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The China Koktokay Pegmatite Group is an important metallogenic region
where major rare-metal ores are mined. Here, we present new low-temperature
thermochronological data to contribute to the understanding of the Koktokay
Pegmatite Group’'s exhumation and preservation history. Apatite U-Pb ages
of ~176 Ma, zircon fission-track ages of ~150 Ma, zircon (U-Th)/He ages of
~82-52 Ma, apatite fission-track ages of ~69-49 Ma, and apatite (U-Th)/He
ages of ~90-52 Ma were obtained from three samples of the No. 3
pegmatite and the contemporaneous Aler granitic batholith in the Koktokay
area. Our thermochronological data and inverse thermal history modeling
reveal a moderate-to-rapid basement cooling phase during the Cretaceous
(~150-65 Ma), with an average cooling rate of ~1.53°C-1.06°C/Ma. It is
envisaged that this phase eventually uplifted and exhumed the pegmatite
group, with erosion in the Cenozoic era being limited. Combined with
previously published geochronological and thermochronological data, a multi-
stage cooling history for the pegmatite group can be established. Following
its magmatic—hydrothermal formation in the Late-Triassic (~220-200 Ma), two
phases of accelerated regional cooling (i.e., in the late Triassic to Early Jurassic,
~200-180 Ma; and the mid-Jurassic to Late Jurassic, ~176-150 Ma) can be
recognized. The intense cooling in the Cretaceous is associated with the final
exhumation of the pegmatite group to the surface, and some Li—Ru-Cs-
mineralized pegmatites formed at the distal end of the Koktokay Pegmatite
Group may have been exhumed and denuded. Furthermore, we propose
a relatively intense denudation of the Koktokay Pegmatite Group, which is
unfavorable for the preservation of rare-metal pegmatite bodies.

China Altay, low-temperature thermochronology, pegmatite, (U-Th)/He age dating,
fission track of apatite and zircon
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1 Introduction

The preservation of ore deposits is an essential component of
the mineralization system. The formation of an economic mineral
deposit requires both a genetic process and subsequent exhumation
events that enable commercial mining (Zhai et al., 2000; Kesler and
Wilkinson, 2006). Therefore, understanding the erosion and uplift
of deposits, mining areas, and larger regions not only contributes to
the understanding of deposit preservation but also provides valuable
information for regional deposit prospecting. Low-temperature
thermochronological tools can determine the timing and rates
at which a geo-body approaches the upper crust and surface
and subsequently cools as a result of exhumation. Hence, these
tools place constraints on the thermal history of a geo-body as it
passes through a shallow crustal isothermal structure, undergoing
cooling from ~450 to ~45 °C, and are used to reveal the complex
dynamic mechanisms involved in the preservation of the geo-
body (Reiners and Brandon, 2006; Enkelmann and Garver, 2016).
Low-temperature thermochronology is majorly used to reconstruct
the post-mineralization thermal history of deposits (Marton et al.,
2010). It is useful for evaluating the preservation potential of
deposits. Furthermore, when combined with medium- to high-
temperature geo-/thermochronometry tools, such as apatite U-Pb,
muscovite “°Ar-*Ar, and zircon U-Pb, a comprehensive history
of cooling/preservation since the formation of the ores can be
reconstructed (Evans et al., 2013; Zhang L. etal., 2017; Zhang J. et al.,
2017).

Pegmatites have long received considerable attention due to
their colorful gemstones, fine mineral specimens, and industrial
minerals, such as feldspar and quartz. Additionally, pegmatites are
significant reservoirs of rare metal elements (Linnen et al., 2014;
Glover etal., 2012; Linnen et al., 2012; Simmons et al., 2012; London,
2008). London (2008) proposed a definition for pegmatite that
provides a comprehensive overview of its characteristics. According
to the definition, granitic pegmatite is an essentially igneous rock
commonly granitic in composition. Fundamentally, pegmatite is
distinguished from other igneous rocks by its extremely coarse,
variable grain size or by the abundance of crystals with skeletal,
graphic, or other strongly directional growth habits. Furthermore,
pegmatites typically occur as a cluster, and within a pegmatite
field, the distribution of rare-metal-mineralized pegmatites follows
a systematic pattern reflecting their geochemical and textural
evolution: microcline-rich pegmatites are found abundantly in
the center, while Ta-, Li-, Rb-, and Cs-bearing minerals increase
in abundance toward the outermost parts (Jahns and Burnham,
1969; Cern)'/, 1991; Dill et al, 2012; London, 2018; Zhang and
Li, 2024). For instance, within a pegmatite group, Be-mineralized
pegmatites typically form near the center, while Li-Rb-Cs-
mineralized pegmatites are found at the periphery (London, 2018),
such as the Oxford pegmatite Field in Maine (Webber et al., 2019;
Simmons et al.,, 2020). Therefore, determining the preservation
status and erosion thickness is crucial for evaluating the potential
for exploration of hidden ore bodies in pegmatite groups. However,
there are only a few case studies on the preservation history of
pegmatites, such as the Jiajika pegmatite in China (Liu et al., 2023).

The Altai Orogen, located in the western part of the Central
Asian Orogenic Belt (CAOB) (Figure 1a), stretches approximately
2,500 km from Russia and Kazakhstan through China to Mongolia.
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The Altai Orogen is a significant producer of rare metals globally,
with abundant rare-metal-mineralized pegmatites. It is referred
to as the Kalba-Narym-Koktokay rare-metal (Li-Be-Nb-Ta-Cs)
pegmatite belt (Annikova et al., 2016a; Annikova et al., 2016b;
Murzintsev et al., 2019; Khromykh et al., 2020). The Koktokay
Pegmatite Group, located in the central part of the Chinese Altai, is
the characteristic rare-metal-producing area with massive contents
of mineralized pegmatites. In the Koktokay Pegmatite Group, the
dominant mineral is beryllium (Be). The most famous, No. 3
pegmatite, which contains 10 internal zones and vast resources
of Be-Nb-Ta-Li, consists of large amounts of beryllium but
moderate amounts of lithium (Zou and Li, 2006). Previous studies
have primarily focused on the chronology, geodynamic processes,
internal evolution, and mineralization of the Koktokay Pegmatite
Group (Wang et al., 2007; Tang et al., 2018; Zhao and Yan, 2023;
Shen et al,, 2022; Zhang and Li, 2024). However, little attention
has been paid to their long-term post-mineralization evolution (i.e.,
their exhumation and preservation). Exhumation and preservation
of the ore-bearing bodies in the area remain poorly understood,
which is important for mineral exploration.

