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Introduction

Artificial Intelligence (AI) is a term used for systems that can perform humanlike
cognitive functions like learning, perception, interpretation and problem solving. Al
systems learn and improve by analyzing large datasets, and they are powered by
algorithms, computing power, and specialized hardware. However, introduction of Al in
healthcare comes with its own biases and disparities. There is emerging evidence that the
Artificial Intelligence (AI) models do not transcend bias—in fact they learn to inherit it. The
models seem to accept missing data and its structural inequities to shape what they see-rather
what they do not see. In the world of signal detection and assessment, such data inadequacies
can pose much more than a simple technical flaw. This paper investigates the challenges and
implications of adopting AI when its promise is matched by its shortcomings.

There is emerging evidence that these systems may not only reflect clinical knowledge
but also reproduce or even amplify societal biases when generating medical
recommendations. The recent study by Omar et al. (2025) provides an evaluation of
sociodemographic biases in clinical recommendations generated Artificial Intelligence (AI)
tools. By analyzing over 1.7 million outputs across nine models using standardized
emergency department cases, the authors identified consistent and clinically unjustified
differences in model recommendations based solely on patient sociodemographic
characteristics. For instance, cases labeled as Black or unhoused were more likely to
receive recommendations for urgent care, mental health referrals, or invasive
interventions—despite identical clinical presentations. These disparities raise concerns
that AI tools, when trained on historically biased healthcare data, may perpetuate or
even amplify existing imperfections in the data. What went wrong is not rooted in malicious
algorithms or ill intent. This phenomenon highlights a core principle regarding Al tools:
model outputs inherently reflect the structure and biases of, and gaps in, the data used to
train them (Rejeleene et al., 2024).

Another interesting study mentioned that the data sources used to develop clinical AI
models were affiliated with high income countries or with specific regions. Over half of the
databases used to train models came from either the U.S. or China (Celi et al., 2022).
Repeatedly feeding models with data that lack diversity i.e. poorly - represented populations
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and often curated from restricted clinical settings, can severely limit
the generalizability of results and yield biased Al-based decisions
(Futoma, et al., 2020).

Other studies show a number of socio-cultural factors that affect
patient behaviors and decisions making, contribute towards non-
compliance to drugs, and eventually health outcomes (Oates et al.,
2020). Of these factors, cultural and religious beliefs are one of the
most recognized (Leporini et al.,, 2014). For example, a study based
on review of empirical articles (Brown et al., 2022), highlighted how
beliefs
pharmacotherapy could be a significant contributor to poor

the cultural and religious of Jamaicans about
adherence rates in patient living with non-communicable diseases.

These studies raise concern about the adoption and applicability
of Al models (trained on data from specific regions) in countries that
operate under different medical and healthcare structures.

In healthcare, where data are generated within systems shaped
by structural disparities and missing information, the consequences
are especially acute. It can shape how Al systems and tools see
patients and more critically, how they do not see them. This
underscores a critical risk for the increasing proposals to use Al
in pharmacovigilance (PV) (Sahni and Carrus, 2023): when key
information is missing or unevenly represented, AI-driven tools may
fail to detect important safety signals or point out spurious ones. It
may also propagate those distortions into downstream assessments

of causality and regulatory actions.

Implications of using Al systems in
pharmacovigilance

While AI is transforming key areas of drug development (Li
et al,, 2025; Zhu and Ouyang, 2022) including target identification,
clinical trial optimization, and real-world evidence generation, it
also might introduce critical vulnerabilities, particularly through its
amplification of pre-existing biases rooted in missing or incomplete
data. In PV, where the stakes are high and decisions must reflect
nuanced clinical and demographic realities, such biases can
compromise both the detection of safety signals and subsequent
causality assessments.

Drug safety signal detection depends, particularly in the post-
marketing setting, on the ability to identify emerging risks from large
volumes of real-world data where diverse populations and long-term
outcomes come into focus. However, biased, missing or incomplete
patient data can significantly distort this process, where early signal
detection relies on recognizing subtle but meaningful patterns across
diverse patient groups. Unequal access to care among low-income, rural,
or marginalized communities results in fewer documented interactions
with the healthcare system, making these groups underrepresented in
Electronic Health Records (EHRs) and spontaneous reports. For
example, social risk factors such as housing instability, domestic
violence, or mental health struggles—are routinely underreported or
omitted altogether in clinical documentation (Cantor and Thorpe, 2018).
These missing contextual details can critically affect both drug response
and safety profiles. Underreporting of risk factors that might play a
confounding or effecting modifying role, further narrows the context
needed to assess safety concerns.

