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Ecosystem services (ESs) in rapidly urbanizing regions are undergoing significant
spatiotemporal changes driven by urban sprawl. However, existing studies
have insufficiently addressed the heterogeneity of ESs, particularly the
dynamic interactions between ecological processes and regional environmental
conditions. This study focuses on eastern Guangdong, China, and quantifies
four key ESs—carbon storage (CS), habitat quality (HQ), soil retention (SR), and
water retention (WR)—from 2000 to 2020 using the InVEST model. The spatial
heterogeneity of natural and socioeconomic drivers was examined through
a multi-scale geographically weighted regression (MGWR) model. Ecological
zones were delineated using Self-Organizing Map—Fuzzy C-Means (SOM-FCM)
clustering, followed by zonal statistical analysis. Overall, ESs exhibited a declining
trend over two decades, with SR and WR decreasing by 234% and 18.6%,
respectively, while CS and HQ remained relatively stable. A distinct north—south
gradient was identified, with stronger ES performance in the mountainous north.
NDVI consistently showed the strongest positive influence in central regions;
precipitation (PRE) and temperature (TEMP) fluctuated sharply in the north;
population pressure peaked in the north and turned negative in the south
by 2020; GDP had a positive effect in the east but a negative effect in the
west; slope exerted the greatest influence in eastern areas; and the east—west
elevation difference gradually weakened. Four ecological zones were identified:
Protection, Conservation, Improvement, and Control. Between 2000 and 2020,
Control Zones expanded significantly due to intensified urbanization, while the
other three zones contracted. These findings highlight the urgent need for
zone-specific strategies: strict conservation in Protection Zones, ecosystem
restoration in Conservation Zones, ecological connectivity and low-impact use
in Improvement Zones, and compact urban development in Control Zones.
The proposed framework provides a transferable approach for capturing the
spatial dynamics of ESs and supporting adaptive ecological management in
fast-urbanizing regions.

ecosystem services (ES), urban sprawl, spatial non-stationarity, ecological management,
InVEST model, SOM-FCM clustering
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1 Introduction

Ecosystem services (ES) refer to the products and benefits
that ecosystems continuously provide to human society through
their structures and processes (Daily et al, 2000). Specifically,
ecosystems satisfy diverse human needs for environmental
conditions, resources, and spiritual wellbeing by providing
food, water resources, climate regulation, and cultural values
(Costanza et al, 1997). Therefore, ES are not only vital links
between natural ecosystems and human societies but also
essential components for achieving sustainable development
(Liu et al., 2020). However, rapid economic growth and accelerated
urbanization have significantly altered land use patterns, thereby
affecting the structure and functions of ecosystems (Bryan, 2013;
Aslam et al., 2024a). Overexploitation of land resources and
habitat fragmentation have led to a decline in the capacity of
ecosystems to provide services, further aggravating ecological
vulnerability in urbanizing regions (Xie et al, 2024a). In
urban areas, the competition for land and resources among
stakeholders often intensifies trade-offs between different ES,
undermining synergies and further threatening the health
and stability of ecosystem (Cord et al, 2017). Additionally,
the combined effects of human activities and climate change
impose more complex uncertainties and risks on ecosystems
(Huang et al., 2024; Naz et al, 2024). How to utilize ES as
a basis for ecological zoning and implement region-specific
management strategies has become a critical issue in sustainable
development research (Dai et al., 2024).

To address the complexity of ES assessment and the diversity
of their driving mechanisms, research has evolved from single-
variable analyses to integrated, multi-factor, and multi-scale spatial
approaches, leading to the development of various quantitative
models and technical tools. Among these, the InVEST model
has gained prominence for its high accuracy and versatility in
ES evaluation (Veerkamp et al, 2023; Wang et al., 2023). This
modular tool excels in multi-scale and multi-scenario analyses,
finding wide application in regional ecological assessments, urban
ecosystem management, and land-use planning. For instance,
InVEST has been employed to quantify water supply and yield
(Liu et al, 2024; Zhang et al, 2024), predict carbon storage
changes (Gao et al, 2023), evaluate the impacts of land-use
changes on carbon emissions and storag (Li et al., 2023), assess
urban cooling and regulatory services (Lan et al, 2025), and
develop decision-support frameworks for ecosystem protection
(Cordoba Herndndez and Camerin, 2024). These applications
underscore InVEST’s role in providing a robust scientific foundation
to tackle challenges posed by urbanization, climate change,
and ecological degradation. Concurrently, rapid socioeconomic
development has profoundly altered ecosystem structure and
function, prompting a shift in driving mechanism studies from
linear to spatial perspectives to capture the spatiotemporal
heterogeneity of ES. Early studies using linear methods highlighted
the dominant role of natural factors, such as precipitation driving
ES relationships in arid regions (Hao et al, 2019) and forest
and cropland expansion positively influencing net primary
productivity and soil conservation (Li et al, 2021). However,
linear approaches often failed to capture the heterogeneity of
driving factors. Subsequent research adopted spatial analyses,
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revealing the growing influence of socioeconomic factors and their
regional variations. For example, socioeconomic factors indirectly
affected urban green space ES, while ES in suburban Nanjing
exhibited trade-off/synergy dynamics (Yang et al., 2023). In the
Pearl River Delta, human factors like population exerted stronger
effects (Wang et al., 2023), whereas in Guangdong, urbanization
reduced carbon storage and habitat quality, yet northern water yield
increased due to higher precipitation (Wu et al., 2024). Multi-Scale
Geographically Weighted Regression (MGWR) models further
confirmed the spatial heterogeneity of ES relationships driven
by topography and urbanization (Zhang et al, 2020). Overall,
while natural factors consistently influence ES dynamics, human-
induced factors exhibit varying impacts across regions and scale
(Wang et al., 2023; Aslam et al., 2024b), providing critical scientific
insights for ecological management and spatial planning. The
marked spatiotemporal heterogeneity of ES in rapidly urbanizing
regions underscores the need for region-specific management
strategies. While natural drivers—precipitation regimes, vegetation
dynamics, and topography—continue to shape ES patterns, their
influence is increasingly overshadowed by socioeconomic forces
in urban contexts. Population expansion, land-use intensification,
and urban sprawl have emerged as dominant and spatially variable
factors, introducing complex interactions that challenge traditional
ecological planning frameworks.