It is clear that understanding the exhumation history of the
Koktokay Pegmatite Group has valuable implications for gaining
deeper insights into the preservation and exposure of the pegmatite
group. We focus on the thermal history of the Koktokay Pegmatite
Group. Moreover, the contemporaneous Aler granitic batholith
in the Koktokay area is used as a reference for evaluating
the preservation history. Pegmatite and granite samples are
analyzed using medium- and low-temperature thermochronological
techniques, including apatite U-Pb, zircon fission track (ZFT),
zircon (U-Th)/He (ZHe), apatite fission track (AFT), and apatite
(U-Th)/He (AHe). Their integrated thermal history is then
derived through inverse modeling. In addition, based on compiled
thermochronological data of this area, we further discuss the
preservation history of the Koktokay pegmatite to shed more light
on mineral exploration and provide a case study on pegmatite
preservation research.

1.1 Geological setting

The Altai region occupies a key position within the CAOB
(Figure 1a). It originated in the Late Paleozoic and is the result of
the conglomeration of various geological entities, such as island
arcs, accretionary wedges, seamounts, and microcontinents, during
the Cambrian-Carboniferous period of the ancient Asian oceanic
system (Buslov et al., 2001; Buslov et al., 2004; Windley et al., 2007;
Glorie et al., 2011). Based on isotopic studies and the formation
of a series of rift basins such as Ashele, Chongkuer, Kelan, and
Maizi basins, a foreland basin developed in the southern part of
the China Altai, characterized by extensional tectonic settings that
persisted at least until the Late Carboniferous (Yuan et al., 2007).
During this period, a limited amount of syn-orogenic pegmatite was
formed, predominantly exposed in the Qiongkuer domain of the
Altai, with small quantities and scale of rare-metal mineralization
(Lv et al, 2018). The Carboniferous suturing between the Altai
and the Junggar terranes is represented by the Irtysh Shear Zone
(Figure 1b; Laurent-Charvet et al., 2002; Briggs et al., 2007). Despite
the prolonged tectonic activity during the Mesozoic-Cenozoic, the
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FIGURE 1

(a) Location of the Koktokay region; (b) geological map of the China Altai on the basis of regional 1: 200,000 geological maps (Li et al., 2019; BGMRX,
1993); and the low-temperature data are collected from Wu et al. (2023) and references therein.

west Junggar Mountains have retained the records of upper-crustal
exhumation caused by Permian shortening along the Irtysh Shear
Zone (Gillespie et al., 2020). The granite intrusion around the
Irtysh Shear Zone recorded the intensity of deformation in different
episodes. Devonian granitoids preserve deformational fabrics
(Lietal, 2017; Li et al., 2022). However, Permian aged granites are
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commonly undeformed (Sun et al., 2008; Tong L. X. etal., 2014). The
Tarim Craton collided with the Siberian Craton during the Triassic
period (Xiao etal., 2009; Xiao et al., 2015; Lvetal., 2012; Zheng et al.,
2015). Monazite U-Pb ages and biotite Ar-Ar cooling ages recorded
in the Altai indicate exhumation of up to 20 km in relation to thrust
faulting in the Late Permian to Early Jurassic (Briggs et al., 2009;
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Li et al,, 2015). Late in this period, numerous post-orogenic rare-
metal pegmatites were formed in the Altai (Lv et al., 2012; Lv et al.,
2018; Che et al., 2015; Zhou et al., 2015a; Ma et al., 2015).

The Koktokay pegmatite district is located in the middle of the
China Altai (Figure 1B), where more than 3,000 pegmatites have
been formed (Tang et al., 2018). These pegmatites belong to the
LCT family (Cerny, 1991; Cerny and Ercit, 2005) and the Pegmatite
family (Lv et al., 2018) based on the chemical composition-mineral
assemblage-structural geology (CMS; Dill, 2016) classification with
the mineralogical range of barren to Be-, Ta-, and Nb-enriched
types. However, rare-metal-mineralized pegmatites account for less
than 2% of the total pegmatite bodies within individual pegmatite
groups (Tang et al., 2018). Within the Koktokay Pegmatite Group,
the No. 3 pegmatite is the most strongly mineralized rare-metal
pegmatite, containing 10 internal zones (Zou and Li, 2006).

The famous Koktokay No. 3 pegmatite is 1.5 km south of the
Koktokay Town (Figure 2). Igneous rocks are widely exposed in the
area. The igneous comprises a biotite batholith intruded by two-
mica and muscovite granite dike (Figure 2). Zircon U-Pb dating
yields ages pf 396-415 Ma for the biotite batholith (Wang et al.,
2007), 390-400 Ma for the two-mica granite, and 390-396 Ma for
the muscovite granite dikes (Zhou et al., 2015a). The metagabbro
pluton is the host rock of the No. 3 pegmatite (Figure 2), and it
was dated at 408 + 6 by zircon U-Pb (Wang et al., 2006; Cai et al.,
2012). The formation age of the No. 3 pegmatite is Late Triassic to
Early Jurassic (Zircon U-Pb, Rb-Sr, and coltan U-Pb, 220-190 Ma;
Wang et al., 2007; Zhou et al., 2015b; Che et al., 2015; Shen et al.,
2022), and it is determined from a geochronological perspective that
it has no genetic connection with the surrounding igneous rocks.
Detailed geochronology studies identified that the geodynamics
setting for the formation of No. 3 pegmatite is the extension stage
after the collision between the Tarim Craton and Siberian Craton.

The Aler Granite is a batholith with the area exposed exceeding
1,400 km?, located approximately 15km north of the No. 3
pegmatite (Figure 2). This batholith extends along the trend of
the Altai orogen and intrudes into the Paleozoic metasedimentary
rocks (Kuwei group) and Devonian plutons. The lithology of
the Aler Granite in the northern part predominantly consists of
medium-fine-grained biotite granite, while in the southern part, it
is predominantly porphyritic biotite granite with larger phenocrysts
of quartz and feldspar (Liu et al, 2014). The primary mineral
composition is quartz, K-feldspar, and biotite, while the accessory
minerals include magnetite, garnet, zircon, apatite, and xenotime.
According to lithology and occurrence location, the Aler Granite
can be classified into central zone, transitional zone, and marginal
zone (Zhang et al,, 2015). Some dating methods with relatively
low closure temperature had been used in the Aler Granite and
revealed a younger age (e.g., biotite K-Ar 138-150 Ma and biotite
“OAr/*Ar 131.39 + 4.25 Ma; Zhang et al,, 1994; Chai et al., 2010;
Han, 2008), leading to the recognition of the Aler Granite as a
product of the Indosinian period. Subsequent extensive precise
zircon U-Pb dating has determined its age to be Late Triassic (Liu
and Han, 2019; Zhang et al., 2015; Liu et al., 2014). Nevertheless, the
reported Cretaceous origin of the Aler Granite holds significance
as it is correlated with the time when the Chinese Altai cooled
to upper-crystal temperatures (Yuan et al., 2006; Pullen et al,
2020). It provides significant reference information for studying
the preservation of the Aler Granite. Several Mesozoic granites
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developed in the Altai Orogenic Belt (Vladimirov et al., 2005;
Annikova et al., 2006; Han, 2008), but only a few in the Chinese Altai
[Jiangjunshan granite, 150 Ma, Chen and Jahn (2002); Shangkelan,
202 Ma, Wang et al. (2010); and Aler Granite, 210-219 Ma]. There
is no evidence indicating that the Mesozoic Chinese Altai is not
conducive to the formation of granites, so the preservation of
Mesozoic granites in this area is questionable. Obviously, spherical
weathering with large height differences in the Aler Granite (Liu
and Han, 2019) also implies multiple stages of exhumation and
denudation in this area.

