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Ecosystem services (ESs) in rapidly urbanizing regions are undergoing significant 
spatiotemporal changes driven by urban sprawl. However, existing studies 
have insufficiently addressed the heterogeneity of ESs, particularly the 
dynamic interactions between ecological processes and regional environmental 
conditions. This study focuses on eastern Guangdong, China, and quantifies 
four key ESs—carbon storage (CS), habitat quality (HQ), soil retention (SR), and 
water retention (WR)—from 2000 to 2020 using the InVEST model. The spatial 
heterogeneity of natural and socioeconomic drivers was examined through 
a multi-scale geographically weighted regression (MGWR) model. Ecological 
zones were delineated using Self-Organizing Map—Fuzzy C-Means (SOM-FCM) 
clustering, followed by zonal statistical analysis. Overall, ESs exhibited a declining 
trend over two decades, with SR and WR decreasing by 23.4% and 18.6%, 
respectively, while CS and HQ remained relatively stable. A distinct north–south 
gradient was identified, with stronger ES performance in the mountainous north. 
NDVI consistently showed the strongest positive influence in central regions; 
precipitation (PRE) and temperature (TEMP) fluctuated sharply in the north; 
population pressure peaked in the north and turned negative in the south 
by 2020; GDP had a positive effect in the east but a negative effect in the 
west; slope exerted the greatest influence in eastern areas; and the east–west 
elevation difference gradually weakened. Four ecological zones were identified: 
Protection, Conservation, Improvement, and Control. Between 2000 and 2020, 
Control Zones expanded significantly due to intensified urbanization, while the 
other three zones contracted. These findings highlight the urgent need for 
zone-specific strategies: strict conservation in Protection Zones, ecosystem 
restoration in Conservation Zones, ecological connectivity and low-impact use 
in Improvement Zones, and compact urban development in Control Zones. 
The proposed framework provides a transferable approach for capturing the 
spatial dynamics of ESs and supporting adaptive ecological management in 
fast-urbanizing regions.
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1 Introduction

Ecosystem services (ES) refer to the products and benefits 
that ecosystems continuously provide to human society through 
their structures and processes (Daily et al., 2000). Specifically, 
ecosystems satisfy diverse human needs for environmental 
conditions, resources, and spiritual wellbeing by providing 
food, water resources, climate regulation, and cultural values 
(Costanza et al., 1997). Therefore, ES are not only vital links 
between natural ecosystems and human societies but also 
essential components for achieving sustainable development 
(Liu et al., 2020). However, rapid economic growth and accelerated 
urbanization have significantly altered land use patterns, thereby 
affecting the structure and functions of ecosystems (Bryan, 2013; 
Aslam et al., 2024a). Overexploitation of land resources and 
habitat fragmentation have led to a decline in the capacity of 
ecosystems to provide services, further aggravating ecological 
vulnerability in urbanizing regions (Xie et al., 2024a). In 
urban areas, the competition for land and resources among 
stakeholders often intensifies trade-offs between different ES, 
undermining synergies and further threatening the health 
and stability of ecosystem (Cord et al., 2017). Additionally, 
the combined effects of human activities and climate change 
impose more complex uncertainties and risks on ecosystems 
(Huang et al., 2024; Naz et al., 2024). How to utilize ES as 
a basis for ecological zoning and implement region-specific 
management strategies has become a critical issue in sustainable 
development research (Dai et al., 2024).

To address the complexity of ES assessment and the diversity 
of their driving mechanisms, research has evolved from single-
variable analyses to integrated, multi-factor, and multi-scale spatial 
approaches, leading to the development of various quantitative 
models and technical tools. Among these, the InVEST model 
has gained prominence for its high accuracy and versatility in 
ES evaluation (Veerkamp et al., 2023; Wang et al., 2023). This 
modular tool excels in multi-scale and multi-scenario analyses, 
finding wide application in regional ecological assessments, urban 
ecosystem management, and land-use planning. For instance, 
InVEST has been employed to quantify water supply and yield 
(Liu et al., 2024; Zhang et al., 2024), predict carbon storage 
changes (Gao et al., 2023), evaluate the impacts of land-use 
changes on carbon emissions and storag (Li et al., 2023), assess 
urban cooling and regulatory services (Lan et al., 2025), and 
develop decision-support frameworks for ecosystem protection 
(Córdoba Hernández and Camerin, 2024). These applications 
underscore InVEST’s role in providing a robust scientific foundation 
to tackle challenges posed by urbanization, climate change, 
and ecological degradation. Concurrently, rapid socioeconomic 
development has profoundly altered ecosystem structure and 
function, prompting a shift in driving mechanism studies from 
linear to spatial perspectives to capture the spatiotemporal 
heterogeneity of ES. Early studies using linear methods highlighted 
the dominant role of natural factors, such as precipitation driving 
ES relationships in arid regions (Hao et al., 2019) and forest 
and cropland expansion positively influencing net primary 
productivity and soil conservation (Li et al., 2021). However, 
linear approaches often failed to capture the heterogeneity of 
driving factors. Subsequent research adopted spatial analyses, 

revealing the growing influence of socioeconomic factors and their 
regional variations. For example, socioeconomic factors indirectly 
affected urban green space ES, while ES in suburban Nanjing 
exhibited trade-off/synergy dynamics (Yang et al., 2023). In the 
Pearl River Delta, human factors like population exerted stronger 
effects (Wang et al., 2023), whereas in Guangdong, urbanization 
reduced carbon storage and habitat quality, yet northern water yield 
increased due to higher precipitation (Wu et al., 2024). Multi-Scale 
Geographically Weighted Regression (MGWR) models further 
confirmed the spatial heterogeneity of ES relationships driven 
by topography and urbanization (Zhang et al., 2020). Overall, 
while natural factors consistently influence ES dynamics, human-
induced factors exhibit varying impacts across regions and scale 
(Wang et al., 2023; Aslam et al., 2024b), providing critical scientific 
insights for ecological management and spatial planning. The 
marked spatiotemporal heterogeneity of ES in rapidly urbanizing 
regions underscores the need for region-specific management 
strategies. While natural drivers—precipitation regimes, vegetation 
dynamics, and topography—continue to shape ES patterns, their 
influence is increasingly overshadowed by socioeconomic forces 
in urban contexts. Population expansion, land-use intensification, 
and urban sprawl have emerged as dominant and spatially variable 
factors, introducing complex interactions that challenge traditional 
ecological planning frameworks.