ES are subject to long-term differentiation and formation
due to the combined influence of socio-ecological factors,
resulting in spatially heterogeneous patterns of functionality
and provisioning capacity across region (Liu et al, 2019). This
differentiation arises from the interplay of natural factors and
human activities, driving distinct ecological characteristics in
different areas (Aslam et al., 2023; Zeng et al., 2023). Consequently,
ecological zoning has emerged as a pivotal spatial planning
tool to identify and manage the supply-demand dynamics and
spatial distribution of ES. From a technical perspective, ecological
zoning fundamentally involves clustering spatial units, serving
as a critical approach in geographical partitioning (Lin et al,
2024). Among the simplest methods is K-means clustering,
which delineates functional zones by minimizing intra-cluster
variance (Liu et al., 2019). More advanced techniques, such as
Self-Organizing Maps with Fuzzy C-Means (SOM-FCM), leverage
neural network algorithms to capture nonlinear relationships within
ES bundles, as demonstrated by Li C. et al. (2024); LiJ. et al
(2024); Li K. et al. (2024) in delineating supply-demand patterns
in Hangzhou. Additionally, the Natural Breaks (Jenks) method,
valued for its high aggregation and low diversity, is often employed
to refine zoning outcomes (Liu et al., 2020), while the four-
quadrant model elucidates spatial heterogeneity through two-
dimensional supply-demand classification (Jiang et al, 2024).
Regression-based approaches, such as those defining zoning
thresholds via the relationship between the ecological supply-
demand ratio and land use proportion, are also prevalent. Ecological
zoning not only facilitates ecological conservation and restoration
but also provides a foundation for achieving supply-demand
balance and sustainable spatial governance (Zeng et al, 2023).
Technologically, zoning methodologies are evolving from basic
clustering to sophisticated frameworks incorporating multi-scale
and multidimensional data, offering robust support for refined
ecological management.
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Although ecological zoning has been widely studied, there
remains a critical gap in integrating ES with their spatiotemporal
heterogeneity (Xu et al., 2022). Most existing studies conduct zoning
based on a single time point or static snapshots (Chen et al., 2024),
neglecting the evolving nature of ecological processes and their
interactions with diverse environmental conditions, which limits the
ability to diagnose dynamic regional ecological issues (Liu et al.,
2024). Moreover, traditional zoning approaches often rely on linear
models, which fail to capture the complex, non-stationary effects
of heterogeneous natural and socioeconomic drivers (Xiong et al.,
2024). Addressing these limitations, this study introduces a
combined framework using Multi-Scale MGWR and SOM-FCM
to analyze the spatiotemporal non-stationarity of ES and identify
ecological zones based on both temporal dynamics and spatial
differentiation. This approach not only improves the scientific rigor
of ecological zoning but also provides a robust decision-support
basis for adaptive ecological management in rapidly urbanizing
regions such as eastern Guangdong.

To address the aforementioned research gaps, this study focuses
on eastern Guangdong Province as a case study, quantifying
the spatiotemporal dynamics of four ES—soil retention (SR),
water retention (WR), habitat quality (HQ), and carbon storage
(CS)—from 2000 to 2020. Initially, the MGWR model is employed
to investigate the spatially and temporally varying impacts of
influencing factors on ES. Subsequently, SOM-FCM clustering
approach is applied to delineate ecological zones based on the
four ES, uncovering zoning evolution patterns over the study
period. Finally, MGWR regression coeflicients are analyzed within
these zones to quantify regional differences in driving factor
influences. This study pursues three objectives: (1) to quantify the
spatiotemporal variations of ES from 2000 to 2020 and identify
their dominant natural and socioeconomic drivers using InVEST
and MGWR; (2) to investigate the spatial delineation and temporal
transformation of ecological zones, and reveal how different drivers
shape zonal differentiation through clustering and comparative
analysis; and (3) to integrate ecological characteristics and driver
profiles of each zone to formulate region-specific, evidence-based
policy recommendations for ecological zoning management.

2 Materials and methods
2.1 Study area

Eastern Guangdong (22°30'N-25°05'N, 114°50'E-117°20'E),
located in the eastern part of Guangdong Province, China,
encompasses four prefecture-level cities: Chaozhou, Shantou,
Jieyang, and Meizhou. The region serves as a crucial ecological
barrier for the province, owing to its mountainous terrain, high
forest coverage, and diverse ecological functions (Figure 1). The area
features a subtropical monsoon climate with 1,500-2000 mm annual
precipitation and rising elevation from coastal plains to inland
mountains (up to 1,500 m). The region is ecologically significant,
with extensive forest coverage, rich biodiversity, and key ES. This
study focuses on four key ES—CS, HQ, SR, and WR—as they
represent the region’s most ecologically sensitive and policy-relevant
functions (Chen et al.,, 2021). They are directly impacted by land use
change and are central to regional conservation and compensation

Frontiers in Earth Science

03

10.3389/feart.2025.1593217

strategies. Rapid urbanization over the past two decades has
transformed land use patterns, leading to built-up expansion,
forest degradation, and biodiversity loss (Wu et al., 2024). Eastern
Guangdong exhibits strong spatial contrasts in socioeconomic
development. While Shantou and Jieyang have experienced rapid
industrialization and urban expansion, Meizhou remains relatively
underdeveloped with a predominantly agricultural economy. The
population density and GDP per capita vary considerably across
the region, resulting in uneven ecological pressures and land-use
demands. A systematic assessment of ES and their drivers is essential
for managing ecological risks, guiding compensation mechanisms,
and supporting sustainable planning (Jiang et al., 2024).

2.2 Data sources

This study integrates multi-source datasets to support
the spatiotemporal modeling of ES from 2000 to 2020 in
eastern Guangdong. The datasets used in this study are
summarized in Table 1. Land use/land cover (LUCC) maps were
derived from Landsat imagery and provided as 1 km raster files.
DEM data from NASAs SRTM was used to derive topographic
attributes such as slope and flow accumulation using terrain analysis
tools. Climate variables, including precipitation (PRE), temperature
(TEMP), and potential evapotranspiration (PET), were interpolated
to 1 km resolution. Soil texture and organic matter content were
retrieved from national soil databases and processed into continuous
raster surfaces. NDVI data from MODIS were smoothed and
corrected to capture vegetation dynamics over time. Socioeconomic
variables (POP and GDP) were provided as 1 km resolution gridded
data, preprocessed by RESDC-CAS based on statistical records. All
datasets were projected to WGS84 and resampled to a consistent
spatial resolution using ArcGIS Pro for spatial alignment.

