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A hybrid PSO-AVOA framework
for patient-reported drug
prioritization with enhanced
exploration and exploitation

Manickavasagam Suruthi ® and Narayanan Ganesh”*

School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India

Introduction: Patient-generated drug reviews are becoming increasingly
available and serve as a rich source for computational drug prioritization.
Methods: In this study, we developed a Hybrid Particle Swarm-Enhanced African
Vulture Optimisation Algorithm (Hybrid PSO-EAVOA) that fosters the
development of better balances between the exploration and exploitation of
which the framework uses the improved opposition-based learning, Levy
flights, and elite preservation approaches. In the framework, multiple evaluation
Criteria are accommodated, recovering value in the form of an overall single-
objective optimization scheme, where effectiveness, side-effects, and
consistency of reviews were compiled for clinical significance and combined
by a weighted-sum fitness function. To validate the experiment using a large-
scale dataset of drug reviews obtained from the Drugs Side Effects and Medical
Condition dataset sourced from Drugs.com in Kaggle.

Results: Hybrid PSO-EAVOA performed a benchmark comparison against five
state-of-the-art metaheuristic algorithms (PSO, EAVOA, WHO, ALO, and HOA)
using varying iterations as runs. In each comparison, Hybrid PSO-EAVOA achieved
superior or better convergence speed, robustness, and quality of solutions.
Discussion: The specific method of weighted-sum aggregation was used in this
study, the framework offered could be easily compatible with other forms of
aggregation. Hybrid PSO-EAVOA demonstrates strong potential for broader
application in fields such as pharmacovigilance, clinical decision support, and
drug re-purposing. The dataset is publicly available on Kaggle Drugs Side
Effects and Medical Condition and all source code for parameter settings and
preprocessing scripts is publicly available at the GitHub repository https://
github.com/suruthi-m/Hybrid_PSO_EAVOA.

KEYWORDS

hybrid optimization, particle swarm optimization (PSO), enhanced African vulture
optimization algorithm (EAVOA), drug prioritization, clinical decision support
systems (CDSS), precision medicine

1 Introduction

Personalized healthcare is evolving and data-driven, intelligent decision-support
systems have become increasingly important. Electronic health records, user-sourced
reviews and metadata regarding drugs provide many opportunities and challenges in
optimizing drug selection (1). Developing personalized medication decisions requires
assessing several variables, including efficiency, side effects, comorbidities,
demographic characteristics and user notes. Rule-based (or simple statistical model)
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approaches typically will not work well for the complexities and
high dimensionality of real-world clinical scenarios, especially
with incomplete or heterogeneous data sources (2, 3). This
complexity has created interest in applying artificial intelligence
(AI) and nature-inspired metaheuristics algorithms to the drug
recommendation problem. The clinical goals and objective
functions to model drug choice as a multi-criteria optimization
problem while considering the variability in response to
individual drugs. In addition, while categorically textual and
non-linear data types (like drug treatment classes, side effect
summaries and the sentiments of users) have to realize that
normal recommender systems may not always apply to the
clinical selection of drugs. Collaborative filtering and supervised
learning techniques were successfully applied in types of
industries such as e-commerce (4), but they require labelled data
and rely on static user preferences and do not perform well in
sparsely populated or dynamically changing medical
environments (5).

Addressing the limitations involves, metaheuristic optimization
algorithms have recently emerged as popular alternatives due to
their ability to conduct exploration in complicated and nonlinear
search spaces without imposing gradient information. Nature-
inspired algorithms, like Particle Swarm Optimization (PSO) (6),
Ant Lion Optimization (ALO) (7) and Enhanced African Vulture
Optimization Algorithm (EAVOA) (8) are showing remarkable
results across a wide range of applications in the areas of feature
selection, image segmentation, drug discovery and scheduling
problems. The design of nature-inspired algorithms integrates the
trade-off between global exploration and local exploitation, which
is beneficial in high-dimensional search spaces. Current
improvement designs such as hybridization strategies and
adaptive control methods continue to enhance such metaheuristic
optimization algorithms’ convergence and performance (9, 10).