2 Methods
2.1 Sample preparation

The sample locations are remarked in Figure 2. The formation
of the Koktokay pegmatites is a complex process, including the
initial magmatic stage, magmatic—hydrothermal transition stage,
and hydrothermal stage (Zhao and Yan, 2023 and references
therein). According to the occurrence of the Koktokay Pegmatite and
the simulation experiment of London (2014), the graphic zone (zone
I) in the external of the Koktokay No. 3 pegmatite can represent the
initial pegmatitic magma. Most zircons in pegmatites are damaged
by radiation due to high U and Th contents and lose their original
crystal structure (Lv et al,, 2018). This process turns the zircon
crystals into materials filled with small pores. The destroyed crystal
structure of zircon grains is not conducive to the preservation of
products from multiple isotope systems (e.g., Pb,giggenic and He),
and the fission track is even invisible. Therefore, AFT, AHe, and
U-Pb ages from the No. 3 pegmatite were utilized to constrain the
multistage thermal history, tracking cooling from higher to lower
temperatures (Table 1). Apatite was obtained by collecting typical
bulk samples from zone I (Figure 3d), followed by crushing and
flotation. Then, they were divided into two groups, one for fission-
track analysis (Figure 3¢) and the other mounted in epoxy resin for
LA-ICPMS analysis (Figure 3f).

Aler granite samples were collected from porphyritic biotite
granite in the southern part of the batholith. The zircon U-Pb
age and whole-rock geochemical composition are reported in
Liu et al. (2012). Zircon and apatite are invisible in the porphyritic
biotite granite (Figure 3a), which are obtained by crushing typical
bulk rocks, flotation, and magnetic separation. Complete zircon
(Figure 3b) and apatite (Figure 3¢) of grains were selected for fission-
track and (U-Th)/He analyses.

2.2 Apatite and zircon fission-track
thermochronology

The fission-track analysis experimental works were performed at
the Beijing Zekangen Technology Co., Ltd. The obtained apatite and
zircon concentrates were separated using conventional magnetic
and heavy-liquid techniques. The zircon grains were mounted
in glass slides, heated, and covered by FEP Teflon sheets. Their
external prismatic surfaces were ground and polished. The etching
duration was approximately 20-35 h with NaOH/KOH (1:1) used
as the eutectic etchant at 210 °C (Garver, 2003; Yuan et al., 2007).
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FIGURE 2
Geological map of the Koktokay area showing the distribution of the No. 3 pegmatite and the Aler granitic batholith (after Zou and Li, 2006).

Different from zircon, apatite was mounted in epoxy resin on
glass slides, ground, and polished to an optical finish to expose
the internal grain surface. Spontaneous tracks were revealed using
5.5 N HNO; for 20 s at 21 °C. Thin low-uranium muscovite used
as external detectors were packed together with sample grain
mounts, CN2 (apatite), and CN5 (zircon) uranium dosimeter glass
(Bellemans, 1995) irradiated in the well-thermalized hot-neutron
nuclear reactor (Yuan et al., 2006). After irradiation, the muscovite
external detectors were detached and etched in 40% HEF for 20 min at
25 °C to reveal the induced fission tracks (Yuan et al., 2003). Track
densities for both natural and induced fission track populations
were measured using a dry objective at x100 magnification. Fission-
track ages were measured using the ITUGS-recommended zeta
calibration approach. The zeta values used in this study have
been determined from repeated measurements of standard apatite
(Hurford and Green, 1983; Hurford, 1990). The weighted mean zeta
value obtained is 391 + 17.8 a/cm? for apatite and 88.2 + 2.9 a/cm?
for zircon.

Frontiers in Earth Science

2.3 Apatite and zircon (U-Th)/He
thermochronology

Apatite and zircon (U-Th)/He analyses were conducted at the
Sate Key Laboratory of Ore Deposit Geochemistry (SKLODG),
Institute of Geochemistry, Chinese Academy of Sciences (IGCAS),
Guiyang, China. Inclusion-free apatite and zircon grains for
(U-Th)/He analysis were handpicked from concentrated separates,
based on their size and euhedral crystal shape. The representative
apatite and zircon grains are shown in Figure 3. The crystal size of
each grain was measured microscopically for applying the alpha-
ejection age corrections (Farley et al., 1996). The apatite grains were
loaded into platinum capsules, and the zircon grains were loaded
into niobium capsules and outgassed under vacuum at 900 °C for
5 min and 1,300 °C for 15 min. The protocols of He analysis followed
the established laboratory routine extraction. The “He abundances
were determined as an isotope ratio using a pure *He spike that has
been calibrated against an independent *He standard (House et al.,
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TABLE 1 Table of the main mid-low-temperature thermochronology
tools and their closure-temperature and corresponding closure
depths (after Huntington and Klepeis, 2018).

Method Closure Closure depth
temperature (°C) | (km)

Apatite (U-Th)/He 55-75 1.5-3.3

Apatite fission track 80-120 3-5.5

Zircon (U-Th)/He 160-200 5-9.5

Zircon fission track 210-300 9.7-14.5

Muscovite Ar'/Ar* | 300-400

Apatite U-Pb 380-600

Zircon U-Pb 920-1,100

2000; Wu et al., 2016). The outgassed apatite grains were dissolved
with platinum capsules in 7 mol/L HNO; and analyzed for **U,
2350, 22Th, and '*’Sm by ICP-MS. The degassed zircon grains were
transferred to Parr bombs, where they were spiked with 2**U and
20Th and digested at 240 °C for 40 h in HE A second bombing
in HCI for 24 h at 200 °C ensured the dissolution of fluoride salts.
Zircon solutions were then dried down, dissolved in HNO;, and
diluted in H, O to 5% acidity for the analysis of 23U, ?**U, and ***Th
by solution ICP-MS (Goeadow et al., 2015).