2.3 Research methodology

2.3.1 Study design

This study investigates the spatiotemporal dynamics of
ES and their influencing factors in eastern Guangdong from
2000 to 2020 (Figure2), aiming to inform ecological zoning
and spatial management. The research framework consists of
three sequential stages. First, four key ES—CS, HQ, SR, and
WR—were quantified using the InVEST and RUSLE model. These
services were then normalized and integrated to construct a
composite ES index. Second, the MGWR model was employed
to explore the spatial heterogeneity of influencing factors on
the integrated ES, incorporating meteorological variables (PRE
and TEMP), topographic features (SLOPE and DEM), vegetation
cover (NDVI), and socioeconomic indicators (POP and GDP).
Third, the SOM-FCM clustering approach was applied to classify
regional ES response patterns based on driving factor characteristics,
enabling the delineation of ecological zones. Subsequently, a zonal
statistics tool was used to summarize and compare the MGWR-
derived coefficients of each influencing factor across the different
ecological zones, thereby identifying dominant drivers and regional
management priorities.
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FIGURE 1

Guangdong in 2020.

Geography of the study region. (A) Location of the Guangdong in China; (B) Study Area Location of Guangdong; (C) Land use map of eastern

TABLE 1 Data description and sources.

Data type Content Format Source

Land use/land cover (LUCC) Land use/land cover types: forest, Raster (1 km) Resource and Environmental Sciences

cropland, grassland, water, built-up, Data Center, Chinese Academy of

bare land Sciences (RESDC-CAS)
Climate Annual precipitation (PRE), average Raster (1 km) China Meteorological Administration
temperature (TEMP), potential Data Center (CMA Data Center)
evapotranspiration (PET)
Topographic Elevation (DEM) Raster (30 m) NASA Earth Science Data Systems

(NASA-ESDS)

Soil Properties Sand, clay, organic matter content

Raster (1 km) National Earth System Science Data

Center, China (NESSDC)

Product (GDP)

Vegetation Index Normalized Difference Vegetation Raster (250 m) MODIS (Moderate Resolution Imaging
Index (NDVI) Spectroradiometer), NASA
Socioeconomic Population (POP), Gross Domestic Raster (1 km) Resource and Environmental Sciences

Data Center, Chinese Academy of
Sciences (RESDC-CAS)

2.3.2 Ecosystem service quantification

2.3.2.1 Carbon storage (CS)
CS was estimated using the carbon module of the InVEST

model, based on land use/land cover (LULC) raster data and
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carbon density parameters. The total carbon storage consists of
four components: aboveground biomass, belowground biomass,
soil, and dead organic matter) The calculation formula is as follows
(Equation 1):
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FIGURE 2

Analysis scheme of the study. (CS: carbon storage; HQ: habitat quality; SR: Soil retention; WR: Water retention and ES: Ecosystem services; PRE:
Precipitation; TEMP: Temperature; DEM: Elevation; SLOPE: Slope; POP: Population; GDP: Gross Domestic Product; NDVI: Normalized Difference

Cr=C,+C,+C,+Cy (1)

where C; represents the total carbon storage. The carbon density
parameters were calibrated according to vegetation types and
soil characteristics in eastern Guangdong with reference to field
measurements and literature values (Chen et al., 2021). The results
were output in raster format, reflecting the spatial distribution of CS
in the study area.

2.3.2.2 Habitat quality (HQ)

HQ was assessed using the habitat quality module of the InNVEST
model to analyze the impact of land use changes on biodiversity.
HQ was calculated based on habitat suitability and ecological threat
pressure as follows (Equation 2):

D?,

b
=157 )
where Q,; represents the habitat quality of grid x for land type
Jj (dimensionless, range 0-1); H; is the suitability of the land

)
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type (1 for forests, 0 for urban areas); D,j is the ecological
threat pressure; z is a standardization constant (set as 2.5); k
is a half-saturation constant (set as the median threat pressure).
Threat factors include urbanization and agricultural activities, with
parameter settings adjusted according to local characteristics in
eastern Guangdong (Wu et al., 2024). Results were presented in
raster format to represent the ecological health of the region.

2.3.2.3 Soil retention (SR)

SR was estimated using a simplified approach based on the
Universal Soil Loss Equation (USLE), calculated as the difference
between potential soil erosion (RKLS) and actual soil erosion
(USLE) (Rong et al.,, 2022). The calculation formula is as follows
(Equations 3-5):

SR = RKLS — USLE 3)

RKLS=RXxKxLxS (4)
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USLE=RXKXLXxSxPxC (5)

Where R is rainfall erosivity factor, calculated as (Equation 6):

12
R=Y(1.735x10°1°6() — 0.818) (6)

i=1

Where K is soil erodibility factor, calculated as (Equation 7):

0.3
K=02+03exp [—0.02568 (1 - L)] ( L )

100 A+L
) [1 B 0.25B ] _
B +exp(3.72-2.95B)
0.7N,

- =50 ”

N, +exp(22.9N, —5.51)
Where N, =1- 1%0.; L is Slope length factor,

calculated as (Equation 8):
Slopelength \™
I ( opeleng ) ®)
22.13

Where S is Slope steepness factor, calculated as (Equation 9):

10.8 sin (6) + 0.03, iff < 9%
S= %)
16.8 sin(6) — 0.5, if0>9%

Where P is conservation practice factor, calculated as
(Equation 10):

P=02+0.030 (10)

Where C is vegetation cover factor, calculated as (Equation 11):

1, ifc=0
C =14 0.6508-0.3436 log(c), if0 < ¢ < 78.3% (11)
0, ifc > 78.3%

2.3.2.4 Water retention (WR)
Water retention was estimated using a hydrological model

combining annual water yield and topographic correction factors
(Nguyen et al.,, 2015) (Equation 12):

. K
Retention = min(l, 249, ) . min(l, 0.2 TI) . min(l, —s) - Y(x)
Velocity 3 300
(12)

where Retention is water retention (mm); TI is the topographic
index; K is soil saturated hydraulic conductivity; Velocity is the flow
velocity factor; Y(x) is annual water yield (Equation 13):

AET(x)
PG )'P ¢

Y(x) = <1 - (13)
where AET(x) is actual evapotranspiration and P(x) is annual
precipitation. The evapotranspiration ratio is based on the water-
energy coupling balance (Equation 14):

[ty

AET(x)

P(x) P(x)

(14)
where PET(x) is potential evapotranspiration and w is a soil property

parameter. Methods refer to Huang et al. (2024). The results
characterize the water regulation capacity.
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2.3.3 Driving factor analysis

Considering the spatial heterogeneity of factors influencing
ES, a single spatial scale is inadequate to fully capture the
complex interactions involved. Therefore, this study adopts the
MGWR model to analyze the spatially variable impacts of different
factors on key (Fotheringham et al., 2017). Previous studies have
demonstrated that MGWR outperforms Ordinary Least Squares
and traditional Geographically Weighted Regression in capturing
spatial heterogeneity of influencing factors on ES (Wu et al., 2025),
offering deeper insights into underlying ecological processes. By
allowing each variable to have its own optimal bandwidth, MGWR
better reflects the spatially varying mechanisms and ecological
processes underlying ES dynamics. This multiscale heterogeneity
is essential for understanding localized versus regional influences,
thereby enhancing the ecological interpretability of the results. The
MGWR model’s strength lies in allowing explanatory variables to
exert influence across different spatial scales, thereby providing a
more nuanced understanding of the spatial relationships between
factors and ES. The model is expressed as follows (Equation 15):

¥ =PBo(U V) +Zjﬁj(Ui’ Vi)xii+é; (15)

where: y; represents the response variable. (U, V;) is the intercept
term, reflecting the baseline level at each location x;; denotes the
predictor variables that influence ES at spatial location j. ﬁj(Ui, V)
represents the spatially varying regression coefficients, capturing the
scale-dependent impact of each factor. ¢; is the error term accounting
for unmodeled variations.