Despite these advancements, there is still little to no dedicated
research that applies these algorithms straight to real clinical data
for personalized drug recommendation. Indeed, most studies
currently rely on purely synthetic benchmark datasets, or study
the algorithms under ideal situations that do not represent the
complexities of real patient data. Moreover, few methods even
take into account multiple evaluation metrics—such as drug
effectiveness (user rating), side effect severity (side effect
descriptions) and strength of consensus (number of reviews)—in
a unified, healthcare-oriented optimization framework. This
study aims at bridging the gap, this work presents the Hybrid
Particle Swarm Optimization-Enhanced African Vulture
Optimization Algorithm (Hybrid PSO-EAVOA) and uses it for
intelligent drug choice using a real clinical dataset from Drugs
Side
Drugs.com in Kaggle (11). The real dataset contains abundant

Effects and Medical Condition dataset sourced from

information including normalized user ratings, patient-and
drug-related features, category- and class-based information and
side effect descriptions. The Hybrid PSO-EAVOA combines the
global search optimization potential of PSO and the feeding
behaviour of EAVOA with methods in the literature such as
Levy flight-based mutation techniques (12), oppositional-based
learning (13) and dynamic parameter selection (14).
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The proposed method constitutes several key innovations that
improve the solution to the challenging problem of personalized
drug selection. The first innovation is a custom multi-criteria
fitness function that assesses subsets of drugs from three
important healthcare perspectives: high therapeutic efficiency
(provided by average user ratings), low adverse effects (indicated
by side effect length), and high degree of user consensus
(measured by the number of reviews). This means it will allow a
fit fitness function to produce drug selections, which will offer a
more accurate prediction of clinical outcomes. The second
innovation to ensure population diversity, therefore minimizing
premature convergence, is the introduction of Levy flight
perturbations that make the algorithm capable of long-distance
moves in the solution space, consequently improving the global
search capabilities of the algorithm. A third innovation is that
the method employed adaptive inertia weights and acceleration
coefficients to progressively realize the advantages of inertia and
balance exploration (in the early iterations) with exploitation (in
the later A fourth
opposition-based learning during the initialization of the

iterations). innovation is the use of
algorithm to facilitate an initial population of dissimilar
individuals, showing faster convergence. Finally, the algorithm
employs elite preservation and restart strategies to carry the best
solutions from generation to elite preservation and to be able to
recover from being stuck (through re-entrenchment) by bringing
back diversity into the search space. Together, these advances
form a stronger, more adaptable and clinically relevant
optimization framework for drug recommendation.

To evaluate the efficiency of the proposed hybrid algorithm, a
large-scale experimentation was carried out over multiple runs.
The proposed hybrid is compared to five already established
nature-inspired approaches, Enhanced EAVOA (15), Particle
Swarm Optimization (PSO) (16), Wild Horse Optimizer (WHO)
(8), Ant Lion Optimizer (ALO)
Optimization Algorithm (HOA) (18), These approaches are

(17) and Hippopotamus

selected and drawn from the literature based on the
performance parameters. The experimental assessment focused
best

consistency in selecting effective drug subsets in a common way

on convergence characteristics, fitness values and
through the iteration process. Through empirical evidence, the
hybrid PSO-EAVOA outperformed the existing baselines in
both robustness and solution quality, while providing superior
convergence time and probability-based suggestion quality.

In this paper, Hybrid PSO-EAVOA, for multi-criteria drug
prioritization. The rapid convergence capability of PSO and the
of EAVOA are

amalgamated in this framework and are further reinforced by

adaptive exploration mechanics well
Levy-flight perturbations, oppositional-based learning, adaptive
parameter adaption and elite preservation to achieve a proper
trade-off between exploration and exploitation behaviors.
A tailored multi-criteria fitness function is defined such that
drug effectiveness, side-effect severity, and user consensus are
evaluated  concurrently, leading to clinically relevant
recommendations. Contrary to existing methods, which are
trained on the synthetic benchmark, we evaluate the proposed

model on the real-world Drugs, Side Effects and Medical
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FIGURE 1
Workflow of the proposed hybrid PSO-EAVOA algorithm for multi-criteria drug selection optimization.

Condition dataset from Kaggle. Comprehensive experimental In summary, this research investigates a number of developing
comparisons with five state-of-the-art metaheuristics (PSO,  contributions to the field of intelligent health care optimization. It
EAVOA, WHO, ALO, HOA) illustrate better convergence, proposed a hybrid optimization approach, applied to the emerging
robustness and solution quality. case of real-world drug recommendations; it included a multi-
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faceted evaluation criteria based on patient-centric health
requirements; and finally, it demonstrated superior performance
on a previously collected clinical-based dataset. The overall
results demonstrate the “real-world” applicability of the
proposed Hybrid PSO-EAVOA in a clinical decision-support
framework and potential application towards improving therapy

planning in a personalized way.