ES are subject to long-term differentiation and formation 
due to the combined influence of socio-ecological factors, 
resulting in spatially heterogeneous patterns of functionality 
and provisioning capacity across region (Liu et al., 2019). This 
differentiation arises from the interplay of natural factors and 
human activities, driving distinct ecological characteristics in 
different areas (Aslam et al., 2023; Zeng et al., 2023). Consequently, 
ecological zoning has emerged as a pivotal spatial planning 
tool to identify and manage the supply-demand dynamics and 
spatial distribution of ES. From a technical perspective, ecological 
zoning fundamentally involves clustering spatial units, serving 
as a critical approach in geographical partitioning (Lin et al., 
2024). Among the simplest methods is K-means clustering, 
which delineates functional zones by minimizing intra-cluster 
variance (Liu et al., 2019). More advanced techniques, such as 
Self-Organizing Maps with Fuzzy C-Means (SOM-FCM), leverage 
neural network algorithms to capture nonlinear relationships within 
ES bundles, as demonstrated by Li C. et al. (2024); Li J. et al. 
(2024); Li K. et al. (2024) in delineating supply-demand patterns 
in Hangzhou. Additionally, the Natural Breaks (Jenks) method, 
valued for its high aggregation and low diversity, is often employed 
to refine zoning outcomes (Liu et al., 2020), while the four-
quadrant model elucidates spatial heterogeneity through two-
dimensional supply-demand classification (Jiang et al., 2024). 
Regression-based approaches, such as those defining zoning 
thresholds via the relationship between the ecological supply-
demand ratio and land use proportion, are also prevalent. Ecological 
zoning not only facilitates ecological conservation and restoration 
but also provides a foundation for achieving supply-demand 
balance and sustainable spatial governance (Zeng et al., 2023). 
Technologically, zoning methodologies are evolving from basic 
clustering to sophisticated frameworks incorporating multi-scale 
and multidimensional data, offering robust support for refined 
ecological management.
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Although ecological zoning has been widely studied, there 
remains a critical gap in integrating ES with their spatiotemporal 
heterogeneity (Xu et al., 2022). Most existing studies conduct zoning 
based on a single time point or static snapshots (Chen et al., 2024), 
neglecting the evolving nature of ecological processes and their 
interactions with diverse environmental conditions, which limits the 
ability to diagnose dynamic regional ecological issues (Liu et al., 
2024). Moreover, traditional zoning approaches often rely on linear 
models, which fail to capture the complex, non-stationary effects 
of heterogeneous natural and socioeconomic drivers (Xiong et al., 
2024). Addressing these limitations, this study introduces a 
combined framework using Multi-Scale MGWR and SOM-FCM 
to analyze the spatiotemporal non-stationarity of ES and identify 
ecological zones based on both temporal dynamics and spatial 
differentiation. This approach not only improves the scientific rigor 
of ecological zoning but also provides a robust decision-support 
basis for adaptive ecological management in rapidly urbanizing 
regions such as eastern Guangdong.

To address the aforementioned research gaps, this study focuses 
on eastern Guangdong Province as a case study, quantifying 
the spatiotemporal dynamics of four ES—soil retention (SR), 
water retention (WR), habitat quality (HQ), and carbon storage 
(CS)—from 2000 to 2020. Initially, the MGWR model is employed 
to investigate the spatially and temporally varying impacts of 
influencing factors on ES. Subsequently, SOM-FCM clustering 
approach is applied to delineate ecological zones based on the 
four ES, uncovering zoning evolution patterns over the study 
period. Finally, MGWR regression coefficients are analyzed within 
these zones to quantify regional differences in driving factor 
influences. This study pursues three objectives: (1) to quantify the 
spatiotemporal variations of ES from 2000 to 2020 and identify 
their dominant natural and socioeconomic drivers using InVEST 
and MGWR; (2) to investigate the spatial delineation and temporal 
transformation of ecological zones, and reveal how different drivers 
shape zonal differentiation through clustering and comparative 
analysis; and (3) to integrate ecological characteristics and driver 
profiles of each zone to formulate region-specific, evidence-based 
policy recommendations for ecological zoning management. 

2 Materials and methods

2.1 Study area

Eastern Guangdong (22°30′N–25°05′N, 114°50′E−117°20′E), 
located in the eastern part of Guangdong Province, China, 
encompasses four prefecture-level cities: Chaozhou, Shantou, 
Jieyang, and Meizhou. The region serves as a crucial ecological 
barrier for the province, owing to its mountainous terrain, high 
forest coverage, and diverse ecological functions (Figure 1). The area 
features a subtropical monsoon climate with 1,500–2000 mm annual 
precipitation and rising elevation from coastal plains to inland 
mountains (up to 1,500 m). The region is ecologically significant, 
with extensive forest coverage, rich biodiversity, and key ES. This 
study focuses on four key ES—CS, HQ, SR, and WR—as they 
represent the region’s most ecologically sensitive and policy-relevant 
functions (Chen et al., 2021). They are directly impacted by land use 
change and are central to regional conservation and compensation 

strategies. Rapid urbanization over the past two decades has 
transformed land use patterns, leading to built-up expansion, 
forest degradation, and biodiversity loss (Wu et al., 2024). Eastern 
Guangdong exhibits strong spatial contrasts in socioeconomic 
development. While Shantou and Jieyang have experienced rapid 
industrialization and urban expansion, Meizhou remains relatively 
underdeveloped with a predominantly agricultural economy. The 
population density and GDP per capita vary considerably across 
the region, resulting in uneven ecological pressures and land-use 
demands. A systematic assessment of ES and their drivers is essential 
for managing ecological risks, guiding compensation mechanisms, 
and supporting sustainable planning (Jiang et al., 2024).

2.2 Data sources

This study integrates multi-source datasets to support 
the spatiotemporal modeling of ES from 2000 to 2020 in 
eastern Guangdong. The datasets used in this study are 
summarized in Table 1. Land use/land cover (LUCC) maps were 
derived from Landsat imagery and provided as 1 km raster files. 
DEM data from NASA’s SRTM was used to derive topographic 
attributes such as slope and flow accumulation using terrain analysis 
tools. Climate variables, including precipitation (PRE), temperature 
(TEMP), and potential evapotranspiration (PET), were interpolated 
to 1 km resolution. Soil texture and organic matter content were 
retrieved from national soil databases and processed into continuous 
raster surfaces. NDVI data from MODIS were smoothed and 
corrected to capture vegetation dynamics over time. Socioeconomic 
variables (POP and GDP) were provided as 1 km resolution gridded 
data, preprocessed by RESDC-CAS based on statistical records. All 
datasets were projected to WGS84 and resampled to a consistent 
spatial resolution using ArcGIS Pro for spatial alignment.