2.3.4 Ecological zoning approach

The ecological zoning in this study employs a hybrid clustering
framework integrating the Self-Organizing Map (SOM) neural
network with the Fuzzy C-Means (FCM) algorithm, termed SOM-
FCM, to achieve robust and refined partitioning of ecological units.
The optimal number of ecological zones was determined prior to
clustering by evaluating clustering quality using the fuzzy partition
coefficient (FPC) and the silhouette coefficient (SC), which are
widely used to assess cluster separation and compactness. This
method unfolds in three key phases (Li C. et al.,, 2024). First, a
dataset of zoning indicators is compiled from raster inputs, followed
by preprocessing using z-score standardization. This normalization
step ensures equitable weighting of all variables by mitigating the
influence of disparate scales, thereby preventing bias toward any
single indicator during clustering. Second, the standardized dataset
is processed through a SOM neural network to group ecological
units based on the similarity of their indicator profiles. The SOM
is structured with a two-dimensional grid of neurons, where various
topological configurations are tested and trained independently. The
optimal topology is determined by minimizing both topological
and quantization errors, with a neuron grid identified as the most
effective structure in this analysis. Third, the resulting SOM weight
vectors serve as inputs to the FCM algorithm, which enhances
cluster delineation by accommodating overlapping boundaries and
assigning fuzzy memberships. This step refines the clustering output,
producing a raster-based result that is subsequently post-processed
in ArcGIS using majority filtering to remove minor speckles
and improve map interpretability. The SOM computations and
visualizations were implemented using the SOMPY Python library,
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offering a versatile and efficient platform for executing this hybrid
SOM-FCM approach. This methodology ensures a scientifically
sound and spatially explicit representation of ecological zones,
suitable for advanced environmental analysis.

3 Results

3.1 Spatiotemporal analysis of ecosystem
services

The analysis revealed that the distribution of ES in eastern
Guangdong exhibited pronounced spatial heterogeneity from 2000
to 2020, with the spatial distribution pattern remaining relatively
stable overall (Figure 3; Table 2). Specifically, CS demonstrated
significant spatial heterogeneity, with the total decreasing from 1.11
x 10° t in 2000 to 1.10 x 10° t in 2020, a decline of approximately
0.9%. The mean CS fluctuated slightly from 35.98 to 35.80 t/km?.
Spatially, CS values were higher in the northern mountainous
regions, attributed to approximately 50% forest coverage and diverse
vegetation types, while they were lower in the southern coastal plain,
primarily due to the adverse effects of urbanization and cropland
expansion. In terms of HQ, the values remained relatively stable
but showed a slight decline, with the mean decreasing from 0.79
in 2000 to 0.78 in 2020, a reduction of approximately 1.3%, while
the median consistently remained at 0.89. Geographically, HQ was
higher in the northern mountains, benefitting from well-preserved
forests and grasslands, and lower in the southern coastal areas,
driven by habitat degradation from urbanization.SR exhibited a
significant declining trend, with the total reducing from 4.67 x
10t to 3.58 x 10°t, a decrease of approximately 23.4%, while
the mean dropped from 150.86 to 116.16 t/km?”. This pattern was
consistent with topographic and land cover variations: SR was
higher in the northern mountains due to steep terrain and robust
vegetation cover, and lower in the southern plains, influenced by
rainfall erosion and land development. Similarly, WR showed a
continuous decline, with the total decreasing from 2.79 x 10° mm
to 2.27 x 10® mm, a reduction of approximately 18.6%; the mean
WR declined from 90.51 to 73.71 mm/km?. WR was higher in
the northern mountains, driven by abundant annual precipitation
and topographic regulation, and lower in the southern coastal
areas, affected by evapotranspiration and urbanization pressures.
Finally, the integrated ES exhibited minimal variation, with the
mean ranging from 0.42 to 0.40 over 2000-2020, and the median
and maximum remaining stable. Nevertheless, a consistent spatial
gradient persisted, with higher values in the northern mountainous
regions and lower values in the southern coastal areas, indicating
stronger ecological functionality in the north compared to the south.

3.2 Spatial heterogeneity of driving factors

3.2.1 Model performance and validation

To investigate the driving factors of ES changes in eastern
Guangdong from 2000 to 2020, this study employed the MGWR
model, analyzing spatial heterogeneity of natural and socioeconomic
factors at a 5km grid resolution. MGWR captures spatial non-
stationarity through localized regression, making it suitable for
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assessing the spatial variability of ES drivers. Model performance
was evaluated using the Akaike Information Criterion (AIC)
and R? (Table 3), demonstrating that MGWR significantly OLS
model and effectively reveals spatial heterogeneity. Over 2000-2020,
the MGWR AIC decreased from 2,847.729 to 2,786.046, while
R? increased from 0.557 to 0.576, indicating an enhanced ability
to explain spatial variations in ES drivers. In 2010, the AIC was
2,831.03 with an R? of 0.562; by 2020, the AIC further improved
to 2,786.046, and R* reached 0.576, suggesting improved stability
and precision in capturing spatial heterogeneity. The lower AIC
and higher R? confirm MGWR model suitability for ES analysis in
eastern Guangdong, unveiling the spatially heterogeneous impacts
of natural factors and human activities on ES, thereby providing a
scientific basis for subsequent zoning management.

