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Lithology identification plays a pivotal role in logging interpretation during 
drilling operations, directly influencing drilling decisions and efficiency. 
Conventional lithology identification methods predominantly depend on 
manual interpretation of formation physical property data, which is inherently 
subjective and susceptible to inconsistency. To overcome these limitations, this 
study proposes a novel lithology identification framework that synergistically 
combines reinforcement learning (RL) for automated hyperparameter 
optimization and feature selection with a Transformer-based model capable 
of capturing complex temporal dependencies within large-scale well logging 
data. The RL agent systematically explores the hyperparameter and feature 
space to enhance model performance, while the Transformer encoder extracts 
meaningful sequential patterns essential for accurate lithology classification. 
Empirical evaluation on a dataset exceeding two million samples demonstrates 
that the proposed method achieves a prediction accuracy of 94.89%, 
evidencing its effectiveness and robustness. The results indicate that this 
approach can provide rapid, objective, and reliable lithology recognition in 
drilling environments, thereby facilitating improved operational efficiency and 
reduced costs.
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 1 Introduction

Lithology identification plays a vital role in logging interpretation during drilling 
(Shi et al., 2023; Xie et al., 2018). Traditionally, lithology identification relies on manual 
analysis and empirical judgment, and is usually combined with measured formation physical 
property data, such as gam-ma rays, density, resistivity, etc. For lithology classification 
(Xu et al., 2021). However, this process is limited by reliance on human expertise and is 
easily affected by subjective factors, and cannot ensure the accuracy and consistency of 
lithology identification. In practical applications, the accuracy of lithology identification 
is crucial for decision-making during drilling, which directly affects drilling efficiency 
and safety (Ren et al., 2019).
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In recent years, with the rapid development of big data and 
deep learning technology, lithology identification methods have 
gradually developed in the direction of automation and intelligence 
(Ren et al., 2023). Deep learning models, especially reinforcement 
learning and Transformer (Cao et al., 2024), provide new ideas for 
solving this problem with their powerful data processing and model 
optimization capabilities (Qingfeng et al., 2023). Reinforcement 
learning automatically optimizes the model’s hyperparameters and 
feature selection by exploring different strategies, thereby improving 
the model’s generalization ability and training efficiency; and 
the Transformer algorithm’s advantage (Wang et al., 2022) in 
processing time series data enables it to effectively capture long-term 
dependencies in formation physical property data, providing a more 
accurate solution for lithology identification.

Ren et al. (2022) combined fuzzy theory, decision tree 
and K-means++ algorithm to pro-pose a new hybrid lithology 
identification technology, which can better overcome the ambiguity 
and uncertainty of logging data. In the actual data test, six 
logging parameters were selected: density (RHOB), neutron porosity 
(NPHI), natural gamma (GR), compressional wave velocity (VP), 
shallow formation resistivity (LLS), and deep formation resistivity 
(LLD). Then, the K-means++ clustering algorithm was used to 
cluster the logging data. Finally, the triangular membership function 
was selected according to the obtained cluster center point to 
fuzzify the logging data and construct a fuzzy decision tree 
lithology identification model. The model prediction accuracy 
reached 93.92%. Li et al. (2022) pro-posed a lithology identification 
characterization enhancement method for logging data based 
on feature decomposition, selection and transformation, which 
converted the original logging curve into an improved high-
dimensional representation with more effective information and 
less noise. The local mean decomposition was used to extract the 
change information of multiple depth scale logging curves and 
superimposed it on the features of adjacent samples. Considering 
the different contributions of features to lithology identification, 
an optimized feature selection method based on Shapley additive 
interpretation is designed to reduce the redundant and noisy 
information in logging data. In order to mine the complementary 
information between sequence features, a representation learning 
model integrating feature transformation and lithology classification 
is established by using multi-granularity scanning and cascade 
extreme learning machine. The effective-ness and generalization 
ability of the proposed method are verified on baseline and shale 
oil field datasets. The results show that the proposed method 
can enable logging data to obtain more effective information 
through representation enhancement, thereby achieving high-
precision lithology identification. Hou et al. (2023) first improved 
the target detection algorithm of the single multi-box detector by 
adding residual network and adaptive moment estimation, and 
constructed a lithology identification model. Secondly, based on 
the above improved algorithm, combined with database technology 
and geographic information system technology, a comprehensive 
recognition method is proposed. Then the proposed method is 
applied to 12 lithologies in Xingcheng area, China to test its 
effective-ness and feasibility in field geological surveys. Finally, 
the influence of learning rate and batch size on the recognition 
effect with the increase of epoch number is discussed. The results 
show that the average recognition rates of the improved single 