2.3 Research methodology

2.3.1 Study design
This study investigates the spatiotemporal dynamics of 

ES and their influencing factors in eastern Guangdong from 
2000 to 2020 (Figure 2), aiming to inform ecological zoning 
and spatial management. The research framework consists of 
three sequential stages. First, four key ES—CS, HQ, SR, and 
WR—were quantified using the InVEST and RUSLE model. These 
services were then normalized and integrated to construct a 
composite ES index. Second, the MGWR model was employed 
to explore the spatial heterogeneity of influencing factors on 
the integrated ES, incorporating meteorological variables (PRE 
and TEMP), topographic features (SLOPE and DEM), vegetation 
cover (NDVI), and socioeconomic indicators (POP and GDP). 
Third, the SOM-FCM clustering approach was applied to classify 
regional ES response patterns based on driving factor characteristics, 
enabling the delineation of ecological zones. Subsequently, a zonal 
statistics tool was used to summarize and compare the MGWR-
derived coefficients of each influencing factor across the different 
ecological zones, thereby identifying dominant drivers and regional 
management priorities.
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FIGURE 1
Geography of the study region. (A) Location of the Guangdong in China; (B) Study Area Location of Guangdong; (C) Land use map of eastern 
Guangdong in 2020.

TABLE 1  Data description and sources.

Data type Content Format Source

Land use/land cover (LUCC) Land use/land cover types: forest, 
cropland, grassland, water, built-up, 

bare land

Raster (1 km) Resource and Environmental Sciences 
Data Center, Chinese Academy of 
Sciences (RESDC-CAS)

Climate Annual precipitation (PRE), average 
temperature (TEMP), potential 

evapotranspiration (PET)

Raster (1 km) China Meteorological Administration 
Data Center (CMA Data Center)

Topographic Elevation (DEM) Raster (30 m) NASA Earth Science Data Systems 
(NASA-ESDS)

Soil Properties Sand, clay, organic matter content Raster (1 km) National Earth System Science Data 
Center, China (NESSDC)

Vegetation Index Normalized Difference Vegetation 
Index (NDVI)

Raster (250 m) MODIS (Moderate Resolution Imaging 
Spectroradiometer), NASA

Socioeconomic Population (POP), Gross Domestic 
Product (GDP)

Raster (1 km) Resource and Environmental Sciences 
Data Center, Chinese Academy of 
Sciences (RESDC-CAS)

2.3.2 Ecosystem service quantification
2.3.2.1 Carbon storage (CS)

CS was estimated using the carbon module of the InVEST 
model, based on land use/land cover (LULC) raster data and 

carbon density parameters. The total carbon storage consists of 
four components: aboveground biomass, belowground biomass, 
soil, and dead organic matter) The calculation formula is as follows 
(Equation 1):
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FIGURE 2
Analysis scheme of the study. (CS: carbon storage; HQ: habitat quality; SR: Soil retention; WR: Water retention and ES: Ecosystem services; PRE: 
Precipitation; TEMP: Temperature; DEM: Elevation; SLOPE: Slope; POP: Population; GDP: Gross Domestic Product; NDVI: Normalized Difference 
Vegetation Index).

CT = Ca +Cb +Cs +Cd (1)

where CT represents the total carbon storage. The carbon density 
parameters were calibrated according to vegetation types and 
soil characteristics in eastern Guangdong with reference to field 
measurements and literature values (Chen et al., 2021). The results 
were output in raster format, reflecting the spatial distribution of CS 
in the study area. 

2.3.2.2 Habitat quality (HQ)
HQ was assessed using the habitat quality module of the InVEST 

model to analyze the impact of land use changes on biodiversity. 
HQ was calculated based on habitat suitability and ecological threat 
pressure as follows (Equation 2):

Qxj =Hj(1−
Dz

xj

Dz
xj + kz) (2)

where Qxj represents the habitat quality of grid x for land type 
j (dimensionless, range 0–1); Hj is the suitability of the land 

type (1 for forests, 0 for urban areas); Dxj is the ecological 
threat pressure; z is a standardization constant (set as 2.5); k
is a half-saturation constant (set as the median threat pressure). 
Threat factors include urbanization and agricultural activities, with 
parameter settings adjusted according to local characteristics in 
eastern Guangdong (Wu et al., 2024). Results were presented in 
raster format to represent the ecological health of the region. 

2.3.2.3 Soil retention (SR)
SR was estimated using a simplified approach based on the 

Universal Soil Loss Equation (USLE), calculated as the difference 
between potential soil erosion (RKLS) and actual soil erosion 
(USLE) (Rong et al., 2022). The calculation formula is as follows 
(Equations 3–5):

SR = RKLS−USLE (3)

RKLS = R×K× L× S (4)
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USLE = R×K× L× S× P×C (5)

Where R is rainfall erosivity factor, calculated as (Equation 6):

R =
12

∑
i=1
(1.735× 100.5 log(pi) − 0.818) (6)

Where K is soil erodibility factor, calculated as (Equation 7):

K = 0.2+ 0.3exp [−0.0256⁢S (1− L
100
)] · ( L

A+ L
)

0.3

· [1− 0.25B
B+ exp (3.72− 2.95B)

] ·

[1−
0.7N1

N1 + exp (22.9N1 − 5.51)
] (7)

Where N1 = 1− S
100
.; L is Slope length factor, 

calculated as (Equation 8):

L = (
Slope length

22.13
)

m
(8)

Where S is Slope steepness factor, calculated as (Equation 9):

S =
{
{
{

10.8 sin (θ) + 0.03, ifθ < 9%

16.8 sin (θ) − 0.5, ifθ ≥ 9%
(9)

Where P is conservation practice factor, calculated as
(Equation 10):

P = 0.2+ 0.03θ (10)

Where C is vegetation cover factor, calculated as (Equation 11):

C =
{{{{
{{{{
{

1, ifc = 0

0.6508− 0.3436 log (c), if0 < c ≤ 78.3%

0, ifc > 78.3%

(11)

 

2.3.2.4 Water retention (WR)
Water retention was estimated using a hydrological model 

combining annual water yield and topographic correction factors 
(Nguyen et al., 2015) (Equation 12):

Retention =min(1, 249
Velocity

) · min(1, 0.9 ·TI
3
) · min(1,

Ks
300
) ·Y(x)

(12)

 where Retention is water retention (mm); TI is the topographic 
index; Ks is soil saturated hydraulic conductivity; Velocity is the flow 
velocity factor; Y(x) is annual water yield (Equation 13):

Y(x) = (1−
AET(x)

P(x)
) · P(x) (13)

where AET(x) is actual evapotranspiration and P(x) is annual 
precipitation. The evapotranspiration ratio is based on the water-
energy coupling balance (Equation 14):

AET(x)
P(x)
= 1+

PET(x)
P(x)
− [1+(

PET(x)
P(x)
)

ω
]

1/ω
(14)

where PET(x) is potential evapotranspiration and ω is a soil property 
parameter. Methods refer to Huang et al. (2024). The results 
characterize the water regulation capacity. 