2 Standard PSO and standard
enhanced EAVOA

2.1 Particle swarm optimization

The Particle Swarm Optimization algorithm (PSO) was
established by James Kennedy and Russell C. Eberhart in 1995
(16). The simulation of the social psychological manifestation of
fish and birds inspires this algorithm. PSO consists of two
terms, as shown in Equations 1-3

vg;l} = w viij} + ¢ (Pbest' — X') + c,r2(Ghest' — XY (1)

X+ — xt
+v i =1,2, ..., NP)and(j=1,2, ..., NG) (2)

where

(W™ — w™in)xjteration
w= wnx — — (3)
maxiteration

W = 0.9 and w™i" = 0.4 v?}} VEH}'I}
. A v v
member of the i particle at iteration numbers (t) and (t + 1). rl

is the velocity of the j

and r2 are Random numbers (0,1).

2.2 Standard enhanced African vulture
optimization algorithm (EAVOA)

The Enhanced African Vulture Optimization Algorithm
(EAVOA) is an algorithm inspired by nature, specifically
mimicking the intelligent foraging strategies and survival
characteristics of Enhanced African vultures (15) and (19).
While the original EAVOA performs adequately against many
global optimization problems, it is limited by its slow
convergence speed and difficulty in avoiding local optima when
optimal solutions are complex with high dimensionality.

To enhance the solution capability of the EAVOA, the
Enhanced African Vulture Optimization Algorithm (EAVOA)
was designed. The EAVOA offers three mechanisms to improve
the EAVOA:

2.2.1 The Representative Vulture Selection Strategy (RVSS)
mechanism allows for dynamic leader selection from the best,
second-best, or newly created solution. Based on an established

starvation rate and relative fitness, this allows the solution’s
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global search to improve and reduces the likelihood of
premature convergence.
The selection probability is defined as shown in Equations 4-6:

BestVulturel, if p < w_1

Ri(t +1) = ¢ BestVulture2, if w1 < p < w.l+w2 (4)
random_vulture, otherwise
where
p = rand x |F;(t)] (5)
, 1/f(BestVulture,) 1/f(BestVulture; )
1= =

23:1 1/f(BestVulture;) : 22:1 1/f (BestVulture;)

2.2.2 Rotating Flight Strategy (RFS), based on the vultures’
habit of circling prey in spirals, RFS improves the algorithm’s
exploitation capability by generating multiple directions in
which to search, and using a greedy approach to select the best
outcome as shown in Equations 7-10.

(Bl ffBY) < f(B)
Pt+1) = { B2, otherwise Q)
By =R(t) £ S, By=Ri(t) £ S, (8)

Sy =rand - ((Ri(t) — Pi(1)) - Fi(t) - cos QP{(Ri(1)))  (9)

Sy = rand - ((Ri(t) — Pi(t)) - Fi(t) - sin (2P;(t)Ri(1))) (10)

2.2.3 Selecting Accumulation Mechanism (SAM) imitates the
vultures’ tendency to aggregate near optimal solutions and
searches in the direction of the better solutions by allowing
additional elite individuals (e.g., the third-best solution) to be
included during updates to improve the solution refinement as
shown in Equations 11, 12.

. (4 if f(CH) < f(CS)
Pt+1) = {CS, otherwise an
C4:C142rC2, C&;:CI;C3 (12)

Where C;, C,, C; are obtained based on the impact of the best
three vultures and their distance to the current solution as
shown in Equations 13-15.

BestVulture; (¢) - R;(t)

C; = BestVult t) — - Fi(t 13
1= BestVulture, (1) — o NValture () — Ry 13
B 1 - P;
C, = BestVulture,(t) — estVulture; (1) - Pi(t) 5 - Fi(t)  (14)
(BestVulture, (t) — R;(t))
BestVult t) - Pi(t
C; = BestVulture;(¢) — estVulture;(f) - Pi(f) -Fi(t) (15)

(BestVulture, (£) — Ri(1))?
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2.2.4 Starvation rate and position update

In mathematical terms, the starvation rate F;(f) which
accounts for exploration and exploitation phases, is defined as
shown in Equations 16, 17:

F(t) =2 xrand+1) x z x (1 — L) +d; (16)

T

. [t ays
di =h x (sm <ﬁ) + cos (ﬁ) — 1)

Here rand € [0,1], z€ [—1,1] and h is
parameter. The ability to adaptively control Fi(¢). allows the

(17)

a disturbance

algorithm to transition its lifetime behavior from global
exploration to local exploitation, reflecting the scavenging
behaviour found in nature.