2.4 Apatite U-Pb thermochronology

Apatite U-Pb isotopic and trace element analyses were
performed at the SKLODG, IGCAS, using a GeoLas Pro 193-
nm excimer ArF LA system coupled with an Agilent 7500a
quadrupole-based Q-ICP-MS. During Laser Ablation (LA), a
National Institute of Standards and Technology (NIST) 610 SEM
reference material glass was used to optimize the instrumental
parameters. Using OD 306 as an external standard, the QH apatite
standard [~150 Ma, Chew et al. (2016)] was used to verify the
analytical accuracy and return the weighted mean 2°°Pb/?*8U age
of 156 + 4.7 Ma. NIST 612 was used for apatite trace-element
calculation using Ca as the internal standard. In routine analysis,
every 15 samples were followed by two runs of SEM 610, NIST 612,
and OD306 and one run of Durango and QH, with a repetition
of 10 Hz, a laser energy density of 3 J/cm?, and a spot size of
60 pum. Every analysis consists of 30-s background acquisition, 60-s
sample data acquisition, and approximately 60-s blank for flashing.
The fractionation correction and U-Pb ages were calculated using
GLITTER 4.0 (GEMOC, Macquarie University). The Concordia and
weighted mean U-Pb age were calculated using the ISOPLPT/EX
4.15 software package.

2.5 Thermal history modeling

The cooling histories of the pegmatite and granite (KT3,
A102, and A103) were derived using the HeFTy program (v
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2.0.0; Ketcham et al, 2007). The dominant input data are
apatite fission-track spontaneous and induced track densities,
par- Monte
Carlo simulation was used in modeling operation. The model

length-frequency distributions, and kinetic parameters D

was constrained at the start by the ages and closure temperatures
of apatite U-Pb and ZFT in the Koktokay No. 3 pegmatite
and the Aler Granite, respectively. We used the multi-kinetic
fission-track annealing model of Ketcham et al. (2007), and the
initial track length in apatite was set as 16.3 um (Ketcham,
2005). Available AHe and ZHe data were integrated using
the radiation damage accumulation and annealing, with helium
diffusion models (Flowers et al.,, 2009; Gautheron et al., 2013).
The present-day surface temperature is constrained at 20°C
+10°C.

3 Results
3.1 Fission-track analysis

3.1.1 AFT data

Apatite fission-track dating was performed on samples KT3,
A102, and A103. The detailed results are shown in Table 2. For
every sample, the central age is calculated based on 35 grains in
KT3 and 42 grains in A102 and A103. The samples A102 and A103
passed the X2 test [P(xz)—values are 12% and 11.3%, respectively],
indicating a relatively concentrated age of single particles. Their
central ages were determined to be 60.69 + 8.08 Ma (Figure 4b)
and 48.13 + 5.73 Ma (Figure 4c), respectively. Although the sample
KT3 did not pass the X2 test, the dispersion value is 11.8% + 5.2%,
indicating a relatively discrete age of single particles. It may be
caused by the high content of U in pegmatitic apatite (Glorie et al.,
2023; McDannell, 2020). The pooled age was used to replace
the central age in KT3, and its pooled age is 68.78 + 7.22 Ma
(Figure 4a). Mean track lengths of the three samples vary between
11.29 and 13.08 pum (Table 2). They are relatively short confined
track lengths, suggesting more intensive thermal annealing. The

average etch diameter (D) values of the samples range from 1.426

par
to 1.714 pm, which were shorter than those of the Durango apatite
(~1.75 um), indicating relatively weaker resistance to fission-track

annealing (Donelick et al., 2005).

3.1.2 ZFT data

The zircons from the Aler Granite were analyzed using ZFT
(samples A102 and A103). Both of their ZFT ages passed the ¥
test (Table 2). Their central ages are 150.73 + 11.56 Ma (Figure 4d)
in A102 and 145.89 + 8.52 Ma (Figure 4e) in A103. ZFT analysis
predominantly focused on density measurement owing to the lack
of unified standards, while the neglected track length analysis would
be a significant parameter for evaluating the thermal histories. All
the tracks in zircon have the same initial track length (~10 um;
Tagami et al., 1998). Thus, we selected the classical standard of
Garver (2003) and obtained the mean track lengths of 9.97 and
9.88 um in A102 and A103, respectively (Table 2). The track length
in zircon is nearly initial, indicating that the obtained tracks did not
suffer annealing and that the two concentrated ages of ZFT have not
been reset.
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FIGURE 3

Zircon from Aler granite

Sampled porphyritic biotite granite (a), with obtained zircon (b) and apatite (c) grains; sampled graphic pegmatite (d), and obtained apatite (e,f).

™

G

Apatite from Aler granitc |

TABLE 2 Apatite and zircon fission-track results.

Analytical Sample Location No. 28U Dy, Niengtn Mean
methods no. of (ppm)  (um) track
grains length
(um)
KT3 Graphic 35 3,440 17.833 12,560 65.111 61.4 1.426 1.3 x 68.78 + 194 13.08
zone in the 1073 7.22
No. 3 (Pooled
pegmatite age)
AFT A102 Southern 42 663 2.58 2,369 9.222 10 1.54 12 60.69 + 153 11.33
part of Aral 8.08
granite
A103 Southern 42 1,087 4.604 5,030 21.305 23.7 1.714 11 48.13 + 164 11.29
part of Aral 5.73
granite
A102 Southern 34 5,652 188.4 2,381 79.367 205.6 - 7.3 150.1 + 139 9.97
part of Aral 12.9
granite
ZTF
A103 Southern 26 3,775 156.639 1701 70.581 168.6 - 53 154.1 £ 173 9.87
part of Aral 14.8
granite

Note: Ns (p,) and Ni (p;) are the number (density) of counted spontaneous and induced tracks in the external detector, respectively; P (x?) is the probability of obtaining a y* value for v degrees
of freedom, where v = no. of crystals - 1; D, is the long axis of the track etch pit; Ny, is the number of lengths measured.