2.3.3 Driving factor analysis
Considering the spatial heterogeneity of factors influencing 

ES, a single spatial scale is inadequate to fully capture the 
complex interactions involved. Therefore, this study adopts the 
MGWR model to analyze the spatially variable impacts of different 
factors on key (Fotheringham et al., 2017). Previous studies have 
demonstrated that MGWR outperforms Ordinary Least Squares 
and traditional Geographically Weighted Regression in capturing 
spatial heterogeneity of influencing factors on ES (Wu et al., 2025), 
offering deeper insights into underlying ecological processes. By 
allowing each variable to have its own optimal bandwidth, MGWR 
better reflects the spatially varying mechanisms and ecological 
processes underlying ES dynamics. This multiscale heterogeneity 
is essential for understanding localized versus regional influences, 
thereby enhancing the ecological interpretability of the results. The 
MGWR model’s strength lies in allowing explanatory variables to 
exert influence across different spatial scales, thereby providing a 
more nuanced understanding of the spatial relationships between 
factors and ES. The model is expressed as follows (Equation 15):

yi = β0(Ui,Vi) +∑j βj(Ui,Vi)xij + εi (15)

where: yi represents the response variable. β0(Ui,Vi) is the intercept 
term, reflecting the baseline level at each location xij denotes the 
predictor variables that influence ES at spatial location j. βj(Ui,Vi)
represents the spatially varying regression coefficients, capturing the 
scale-dependent impact of each factor. ϵi is the error term accounting 
for unmodeled variations. 

2.3.4 Ecological zoning approach
The ecological zoning in this study employs a hybrid clustering 

framework integrating the Self-Organizing Map (SOM) neural 
network with the Fuzzy C-Means (FCM) algorithm, termed SOM-
FCM, to achieve robust and refined partitioning of ecological units. 
The optimal number of ecological zones was determined prior to 
clustering by evaluating clustering quality using the fuzzy partition 
coefficient (FPC) and the silhouette coefficient (SC), which are 
widely used to assess cluster separation and compactness. This 
method unfolds in three key phases (Li C. et al., 2024). First, a 
dataset of zoning indicators is compiled from raster inputs, followed 
by preprocessing using z-score standardization. This normalization 
step ensures equitable weighting of all variables by mitigating the 
influence of disparate scales, thereby preventing bias toward any 
single indicator during clustering. Second, the standardized dataset 
is processed through a SOM neural network to group ecological 
units based on the similarity of their indicator profiles. The SOM 
is structured with a two-dimensional grid of neurons, where various 
topological configurations are tested and trained independently. The 
optimal topology is determined by minimizing both topological 
and quantization errors, with a neuron grid identified as the most 
effective structure in this analysis. Third, the resulting SOM weight 
vectors serve as inputs to the FCM algorithm, which enhances 
cluster delineation by accommodating overlapping boundaries and 
assigning fuzzy memberships. This step refines the clustering output, 
producing a raster-based result that is subsequently post-processed 
in ArcGIS using majority filtering to remove minor speckles 
and improve map interpretability. The SOM computations and 
visualizations were implemented using the SOMPY Python library, 
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offering a versatile and efficient platform for executing this hybrid 
SOM-FCM approach. This methodology ensures a scientifically 
sound and spatially explicit representation of ecological zones, 
suitable for advanced environmental analysis. 

3 Results

3.1 Spatiotemporal analysis of ecosystem 
services

The analysis revealed that the distribution of ES in eastern 
Guangdong exhibited pronounced spatial heterogeneity from 2000 
to 2020, with the spatial distribution pattern remaining relatively 
stable overall (Figure 3; Table 2). Specifically, CS demonstrated 
significant spatial heterogeneity, with the total decreasing from 1.11 
× 106 t in 2000 to 1.10 × 106 t in 2020, a decline of approximately 
0.9%. The mean CS fluctuated slightly from 35.98 to 35.80 t/km2. 
Spatially, CS values were higher in the northern mountainous 
regions, attributed to approximately 50% forest coverage and diverse 
vegetation types, while they were lower in the southern coastal plain, 
primarily due to the adverse effects of urbanization and cropland 
expansion. In terms of HQ, the values remained relatively stable 
but showed a slight decline, with the mean decreasing from 0.79 
in 2000 to 0.78 in 2020, a reduction of approximately 1.3%, while 
the median consistently remained at 0.89. Geographically, HQ was 
higher in the northern mountains, benefitting from well-preserved 
forests and grasslands, and lower in the southern coastal areas, 
driven by habitat degradation from urbanization.SR exhibited a 
significant declining trend, with the total reducing from 4.67 × 
106 t to 3.58 × 106 t, a decrease of approximately 23.4%, while 
the mean dropped from 150.86 to 116.16 t/km2. This pattern was 
consistent with topographic and land cover variations: SR was 
higher in the northern mountains due to steep terrain and robust 
vegetation cover, and lower in the southern plains, influenced by 
rainfall erosion and land development. Similarly, WR showed a 
continuous decline, with the total decreasing from 2.79 × 106 mm 
to 2.27 × 106 mm, a reduction of approximately 18.6%; the mean 
WR declined from 90.51 to 73.71 mm/km2. WR was higher in 
the northern mountains, driven by abundant annual precipitation 
and topographic regulation, and lower in the southern coastal 
areas, affected by evapotranspiration and urbanization pressures. 
Finally, the integrated ES exhibited minimal variation, with the 
mean ranging from 0.42 to 0.40 over 2000–2020, and the median 
and maximum remaining stable. Nevertheless, a consistent spatial 
gradient persisted, with higher values in the northern mountainous 
regions and lower values in the southern coastal areas, indicating 
stronger ecological functionality in the north compared to the south.

3.2 Spatial heterogeneity of driving factors

3.2.1 Model performance and validation
To investigate the driving factors of ES changes in eastern 

Guangdong from 2000 to 2020, this study employed the MGWR 
model, analyzing spatial heterogeneity of natural and socioeconomic 
factors at a 5 km grid resolution. MGWR captures spatial non-
stationarity through localized regression, making it suitable for 

assessing the spatial variability of ES drivers. Model performance 
was evaluated using the Akaike Information Criterion (AIC) 
and R2 (Table 3), demonstrating that MGWR significantly OLS 
model and effectively reveals spatial heterogeneity. Over 2000–2020, 
the MGWR AIC decreased from 2,847.729 to 2,786.046, while 
R2 increased from 0.557 to 0.576, indicating an enhanced ability 
to explain spatial variations in ES drivers. In 2010, the AIC was 
2,831.03 with an R2 of 0.562; by 2020, the AIC further improved 
to 2,786.046, and R2 reached 0.576, suggesting improved stability 
and precision in capturing spatial heterogeneity. The lower AIC 
and higher R2 confirm MGWR model suitability for ES analysis in 
eastern Guangdong, unveiling the spatially heterogeneous impacts 
of natural factors and human activities on ES, thereby providing a 
scientific basis for subsequent zoning management.