Empirical tests of EAVOA utilization on benchmark
functions and real-world problems have exhibited its superior
convergence speed, optimality, and robustness over the
baseline EAVOA as well in comparison with many other
metaheuristics. The strong trade-off between exploration and
exploitation gives it a reliable optimality assessment tool for
more complex applicable problem domains such as drug
recommendation systems.

3 The hybrid PSO- enhanced EAVOA
algorithm

The proposed Hybrid PSO-EAVOA algorithm combines
the key advantages of Particle Swarm Optimization (PSO) and
the Enhanced African Vulture Optimization Algorithm
(EAVOA) to enhance the overall performance of the search
process and the resulting quality of solutions. Specifically,
PSO is known for its distinct ability to exploit the search
space based on versions of velocity and position updates
towards personal and global best experiences, while EAVOA
is distinct for its ability to explore the search space by
leveraging adaptive strategies driven by social and foraging
behaviors of African vultures. The overall workflow of the
proposed Hybrid PSO-EAVOA framework is illustrated in
Figure 1.

In the hybrid version, to take advantage of both algorithms,
the traditional PSO and its personal best position (Pbest) were
swapped with BestVulture, which is a position of a selected
EAVOA population. This simple switch still allows for strong
performance in exploration through the PSO framework, while
also utilizing the adaptive and stochastic exploratory behavior of
the EAVOA to avoid premature convergence.

The unison of speed of PSO with adaptive and dynamic
behavior of EAVOA allows the particles to follow not only their
personal best experiences in the search space and the global best
solution, but the adaptive intentions of vultures. This type of
behavior will make the

search process more explorative

and varied.
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The velocity and position updates in the hybrid are defined as
shown in Equations 18, 19:

v&ﬁl} = w - Viij} + ¢ -1 - (BestVulture; — xilj}) + 1
t
- (Gbestj — x{ij}) (18)
(t+1} _ .t (t+1}
Xy = Xyt Vi (19)

4 Multi-criteria drug selection
optimization

As stated earlier, the objective of multi-criteria drug selection
optimization is to identify a collection of drugs that meets multiple
criteria: maximize therapeutic effectiveness, minimize side effects
and maximize user consensus. Formally, the model views this
situation as a constrained, multi-criteria optimization problem,
where each solution represents a selection of drugs from a wider
clinical dataset.

The optimization problem is formally defined as follows: the real-
world drug optimization problem with variable definitions and the
associated mathematical formulation as shown in Equations 20-22.

max f(x) (20)
Subject to:

gx)=0 (21)
And

h(x) <0 (22)

wherex = [dy, d>, .
f(x) objective function with various clinical criteria,

.., di] vector of selected drug indices,

g(x) equality constraints restricting selection size and
uniqueness,
h(x) inequality constraints defining bounds on the

search space.

The objective function f(x) was specified to maximize average
normalized rating and number of reviews, while minimizing
average length of reported side effects:

f(x) = a - mean_rating(x) — 3 - mean_side_effect_length(x)
+ v - mean_reviews (x) (23)

Where x = [dy, d>, ..
a, B, 7y is weight coefficients are equilibrating the importance

., di] is the vector of selected drug indices.
of each criterion.

mean_rating(x) average normalized user rating score of the
selected drugs.

frontiersin.org
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mean_side_effect_length(x) average length of keywords of
reported side effects, applicable to the selected drugs used.

mean_reviews (x) average number of user reviews for the
selected drugs.

Equation 23 is defined mathematically for single
optimization objective used by the hybrid PSO-EAVOA
algorithm. This weighted-sum formulation contains three
normalized evaluation criteria: drug effectiveness, side-effect
severity and number of reviews, combined using weighting
coefficients «, B, y are used to control the relevance of each
term, tuned in the Theoretical

they are experiments.

descriptions, pseudocode steps and results from the
experiments presented in this work consistently utilize

Equation 23 as the fitness function.