multi-frame detection method and the integrated method are 
89.4% and 98.4%, respectively, and the highest recognition rate 
can reach 100%. The recognition results are evaluated by accuracy, 
precision, recall, F1 score and average precision. The results show 
that compared with other neural network methods, the integrated 
method has stronger recognition ability. Yan et al. (2024) aimed 
at the problems of difficulty in feature information extraction, low 
accuracy of thin layer recognition and limited model applicability 
in intelligent lithology recognition, and tried to improve the 
comprehensive performance of the lithology recognition model 
from three aspects: data feature extraction, class balance and model 
design. A real-time intelligent lithology recognition model based 
on dynamic felling strategy weighted random forest algorithm 
(DFW-RF) was proposed. According to the feature selection results, 
gamma ray and 2 MHz phase resistivity are the logging while 
drilling (LWD) parameters that have a significant impact on 
lithology recognition. The comprehensive performance of the DFW-
RF lithology recognition model was verified in the application of 3 
wells in different regions. By comparing the prediction results of five 
typical lithology identification algorithms, the DFW-RF model has 
higher lithology identification accuracy and F1 score.

This study proposes a lithology intelligent identification method 
that combines reinforcement learning and Transformer algorithm, 
aiming to improve the accuracy and efficiency of lithology 
identification and further reduce construction costs by optimizing 
hyperparameters and feature selection processes. This method 
optimizes the hyperparameters and features of the model through 
reinforcement learning, and combines the Trans-former model’s 
ability to process time series data to ensure high accuracy of lithology 
identification. 

2 Methodology

In this study, we combined the Actor-Critic algorithm and the 
Transformer algorithm in reinforcement learning to solve the two 
major problems of the difficulty in optimizing a large amount of 
field data and the lack of consideration of time series in the lithology 
identification process. 

2.1 Reinforcement learning optimization 
process

In lithology identification, feature selection and hyperparameter 
optimization are key factors affecting model performance. We use 
reinforcement learning (RL) to automate this optimization process 
(Zhang et al., 2024). Specifically, the RL agent dynamically adjusts 
the hyperparameters (such as learning rate, batch size, regularization 
coefficient, etc.) and feature selection strategies of the lithology 
identification model by interacting with the training environment 
(Perrusquía and Yu, 2021). The agent’s reward mechanism is based 
on the performance of the model on the validation set, and the agent 
gradually optimizes the strategy to achieve the best performance 
of the lithology identification task. One of the key issues in 
reinforcement learning is how to efficiently learn a strategy so that 
the agent can maximize long-term rewards in a given environment. 
In traditional reinforcement learning methods, the two common 
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methods are value-based methods, which find the optimal strategy 
by learning an action-value function. And policy-based methods, 
which directly optimize the policy function and improve the reward 
through gradient ascent (Martinsen, Lekkas, and Gros, 2020).