Furthermore, MGWR bandwidth parameters quantify spatial 
non-stationarity for each driving factor (Table 4), reflecting their 
local influence range and variability. In 2000, NDVI (533) and 
PRE (458) exhibited larger bandwidths, indicating broader spatial 
impacts, whereas POP (362) and TEMP (222) showed narrower 
bandwidths, suggesting stronger local variability. By 2010, the 
SLOPE bandwidth increased significantly to 1,273, indicating 
heightened spatial non-stationarity, while PRE (268) and POP (50) 
bandwidths decreased, reflecting narrower influence ranges. In 
2020, the TEMP bandwidth rose markedly to 1,359, while NDVI 
and SLOPE stabilized at 146 and 50, respectively, and POP and 
GDP bandwidths further narrowed to 22, revealing a concentration 
of socioeconomic factors spatial variability. These shifts validate 
MGWR model effectiveness in capturing spatial non-stationarity of 
ES drivers, providing a scientific foundation for refined ecological 
management.

3.2.2 Spatiotemporal variability of drivers
Table 5 presents the changes in influence coefficients of various 

factors on ES in eastern Guangdong from 2000 to 2020. Over 
this period, natural factors exhibited increasingly complex impacts, 
socioeconomic factors demonstrated strengthened positive drives, 
and spatial non-stationarity was pronounced, with the NDVI 
consistently serving as a stable positive driver. The influence 
directions and intensities of PRE and TEMP fluctuated over time. 
PRE’s mean effect evolved from 0 in 2000 to −0.09 in 2010, then to 
0.18 in 2020, reflecting its spatially non-stationary and temporally 
variable impact on ES. TEMP’s mean shifted from 0.07 in 2000 to 
0.17 in 2010, then to −0.04 in 2020, transitioning from positive to 
negative, indicative of climate change’s complex influence. Among 
topographic factors, SLOPE maintained a positive effect but with 
varying variability, exhibiting spatial non-stationarity and temporal 
nonlinearity; DEM shifted from a positive mean of 0.08 in 2000 
to a negative mean of −0.05 in 2020, with its standard deviation 
decreasing from 0.34 to 0.28, suggesting reduced variability. POP 
showed a progressive increase in influence, with its mean rising 
from 0.14 to 2.55 and standard deviation increasing from 0.20 to 
2.83, indicating escalating pressure on ES from population growth 
and heightened spatial variability. GDP’s effect peaked at −0.72 in 
2010, then turned neutral (mean 0) by 2020, with reduced variability 
(STD 0.29), suggesting that economic restructuring may mitigate 
its negative impacts on ES. NDVI’s positive influence consistently 
strengthened over the two decades, with its mean increasing from 
0.36 to 0.44 and standard deviation rising from 0.06 to 0.14, 
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FIGURE 3
Spatial distribution of ES between 2000 and 2020. (A) CS; (B) HQ; (C) SR; (D) WR; (E) ES (CS: carbon storage; HQ: habitat quality; SR: Soil retention; WR: 
Water retention and ES: Ecosystem services).
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TABLE 2  Temporal statistics of ES.

Type Year Min value Max value Median value Mean value Total value

CS (t/km2)

2000 0 46.09 46.09 35.98 1.11 × 106

2010 0 46.09 46.09 36.08 1.11 × 106

2020 0 46.09 46.09 35.80 1.10 × 106

HQ

2000 0 1 0.89 0.79 -

2010 0 1 0.89 0.79 -

2020 0 1 0.89 0.78 -

WR (mm/km2)

2000 0 1,173.67 74.03 90.51 2.79 × 106

2010 0 1,022.18 68.52 83.55 2.57 × 106

2020 0 942.07 59.72 73.71 2.27 × 106

SR (t/km2)

2000 0 3,623.97 44.07 150.86 4.67 × 106

2010 0 3,202.00 39.60 133.56 4.12 × 106

2020 0 2,766.86 35.13 116.16 3.58 × 106

ES

2000 0 0.77 0.51 0.42 -

2010 0 0.78 0.51 0.41 -

2020 0 0.77 0.50 0.40 -

TABLE 3  Fitting results of the OLS and MGWR model.

Indicator Model 2000 2010 2020

AIC
OLS 2,847.729 2,831.03 2,786.046

MGWR 1775.044 1741.262 1764.614

R2
OLS 0.557 0.562 0.576

MGWR 0.852 0.856 0.855

demonstrating a stable and minimally non-stationary supportive 
role of vegetation cover on ES.

From a spatial perspective (Figure 4), the driving factors of ES 
in eastern Guangdong exhibited pronounced spatial heterogeneity 
from 2000 to 2020. PRE showed a northern negative and 
southern positive influence pattern in 2000 and 2010, reflecting its 
suppression of ecological functions in the north and enhancement of 
water-related services in the south; by 2020, PRE shifted to a globally 
positive influence, though its effect became non-significant in the 
northern regions, indicating dynamic adjustments in the spatial 
scope and intensity of precipitation’s impact on ES. TEMP displayed 
considerable variation, with a positive correlation in the north and 
a negative correlation in the south in 2000, highlighting regional 
climatic disparities in ES drivers; by 2010, the positive influence 
in the north weakened and transitioned to negative, and by 2020, 
it became globally non-significant, reflecting nonlinear temporal 

changes in TEMP’s spatial influence on ES. DEM exhibited east-
west differences, with negative correlations in the west and northeast 
and positive correlations in the south from 2000 to 2020, though 
this influence gradually weakened, suggesting a decreasing spatial 
non-stationarity of topographic effects on ES. SLOPE showed a 
predominantly positive influence in 2000, decreasing in intensity 
from southeast to northwest; in 2010, its influence was globally 
significant, consistent with the 2000 pattern; by 2020, the impact was 
concentrated in eastern areas, indicating dynamic spatial variability 
in slope’s effect on ES. POP exhibited a positive effect in the 
north from 2000 to 2010, decreasing toward the central region and 
remaining non-significant in the south; by 2020, the south developed 
a significant negative effect, while the north reached peak positive 
values, reflecting intensified regional pressures from population 
growth. GDP showed its largest significant negative effect in 2010; 
by 2020, it displayed east-west differences, with positive effects in 
the east and negative effects in the west, indicating spatially variable 
economic impacts on ES. NDVI remained globally significant with 
a positive influence from 2000 to 2020, decreasing in intensity from 
the central region outward, demonstrating a stable supportive role 
of vegetation cover on ES.

3.3 Ecological zoning results

3.3.1 Spatial delineation and temporal dynamics
This study utilized the SOM-FCM clustering approach to 

analyze ES in eastern Guangdong from 2000 to 2020, identifying 
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TABLE 4  Bandwidth of ES driving factors.

Year PRE TEMP DEM SLOPE POP GDP NDVI

2000 458 222 50 146 362 22 533

2010 268 110 50 1,273 50 22 146

2020 266 1,359 98 50 22 153 146

Note: PRE: precipitation; TEMP: temperature; DEM: elevation; SLOPE: slope; POP: population; GDP: gross domestic product; NDVI: normalized difference vegetation index.

TABLE 5  The MGWR coefficients between ES driving factors.