4.1 Weighting coefficients sensitivity and
ablation analysis

To explore the effect of the weighting coefficients further.
There was a complete sensitivity and ablation analysis by
(o, B, y) in the fitness (Equation 23). These
coefficients trade off the therapeutic effectiveness, severity of

function

side-effects and user consensus and their change directly
affects the convergence behavior of the optimizer and drug
There three
complementary procedures used in this analysis. To begin

recommendations in the end. were
with, a one-way sensitivity analysis was performed where all
the coefficients are alternated independently to the range [0,1]
and the remaining two coefficients are set to their base values
(¢=0.5, f=0.3, y=0.2). Second the grid-based exploration
was done through testing normalized combinations that met
a+ B+ y=1 in steps of 0.1 to find out areas with greater
fitness values. Lastly, a worldwide sensitivity evaluation by use
of Sobel variance decomposition was used to measure the
total contribution of every single coefficient to the variance in
the objective worth. All the configurations were performed in
more than several independent executions of the hybrid PSO-
EAVOA optimizer and the optimal and average fitness,
convergence stability, overlap of the top-ten recommended
and the obtained. The
significance between configurations was tested using either
One-way ANOVA or Kruskal Wallis test (p < 0.05). It was
possible to identify near-optimal settings of the coefficients

drugs baseline were statistical

and to determine which criterion had the strongest impact on
optimization performance by this analysis.

4.2 Variables

The optimization problem formulation requires us to uniquely
define appropriate sets of control variables and state variables.
These variables are used to represent the characteristics of the
candidate solutions and their characteristics in the context of
multi-criteria drug selection.
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4.2.1 Control variables

The control variables are the variables that the optimization
algorithm can directly manipulate to explore the search space.
The control variables in the proposed model, are the selection
indices of the drugs as shown in Equations 24-26:

b=1[d, da, ..., di] (24)

where d; is the index of selected drug indices,

k is the targeted number of drugs to select.

D Denotes the total number of drugs in the dataset.

The Control Variables are Subjects to be Bounds and
Constraints

0<d;<D fori=1, ...,k (25)

And

8dup (X) =0 (26)

to ensure all selected indices are valid and unique.

4.3 Constraints

The problem of drug selection optimization has two types of
constraints: equality constraints and inequality constraints.
These two types of constraints are necessary to ensure that all
candidate solutions remain feasible and clinically meaningful
within the context of the optimization problem.

4.3.1 Equality constraints
The equality constraints require the exact number of drugs in
the chosen set. The equality constraint ensures the optimizer
selects exactly the specified number of drugs as shown in
Equation 27:
|x| —k=0 (27)

Where x = [dy, d>, ..
k is the targeted number of drugs to select.

., di] is the vector of selected drug indices,

4.3.2 Inequality constraints

Each drug index chosen is guaranteed to be unique and
suitable for its respective dataset constraints by the inequality
constraints. These are the inequality constraints:

4.3.3 Indexing bounds
The Indexing Bounds ensure that each drug index is bounded to
lie within the valid bounds of the dataset as shown in Equation 28:

0<d;<D fori=1,...,k (28)

Where D Denotes the Total Number of Drugs in the dataset

frontiersin.org
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4.3.4 Uniqueness constraint

In order to achieve clinical validity, there can be no duplicate
drugs in a solution. This restriction maintains that there will not
be duplicate indices in the control variable vector x. The
uniqueness constraint can be written formally as shown in
Equation 29:

set(x)| = k (29)
Where k is the number of drugs to be selected and x.

x is the vector of selected drug indices. Any instances in
which this restriction is not fulfilled are penalized in the
fitness function.

4.3.5 Penalty-based fitness modification

In this approach, constraint violations are addressed through
the use of penalties to maintain the feasibility and useful nature
of the candidate solutions. The final fitness value for each
solution is altered by adding penalties for any equality or
uniqueness constraint violations. The penalized fitness function
is given as follows (Equation 30):

fpenalized(x) :f(x) + A Pequality(x) +N2- Pum’queness(x) (30)

where f(x) is the Objective Function Value,

S penatizea(x) is the adjusted fitness value after applying penalties.

A; and A, Penalty coefficients that affect how much constraint
violations are weighted.

Peuaity(x) is the penalty term for violating the equality
constraint (i.e., selecting more than or less than the required
number of drugs).