Furthermore, MGWR bandwidth parameters quantify spatial
non-stationarity for each driving factor (Table 4), reflecting their
local influence range and variability. In 2000, NDVI (533) and
PRE (458) exhibited larger bandwidths, indicating broader spatial
impacts, whereas POP (362) and TEMP (222) showed narrower
bandwidths, suggesting stronger local variability. By 2010, the
SLOPE bandwidth increased significantly to 1,273, indicating
heightened spatial non-stationarity, while PRE (268) and POP (50)
bandwidths decreased, reflecting narrower influence ranges. In
2020, the TEMP bandwidth rose markedly to 1,359, while NDVI
and SLOPE stabilized at 146 and 50, respectively, and POP and
GDP bandwidths further narrowed to 22, revealing a concentration
of socioeconomic factors spatial variability. These shifts validate
MGWR model effectiveness in capturing spatial non-stationarity of
ES drivers, providing a scientific foundation for refined ecological
management.

3.2.2 Spatiotemporal variability of drivers

Table 5 presents the changes in influence coefficients of various
factors on ES in eastern Guangdong from 2000 to 2020. Over
this period, natural factors exhibited increasingly complex impacts,
socioeconomic factors demonstrated strengthened positive drives,
and spatial non-stationarity was pronounced, with the NDVI
consistently serving as a stable positive driver. The influence
directions and intensities of PRE and TEMP fluctuated over time.
PRE’s mean effect evolved from 0 in 2000 to —0.09 in 2010, then to
0.18 in 2020, reflecting its spatially non-stationary and temporally
variable impact on ES. TEMP’s mean shifted from 0.07 in 2000 to
0.17 in 2010, then to —0.04 in 2020, transitioning from positive to
negative, indicative of climate change’s complex influence. Among
topographic factors, SLOPE maintained a positive effect but with
varying variability, exhibiting spatial non-stationarity and temporal
nonlinearity; DEM shifted from a positive mean of 0.08 in 2000
to a negative mean of —0.05 in 2020, with its standard deviation
decreasing from 0.34 to 0.28, suggesting reduced variability. POP
showed a progressive increase in influence, with its mean rising
from 0.14 to 2.55 and standard deviation increasing from 0.20 to
2.83, indicating escalating pressure on ES from population growth
and heightened spatial variability. GDP’s effect peaked at —0.72 in
2010, then turned neutral (mean 0) by 2020, with reduced variability
(STD 0.29), suggesting that economic restructuring may mitigate
its negative impacts on ES. NDVTs positive influence consistently
strengthened over the two decades, with its mean increasing from
0.36 to 0.44 and standard deviation rising from 0.06 to 0.14,
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FIGURE 3

(A)CS

Spatial distribution of ES between 2000 and 2020. (A) CS; (B) HQ; (C) SR; (D) WR; (E) ES (CS: carbon storage; HQ: habitat quality; SR: Soil retention; WR:

Water retention and ES: Ecosystem services).
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TABLE 2 Temporal statistics of ES.

10.3389/feart.2025.1593217

Min value Max value Median value Mean value Total value
2000 0 46.09 46.09 35.98 111 x 10°
CS (t/km?) 2010 0 46.09 46.09 36.08 111 x 10°
2020 0 46.09 46.09 35.80 1.10 x 10°
2000 0 1 0.89 0.79 -
HQ 2010 0 1 0.89 0.79 -
2020 0 1 0.89 0.78 -
2000 0 1,173.67 74.03 90.51 2.79 x 10°
WR (mm/km?) 2010 0 1,022.18 68.52 83.55 2.57 x 10°
2020 0 942.07 59.72 73.71 227 x 10°
2000 0 3,623.97 44.07 150.86 4.67 x 10°
SR (t/km?) 2010 0 3,202.00 39.60 133.56 4.12x10°
2020 0 2,766.86 35.13 116.16 3.58 x 10°
2000 0 0.77 0.51 0.42 -
ES 2010 0 0.78 0.51 0.41 -
2020 0 0.77 0.50 0.40 -
TABLE 3 Fitting results of the OLS and MGWR model. changes in TEMP’s spatial influence on ES. DEM exhibited east-
. west differences, with negative correlations in the west and northeast
Indicator Model 2000 2010 ’ 2020 s ’ ese
and positive correlations in the south from 2000 to 2020, though
OLS 2.847.729 2.831.03 2,786.046 this influence gradually weakened, suggesting a decreasing spatial
AIC non-stationarity of topographic effects on ES. SLOPE showed a
MGWR 1775.044 1741.262 1764.614 predominantly positive influence in 2000, decreasing in intensity
from southeast to northwest; in 2010, its influence was globally
OLS 0.557 0.562 0.576 o . i )
It significant, consistent with the 2000 pattern; by 2020, the impact was
MGWR 0.852 0.856 0.855 concentrated in eastern areas, indicating dynamic spatial variability

demonstrating a stable and minimally non-stationary supportive
role of vegetation cover on ES.

From a spatial perspective (Figure 4), the driving factors of ES
in eastern Guangdong exhibited pronounced spatial heterogeneity
from 2000 to 2020. PRE showed a northern negative and
southern positive influence pattern in 2000 and 2010, reflecting its
suppression of ecological functions in the north and enhancement of
water-related services in the south; by 2020, PRE shifted to a globally
positive influence, though its effect became non-significant in the
northern regions, indicating dynamic adjustments in the spatial
scope and intensity of precipitation’s impact on ES. TEMP displayed
considerable variation, with a positive correlation in the north and
a negative correlation in the south in 2000, highlighting regional
climatic disparities in ES drivers; by 2010, the positive influence
in the north weakened and transitioned to negative, and by 2020,
it became globally non-significant, reflecting nonlinear temporal
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in slope’s effect on ES. POP exhibited a positive effect in the
north from 2000 to 2010, decreasing toward the central region and
remaining non-significant in the south; by 2020, the south developed
a significant negative effect, while the north reached peak positive
values, reflecting intensified regional pressures from population
growth. GDP showed its largest significant negative effect in 2010;
by 2020, it displayed east-west differences, with positive effects in
the east and negative effects in the west, indicating spatially variable
economic impacts on ES. NDVI remained globally significant with
a positive influence from 2000 to 2020, decreasing in intensity from
the central region outward, demonstrating a stable supportive role
of vegetation cover on ES.

3.3 Ecological zoning results
3.3.1 Spatial delineation and temporal dynamics

This study utilized the SOM-FCM clustering approach to
analyze ES in eastern Guangdong from 2000 to 2020, identifying
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TABLE 4 Bandwidth of ES driving factors.

10.3389/feart.2025.1593217

Year ’ PRE TEMP DEM SLOPE ’ POP ‘ GDP NDVI
2000 458 222 50 146 362 22 533
2010 268 110 50 1,273 50 22 146
2020 266 1,359 98 50 22 153 146

Note: PRE: precipitation; TEMP: temperature; DEM: elevation; SLOPE: slope; POP: population; GDP: gross domestic product; NDVI: normalized difference vegetation index.