3.2 (U-Th)/He analysis

Apatite helium ages were measured on pegmatite and granite
(samples KT3 and A102), and zircon helium ages were measured on
granite (samples A102 and A103); all results are shown in Table 3.
The obtained datasets of pegmatite and granite samples show a low
degree of single-grain helium age dispersion. Five apatite grains from
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the pegmatite sample KT3 yielded a weighted mean AHe age of
83.9 + 4.5 Ma, and three grains from the sample A102 yielded an
age of 56.5 + 3.2 Ma. Meanwhile, five zircon grains of the sample
A102 and five zircon grains of A103 produced mean ZHe ages of
65.1 + 3.3 Ma and 64.8 + 3.3 Ma, respectively. Comparison between
(U-Th)/He and fission-track ages within a single sample shows
that dating methods involving a higher isotope closure temperature
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FIGURE 4

Radial plots of apatite FT (a—c) and zircon FT (d,e) ages using the Radialplotter (Vermeesch, 2009).

generally display older corresponding ages. Moreover, all of them are
significantly younger than the Koktokay Pegmatite and Aler Granite
formation (~220 Ma; Wang et al., 2007; Liu et al., 2014).

3.3 Apatite U-Pb data

The apatite grains of KT3 selected for U-Pb dating are
shown in Figure 5a. The analytical spots yielded a Tera-
Wasserburg U-Pb lower intercept age of 176 + 11 Ma (n = 14,
MSWD = 0.41, Figure 5b).

The trace element content of apatite is shown in Table 4. The
apatite Rare Earth Elements (REE) content ranges from 300 to
600 ppm, which is consistent with previous investigations (Zhang,
2001; Cao et al, 2013) and is different from apatite of other
zones in No. 3 pegmatite. In addition, the chondrite-normalized
REE patterns of apatite have obvious negative Eu anomalies, with
Eu/Eu’ratios of 0.16-0.04. According to Masuda et al. (1994) and
Irber (1999), the provided quantitative method is used to describe
the REE distribution characteristic (Table 4; Figure 5¢). The t, t,
and t, values of all apatite are >1.1, and t;>t,>t;, which indicates
that the “quadruple effect” of apatite is most developed in the third
segment (Gd-Ho). All values of t;, and t; 5, > 1.5, implying that
the apatite analyzed have a significant M-type tetrad effect. This
is consistent with the REE distribution features of minerals in the
external zones in No. 3 pegmatite (Cao et al., 2013; Zhang, 2001).
Therefore, the analyzed apatite crystallized during the pegmatitic
magma stage.
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3.4 Thermal history modeling results

All three samples (KT3, A102, and A103) in this study obtained
acceptable [GOF (good of fit) > 0.3] or good (GOF >0.7) thermal
modeling results. Inverse thermal history models are detailed in
Figures 6-8. All the three samples show observed similar cooling
paths (i.e., the best-fit path). They entered the ZHe PRZ in the
Early Cretaceous, followed by prolonged slow cooling since the
Middle Cretaceous. All three samples display a complex three-stage
cooling, and a change in the cooling rate (to a slower rate) can
be observed in the Cretaceous (~120 Ma). The modeling shows an
accelerated cooling between ~170 and 120 Ma, with a cooling rate
of >3 °C/Ma, and subsequent moderate cooling between ~120 and
60 Ma, with a cooling rate of ~1.5 °C/Ma, followed by a slow cooling
rate of <0.5 °C/Ma until the present. Cooling rates of <~0.5 °C/Ma,
~0.5 °C-2.0 °C/Ma, and >~2.0 °C/Ma are defined as slow, moderate,
and rapid, respectively, in an intracontinental setting (based on
empirical values, Wu et al., 2023; He et al., 2022).

4 Discussion

4.1 Cooling history of the Koktokay district
The previous studies on the uplift of high-elevation low-

relief surfaces in the China Altai proposed a rapid cooling

in the Cretaceous (Yuan et al, 2006; Jolivet et al, 2007;
Vassallo et al.,, 2007; Pullen et al., 2020). Our results from the
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TABLE 3 Apatite and zircon (U-Th)/He results.

Sample | Length Widthl| Width2 Radius| FT Std.?%2Th
(um) (um) (um) (um) (mol)

KT3 (Apatite)

Kt3-al 270 83 81 53 0.71 1.35 3.71 x 7.69 5.06 x 2.37 3.64 5.71 58.98 82.70 10.33
X 10716 X 10716 X X
10*15 10*15 10*15 10*18

Kt3-a3 316 147 102 78 0.81 9.07 5.38 x 3.73 1.46 x 9.40 1.13 0.41 73.43 90.78 5.02
X 1071 X 1071° X x
10—14 10—14 10—15 10—15

Kt3-a4 309 146 109 79 0.86 1.29 7.58 x 4.27 1.58 x 1.33 1.60 0.33 73.99 85.61 4.76
X 107" X 107" X x
10*13 1()*14 10*14 10*16

Kt3-a5 411 175 166 106 0.92 1.71 1.01 x 6.92 2.17 x 1.68 2.03 0.40 69.64 75.90 4.14
X 1071 X 1071 X X
10*13 10*14 10*14 10*16

Kt3-a9 307 170 158 97 0.85 1.95 1.13 x 8.21 1.50 x 2.03 2.58 0.42 73.59 86.52 4.69
x 107 x 107" X X
101 1071 04 10716

A102 (Apatite)

A2-4 356 112 103 70 0.78 6.30 3.80 x 1.67 4.41 x 6.10 7.68 2.65 46.68 59.59 243
X 107 X 1071 X X
10*14 10*13 10*15 10*17

A-11 159 117 88 58 0.74 1.73 1.19 x 2.08 6.47 x 1.10 1.51 1.20 38.75 52.41 291
x 107" x 10716 X X
1071 1071 05 107

A-5 263 127 97 69 0.78 1.02 5.98 x 6.31 4.92 x 5.80 7.65 0.06 43.63 55.88 3.30
X 1071 X 1071¢ X x
10—13 10—15 10—15 10—17

A102 (Zircon)

Z-6 346 133 112 78 0.84 1.03 5.88 x 1.55 2.36 x 7.40 9.07 0.15 53.84 64.17 3.60
x 108 x 107 X X
101 10712 108 | 10715

Z-7 177 86 62 46 0.73 2.62 1.49 x 6.78 1.05 x 1.56 1.93 0.26 43.75 60.21 3.31
X 1078 X 107 X x
o2 1071 08 | 107

Z-8 177 94 87 54 0.77 4.21 2.40 x 8.13 1.25 x 3.33 4.15 0.19 58.92 76.72 4.27
x 1078 x 107 x x
10*12 10*13 10*13 10*15

Z-10 251 117 108 69 0.82 5.48 3.12 x 9.99 1.53 x 4.42 5.62 0.18 60.10 73.50 411
X 1071 X 1071 X X
10*12 10*13 10*13 10*15

Z-11 356 99 85 61 0.79 7.04 4.01 x 1.26 1.93 x 4.39 5.58 0.18 46.48 58.52 3.27
x 10 x 107 X X
10—12 10—12 10—13 10—15

(Continued on the following page)
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TABLE 3 (Continued) Apatite and zircon (U-Th)/He results.