Puniqueness(x) is the penalty term for violating the uniqueness
constraint (i.e., selecting duplicate drug indices).

Overall workflow of the proposed hybrid PSO-EAVOA
algorithm applied to multi-criteria drug selection. The process
starts with data pre-processing, population initialization with
opposition-based learning, and iterative updates using PSO
velocity-state dynamics and adaptive exploration strategies of
EAVOA, which is enhanced by Levy flight transformation. The
final optimal drug subset is selected by combining the
maximization of efficiency ratings, minimization of side effect
severity and user consensus.

4.4 Data preprocessing

Preprocessing of the Drugs Side Effects and Medical
Condition data set in Kaggle was done to achieve consistency
and comparable nature of the data across the features. Missing
or otherwise incomplete values were eliminated, and nominal
characteristics like drug class and condition label-encoded. The
side-effect field text data were cleaned and tokenized as well as
lemmatized in order to normalize vocabulary.

Min-Max scaling was used to normalize all quantitative
variables, including user ratings, number of reviews and the
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severity of side-effects to a consistent range of [0,1] as shown in
Equation 31:

X — Xmin

Xorm =
Xmax - Xrnin

(31

The severity of side-effect was measured as a weighted score based
on a lexicon derived based on the MedDRA with higher weights
given to medically serious terms as shown in Equation 32:

n,
SO i
S = M (32)
> j=1frj
This method ensures that all the metrics play an equal role in the
optimization process as it offers a strong and interpretative level of
negative reaction.

4.5 Complexity and runtime analysis

4.5.1 Computational complexity

The computational complexity of the proposed hybrid PSO-
EAVOA algorithm is primarily determined by the total number of
fitness evaluations conducted in each iteration. Let N, represent
the population size, T denote the number of iterations and D the
number of dimensions of the decision variables. Each candidate
solution will need to be evaluated for fitness, have its position and
leader-based
exploration in every iteration (Equation 33). The fitness evaluations

velocity updated and then undergo adaptive

entail the most significant cost, leading to a time complexity of
O(Np x T x D) (33)

Mutation and Crossover operations are O(Np x D) per each
iteration without changing the asymptotic order.

4.5.2 Runtime analysis

All experiments were conducted in Google Colab using the
Python 3.10 programming language on a virtual machine with
an Intel Core i7 processor and 32 GB RAM. For the provided
configuration (Np = 30, T = 500), each benchmark function
took between 30 and 60 s to converge, while the clinical drug-
selection experiment took about 2-3 min to converge. For the
benchmark functions, runtime scaled linearly with the number
of iterations and population size, which is in agreement with the
analytical complexity estimate.

Pseudo-Code 1: Proposed Hybrid PSO-EAVOA
Optimization Process for Multi-Criteria Drug Selection.
Pseudo Code of the Optimization Process for the Hybrid
PSO-EAVOA
1. Initialize parameters:
num_selected, w_max, w_min
2. Set global_best « @, personal_best « @
3. Load and preprocess dataset df:

num_particles, max_iter,

frontiersin.org
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- Remove unnecessary columns
- Handle missing values

- Normalize rating values

- Calculate side effects length

- Encode categorical features

13.
14.

10.3389/fdgth.2025.1708730

if iter > 0.7 max_iter then {Late-stage exploitation}
With probability 0.5, replace two genes in particle i

with genes from global_best

15.
16.

else apply Levy flight perturbation
else if iter>0.4 max_iter then {Balanced

4. Initialize particles and velocities randomly exploration-exploitation}
5. Evaluate fitness of each particle using Equation 23 17. influence = global_best—particle_i
6. Update personal_best and global_best 18. perturb = randint(-3, 3)
7. for iter =1 to max_iter do 19. exploration_factor =2-2 * (iter/max_iter)
8. Update inertia weight: 20. particle_i<particle_i+ 0.7 *
9. w=w_max—[(w_max—w_min) * iter/max_iter] influence + exploration_factor * perturb
10. Update acceleration coefficients: 21. else {Early-stage exploration}
cl =2.5—(2.0 * iter/max_iter) 22.  With probability 0.5:
c2=0.5+ (2.0 * iter/max_iter) 23. Generate rl, r2 ~ U(0, 1)
11.  Select top-k elite particles — elite_particles 24. Select BestVulture_j from EAVOA population
12.  for each particle i do 25, vi <« w * vii+cl * rl * (BestVulture_ j-
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Convergence curves of optimization algorithms (10 runs, 500 iterations).
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particle_i) + c2 * r2 * (global_best—particle_i)