The Actor-Critic algorithm (Oh et al., 2021) used in this study 
combines the advantages of these two methods, using the value 
function (Critic) to estimate the performance of the current strategy, 
and optimizing the strategy through the policy gradient (Actor), 
so as to achieve the purpose of dimensionality reduction and 
optimization of the feature data before the lithology identification 
model and improve the prediction efficiency. In the Actor-Critic 
algorithm, Actor and Critic are two different components. Among 
them, Actor is responsible for generating strategies and determining 
the actions to be taken in a given state. It is usually a policy 
function πθ(a|s) based on a parameterized model, and optimizes the 
strategy through gradient ascent. Critic: Responsible for evaluating 
the quality of the current strategy, giving a value function Vθ(s) or 
a state-action value function Qθ(s,a), and using this value to guide 
the update of the Actor. Critic provides feedback to the Actor by 
calculating the value of each state or state-action pair, and the Actor 
adjusts the strategy based on these feedbacks.

Suppose we have a Markov decision process (MDP) (Wari et al., 
2023) containing a state space S, an action space A, a state 
transition probability P(s′|s,a ), a reward function r(s,a), and a 
policy function π(a|s). Our goal is to maximize the total reward 
J(π). In the AC algorithm, we train by optimizing the following 
objectives (Equation 1):

J(π) = E[
T−1

∑
t=0

γtrt] (1)

Among them, E represents the mathematical expectation, T
represents the current time step, rt is the reward obtained at time 
t, and γt is the discount factor at time t.

The task of the Critic is to evaluate the value of the 
current strategy, which is usually represented by the state value 
function V(s) or the state-action value function Q(s|a). Generally 
speaking, the time difference (TD) method is used to update the 
value function (Equation 2):

δt = rt + γV(st+1) −V(st) (2)

Among them, δt is the time difference error, which represents 
the difference between the current estimate and the actual return. 
The update rule of Critic is (Equation 3):

V(st) ← V(st) + αvδt (3)

Where αv is the learning rate of the value function.
The goal of an actor is to maximize the expected reward 

by gradient ascent. We want to update the parameters by policy 
gradient. The calculation of policy gradient is implemented by the 
advantage function (Yao et al., 2025), which measures how much 
better an action at is than other actions in state st. The advantage 
function is defined as (Equation 4):

(st,at) = Q(st,at) −V(st) (4)

Among them, Q(st,at) is the state-action value function, and 
V(st) is the state value function.

FIGURE 1
Actor-critic algorithm process.

Using the above formula, Actor optimizes the policy parameter 
θ through gradient ascent (Equation 5):

θ← θ+ αa∇θJ(π) (5)

Where αa is the policy learning rate.
Since the Critic provides feedback by estimating the value 

function, the Actor-Critic algorithm is usually more stable than 
the pure policy gradient method. At the same time, compared 
with value-based Q-learning, Actor-Critic is usually able to use 
samples more efficiently, especially in high-dimensional space. 
However, although Actor-Critic has high sample efficiency, it 
may lead to slow convergence due to the large calculation 
variance of the policy gradient. The need to adjust multiple 
hyperparameters (such as learning rate, discount factor, etc.) may 
lead to instability in the learning process. The Actor-Critic algorithm 
flow is shown in Figure 1.

Although our optimization task does not involve dynamic state 
transitions or sequential decision-making in the traditional sense 
of reinforcement learning, it can still be modeled as an episodic 
Markov Decision Process (MDP) with deterministic transitions. In 
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FIGURE 2
Data distribution before processing.

this setting, each episode represents a complete evaluation cycle of 
a proposed configuration (i.e., feature subset and hyperparameters), 
where the agent takes an action (selects a configuration), evaluates 
the model on a validation set, and receives a scalar reward based on 
the performance (e.g., accuracy, F1-score).

This episodic and static environment formulation is similar to 
recent RL-based approaches in AutoML and Neural Architecture 
Search (NAS), where the reinforcement learning agent interacts with 
a meta-optimization problem rather than a dynamic environment. 
The Actor network proposes new configurations (policies), while 
the Critic provides feedback on their performance to guide policy 
updates. This design allows our method to adaptively explore 
the high-dimensional search space of configurations in a sample-
efficient manner, leveraging the strengths of the Actor-Critic 
framework for black-box optimization tasks.

To clarify this design, we emphasize that the role of 
reinforcement learning in our study is not for time-series prediction 
but to optimize the combination of features and hyperparameters 
through episodic reward-driven learning. 