10.3389/feart.2025.1573046

Sample | Length Widthl| Width2 Radius| FT 232Th | Std.>*°Th
(um) (um) (um) (pm) (mol)| (mol)

A103 (Zircon)

Z-1 376 84 77 55 0.77 | 7.91 451 x 118 1.81 x 5.58 7.11 0.15 5290 | 68.71 | 3.87
X 1013 X 1014 X X
10-12 10-12 10-13 10-15

7-2 440 103 86 64 0.80 | 1.56 8.89 x 3.48x107%5.27x10* | 1.41 1.81 0.22 66.68 | 8296 | 4.59
X 103 X X
10—11 10—12 10—14

7-3 277 103 83 60 079 | 455 2.59 x 1.49 227 x 3.45 4.44 0.33 5475 | 69.32 | 3.76
X 10 X 10 X X
10'12 10—12 10—13 10—15

Z-4 185 86 60 46 0.89 | 329 1.88 x 2.73 435x 1.99 2.54 0.08 46.18 | 5206 | 2.98
X 1013 X 1071 X X
10-12 10-13 10-13 10-15

Z-5 243 116 107 68 0.82 | 4.86 2.77 x 9.27 1.42 x 3.44 438 0.19 5266 | 64.60 @ 3.61
X 1013 X 1014 X X
10'12 10—13 10—13 10—18

Note: FT is the ejection correction after Farley et al., 1996.
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FIGURE 5
chondrite-normalized REE pattern (c).

Back-scattered electron (BSE) images of the KT3 apatite grains for U-Pb dating (a); Tera—Wasserburg diagram for apatite U-Pb dating (b); and the
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Koktokay No. 3 pegmatite and Aler Granite show a history
of relative intact cooling/exhumation, roughly consistent with
those of the whole China Altai, which shed light on the
preservation of rare-metal pegmatite groups. Given the exhumation
scenarios of the Koktokay, we further provide constraints on the
preservation of the rare-metal pegmatite ore deposit and discuss the
potential of pegmatite-type rare-metal mineral exploration in the
Koktokay region.

4.1.1 Middle Jurassic to Cretaceous
(~170-120 Ma) rapid cooling of Koktokay

As described above, a significant cooling phase in the
Mesozoic in Koktokay district is recorded by the thermal history

Frontiers in Earth Science 10

modeling of our pegmatite and granite samples. This phase
of the cooling prevails within the whole Altai, and numerous
studies have even documented consistent low-temperature
cooling ages from eastern Kazakhstan to Lake Baikal in south-
eastern Siberia in the Mesozoic (Glorie et al., 2023; Glorie and
De Grave, 2016; McDannell et al, 2018; Glorie et al., 2012;
Vassallo et al., 2007). Previous low-temperature thermochronology
studies in the Altai shows that different Early Jurassic and
Cretaceous AFT ages were obtained from the Mongolia Altai
(McDannell et al., 2018; Jolivet et al., 2007; Vassallo et al., 2007).
Siberia Altai-Sayan also experienced a rapid cooling phase in
the Jurassic period (Glorie et al, 2012). The apatite fission-
track thermochronology revealed a cooling phase in the Late
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FIGURE 6

Results of HeFTy thermal history modeling of the sample KT3 from the No. 3 pegmatite. Green and purple colors show accept-fit solutions (goodness
of fit >5%) and good-fit solutions (goodness of fit >50%), respectively; the rectangular boxes represent the time—temperature constraints; the best-fit
path is plotted with a black curve. (a) AFT: Apatite fission track; (b—f) AHe: Apatite (U-Th)/He; GOF: good of fit; Old: The age (Ma) of the oldest fission
track that has not yet been fully annealed.
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Results of HeFTy thermal history modeling of the sample A102 from the Aler granitic batholith. Green and purple colors show accept-fit solutions
(goodness of fit >5%) and good-fit solutions (goodness of fit >50%), respectively; the rectangular boxes represent the time—temperature constraints;
the best-fit path is plotted with a black curve. (a) AFT: Apatite fission track; (b—d) AHe: Apatite (U-Th)/He; (e—i) ZHe: zircon (U-Th)/He; GOF: good of fit;
Old: The age (Ma) of the oldest fission track that has not yet been fully annealed.

Jurassic-Cretaceous (De Grave et al, 2013; Guenthner et al,
2013). All these results investigated from the Altai and adjacent
regions imply that this area experienced accelerated cooling
during the Mesozoic, while the exhumation process differs
spatiotemporally (Wu et al., 2023).

In the Early Mesozoic, there were active intracontinental
fault movements in the China Altai. The intracontinental A-type
subduction and obduction nappe were associated with strong
magmatic activities. A biotite “°Ar/*’ Ar plateau age of 186 Ma was
obtained for the Kangbutiebao granite, and a whole-rock Rb-Sr
isochrone age of 172.8 Ma was determined for the Aweitan two-
mica granite (Hu et al., 2000). These ages reflect tectonic-magmatic
mineralization in 170-120 Ma, corresponding to the Cretaceous
or late Yanshan period, consistent with the Aler Granite ages of
150.1 + 12.9 Ma (Figure 4d) and 154.1 + 14.8 Ma (Figure 4¢) from
ZFT ages and the Koktokay No. 3 pegmatite of 176 + 11 Ma from
apatite U-Pb age (Figure 5b). Moreover, the muscovite granite and
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altered biotite granite in Koktokay district also reported **Ar/*’Ar
plateau ages of 181 Ma and 177 Ma, respectively (Shen et al., 2022).
The Early Mesozoic ages of these geobodies are all derived from
dating methods using moderate closure temperatures (<350 °C). It
indicates that Koktokay district, even the middle Altai, cooled to
a moderate temperature range until the Early Mesozoic. Actually,
during the formation of the Koktokay Pegmatite Group and the
Aler Granite (~220-210 Ma), the region experienced the end stage
of Permian-Triassic high-temperature retrograde metamorphism
(Tong et al., 2013; Tong Y. et al,, 2014) and the onset of extensive
hydrothermal events (Glorie et al., 2023; Zhou et al., 2015a). This
makes it exceptionally difficult to constrain the preservation of
pegmatite from magma consolidation to the Late Cretaceous period.
The rapid cooling rate of >3.0 °C/Ma between approximately 170
and 120 Ma (Figure 6) would be caused at least by the combined
effect of the following reasons: 1) in response to the large-scale
cooling event of the Mesozoic Altai, which was inferred to be a
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FIGURE 8
Results of HeFTy thermal history modeling of the sample A103 from the Aler granitic batholith. Green and purple colors show accept-fit solutions
(goodness of fit >5%) and good-fit solutions (goodness of fit >50%), respectively; the rectangular boxes represent the time—temperature constraints;
the best-fit path is plotted with a black curve. (a) AFT: Apatite fission track; (b—f) ZHe: zircon (U-Th)/He; GOF: good of fit; Old: The age (Ma) of the
oldest fission track that has not yet been fully annealed.

