandstones, carbonates, or other non-
shaly formations. Porosity logs, derived from density, neutron, or
acoustic measurements, quantify pore volume and offer insights into
reservoir quality (Hook, 2003). Sandstones generally show higher
porosity compared with compacted shales or dense carbonates, and
porosity variations also reflect depositional facies and diagenetic
processes. Bulk density logs (Pickell and Heacock, 1960) measure
electron density and are closely related to mineral composition and
compaction degree: shales typically display lower density due to clay
minerals and water content, while carbonates and well-compacted
sandstones exhibit higher values. When integrated, these parameters
enable more reliable lithology discrimination. For example, low GR,
high porosity, and moderate density often indicate clean sandstones;
high GR combined with low porosity suggests shale; and low GR
with high density commonly points to carbonate rocks. In practice,
density—porosity or GR-porosity crossplots are widely applied to
reduce ambiguity and enhance lithological interpretation. Overall,
the number of input parameters was reduced by 55.6%, significantly
decreasing computational cost and model training time.

3.2 Model training and evaluation

The DJ block (Figure5) of the CQ Oilfield in the
Ordos Basin (Gong et al., 2023) has typical geological characteristics,
including a variety of lithology types, such as sandstone, mudstone,
carbonate rock, etc. These lithologies show obvious physical property
differences in logging data and are ideal data sources for lithology
identification research. This study uses drilling data from this block to
verify the performance of the lithology identification model constructed
based on reinforcement learning and the Transformer algorithm .

Through the Actor-Critic algorithm in the reinforcement
learning framework, the four parameter combinations that have the
greatest impact on lithology identification are selected from the
original features. The goal is to maximize the reward to ensure the
balanced performance of the model on multiple indicators. Based
on the Transformer encoder structure, a multi-head self-attention
mechanism is used to capture long-distance dependencies. During
training, the initial value of the learning rate is set to 0.001, and it is
dynamically adjusted in combination with reinforcement learning.
The optimizer selects the AdamW optimizer to take into account
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both training stability and convergence speed (Ma et al., 2025). The
loss function is set to cross entropy loss to solve multi-classification
problems such as lithology identification. The loss function change
curve of the training process is shown in Figure 6.

From the curve changes in Figure 5, it can be seen that the values
of allloss functions drop rapidly in the first 20 epochs of training and
tend to stabilize after about 60 epochs, which indicates that there is
no overfitting phenomenon during the model training process.

We used the four optimal characteristic parameters and the
Transformer algorithm to train the lithology recognition model,
and then projected the actual prediction effect of the test set
onto the specific well section (Figure 7) to intuitively judge the
prediction accuracy.

In Figure 7, we projected the predicted lithology values and
true values onto two wells to evaluate the prediction accuracy. In
the figure, from left to right, the depth of the well is represented,
the lower color band represents the predicted lithology value, and
the upper color band represents the true lithology value. It can
be seen that the two-color bands are consistent in most areas,
especially in the deep formations, where the lithology recognition
accuracy is high. Finally, the specific prediction accuracy of the
constructed lithology identification model was statistically analyzed.
The accuracy calculation formula is shown in Equation 8, and the
accuracy of the training set and the test set is shown in Figure 8.

Figure 7 shows the projected results of predicted and actual
lithology values along the well trajectory. It can be observed that the
predicted lithology matches the true lithology in most intervals, with
particularly strong agreement in the deeper sections. This indicates
that the proposed model is capable of accurately and effectively
identifying the target formation lithology in new wells (Equation 8).

TP+ TN

—_—— ®)
TP+ TN+ FP+FN

Accuracy =

In this context, Accuracy represents the model’s prediction
accuracy and is used to evaluate the model’s ability to make precise
predictions. TP (True Positive) refers to the correctly predicted
positive cases, TN (True Negative) refers to the correctly predicted
negative cases, FP (False Positive) refers to the incorrectly predicted
positive cases, and FN (False Negative) refers to the incorrectly
predicted negative cases.

Figure 8 shows the prediction accuracy of the model training set
and test set. As shown in Figure 8, the horizontal axis represents
the true value of the lithology, and the vertical axis represents
the predicted value of the lithology. The prediction accuracy of
the model can be explained by the distribution of data points on
the 45° line. It can be seen that the lithology identification model
constructed in this study has accurate prediction performance, and
most of the data points are distributed on and near the 45° line. At
the same time, the prediction accuracy values of the training set and
the test set reached 94.89% and 94.81% respectively, which can meet
the needs of on-site lithology identification.

Figure 8 presents the confusion matrix for the test set, illustrating
the distribution of true and predicted labels. The model demonstrates
strong discrimination between major lithology types, with most
misclassifications occurring between lithologies with similar physical
properties. These results confirm that our method achieves not only
high overall accuracy but also balanced performance across classes,
addressing the challenge of class imbalance in lithology prediction .
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3.3 Comprehensive performance metrics

To provide a more complete evaluation of our model, we report
additional classification metrics, including per-class precision,
recall, and Fl-score, as well as the confusion matrix (Figure 9) for
the test set. Table 1 summarizes the precision, recall, and F1-score
for each lithology class.

The overall macro-averaged F1-score is 0.93, indicating robust
performance across all classes, including minority lithologies.

In addition to visual comparison, we provide quantitative
performance analysis using standard classification metrics as
described above. The inclusion of per-class metrics and the
confusion matrix enables detailed error analysis and interpretation
of model strengths and weaknesses. For example, the model
achieves the highest Fl-score on carbonate rocks, while most
misclassifications occur between sandstone and mudstone, likely
due to overlapping logging signatures. This quantitative breakdown
complements the visual results and provides a more rigorous
assessment of model performance.

4 Conclusion

This paper proposes an intelligent lithology identification
method based on reinforcement learning and Transformer
algorithm, which successfully solves the problems of traditional
lithology identification that relies on manual experience, is
highly subjective, and has limited identification accuracy. By
optimizing the hyperparameters and feature selection of the
model through reinforcement learning, the efficiency of lithology
identification and the generalization ability of the model are
significantly improved; the powerful self-attention mechanism
of the Transformer algorithm is used to fully capture the temporal
relationship of the well logging data and ensure the recognition
accuracy. During the construction process, the model achieved
a prediction accuracy of 94.89% on millions of drilling data
samples, proving its efficiency and robustness under massive
data. Com-pared with traditional methods, the model in this
paper can not only quickly determine the lithology category,
significantlyimprove the decision-makingefficiency at the drilling
site, but also effectively reduce the construction cost, and has
high engineering application value. In the future, this method
can be further extended to drilling operations with more
complex geological conditions, providing important support for
intelligent drilling technology .
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