TABLE 5 The MGWR coefficients between ES driving factors.

Year | Factors Mean | STD Min Median

Note: PRE: precipitation; TEMP: temperature; DEM: elevation; SLOPE: slope; POP:
population; GDP: gross domestic product; NDVI: normalized difference vegetation index.

four ecological zones. The optimal number of clusters was
determined based on two widely used clustering validation metrics,
the fuzzy partition coeflicient (FPC = 0.81) and the silhouette
coefficient (SC = 0.65), indicating a clear and stable clustering
structure. Figure 5’ stacked bar chart quantifies the mean ES values
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for each zone, revealing their functional characteristics. Cluster 1
zone maintained the highest ES levels over 2000-2020, with mean
values of SR, WR, HQ, and CS significantly exceeding those of

PRE 0 014 | 027 0.04 017 other zones, primarily distributed in the northern mountainous
and central hilly areas. Its superior ecological functionality makes
TEMP 0.07 013 | -0.23 0.04 042 it suitable for priority conservation, thus named “Ecological
protection zones.” Cluster 2 zone exhibited intermediate ES mean
DEM 0.08 034 | -121 0.09 0.89 ] )
values, with robust SR but overall ES capacity lower than the
2000 SLOPE 0.26 012 | 001 0.26 0.57 cluster 1, distributed in the transitional areas between the north
and central regions. Reflecting sub-optimal ecological functionality
PoP 0.14 020 | -0.10 0.08 0.59 and influenced by partial land development, it is designated
GDP o P o7 148 as Ecologlcal conservation zones” requiring maintenance of
its ecological roles. Cluster 3 exhibited lower mean ES values
NDVI 0.36 0.06 0.23 0.38 045 and was primarily located in the central-southern plains, where
ecological functionality is constrained by intensive urbanization and
PRE 009 026 | -070 006 031 agricultural activities. However, it maintains a relatively high level
TEMP 017 026 | 026 013 L6 of internal coordination among ES components, and is therefore
designated as “Ecological improvement zones.” Cluster 4 exhibited
DEM 0.14 031 | -0.86 0.16 1.32 the lowest mean ES values, indicating the weakest ecological service
capacity. It is primarily located in southern coastal urbanized
2010 SLOPE 0.19 002 | 0.6 0.18 022 . . .
areas, where extensive land use change and rapid urban expansion
POP 0.42 053 | —046 029 2.91 have led to significant ecological degradation. Accordingly, it is
designated as “Ecological control zones,” with a focus on ecological
GDP -0.72 0.84 -3.22 —-0.64 3 restoration.
The spatiotemporal evolution of ecological zones, as
NDVI 0.43 0.16 | 0.06 0.41 0.77 . - . L
illustrated in Figure 6, reveals significant structural transitions in
PRE 0.18 0.07 0.02 0.19 035 eastern Guangdong from 2000 to 2020. Notably, Ecological control
zones expanded continuously, increasing from 5.27% in 2000 to
TEMP —0.04 001 | -0.05 -0.04 -0.02 10.32% in 2020, with their spatial pattern evolving from scattered
to more reticulated and connected distributions. This expansion
DEM -0.05 028 | -0.84 0.01 0.56 o o
primarily occurred at the expense of Ecological improvement
2020 SLOPE 027 018 | —-0.69 025 0.82 zones, indicating intensified anthropogenic disturbance and
urban encroachment in previously moderate-function areas.
PoP 2.5 283 | 207 231 1113 Ecological improvement zones remained relatively stable in spatial
it i — 0, 0H—
GDP 0 029 | —os7 005 077 position but decreased in area—from 32.23% to 28.70%—largely
due to transformation into control zones in the southern and
NDVI 0.44 014 | 011 0.40 0.79 central regions. In the north, portions of Ecological conservation

zones were downgraded to improvement zones, forming more
cohesive but ecologically weakened patches. Consequently,
the total area of Ecological conservation zones declined from
35.30% to 30.95%, accompanied by increased fragmentation
caused by land development and ecological degradation. In
contrast, Ecological protection zones showed notable expansion
from 27.20% in 2000 to 33.87% in 2010, before stabilizing
at 30.03% in 2020. This trend reflects enhanced ecological

functionality in central and mountainous regions, where improved
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Quantitative effects of drivers in ES through MGWR between 2000 from 2020. (A) 2000; (B) 2010; (C) 2020. (PRE: Precipitation; TEMP: Temperature;
DEM: Elevation; SLOPE: Slope; POP: Population; GDP: Gross Domestic Product; NDVI: Normalized Difference Vegetation Index).
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FIGURE 5

Mean ES values for each zone between 2000 from 2020. (A) 2000; (B) 2010; (C) 2020.

land management and ecological restoration efforts may have
contributed to consolidated ecological integrity and increased
spatial continuity.

3.3.2 Zonal differences in influencing factors
Figure 7 presents the mean influence coefficients of major
driving factors across ecological zones using raster maps and bar
charts, illustrating spatial distribution and temporal variation
from 2000 to 2020. In 2000, the Ecological Protection Zones
showed the highest positive NDVI coefficient (0.376), negative
PRE (-0.013), and a strong negative GDP effect (-0.601). In
the Ecological Conservation Zones, NDVI was 0.357, DEM
was 0.087, and GDP was —0.473. The Ecological Improvement
Zones had the highest DEM effect (0.114), NDVI at 0.326,
and a positive GDP coefficient (0.233). The Ecological Control
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Zones displayed strong NDVI (0.375), DEM (0.104), and the
most negative GDP (-0.644). In 2010, NDVI increased across
all zones (0.302-0.474). POP became a positive factor, ranging
from 0.182 to 0.519. GDP coefficients declined further, ranging
from -0.258 to —0.815. In 2020, PRE turned positive across all
zones (0.176-0.192). NDVI remained positive (0.349-0.487). POP
values increased significantly (1.741-3.386), and GDP values
moved toward neutrality or weakly positive (-0.063-0.074).
NDVI remained a consistently positive factor (0.326-0.487)
throughout the study period. PRE shifted from negative to
positive. TEMP was mostly negative or non-significant. POP
influence increased annually. GDP transitioned from negative
to near-neutral or slightly positive. Driving factors varied
significantly between zones, showing pronounced spatial non-
stationarity.
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FIGURE 6
Spatiotemporal changes and structural transitions of ecological zones in eastern Guangdong from 2000 to 2020. (A) 2000; (B) 2010; (C) 2020; (D)

Transitions of Ecological Zoning Structure.