2.2 Clarification of RL formulation

In our approach, the reinforcement learning (RL) agent does 
not interact with a dynamic, sequential environment in the 
traditional sense. Instead, the feature selection and hyperparameter 
optimization process is formulated as an episodic Markov Decision 

Process (MDP) with deterministic transitions. Each episode 
corresponds to a complete evaluation of a candidate feature subset 
and hyperparameter configuration. The agent selects a configuration 
(action), trains the model, and receives a scalar reward based 
on validation performance (e.g., accuracy, F1-score). This static, 
episodic RL formulation is consistent with recent RL-based AutoML 
and Neural Architecture Search (NAS) frameworks, where the agent 
optimizes over a meta-learning landscape rather than a temporally 
evolving environment.

We acknowledge that this differs from standard RL settings 
involving sequential decision-making and environment transitions. 
However, the Actor-Critic framework remains effective for black-
box optimization tasks, as it enables efficient exploration of high-
dimensional configuration spaces. The agent’s policy is updated 
based on the reward signal from model evaluation, allowing adaptive 
search for optimal feature and hyperparameter combinations. 

2.3 Transformer model application

Lithology identification tasks usually involve a large amount of 
time series data, especially logging data collected during drilling. 
These logging data include but are not limited to sequence data 
of physical properties such as gamma rays, density, porosity, 
and natural gamma. Each type of logging data carries important 
geological information and can be used to distinguish different 
lithology types. In addition, other formation physical property data 
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FIGURE 3
Data distribution after processing.

such as formation pressure, temperature, and fluid properties can 
also provide strong support for lithology identification.

In order for the model to better understand the inherent 
relationship of these data, we need to preprocess the input data and 
select features. By standardizing different types of logging data, or 
extracting features that help distinguish lithology through feature 
engineering. On this basis, the Transformer model can automatically 
identify important features and establish relationships between 
these features.

The core advantage of the Transformer model lies in its 
self-attention mechanism, which can efficiently capture the 
dependencies between elements in sequence data, especially long-
distance dependencies. Compared with traditional recurrent neural 
networks (RNNs) (Zhang et al., 2023) and long short-term memory 
networks (LSTMs) (Huang et al., 2022), Transformers have higher 
parallel processing capabilities, so the training speed is greatly 
improved when processing large-scale time series data.

The basic structure of Transformer consists of two main parts: 
encoder and decoder. In the lithology recognition task, we mainly 
use the encoder part of Transformer to extract the contextual 
information of the input features. The encoder consists of multiple 
self-attention layers and a feed-forward network (FFN) (Hu et al., 
2022). Each self-attention layer aggregates the information of all 
elements in the sequence by calculating the attention weights 
between each element in the input sequence. Multiple self-attention 
heads enable the model to focus on different subspaces in the 
sequence, thereby learning richer feature representations. By adding 

a multi-head attention mechanism, the model can automatically 
focus on the most important part of the input data by calculating 
the correlation between different positions. The calculation formula 
for self-attention is as follows (Equation 6).

Attention(Q,K,V) = softmax(QKT

√dk

)V (6)

Q is query matrix, which represents the query value we want to 
find relevance.

K is key matrix, which represents the content related to the query.
V is value matrix, which represents the final weighted 

information.
dk is the dimension of query and key, which is used to scale the 

calculation results to avoid too large values.
In the lithology identification task, this means that the model 

can automatically identify which well logging data or formation 
physical property data have an important impact on the prediction 
of lithology type and ignore irrelevant information. At the same 
time, since the Transformer does not rely on the temporal structure, 
it is necessary to capture the order information of the data in the 
sequence through position encoding. This is achieved by adding the 
position encoding to the feature vector of the input data to ensure 
that the model can understand the order relationship of the input 
data. There is a feed-forward neural network after each encoder layer 
to further learn the nonlinear characteristics of the data. This process 
enhances the model’s expressiveness in complex tasks.
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FIGURE 4
Heat map of pearson correlation coefficients between model parameters.