Year Factors Mean STD Min Median Max

2000

PRE 0 0.14 −0.27 0.04 0.17

TEMP 0.07 0.13 −0.23 0.04 0.42

DEM 0.08 0.34 −1.21 0.09 0.89

SLOPE 0.26 0.12 0.01 0.26 0.57

POP 0.14 0.20 −0.10 0.08 0.59

GDP −0.44 0.81 −3.01 −0.37 4.48

NDVI 0.36 0.06 0.23 0.38 0.45

2010

PRE −0.09 0.26 −0.70 −0.06 0.31

TEMP 0.17 0.26 −0.26 0.13 1.63

DEM 0.14 0.31 −0.86 0.16 1.32

SLOPE 0.19 0.02 0.16 0.18 0.22

POP 0.42 0.53 −0.46 0.29 2.91

GDP −0.72 0.84 −3.22 −0.64 3

NDVI 0.43 0.16 0.06 0.41 0.77

2020

PRE 0.18 0.07 0.02 0.19 0.35

TEMP −0.04 0.01 −0.05 −0.04 −0.02

DEM −0.05 0.28 −0.84 0.01 0.56

SLOPE 0.27 0.18 −0.69 0.25 0.82

POP 2.55 2.83 −2.07 2.31 11.13

GDP 0 0.29 −0.57 −0.05 0.77

NDVI 0.44 0.14 0.11 0.40 0.79

Note: PRE: precipitation; TEMP: temperature; DEM: elevation; SLOPE: slope; POP: 
population; GDP: gross domestic product; NDVI: normalized difference vegetation index.

four ecological zones. The optimal number of clusters was 
determined based on two widely used clustering validation metrics, 
the fuzzy partition coefficient (FPC = 0.81) and the silhouette 
coefficient (SC = 0.65), indicating a clear and stable clustering 
structure. Figure 5’s stacked bar chart quantifies the mean ES values 

for each zone, revealing their functional characteristics. Cluster 1 
zone maintained the highest ES levels over 2000–2020, with mean 
values of SR, WR, HQ, and CS significantly exceeding those of 
other zones, primarily distributed in the northern mountainous 
and central hilly areas. Its superior ecological functionality makes 
it suitable for priority conservation, thus named “Ecological 
protection zones.” Cluster 2 zone exhibited intermediate ES mean 
values, with robust SR but overall ES capacity lower than the 
cluster 1, distributed in the transitional areas between the north 
and central regions. Reflecting sub-optimal ecological functionality 
and influenced by partial land development, it is designated 
as “Ecological conservation zones” requiring maintenance of 
its ecological roles. Cluster 3 exhibited lower mean ES values 
and was primarily located in the central-southern plains, where 
ecological functionality is constrained by intensive urbanization and 
agricultural activities. However, it maintains a relatively high level 
of internal coordination among ES components, and is therefore 
designated as “Ecological improvement zones.” Cluster 4 exhibited 
the lowest mean ES values, indicating the weakest ecological service 
capacity. It is primarily located in southern coastal urbanized 
areas, where extensive land use change and rapid urban expansion 
have led to significant ecological degradation. Accordingly, it is 
designated as “Ecological control zones,” with a focus on ecological 
restoration.

The spatiotemporal evolution of ecological zones, as 
illustrated in Figure 6, reveals significant structural transitions in 
eastern Guangdong from 2000 to 2020. Notably, Ecological control 
zones expanded continuously, increasing from 5.27% in 2000 to 
10.32% in 2020, with their spatial pattern evolving from scattered 
to more reticulated and connected distributions. This expansion 
primarily occurred at the expense of Ecological improvement 
zones, indicating intensified anthropogenic disturbance and 
urban encroachment in previously moderate-function areas. 
Ecological improvement zones remained relatively stable in spatial 
position but decreased in area—from 32.23% to 28.70%—largely 
due to transformation into control zones in the southern and 
central regions. In the north, portions of Ecological conservation 
zones were downgraded to improvement zones, forming more 
cohesive but ecologically weakened patches. Consequently, 
the total area of Ecological conservation zones declined from 
35.30% to 30.95%, accompanied by increased fragmentation 
caused by land development and ecological degradation. In 
contrast, Ecological protection zones showed notable expansion 
from 27.20% in 2000 to 33.87% in 2010, before stabilizing 
at 30.03% in 2020. This trend reflects enhanced ecological 
functionality in central and mountainous regions, where improved 
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FIGURE 4
Quantitative effects of drivers in ES through MGWR between 2000 from 2020. (A) 2000; (B) 2010; (C) 2020. (PRE: Precipitation; TEMP: Temperature; 
DEM: Elevation; SLOPE: Slope; POP: Population; GDP: Gross Domestic Product; NDVI: Normalized Difference Vegetation Index).

FIGURE 5
Mean ES values for each zone between 2000 from 2020. (A) 2000; (B) 2010; (C) 2020.

land management and ecological restoration efforts may have 
contributed to consolidated ecological integrity and increased 
spatial continuity.

3.3.2 Zonal differences in influencing factors
Figure 7 presents the mean influence coefficients of major 

driving factors across ecological zones using raster maps and bar 
charts, illustrating spatial distribution and temporal variation 
from 2000 to 2020. In 2000, the Ecological Protection Zones 
showed the highest positive NDVI coefficient (0.376), negative 
PRE (−0.013), and a strong negative GDP effect (−0.601). In 
the Ecological Conservation Zones, NDVI was 0.357, DEM 
was 0.087, and GDP was −0.473. The Ecological Improvement 
Zones had the highest DEM effect (0.114), NDVI at 0.326, 
and a positive GDP coefficient (0.233). The Ecological Control 

Zones displayed strong NDVI (0.375), DEM (0.104), and the 
most negative GDP (−0.644). In 2010, NDVI increased across 
all zones (0.302–0.474). POP became a positive factor, ranging 
from 0.182 to 0.519. GDP coefficients declined further, ranging 
from −0.258 to −0.815. In 2020, PRE turned positive across all 
zones (0.176–0.192). NDVI remained positive (0.349–0.487). POP 
values increased significantly (1.741–3.386), and GDP values 
moved toward neutrality or weakly positive (−0.063–0.074). 
NDVI remained a consistently positive factor (0.326–0.487) 
throughout the study period. PRE shifted from negative to 
positive. TEMP was mostly negative or non-significant. POP 
influence increased annually. GDP transitioned from negative 
to near-neutral or slightly positive. Driving factors varied 
significantly between zones, showing pronounced spatial non-
stationarity.
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FIGURE 6
Spatiotemporal changes and structural transitions of ecological zones in eastern Guangdong from 2000 to 2020. (A) 2000; (B) 2010; (C) 2020; (D)
Transitions of Ecological Zoning Structure.