4 Discussion Natural factors not only serve as critical baseline conditions

for ES variations but also contribute significantly to their spatial
4.1 Interpreting spatiotemporal patterns heterogeneity across the region. Natural factors serve as critical
and driving mechanisms baseline conditions for ES variations. Climatic variables (PRE,

TEMP), were incorporated into the MGWR model to capture

ES exhibit pronounced spatiotemporal heterogeneity, as this  the hydrothermal conditions. These factors exhibited a clear
study revealed the dynamic changes and regional disparities in  north-south gradient in influence. PRE showed a negative effect in
eastern Guangdong from 2000 to 2020 using the InVEST model.  northern mountainous areas, likely due to steep slopes and shallow
CS, HQ, SR, and WR declined by approximately 0.9%, 1.3%, 23.0%,  soils intensifying surface runoff and erosion, which reduced soil
and 18.6%, respectively, while the integrated ES remained stable at  retention and nutrient availability. In contrast, PRE contributed
0.41-0.42, indicating an overall declining trend. This finding aligns ~ positively in the southern plains where flatter terrain facilitates
with global trends of ES decline in urbanizing areas (Yuan et al,  infiltration and agricultural utilization. TEMP had a weaker and
2024). Additionally, the study demonstrated that ES distribution = more variable impact, with modest positive influence in cooler
exhibits significant spatial heterogeneity (Li C. et al., 2024), with  northern areas and neutral to negative effects in the south due
stronger ecological functionality in the northern mountainous  to evapotranspiration stress. NDVI was integrated as a proxy
regions compared to the southern coastal plains. Northern SR for vegetation cover and ecological productivity, and consistently
and WR far exceed those in the south, highlighting substantial ~ showed a significant positive effect across regions. This result
north-south disparities. Nonetheless, it should be noted that the  confirms the stabilizing role of vegetation in supporting ES,
1 km spatial resolution used in this study may obscure fine-scale  particularly regulating and supporting services. Topographic factors
ecological dynamics, such as small-area fragmentation or edge  such as DEM and SLOPE played a vital role in shaping ES spatial
effects. Future research may benefit from incorporating higher-  patterns. DEM showed positive effects in elevated regions by
resolution datasets to capture more localized processes and improve  reducing urban encroachment and maintaining landscape integrity.
spatial precision. SLOPE was especially influential, with steeper areas associated
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Ecological Conservation Zones

The driving factors of different ecological functional regions. (A) 2000; (B) 2010; (C) 2020. (PRE: Precipitation; TEMP: Temperature; DEM: Elevation;
SLOPE: Slope; POP: Population; GDP: Gross Domestic Product; NDVI: Normalized Difference Vegetation Index).
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with stronger ES due to limited accessibility and preserved natural
land cover. These variables reflect the constraining force of
terrain on human activities and the protective effect of complex
landscapes.

Socioeconomic factors (POP, GDP) have shown increasing
influence over time, particularly population growth exerting the
greatest pressure on urban areas, accelerating ES decline (Wang et al.,
2023). In the MGWR model, POP was included as a proxy
for human disturbance intensity, capturing the effects of land
conversion, settlement expansion, and ecological fragmentation.
POP, entered into the MGWR model as a proxy for anthropogenic
disturbance, showed strong negative coefficients in high-density
urban belts, illustrating how urban expansion erodes natural
land cover and weakens ecological functioning. GDP, representing
economic intensity and development pressure, was incorporated to
reflect the dual role of economic activity—both as a potential stressor
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and as a possible driver of ecological restoration under optimized
development paths. Economic development exhibits localized
positive effects, with GDP shifting to positive in parts of the northern
and central regions, suggesting that optimized economic structures
may support ecological enhancement. While GDP initially exerted
negative ecological impacts, its later positive association in some
areas may reflect transitions toward greener development models,
such as investment in ecological restoration or sustainable land use
planning. The pronounced spatial non-stationarity of influencing
factors drives ES distributional heterogeneity, underscoring the
necessity of ecological zoning to optimize management. While this
study provides valuable insights, the limited scope of socioeconomic
variables may overlook complex human-environment dynamics,
calling for broader indicator integration. Furthermore, coupling
MGWR with nonlinear models could help reveal threshold effects
and lagged ecological responses more effectively.
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4.2 Insights from zonal transitions and
heterogeneity

This study employed the SOM-FCM clustering method to
delineate Core, Important, Ecological Coordination, and Ecological
control zones in eastern Guangdong from 2000 to 2020, revealing
distinct spatiotemporal patterns of ecological heterogeneity
(Qi et al, 2019). Core zones, predominantly located in the
northern mountainous regions (Fenghuang-Lianhua Mountain
area), exhibited a consistent and contiguous expansion, reflecting
their ecological resilience due to favorable natural conditions
and minimal human disturbance (Xie et al., 2024b). In contrast,
Important and Ecological improvement zones, such as the
transitional areas near the Hanjiang Estuary, experienced significant
contraction and fragmentation, driven by encroachment from
Ecological control zones (Li K. et al., 2024). Ecological control zones
expanded continuously since 2000, particularly forming reticulated
patches in the southern coastal plains, which encroached upon
ecological lands of Important and Ecological improvement zones,
resulting in substantial declines in SR and WR (Xu et al., 2022).

From a policy perspective, eastern Guangdong, as an
integral part of Guangdong Province, faces land-use challenges
consistent with provincial trends. Since the 1980s, rapid economic
development has intensified demand for construction land,
exacerbating supply-demand conflicts and accelerating urban
expansion at the expense of ecological lands (Zeng et al., 2023).
Influenced by the economic spillover from the Pear] River Delta,
economic activities in the coastal plains of eastern Guangdong
have intensified, while land tenure issues, such as restrictions
on rural collective land transfer, have further contributed to the
reduction of Important zones (Xu et al., 2022). Around 2010,
the Guangdong Land Use Master Plan (2006-2020) introduced
measures to mitigate urban pressures, including revitalizing existing
construction land stocks and enforcing spatial controls. The
establishment of terrestrial ecological control zones, such as the
Fenghuang-Lianhua Mountain area, has effectively safeguarded
the ecological integrity of Core zones, ensuring the stability of the
regional ecological framework (Li C. et al., 2024).