Based on the representation of the output of the encoder part 
of the Transformer, the model can predict lithology types or other 
related geological features. In the lithology recognition task, the 
output of Transformer is usually a vector of fixed dimension, which 
represents the semantic understanding of the input logging data in 
context. Based on this vector, we can use a fully connected layer to 
map it to different lithology categories. In some more complex tasks, 
the output may also need to be post-processed. For example, the 
output can be converted into a probability distribution through a 
SoftMax layer, and finally the predicted probability of each lithology 
is obtained. In addition, for multi-classification problems, the cross-
entropy loss function can also be used to train the model.

In our implementation, the input to the Transformer encoder 
consists of sequential logging measurements (e.g., GR, Density, RT, 
Depth) sampled at regular depth intervals. Each input sequence 
corresponds to a window of consecutive depth samples, preserving 
the spatial (depth-wise) order of the data.

To enable the model to capture positional information, we 
add sinusoidal positional encoding to the input feature vectors, 
following the original Transformer design. This allows the model 
to distinguish between measurements at different depths and learn 
depth-dependent patterns.

The Transformer encoder is trained from scratch on our 
lithology dataset, as no suitable pre-trained models exist for this 

domain. The model consists of 4 encoder layers, each with 8 
attention heads and a hidden size of 128. The output of the encoder 
is aggregated via global average pooling and passed to a fully 
connected classification head.

This architecture enables the model to capture both local and 
long-range dependencies in the logging data, which is critical for 
accurate lithology identification in complex geological settings. 

3 Results and discussion

In this section, we present and discuss the experimental 
results of our lithology identification method based on Actor-Critic 
and Transformer algorithms. We first quantitatively analyze the 
performance of our model, then compare it with other existing 
methods, and finally discuss the advantages, limitations, and future 
improvements of our model. 

3.1 Model parameters

In this study, in order to verify the effectiveness of the 
lithology identification method based on reinforcement learning 
and Transformer algorithm, we used a real well logging data 

Frontiers in Earth Science 06 frontiersin.org

https://doi.org/10.3389/feart.2025.1595574
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Li et al. 10.3389/feart.2025.1595574

FIGURE 5
Location of the DJ block.

set collected during the drilling process. This data set contains 
lithology characteristics of multiple different formations and 
covers measurements at multiple depths and different geological 
conditions.

The original data set for this study collected data including 
basic static parameters of wells, logging, and manual interpretation 
results. Among them, static data includes well location coordinates. 
Logging data includes gamma rays, porosity, rock density, resistivity, 
etc. Measured while drilling. Manual interpretation data includes 
formation data of drilled wells. The changes in these parameters 
can not only reflect the characteristics of different lithological layers, 
but also reveal the laws of lithological distribution under formation 
depth and geological conditions. Therefore, it is very appropriate 
to use these parameters for lithology identification. Our data set 
contains measurement data obtained from multiple wells, covers 
lithology information at different depths, and covers a variety of 
different geological environments. The diversity and complexity of 
the data provide sufficient challenges for the model.

In order to use the dataset for model training and evaluation, 
we first performed data preprocessing (Çetin and Yıldız, 2022), 
including the following steps: Missing value processing: In some 
logging data, there may be missing values due to instrument 
failure or other reasons. We used interpolation to fill these missing 
values to ensure the integrity of the data. Data standardization: In 
order to avoid the unbalanced impact of measurements of different 
dimensions on model training, we standardized all input features so 
that the mean of each feature is zero and the standard deviation is 

one (Li et al., 2025). This can help the model converge better and 
avoid affecting the model performance due to the large numerical 
range of a certain feature. The comparison of data before and after 
processing is shown in Figures 2, 3 respectively.

From the comparison results before and after data processing, we 
can see that the data distribution is messy and contains many outliers 
before data processing. However, after data processing, the data 
values remain in a relatively stable range and there are no outliers.