The effectiveness of AI-driven signal detection depends not only
on the volume of data available but also on the completeness and
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representativeness of that data across populations. When real-world
data sources such as EHRs, insurance claims, or spontaneous
adverse event reports—are unevenly distributed, AI models are
more likely to favor well-documented groups while overlooking
or misclassifying risks in underrepresented populations. For
example, individuals from communities with limited access to
healthcare or low trust in medical institutions may report fewer
ADRs due to linguistic, cultural, or socioeconomic barriers. This
underreporting can lead to false assumptions of safety in these
groups. Similarly, when clinical trials lack demographic diversity,
early warning signs of subgroup-specific risks may go undetected.
Certain adverse events are known to occur more frequently in
specific racial or genetic populations for instance, severe
cutaneous reactions associated with HLA-B*1502 are significantly
more common in East Asian patients (Chen et al., 2011). If such
subgroups are underrepresented in the data used to train AI systems,
critical safety concerns may be missed, delaying updates to product
labels, prescribing guidelines, and risk mitigation strategies.
Moreover, clinician documentation practices can reflect
implicit biases, with varying levels of detail or emphasis
depending on the patient’s background (Sabin, 2022). The
fragmented nature of health data across different care settings
also limits the completeness of patient histories. Regulatory
constraints, though essential for privacy, may further impede
access to attributes like race or socioeconomic status—precisely
the variables needed to detect and mitigate bias. Together, these
issues might result in distorted or incomplete safety signals.
Compounding this problem, AI models trained on biased data
may appear to perform well when evaluated globally but fail in
underrepresented subgroups. For example, a model may
demonstrate high specificity—correctly identifying
in majority populations—while exhibiting low

true
negatives
sensitivity in detecting true positives among minorities. This
imbalance might create a false sense of model reliability and
masks risk precisely where it is most likely to go undetected
(Obermeyer et al., 2019).

When signals are distorted at the detection stage, the
downstream impact on causality assessment can be profound.
Causality assessment relies not only on the signal itself but on a
comprehensive understanding of case-level detail, confounding
variables, and background incidence rates as well as many other
streams of evidence. The decision-making already involves complex
probabilistic reasoning (Hammad et al., 2023; Hammad and Davies,
2025) and using Al system with missing data can obscure key
temporal associations, omit co-medications or comorbidities, and
reduce the ability to apply structured algorithms or clinical
judgment with confidence. This, in turn, can lead to delayed or
incorrect conclusions about a product’s benefit risk profile either
failing to act when necessary or acting on misleading information,
which could divert resources or erode trust.

Discussion

Successful integration of Al into PV workflows requires more
than algorithmic sophistication. It demands a deliberate focus on
equity, transparency, and contextual relevance. Missing data must
not be treated as a minor technical nuisance. Rather it is a driver of
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analytic misjudgment and a potential source of harm. Addressing
this challenge calls for systematic bias auditing, tailored model
calibration, and governance structures that place patient safety at
the forefront.

While the challenges posed by missing data and bias in AI-
driven signal detection and causality assessment are serious, they are
not insurmountable. Acknowledging the problem is the first step;
the next is to take meaningful action across multiple fronts. If the
promise of AI in PV is to be fully realized, we must invest in
coordinated action across data infrastructure, modeling approaches,
and workforce development. Improving the quality and
completeness of claim, EHRs, and real-world data should be
This staff  in
documentation practices and promoting interoperable data-

sharing frameworks across healthcare systems and insurers.

prioritized. includes  training consistent

Although such systemic changes are time-consuming, they are
necessary to ensure that all patients are represented in the data
used for drug safety evaluation. The question is whether the rapid
pace of Al adoption in drug safety can afford to wait. In the shorter
term, Al and statistical methods should be adapted to better handle
missing data and adjust for known biases.

Regulators are increasingly aware of these challenges and already
taking steps in the right direction. FDA and EMA frameworks for
of data
completeness, transparency, and bias mitigation. FDA’s guidance

real-world evidence” emphasize the importance
on Al and machine learning in drug development” calls for rigorous
documentation, ongoing monitoring, model validation, and ethical
safeguards to ensure Al use supports patient safety. Guardrails such
as model explainability, independent audits, and human review—are
critical to ensuring that AT complements rather than compromises
PV (Wiens et al., 2019).

Lastly, a prepared workforce is critical (Hammad et al., 2023).
PV professionals, data scientists, and clinicians must be equipped to
recognize the limitations of AI models and interpret outputs in
context. Educational initiatives, including organization-sponsored
training on AI bias and data equity, should be integral to any
implementation strategy. Online platforms like Coursera and
LinkedIn Learning offer relevant training programs, and
companies should consider sponsoring staff participation as part
of responsible adoption planning. AI can be one of the most
powerful tools in drug safety, but only if we ensure it sees the
full picture. The promise of Al in PV hinges on our ability to teach it

to see the whole picture; garbage-in truly is garbage-out. We must

1 https://www.fda.gov/science-research/science-and-research-special-

topics/real-world-evidence

2 EMA’s Guidance: Journey towards a roadmap for regulatory guidance on
real-world evidence (2025) https://www.ema.europa.eu/en/documents/
other/journey-towards-roadmap-regulatory-guidance-real-world-

evidence_en.pdf

3 FDA's Center for Drug Evaluation and Research (CDER) (2025). Using
Artificial Intelligence and Machine Learning in the Development of Drug
and Biological Products https://www.fda.gov/about-fda/center-drug-

evaluation-and-research-cder/artificial-intelligence-drug-development
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commit to building systems in which no patient—and no safety
signals are left out of the data that drives tomorrow’s PV.
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