Analysis of driving factors indicates that the expansion of
Core zones was primarily influenced by natural factors, with
NDVI (0.33-0.49) and PRE acting as stable positive drivers,
sustaining high levels of SR, WR, and HQ through enhanced
vegetation cover (Luo et al., 2024). Conversely, Ecological control
zones were significantly impacted by socioeconomic pressures,
notably population (POP, 0.16-3.39) and GDP (-0.64-0.07),
exhibiting strong spatial non-stationarity (Wang X. et al., 2024).
From 2000 to 2020, the Guangdong Land Use Master Plan’s
restrictions on construction land increments proved insufficient,
failing to effectively curb rapid urbanization in the coastal
plains of eastern Guangdong, where surging population and
intensified economic activities led to increased land development
and pollution, reducing SR and WR to their lowest level.
Important and Ecological improvement zones were influenced
by both natural and socioeconomic factors, with the positive
effects of NDVI being partially offset by the negative pressures
from POP and GDP, resulting in growing fragmentation and
shrinkage of these zones over time. These trends reflect a growing
spatial polarization between ecologically stable inland areas and
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socioeconomically dynamic coastal zones, highlighting the trade-off
between urbanization and ecological conservation (Liu and Tang,
2024). Overall, the spatiotemporal dynamics of ecological zones
in eastern Guangdong underscore the heterogeneous impacts of
land-use changes and urbanization, emphasizing the role of shifting
socioeconomic gradients over the two decades and necessitating
strengthened policy enforcement and targeted zoning strategies to
balance ecological protection with developmental needs.

4.3 Policy implications for region-specific
ecosystem services management

Eastern Guangdong exhibits diverse ES, with significant
regional variations in natural conditions and uneven ecological
the
ecological zones for sustainable urban and ecological development

development, underscoring importance of delineating
(Zeng et al., 2023). Therefore, differentiated management strategies
are essential and should be tailored for regional planning
departments (del Carmen Sabatini et al., 2007). Based on the
characteristics of different ecological zones and the analysis of
influencing factors, the following recommendations are proposed:

Ecological protection zones should be designated as core
areas of nature reserves, where human activities are prohibited
in principle. An appropriate buffer zone should be established,
prioritizing the creation of ecological reserves with native species to
preserve natural habitats and ensure ecosystem succession (Xie et al.,
2024b). Ecological conservation zones require integrated protection
and restoration of mountains, rivers, forests, farmlands, lakes,
grasslands, and deserts. Ecological restoration projects, such as
reforestation and grassland restoration, should be implemented,
with defined targets for soil erosion control and flood defense
standards for soil conservation infrastructure, while selecting
suitable plant species (trees, shrubs, or grasses as appropriate)
to enhance ecological functionality (Luo et al., 2024). Ecological
improvement zones should establish ecological corridors to connect
core and important zones, facilitating species migration and genetic
exchange. Low-impact activities compliant with regulations, such
as ecotourism, may be permitted, but any new construction land
must be approved by provincial authorities to ensure no ecological
harm (Liu et al., 2019). Ecological control zones should promote
smart, compact development by controlling development intensity
and optimizing existing land stocks. Urban renewal should be
leveraged to achieve regional integration of industry and residential
areas, balancing employment and housing needs, while adding green
spaces along rivers and high-quality habitat areas to enhance urban
ecological restoration capacity (Li J. et al., 2024).

To support zoning management, compensation policies and
land-use trade-off measures are recommended. A scientific
framework for assessing the value of ecological products should
be established, alongside a robust ecological compensation
mechanism (Zeng et al., 2023). The integrated ecological zoning
and management framework developed in this study—combining
spatially explicit ecosystem service modeling (InVEST), spatial
heterogeneity analysis (MGWR), and ecological function zoning
using SOM-FCM clustering—has strong transferability and can
be applied to other rapidly urbanizing regions. Stakeholders in
Ecological protection and conservation zones, such as farmers,
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should receive compensation to incentivize the protection of arable
land and ecological spaces (Li K. et al., 2024). Ecological control
zones should provide cross-regional compensation to ecological
improvement zones, with funds allocated to support water-
retention forest establishment and biodiversity conservation (Liu
and Tang, 2024). Regarding land-use trade-offs, ecological control
zones should strictly limit new construction land, prioritizing
the revitalization of unutilized and idle land through diverse
redevelopment models. Arable land supplementation should be
achieved by rehabilitating low-efficiency orchards and slopes to meet
land balance requirements, minimizing impacts on high-quality
ecological areas (Wang S. et al., 2024).

5 Conclusion

This study quantified ecosystem services (ES) in Eastern
Guangdong from 2000 to 2020 using the InVEST model, explored
their spatially heterogeneous drivers through MGWR, and
identified ecological zones using SOM-FCM clustering. The findings
highlight notable spatiotemporal variations in ES under rapid
urbanization, offering a scientific basis for region-specific ecological
governance.

1. ES declined significantly, with clear spatial disparities. From
2000 to 2020, the overall ES in the region showed a downward
trend: soil retention (SR) and water retention (WR) declined
by 23.4% and 18.6%, respectively, while carbon storage (CS)
and habitat quality (HQ) slightly decreased by 0.9% and
1.3%. Spatially, higher ES values were concentrated in the
mountainous northern areas with greater elevation, forest
cover, and lower urbanization levels, while lower values were
observed in the southern coastal plains, indicating a clear
spatial gradient.

2. Natural with
socioeconomic influence. NDVI remained the most stable and

factors remain dominant, increasing
significant positive factor, particularly in central and northern
mountainous regions. Precipitation (PRE) and temperature
(TEMP) exhibited dynamic spatial patterns, with PRE shifting
from negative to positive in the northern mountains and
consistently positive in the south; TEMP’ influence in
the north weakened over time. DEM and SLOPE showed
marked spatial non-stationarity. Meanwhile, the influence of
socioeconomic factors intensified over time, with population
(POP) and GDP displaying significant spatial heterogeneity.
Urbanization accelerated the complex interaction between
natural and human-induced drivers.

3. Urbanization exerted uneven pressure across ecological zones.
From 2000 to 2020, ecological protection zones expanded in
area and spatial continuity due to policy support; ecological
control zones increased significantly from 5.27% to 10.32% due
to mounting population and economic pressures; meanwhile,
conservation and improvement zones were compressed and
became increasingly fragmented. Differentiated strategies are
proposed: ecological protection zones should be strictly
conserved with restricted human activity; conservation zones
require integrated restoration of natural systems; improvement
zones should develop ecological corridors and allow limited
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low-impact uses such as ecotourism; control zones should
adopt compact development and land renewal strategies to
support green transformation.

These findings provide evidence to support adaptive ecological
planning in rapidly urbanizing regions like Eastern Guangdong.
However, the MGWR model is limited in capturing nonlinear
responses and threshold effects. Future studies should consider
integrating machine learning methods to explore complex
interactions—such as delayed responses of ES to economic
activities or abrupt ecological tipping points. In addition,
testing management strategies through land-use simulation
models under various development and climate scenarios would
strengthen the practical relevance and resilience of policy
recommendations.
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