Data partitioning: In order to verify the generalization ability of 
the model, we divided the entire dataset into a training set and a 
test set in a ratio of 7:3. The training set is used for model training, 
and the test set is used to evaluate the performance of the model in 
practical applications.

In the lithology identification task, feature selection is a key step 
that affects the model performance. Well logging datasets usually 
contain a large number of features, some of which contribute more 
to lithology classification, while others may be redundant or noisy. 
In order to improve the efficiency and accuracy of the model, we 
introduced the Actor-Critic algorithm to automatically optimize the 
feature parameters that affect lithology identification. The Actor-
Critic algorithm performs intelligent search in the feature space 
through a reinforcement learning framework to automatically select 
the optimal feature subset. This process not only helps us reduce 
the dimension of the features, but also im-proves the generalization 
ability of the model.

The specific process of applying the Actor-Critic algorithm for 
feature selection in lithology identification is as follows: First, define 
the state space.

In the Actor-Critic algorithm, the state space represents the 
feature set selected by the current model (Cheng et al., 2022). 
Each state is a configuration of feature selection, indicating which 
features are currently selected into the model and which features 
are excluded. For the lithology identification task, the state space 
is defined as follows: The state space contains the features in all 
logging data sets, such as gamma rays (GR), porosity (Porosity), 
density (Density), etc. Each state can be regarded as a binary vector, 
where each position corresponds to a feature. If the position is 1, it 
means that the feature is selected; if it is 0, it means that the feature 
is not selected.

Then define the action space. In the Actor-Critic algorithm, the 
action space represents possible feature selection behaviors. At each 
time step, the Actor selects an action based on the current state, 
that is, decides whether to add or remove a feature from the current 
feature set. For example, if the current state is to select gamma rays 
and porosity, then the action space selection is to add density features 
or remove gamma ray features.

Finally, the reward function needs to be designed. The reward 
function is a key part of the Actor-Critic algorithm, which is used to 
measure the quality of the feature selection strategy. In the lithology 
recognition task, the reward function we designed is based on the 
classification performance of the model on the validation set. The 
reward function can be defined as the accuracy, F1-score, or the 
combined score of precision and recall of the model. Specifically, the 
reward function can be expressed as (Equation 7):

R = ACC+ α× F1+ β× Sp (7)

Where ACC is accuracy, Sp is specificity, α and β are weight 
factors that can be adjusted according to the specific requirements 
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FIGURE 6
Loss function change.

FIGURE 7
Comparison between the predicted value and the actual value of the lithology identification model.

of the task. The reward function is designed to enable the Actor to 
not only consider accuracy when selecting features, but also balance 
the precision and recall of the model, thereby improving the overall 
performance of lithology recognition.

Finally, the Actor-Critic algorithm updates the feature selection 
strategy through the following steps: First, randomly initialize the 
Actor’s strategy and the Critic’s value function. Second, in each 
round of training, the Actor selects a feature selection strategy (i.e., a 
feature set) based on the current state, and then trains the lithology 
recognition model. Then the Critic calculates the value of the current 
strategy based on the performance of the lithology recognition 
model under the current feature set (such as accuracy, F1-score, etc.), 
and feeds it back to the Actor as a reward signal.

Finally, the Actor updates its strategy based on the Critic’s 
feedback, and uses optimization algorithms such as gradient descent 

to adjust the feature selection strategy, gradually improving the 
quality of feature selection.

Repeating the above process, the Actor and Critic continuously 
optimize alternately until they converge to an optimal feature 
selection strategy.

The Actor-Critic algorithm was used to optimize the 9 
parameters collected previously, and the correlation coefficients 
between the parameters were calculated (Figure 4).

As shown in Figure 4, the horizontal and vertical axes represent 
model parameters, and the numbers in the matrix indicate the 
correlation coefficients between them. A higher absolute value 
denotes a stronger correlation. Based on this analysis, formation 
interpretation results (RT), depth (Depth), gamma ray (GR), and 
density were selected as the model input features. Gamma radiation, 
porosity, and density logs provide complementary information 
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FIGURE 8
Model training set and test set prediction accuracy.