26. particle_i « particle_i+v_i

27. else apply random perturbation in [-5, 5]

28. if iter mod 20=0 then apply Levy mutation to
particle_i

29. if no_improve_i > 6 then reinitialize
particle_i randomly

30. Ensure particle_i contains exactly num_selected
unique indices

31. Compute new fitness of particle_i

32. if new fitness > personal_best_score[i] then

33. Update personal_best[i], personal_best_scorel[i],

reset no_improve_i

34.

else increment no_improve_i

10.3389/fdgth.2025.1708730

36. Update global_best, global_best_score

37. end for

38. Replace worst particle with global_best

39. Preserve top 2 elite_particles

40. Append global_best_score to convergence curve
41. end for

42. Return global_best, global_best_score

Pseudo-Code 1: The proposed hybrid PSO-EAVOA
optimization for multi-criteria drug selection. To achieve a
balance between exploration and exploitation, the algorithm
PSO EAVOA-inspired
exploration dynamics, Levy flight perturbations, and elite

combines velocity-level updates,

protection. This process iteratively wupdates solutions,
35. if new fitness > global_best_score then preserves heterogeneity, and identifies the optimal drug subset
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based on multiple clinical criteria (ratings, side effects, and
review counts).

5 Application and results
5.1 Computational framework

A Hybrid PSO-EAVOA exploratory optimization framework
was implemented on a multi-criteria drug selection problem,
which was structured as a combinatorial optimization problem
that combined the impact of drugs’ therapeutic effects, safety
concerns and collective feedback from users. The data was
collected from Kaggle’s open-source drug review repository and
contained granular records of drug ratings, side-effect profiles,
and number of user reviews, giving a representative and varied
search space for our optimization. As a complete set of

10.3389/fdgth.2025.1708730

preprocessing steps were implemented to ensure this data was
reliable and accessible for the algorithm, data preprocessing
involved removing non-informative attributes, complete
normalization of drug ratings and review counts, quantifying
side-effect text descriptors, and encoding categorical attributes.
The combination of these steps enabled a unique modeling of
drug prioritization, and offered priority based on balancing both
efficacy and safety.

The hybrid PSO-EAVOA algorithm was implemented in
Python 3.10 and implemented on a system equipped with an
Intel Core i7 processor and 32 GB RAM. The optimization
process used a population size of 30 candidate solutions and
was evaluated over 500 iterations (10 and 30-run tests) and
1,000 iterations (10 and 30-run tests). The configuration of
parameters was established based on the results of preliminary
tuning well as

experiments as established practices in

population-based metaheuristics. A population size of 30 was
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Convergence curves of optimization algorithms (10 runs, 1,000 iterations).
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used in order to keep a sufficient amount of diversity and
exploratory power in the population, while still maintaining an
acceptable amount of computational time. An iteration range of
500-1,000 was sufficient for an adequate search depth based on
the trend of the fitness values, the fitness values were typically
stabilizing at around 800 iterations and increasing iterations
beyond that only improved the process by trivially amounts.
The configuration has also been frequently used in similar types
of optimization articles with PSO, EAVOA and hybrid
algorithms, showing the stability and suitability for this
optimization problem involving multi-criteria. The framework
combines adaptive algorithms with dynamically adjusted inertial
weights (w) and acceleration coefficients (ci, ¢;), to achieve a
robust exploration-exploitation trade-off. Additional algorithms
such as elite protection and Levy plane-based perturbations,

10.3389/fdgth.2025.1708730

were incorporated to improve population diversity and improve
convergence performance.

In comparing performance, the algorithm under
consideration is compared to five competing metaheuristics
which are believed to be state-of-the-art; Enhanced African
Vulture Optimization Algorithm (EAVOA), Particle Swarm
Optimization (PSO), Wild Horse Optimization (WHO), Ant
Lion Optimization (ALO) and Hippopotamus Optimization
Algorithm (HOA). The performance was measured with
various measures such as average fitness and best fitness and
the convexity path implementation, strength in independent
This evaluation framework provides a
comprehensive and statistically robust analysis of the
performance of the hybrid PSO-EAVOA in solving real-

world, multi-criteria optimization challenges.
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Convergence curves of optimization algorithms (30 runs, 1,000 iterations).
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Overall convergence curves of optimization algorithms across All experimental settings (500 and 1,000 iterations, 10 and 30 runs).