4 Discussion

4.1 Interpreting spatiotemporal patterns 
and driving mechanisms

ES exhibit pronounced spatiotemporal heterogeneity, as this 
study revealed the dynamic changes and regional disparities in 
eastern Guangdong from 2000 to 2020 using the InVEST model. 
CS, HQ, SR, and WR declined by approximately 0.9%, 1.3%, 23.0%, 
and 18.6%, respectively, while the integrated ES remained stable at 
0.41–0.42, indicating an overall declining trend. This finding aligns 
with global trends of ES decline in urbanizing areas (Yuan et al., 
2024). Additionally, the study demonstrated that ES distribution 
exhibits significant spatial heterogeneity (Li C. et al., 2024), with 
stronger ecological functionality in the northern mountainous 
regions compared to the southern coastal plains. Northern SR 
and WR far exceed those in the south, highlighting substantial 
north-south disparities. Nonetheless, it should be noted that the 
1 km spatial resolution used in this study may obscure fine-scale 
ecological dynamics, such as small-area fragmentation or edge 
effects. Future research may benefit from incorporating higher-
resolution datasets to capture more localized processes and improve 
spatial precision.

Natural factors not only serve as critical baseline conditions 
for ES variations but also contribute significantly to their spatial 
heterogeneity across the region. Natural factors serve as critical 
baseline conditions for ES variations. Climatic variables (PRE, 
TEMP), were incorporated into the MGWR model to capture 
the hydrothermal conditions. These factors exhibited a clear 
north–south gradient in influence. PRE showed a negative effect in 
northern mountainous areas, likely due to steep slopes and shallow 
soils intensifying surface runoff and erosion, which reduced soil 
retention and nutrient availability. In contrast, PRE contributed 
positively in the southern plains where flatter terrain facilitates 
infiltration and agricultural utilization. TEMP had a weaker and 
more variable impact, with modest positive influence in cooler 
northern areas and neutral to negative effects in the south due 
to evapotranspiration stress. NDVI was integrated as a proxy 
for vegetation cover and ecological productivity, and consistently 
showed a significant positive effect across regions. This result 
confirms the stabilizing role of vegetation in supporting ES, 
particularly regulating and supporting services. Topographic factors 
such as DEM and SLOPE played a vital role in shaping ES spatial 
patterns. DEM showed positive effects in elevated regions by 
reducing urban encroachment and maintaining landscape integrity. 
SLOPE was especially influential, with steeper areas associated 
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FIGURE 7
The driving factors of different ecological functional regions. (A) 2000; (B) 2010; (C) 2020. (PRE: Precipitation; TEMP: Temperature; DEM: Elevation; 
SLOPE: Slope; POP: Population; GDP: Gross Domestic Product; NDVI: Normalized Difference Vegetation Index).

with stronger ES due to limited accessibility and preserved natural 
land cover. These variables reflect the constraining force of 
terrain on human activities and the protective effect of complex 
landscapes.

Socioeconomic factors (POP, GDP) have shown increasing 
influence over time, particularly population growth exerting the 
greatest pressure on urban areas, accelerating ES decline (Wang et al., 
2023). In the MGWR model, POP was included as a proxy 
for human disturbance intensity, capturing the effects of land 
conversion, settlement expansion, and ecological fragmentation. 
POP, entered into the MGWR model as a proxy for anthropogenic 
disturbance, showed strong negative coefficients in high-density 
urban belts, illustrating how urban expansion erodes natural 
land cover and weakens ecological functioning. GDP, representing 
economic intensity and development pressure, was incorporated to 
reflect the dual role of economic activity—both as a potential stressor 

and as a possible driver of ecological restoration under optimized 
development paths. Economic development exhibits localized 
positive effects, with GDP shifting to positive in parts of the northern 
and central regions, suggesting that optimized economic structures 
may support ecological enhancement. While GDP initially exerted 
negative ecological impacts, its later positive association in some 
areas may reflect transitions toward greener development models, 
such as investment in ecological restoration or sustainable land use 
planning. The pronounced spatial non-stationarity of influencing 
factors drives ES distributional heterogeneity, underscoring the 
necessity of ecological zoning to optimize management. While this 
study provides valuable insights, the limited scope of socioeconomic 
variables may overlook complex human–environment dynamics, 
calling for broader indicator integration. Furthermore, coupling 
MGWR with nonlinear models could help reveal threshold effects 
and lagged ecological responses more effectively. 
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4.2 Insights from zonal transitions and 
heterogeneity

This study employed the SOM-FCM clustering method to 
delineate Core, Important, Ecological Coordination, and Ecological 
control zones in eastern Guangdong from 2000 to 2020, revealing 
distinct spatiotemporal patterns of ecological heterogeneity 
(Qi et al., 2019). Core zones, predominantly located in the 
northern mountainous regions (Fenghuang-Lianhua Mountain 
area), exhibited a consistent and contiguous expansion, reflecting 
their ecological resilience due to favorable natural conditions 
and minimal human disturbance (Xie et al., 2024b). In contrast, 
Important and Ecological improvement zones, such as the 
transitional areas near the Hanjiang Estuary, experienced significant 
contraction and fragmentation, driven by encroachment from 
Ecological control zones (Li K. et al., 2024). Ecological control zones 
expanded continuously since 2000, particularly forming reticulated 
patches in the southern coastal plains, which encroached upon 
ecological lands of Important and Ecological improvement zones, 
resulting in substantial declines in SR and WR (Xu et al., 2022).

From a policy perspective, eastern Guangdong, as an 
integral part of Guangdong Province, faces land-use challenges 
consistent with provincial trends. Since the 1980s, rapid economic 
development has intensified demand for construction land, 
exacerbating supply-demand conflicts and accelerating urban 
expansion at the expense of ecological lands (Zeng et al., 2023). 
Influenced by the economic spillover from the Pearl River Delta, 
economic activities in the coastal plains of eastern Guangdong 
have intensified, while land tenure issues, such as restrictions 
on rural collective land transfer, have further contributed to the 
reduction of Important zones (Xu et al., 2022). Around 2010, 
the Guangdong Land Use Master Plan (2006–2020) introduced 
measures to mitigate urban pressures, including revitalizing existing 
construction land stocks and enforcing spatial controls. The 
establishment of terrestrial ecological control zones, such as the 
Fenghuang-Lianhua Mountain area, has effectively safeguarded 
the ecological integrity of Core zones, ensuring the stability of the 
regional ecological framework (Li C. et al., 2024).