FIGURE 9
Confusion matrix for the test set.

Frontiers in Earth Science 09 frontiersin.org

https://doi.org/10.3389/feart.2025.1595574
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Li et al. 10.3389/feart.2025.1595574

TABLE 1  Comprehensive performance of lithology prediction.

Lithology class Precision Recall F1-score

Sandstone 0.95 0.93 0.94

Mudstone 0.92 0.95 0.93

Carbonate 0.96 0.94 0.95

Others 0.91 0.9 0.9

that is critical for lithology identification. Specifically, GR logs 
measure the natural radioactivity of formations, primarily reflecting 
the presence of clay minerals and potassium-bearing feldspars 
(Bhuyan and Passey, 1994). High GR values usually indicate 
shale-rich or clay-rich intervals, whereas low GR values are 
characteristic of cleaner sandstones, carbonates, or other non-
shaly formations. Porosity logs, derived from density, neutron, or 
acoustic measurements, quantify pore volume and offer insights into 
reservoir quality (Hook, 2003). Sandstones generally show higher 
porosity compared with compacted shales or dense carbonates, and 
porosity variations also reflect depositional facies and diagenetic 
processes. Bulk density logs (Pickell and Heacock, 1960) measure 
electron density and are closely related to mineral composition and 
compaction degree: shales typically display lower density due to clay 
minerals and water content, while carbonates and well-compacted 
sandstones exhibit higher values. When integrated, these parameters 
enable more reliable lithology discrimination. For example, low GR, 
high porosity, and moderate density often indicate clean sandstones; 
high GR combined with low porosity suggests shale; and low GR 
with high density commonly points to carbonate rocks. In practice, 
density–porosity or GR–porosity crossplots are widely applied to 
reduce ambiguity and enhance lithological interpretation. Overall, 
the number of input parameters was reduced by 55.6%, significantly 
decreasing computational cost and model training time. 

3.2 Model training and evaluation

The DJ block (Figure 5) of the CQ Oilfield in the 
Ordos Basin (Gong et al., 2023) has typical geological characteristics, 
including a variety of lithology types, such as sandstone, mudstone, 
carbonate rock, etc. These lithologies show obvious physical property 
differences in logging data and are ideal data sources for lithology 
identification research. This study uses drilling data from this block to 
verify the performance of the lithology identification model constructed 
based on reinforcement learning and the Transformer algorithm .

Through the Actor-Critic algorithm in the reinforcement 
learning framework, the four parameter combinations that have the 
greatest impact on lithology identification are selected from the 
original features. The goal is to maximize the reward to ensure the 
balanced performance of the model on multiple indicators. Based 
on the Transformer encoder structure, a multi-head self-attention 
mechanism is used to capture long-distance dependencies. During 
training, the initial value of the learning rate is set to 0.001, and it is 
dynamically adjusted in combination with reinforcement learning. 
The optimizer selects the AdamW optimizer to take into account 

both training stability and convergence speed (Ma et al., 2025). The 
loss function is set to cross entropy loss to solve multi-classification 
problems such as lithology identification. The loss function change 
curve of the training process is shown in Figure 6.

From the curve changes in Figure 5, it can be seen that the values 
of all loss functions drop rapidly in the first 20 epochs of training and 
tend to stabilize after about 60 epochs, which indicates that there is 
no overfitting phenomenon during the model training process.

We used the four optimal characteristic parameters and the 
Transformer algorithm to train the lithology recognition model, 
and then projected the actual prediction effect of the test set 
onto the specific well section (Figure 7) to intuitively judge the 
prediction accuracy.