distant effect from the North China-Eurasia collision (Buslov, 2011;
De Grave and Buslov, 2007) or closure of the Mongolo—Okhotsk
Ocean (Zorin, 1999); 2) a relatively high temperature (>350 °C) had
been maintained by the extensive hydrothermal events in Koktokay
district (stated at ~170 Ma; Glorie et al., 2023; Zhou et al., 2015b).
This event had contributed to the mineralization of hydrothermal
deposits such as Au-Cu-Pb-Zn (Liu et al., 2014; Zheng et al., 2017).
Meanwhile, it ceased at the latest at ~150 Ma recorded by granite
apatite U-Pb (Zhou et al., 2015b). Subsequently, the temperature
rapidly cooled down; 3) the crystallization and cooling processes
of pegmatitic melt are controversial. One speculation is that the
internal temperature of pegmatite remained above the liquidus line
until the Jurassic. The thermal relaxation or cooling of the rock mass
itself may also contribute to the Early Jurassic apatite U-Pb age of
the pegmatite sample. Both reasons 1) and 2) are not conductive to
the preservation of rare-metal pegmatite, especially reason 2), where
extensive hydrothermal activity is destructive to the active element
ore such as Li-Rb-Cs ore. Therefore, the stage ranging from Middle
Jurassic to Early Cretaceous is not conducive to the preservation of
Koktokay rare-metal pegmatites and may even damage the deposit
to a certain extent.
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4.1.2 Middle to Late Cretaceous (~120-66 Ma)
moderate rate of exhumation

As shown in Figure 9, a cooling/exhumation episode since the
Middle to Late Cretaceous, which is also a widespread cooling event
in the China Altai, is recorded in our samples. The cooling rates
we obtained are more consistent with those reported in previous
studies, rather than the extremely rapid cooling rates of the Early
Cretaceous. It indicates complete consolidation of the pegmatite
without regional hydrothermal activity. Notably, by summarizing
the low-temperature thermochronological data on the whole Altai
in the Mesozoic (Glorie et al., 2023), it was found that, at higher
elevations (>1,500 m), such as the middle-northern China Altai
and Siberia Altai, AFT data showed concentrated ages with narrow
fission-track distributions (De Grave et al., 2008; De Grave et al.,
2009; Jolivet et al., 2007; Yuan et al., 2006), suggesting rapid cooling
rates. Meanwhile, a range of apparent AFT ages and AHe age of
pegmatite (>75 Ma) can be observed in moderate topographic relief
of Koktokay, reflective of slow cooling at low elevations (<1,500 m).
As these rapid Late Cretaceous cooling ages are preserved at high
altitude, it indicates that a younger, secondary exhumation event was
limited to preserve the Late Cretaceous AFT ages.
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FIGURE 9
Interpreted thermal history of the Koktokay Pegmatite Group
generated in the HeFTy modeling. It is derived from the weighted
average path of each sample.

Furthermore, for Koktokay district located in the east of the
Kalaxianger Fault, contrasting AFT data are evident on either
side of the Kalaxianger Fault (Figure 1). The Kalaxianger dextral
transpressional fault is the largest NNW=-SSE fault in the China
Altai. The average strike of this NE dipping fault is 165° with
a dip angle of 65°-85° (Fu et al, 2010). K-Ar (~276 Ma) and
YAr-Ar (~282Ma) ages from an associated pseudotachylite
indicate that the earliest movement of this fault can be traced
back to at least the Permian (Briggs et al, 2009). The samples
taken to the east of the Kalaxianger Fault recorded rapid Late
Cretaceous exhumation, while samples to the west did not. Away
from the WNW-ESE-striking faults associated with the Irtysh
Shear Zone, Late Jurassic-Early Cretaceous thermal processes
underwent gradual cooling. The differential factor of AFT ages
and cooling with respect to the Kalaxianger Fault is observed
in the Late Mesozoic as samples from the more uplifted west
of the fault preserved shorter apatite mean fission track lengths
(<13 um; Glorie et al,, 2023), suggesting preservation of a single
substantive cooling event in the Late Cretaceous, as opposed to
a mixed uplift history including later differential uplift during
the Cenozoic (Fu et al., 2010; Yuan et al., 2006). Therefore, it is
considered that the Kalaxianger Fault was active during the Late
Cretaceous (Glorie et al., 2023). Due to the differential uplift,
topography preserved to the west of the Kalaxianger Fault is lower
than that to the east, which, to some extent, caused erosion and
exhumation of shallow pegmatite in the Koktokay district. Late
Cretaceous exhumation is coeval with a series of far-field tectonic
events, although the precise cause of reactivation within the Altai
remains unclear. This exhumation coincided with the collapse of the
Mongol-Okhotsk Orogen to the east and slab rollback in the Tethys
Ocean to the south, both occurring approximately 100-80 Ma
(Yin et al., 2019; Glorie et al., 2019; Ma et al., 2013; Metelkin et al.,
2012; Dilek and Furnes, 2009; Jolivet et al., 2009). These events are
potential drivers of stress propagation into the continental interior,

Frontiers in Earth Science

15

10.3389/feart.2025.1573046

leading to reactivation and exhumation. However, the current
data do not clarify the extent to which these factors influenced
reactivation within the Altai.