Analysis of driving factors indicates that the expansion of 
Core zones was primarily influenced by natural factors, with 
NDVI (0.33–0.49) and PRE acting as stable positive drivers, 
sustaining high levels of SR, WR, and HQ through enhanced 
vegetation cover (Luo et al., 2024). Conversely, Ecological control 
zones were significantly impacted by socioeconomic pressures, 
notably population (POP, 0.16–3.39) and GDP (−0.64–0.07), 
exhibiting strong spatial non-stationarity (Wang X. et al., 2024). 
From 2000 to 2020, the Guangdong Land Use Master Plan’s 
restrictions on construction land increments proved insufficient, 
failing to effectively curb rapid urbanization in the coastal 
plains of eastern Guangdong, where surging population and 
intensified economic activities led to increased land development 
and pollution, reducing SR and WR to their lowest level. 
Important and Ecological improvement zones were influenced 
by both natural and socioeconomic factors, with the positive 
effects of NDVI being partially offset by the negative pressures 
from POP and GDP, resulting in growing fragmentation and 
shrinkage of these zones over time. These trends reflect a growing 
spatial polarization between ecologically stable inland areas and 

socioeconomically dynamic coastal zones, highlighting the trade-off 
between urbanization and ecological conservation (Liu and Tang, 
2024). Overall, the spatiotemporal dynamics of ecological zones 
in eastern Guangdong underscore the heterogeneous impacts of 
land-use changes and urbanization, emphasizing the role of shifting 
socioeconomic gradients over the two decades and necessitating 
strengthened policy enforcement and targeted zoning strategies to 
balance ecological protection with developmental needs. 

4.3 Policy implications for region-specific 
ecosystem services management

Eastern Guangdong exhibits diverse ES, with significant 
regional variations in natural conditions and uneven ecological 
development, underscoring the importance of delineating 
ecological zones for sustainable urban and ecological development 
(Zeng et al., 2023). Therefore, differentiated management strategies 
are essential and should be tailored for regional planning 
departments (del Carmen Sabatini et al., 2007). Based on the 
characteristics of different ecological zones and the analysis of 
influencing factors, the following recommendations are proposed:

Ecological protection zones should be designated as core 
areas of nature reserves, where human activities are prohibited 
in principle. An appropriate buffer zone should be established, 
prioritizing the creation of ecological reserves with native species to 
preserve natural habitats and ensure ecosystem succession (Xie et al., 
2024b). Ecological conservation zones require integrated protection 
and restoration of mountains, rivers, forests, farmlands, lakes, 
grasslands, and deserts. Ecological restoration projects, such as 
reforestation and grassland restoration, should be implemented, 
with defined targets for soil erosion control and flood defense 
standards for soil conservation infrastructure, while selecting 
suitable plant species (trees, shrubs, or grasses as appropriate) 
to enhance ecological functionality (Luo et al., 2024). Ecological 
improvement zones should establish ecological corridors to connect 
core and important zones, facilitating species migration and genetic 
exchange. Low-impact activities compliant with regulations, such 
as ecotourism, may be permitted, but any new construction land 
must be approved by provincial authorities to ensure no ecological 
harm (Liu et al., 2019). Ecological control zones should promote 
smart, compact development by controlling development intensity 
and optimizing existing land stocks. Urban renewal should be 
leveraged to achieve regional integration of industry and residential 
areas, balancing employment and housing needs, while adding green 
spaces along rivers and high-quality habitat areas to enhance urban 
ecological restoration capacity (Li J. et al., 2024).

To support zoning management, compensation policies and 
land-use trade-off measures are recommended. A scientific 
framework for assessing the value of ecological products should 
be established, alongside a robust ecological compensation 
mechanism (Zeng et al., 2023). The integrated ecological zoning 
and management framework developed in this study—combining 
spatially explicit ecosystem service modeling (InVEST), spatial 
heterogeneity analysis (MGWR), and ecological function zoning 
using SOM-FCM clustering—has strong transferability and can 
be applied to other rapidly urbanizing regions. Stakeholders in 
Ecological protection and conservation zones, such as farmers, 
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should receive compensation to incentivize the protection of arable 
land and ecological spaces (Li K. et al., 2024). Ecological control 
zones should provide cross-regional compensation to ecological 
improvement zones, with funds allocated to support water-
retention forest establishment and biodiversity conservation (Liu 
and Tang, 2024). Regarding land-use trade-offs, ecological control 
zones should strictly limit new construction land, prioritizing 
the revitalization of unutilized and idle land through diverse 
redevelopment models. Arable land supplementation should be 
achieved by rehabilitating low-efficiency orchards and slopes to meet 
land balance requirements, minimizing impacts on high-quality 
ecological areas (Wang S. et al., 2024). 

5 Conclusion

This study quantified ecosystem services (ES) in Eastern 
Guangdong from 2000 to 2020 using the InVEST model, explored 
their spatially heterogeneous drivers through MGWR, and 
identified ecological zones using SOM-FCM clustering. The findings 
highlight notable spatiotemporal variations in ES under rapid 
urbanization, offering a scientific basis for region-specific ecological 
governance. 

1. ES declined significantly, with clear spatial disparities. From 
2000 to 2020, the overall ES in the region showed a downward 
trend: soil retention (SR) and water retention (WR) declined 
by 23.4% and 18.6%, respectively, while carbon storage (CS) 
and habitat quality (HQ) slightly decreased by 0.9% and 
1.3%. Spatially, higher ES values were concentrated in the 
mountainous northern areas with greater elevation, forest 
cover, and lower urbanization levels, while lower values were 
observed in the southern coastal plains, indicating a clear 
spatial gradient.

2. Natural factors remain dominant, with increasing 
socioeconomic influence. NDVI remained the most stable and 
significant positive factor, particularly in central and northern 
mountainous regions. Precipitation (PRE) and temperature 
(TEMP) exhibited dynamic spatial patterns, with PRE shifting 
from negative to positive in the northern mountains and 
consistently positive in the south; TEMP’s influence in 
the north weakened over time. DEM and SLOPE showed 
marked spatial non-stationarity. Meanwhile, the influence of 
socioeconomic factors intensified over time, with population 
(POP) and GDP displaying significant spatial heterogeneity. 
Urbanization accelerated the complex interaction between 
natural and human-induced drivers.

3. Urbanization exerted uneven pressure across ecological zones. 
From 2000 to 2020, ecological protection zones expanded in 
area and spatial continuity due to policy support; ecological 
control zones increased significantly from 5.27% to 10.32% due 
to mounting population and economic pressures; meanwhile, 
conservation and improvement zones were compressed and 
became increasingly fragmented. Differentiated strategies are 
proposed: ecological protection zones should be strictly 
conserved with restricted human activity; conservation zones 
require integrated restoration of natural systems; improvement 
zones should develop ecological corridors and allow limited 

low-impact uses such as ecotourism; control zones should 
adopt compact development and land renewal strategies to 
support green transformation.

These findings provide evidence to support adaptive ecological 
planning in rapidly urbanizing regions like Eastern Guangdong. 
However, the MGWR model is limited in capturing nonlinear 
responses and threshold effects. Future studies should consider 
integrating machine learning methods to explore complex 
interactions—such as delayed responses of ES to economic 
activities or abrupt ecological tipping points. In addition, 
testing management strategies through land-use simulation 
models under various development and climate scenarios would 
strengthen the practical relevance and resilience of policy 
recommendations.
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