In Figure 7, we projected the predicted lithology values and 
true values onto two wells to evaluate the prediction accuracy. In 
the figure, from left to right, the depth of the well is represented, 
the lower color band represents the predicted lithology value, and 
the upper color band represents the true lithology value. It can 
be seen that the two-color bands are consistent in most areas, 
especially in the deep formations, where the lithology recognition 
accuracy is high. Finally, the specific prediction accuracy of the 
constructed lithology identification model was statistically analyzed. 
The accuracy calculation formula is shown in Equation 8, and the 
accuracy of the training set and the test set is shown in Figure 8.

Figure 7 shows the projected results of predicted and actual 
lithology values along the well trajectory. It can be observed that the 
predicted lithology matches the true lithology in most intervals, with 
particularly strong agreement in the deeper sections. This indicates 
that the proposed model is capable of accurately and effectively 
identifying the target formation lithology in new wells (Equation 8).

Accuracy = TP+TN
TP+TN+ FP+ FN

(8)

In this context, Accuracy represents the model’s prediction 
accuracy and is used to evaluate the model’s ability to make precise 
predictions. TP (True Positive) refers to the correctly predicted 
positive cases, TN (True Negative) refers to the correctly predicted 
negative cases, FP (False Positive) refers to the incorrectly predicted 
positive cases, and FN (False Negative) refers to the incorrectly 
predicted negative cases.

Figure 8 shows the prediction accuracy of the model training set 
and test set. As shown in Figure 8, the horizontal axis represents 
the true value of the lithology, and the vertical axis represents 
the predicted value of the lithology. The prediction accuracy of 
the model can be explained by the distribution of data points on 
the 45° line. It can be seen that the lithology identification model 
constructed in this study has accurate prediction performance, and 
most of the data points are distributed on and near the 45° line. At 
the same time, the prediction accuracy values of the training set and 
the test set reached 94.89% and 94.81% respectively, which can meet 
the needs of on-site lithology identification.

Figure 8 presents the confusion matrix for the test set, illustrating 
the distribution of true and predicted labels. The model demonstrates 
strong discrimination between major lithology types, with most 
misclassifications occurring between lithologies with similar physical 
properties. These results confirm that our method achieves not only 
high overall accuracy but also balanced performance across classes, 
addressing the challenge of class imbalance in lithology prediction . 
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3.3 Comprehensive performance metrics

To provide a more complete evaluation of our model, we report 
additional classification metrics, including per-class precision, 
recall, and F1-score, as well as the confusion matrix (Figure 9) for 
the test set. Table 1 summarizes the precision, recall, and F1-score 
for each lithology class.

The overall macro-averaged F1-score is 0.93, indicating robust 
performance across all classes, including minority lithologies.

In addition to visual comparison, we provide quantitative 
performance analysis using standard classification metrics as 
described above. The inclusion of per-class metrics and the 
confusion matrix enables detailed error analysis and interpretation 
of model strengths and weaknesses. For example, the model 
achieves the highest F1-score on carbonate rocks, while most 
misclassifications occur between sandstone and mudstone, likely 
due to overlapping logging signatures. This quantitative breakdown 
complements the visual results and provides a more rigorous 
assessment of model performance. 

4 Conclusion

This paper proposes an intelligent lithology identification 
method based on reinforcement learning and Transformer 
algorithm, which successfully solves the problems of traditional 
lithology identification that relies on manual experience, is 
highly subjective, and has limited identification accuracy. By 
optimizing the hyperparameters and feature selection of the 
model through reinforcement learning, the efficiency of lithology 
identification and the generalization ability of the model are 
significantly improved; the powerful self-attention mechanism 
of the Transformer algorithm is used to fully capture the temporal 
relationship of the well logging data and ensure the recognition 
accuracy. During the construction process, the model achieved 
a prediction accuracy of 94.89% on millions of drilling data 
samples, proving its efficiency and robustness under massive 
data. Com-pared with traditional methods, the model in this 
paper can not only quickly determine the lithology category, 
significantly improve the decision-making efficiency at the drilling 
site, but also effectively reduce the construction cost, and has 
high engineering application value. In the future, this method 
can be further extended to drilling operations with more 
complex geological conditions, providing important support for 
intelligent drilling technology .
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