4.1.3 Cenozoic slow exhumation process

Following the Mesozoic, there was a slow and slight exhumation
in the studied area (Figure 9). Many scholars consider that much
of the modern topography was formed in response to deformation
caused by the India-Asia collision (Molnar and Tapponnier, 1975;
Sobel et al., 2006). The Altai Mountains experienced enhanced stress
caused by the India-Asia collision, which reactivated preexisting
basement structures and led to extensive uplift (Yuan et al., 2006;
Jolivet et al., 2007; Vassallo et al., 2007). Moreover, the Cenozoic
deformation and stable isotope evidence also support surface
uplift since the early Oligocene (Caves et al., 2017; Caves et al.,
2014; De Grave and Buslov, 2007). However, on the one hand,
the low elevation (<1,500 m) of the China Altai orogenic belt
is relative to other ranges of whole Altai. The majority of pre-
Mesozoic basement rocks in Altai, and even across Central Asia,
show evidence of Mesozoic low-temperature thermochronology,
whereas Cenozoic rapid cooling and exhumation are observed only
in very localized regions with high elevation (Wu et al., 2023;
He et al., 2022; Gillespie et al., 2021; Jepson et al., 2018; Wang et al.,
2007). On the other hand, crustal deformation alone is not a
sufficient and necessary condition for driving exhumation, and the
topographic and denudational evolution of orogenic belts are also
strongly coupled with climate (Jepson et al., 2021; Pullen et al.,
2020). Aridity has been connected to mountain building in CAOB
since the Late Cretaceous (Jepson et al., 2021), which was also
marked by the sedimentary records in the adjacent Junggar basin.
Since the Late Cretaceous, the Junggar basin has been affected by
global climate cooling and uplift of the Tibetan plateau, and the
degree of dryness has been continuously intensified (Wang et al.,
2019). On the contrary, during the Late Triassic to Early Jurassic,
humidity is thought to have reached a maximum in the Junggar
basin and adjust area, as evidenced by the retrogradation of
deltaic and fluvial facies and the expansion of deep-water facies
(Yang et al., 2015). The recorded humid climate coincided with
the large-scale Mesozoic exhumation in the Koktokay area, while
the arid climate limited denudation during the Cenozoic. The
earliest Paleogene ages of (U-Th)/He in this study also contribute
to minimal denudation in the China Altai since the Late Cretaceous
(Caves et al., 2014; Caves et al., 2017), which is conductive to the
preservation of the Koktokay Pegmatite Group.

4.2 Estimation of Koktokay rare-metal
pegmatite group exhumation

The uplift and exhumation history of deposit is significant
evidence to estimate the potential for further deep exploration.
Thermal history modeling has been used to estimate the exhumation
rates and erosion thickness of the Koktokay Pegmatite Group.
Although the Koktokay Pegmatite apatite U-Pb age limits the rapid
cooling since the Late Jurassic (~176 Ma; Figure 5a), the “*Ar/*Ar
plateau ages of muscovite granite and altered biotite granite in the
Koktokay area support this onset of cooling (181 Ma and 177 Ma,
respectively; Shen et al., 2022). The recorded ages of the above dating
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tools, with closure temperatures of ~400 °C, probably fall within
a delicate evolutionary range of the fluid stage before complete
crystallization of pegmatite (Thomas and Davidson, 2015; London,
2018). In addition, the Early Jurassic extensive hydrothermal event
in Koktokay (Glorie et al., 2023; Zhou et al., 2015b) interfered
with the calculation of exhumation in this stage. Therefore, we
here calculate exhumation rates since ~150 Ma with constraints
by ZFT ages (Figures 4d,e).

The constant geothermal gradient is assumed to be 30°C +
2°C/km. We utilized various low-temperature geochronological
tools to reconstruct the thermal history of the Koktokay
Pegmatite Group area, and the predominant exhumation stage
in the Cretaceous has been identified. Based on the obtained
thermal history paths (Figure9), we estimated the maximum
and minimum temperature changes of each stage, divided by the
assumed geothermal gradient, to derive the exhumation thickness.
Subsequently, we divided the exhumation thickness by the duration
of rapid uplift to estimate the rate. The results indicate a temperature
change of ~110°C + 20°C, an exhumation thickness of 3.6 +
0.65 km, and an exhumation rate of 0.046 + 0.008 km/Ma during
the Cretaceous. After this time, there is a final significant cooling
stage between the Paleocene and the Eocene, with a temperature
change of 25 °C + 5 °C, an exhumation thickness of 0.83 + 0.16 km,
and an exhumation rate of 0.027 + 0.005 km/Ma. Therefore, the
total thickness of exhumation in the Koktokay Pegmatite Group
area since ~150 Ma is approximately 4.43 + 0.81 km, which is
shallower than the crystallization pressure constrained by fluid
inclusions in the Koktokay Pegmatite (6.8—-11.4 km, Zhou et al,
2015b). The reason for this difference is the lack of calculation of the
exhumation thickness during the Late Triassic to Early Cretaceous
in the Koktokay Pegmatite Group.

Generally, the calculated exhumed thickness of the Koktokay
Pegmatite Group is not conducive to the preservation of rare-
metal pegmatites. Furthermore, the Jurassic extensive hydrothermal
events and potential exhumation from 220 Ma to 150 Ma also
contribute to the damage of the pegmatite group. According
to the mineralization model of pegmatites, the rare-metal-
mineralized pegmatites usually formed at the distal end in the
pegmatite group, especially Li-Rb-Cs mineralized pegmatite.
Meanwhile, the Be-mineralized pegmatite formed near the end
within the pegmatite group (London, 2018; Dill et al., 2012). The
preservation history of the Koktokay Pegmatite coincided with the
exploration situation, that is, the scale of Li-Rb-Cs-type pegmatite
in Koktokay is limited, while that of Be-type pegmatite is huge.
In addition, thermochronology study suggest a bad prospect for
Li-Rb-Cs-type pegmatite exploration in the Late Triassic Koktokay
Pegmatite Group.

5 Conclusion

In this contribution, the samples of the No. 3 pegmatite and the
Aler granitic batholith are collected and a series of low-temperature
thermochronology analyses and thermal history modelling were
applied to explore the denudation and exhumation history of
the Koktokay rare-metal pegmatite group and further to provide
guidance for subsequent exploitation in this region.
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It clearly shows a consistent younger trend of our low-
temperature thermochronology apparent ages from the high to low
closure temperature of different thermochronology tools, with an
apatite U-Pb age of ~176 Ma, a ZFT age of ~150 Ma, a ZHe age
of ~70 Ma, an AFT age of ~60 Ma, and an AHe age of 50 Ma.
The thermal history modeling results present that the Koktokay
Pegmatite Group went through two predominant phases of rapid
cooling, occurring in the Middle Jurassic to the Early Cretaceous
and the Middle-to-Late Cretaceous. The earlier phase is coupled with
the cooling event in the whole Altai and the extensive hydrothermal
event in the Koktokay area. The disturbances caused by multiple
thermal events make it impossible to calculate exhumation thickness
during this stage, but they can be determined to be harmful to the
preservation of pegmatite. The later phase would be related to the
activity of the Kalaxianger Fault and a series of far-field tectonic
events (such as the collapse of the Mongol-Okhotsk Orogen to
the east and slab rollback in the Tethys Ocean to the south). A
total of ~4.43 + 0.81 km has been denuded since ~150 Ma, with
the Middle-to-Late Cretaceous period accounting for the majority
of denudation. Overall, the denudation of the Koktokay Pegmatite
Group is relatively intense, which is unfavorable for the preservation
of rare-metal pegmatite bodies.
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