5.2 Convergence behavior analysis

Figures 2-5 illustrate the convergence performance of all
algorithms evaluated on the 500-iteration and 1,000-iteration
test sets, each of which was examined over 10-iteration and
30-iteration runs to ensure stability and reliability. The proposed
hybrid PSO-EAVOA demonstrated fast initial convergence,
followed by steady refinement in later iterations, effectively
maintaining speed and avoiding the premature stagnation
observed in PSO and WHO. In comparison, both ALO and
HOA were slower explorers and provided suboptimal solutions,
while EAVOA performed moderately, but did not provide
stability across multiple runs. The superior behaviour of the
hybrid model attributed to
exploitation strategy, where dynamically tuned inertia weights

is its adaptive exploration-

and acceleration coefficients preserve diversity among
populations. Additionally, perturbations were based on Levy
Flights, providing restricted stability that permitted efficient
global exploration and movement away from a local optimum,

as well as retaining the best performing candidates, enabling

Frontiers in Digital Health
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elite solution protection that allowed EAVOA to converge more
quickly, while providing improved robustness overall.

In Figure 6 shows compare the convergence trends for all
optimization algorithms to each other under four experimental
configurations, 500 iterations (10 and 30 independent runs) and
1,000 iterations (10 and 30 independent runs). The results clearly
show the performance of Hybrid PSO-EAVOA. It achieves the
best fitness score and the best convergence results over all
competing algorithms. PSO achieves competitive performance but
with  more EAVOA
performance and stabilityy. WHO and HOA are slower at
converging, and ALO always has the slowest convergence rate,
which suggests ALO did the weakest job at balancing exploration

variance  while achieves moderate

and exploitation. The figure demonstrates that performance and
stability improve as iterations and independent run counts
increase; however, the Hybrid PSO-EAVOA still outperforms the
competing algorithms. Hybrid PSO-EAVOA achieved the best
accuracy and stability, which makes Hybrid PSO-EAVOA reliable
for multi-criteria  optimization like

complex problems

selecting drugs.
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(Continued)

5.3 Quantitative results and comparative
analysis

The quantitative evaluation of the proposed hybrid PSO-
EAVOA
performance framework to ensure a fair comparison with
baseline optimizers including PSO, EAVOA, WHO, ALO, and
HOA. The performance measurements were derived from a total

algorithm was conducted wusing a multi-criteria

of four test set-ups: 500 iterations for metrics such as 10 runs
and 30 runs; and 1,000 iterations for metrics such as 10 runs
and 30 runs. As mentioned above, each algorithm’s best fitness,
average fitness, standard deviation, and maximum fitness were
recorded for the purposes of determining accuracy, consistency
and robustness.

Frontiers in Digital Health 13

Figure 7 provides box plots of the fitness score data to provide
basic statistical insights regarding the variation across independent
runs. The hybrid PSO-EAVOA consistently shows a high average
fitness and tight interquartile range, demonstrating superior
PSO has
demonstrated high accuracy, though considerable variation,

consistency compared to competing algorithms.

meanwhile ALO and HOA have clearly demonstrated weak
robustness and fitness variability.

Similarly, Figure 8 demonstrates the relative measure of
ranking of the mechanisms based on weighted composite scores
across all evaluation metrics. Hybrid PSO-EAVOA takes the top
spot in every scenario, with PSO emerging as the second best
method. EAVOA continues to display moderate performance,
stability and consistency, while WHO and HOA provide
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Box plot of fitness score distributions for six algorithms over 10 & 30 independent runs (500 & 1,000 iterations).

suboptimal fitness. ALO is consistently very low ranked, which
again confirm the weakness of its global search method.

Following these visual summaries, detailed numerical results
are reported in Tables 1-4, which provide the run-wise fitness
values, mean, standard deviation, weighted scores, and final
rankings for each test set. It is shown that hybrid PSO-EAVOA
consistently achieves the best weighted scores and the highest
solution quality, thereby confirming its performance and
robustness for multi-criteria drug selection optimization.

The results indicate that the hybrid PSO-EAVOA consistently
achieves the best weighted scores in all scenarios, outperforming
competing algorithms in both solution quality and robustness.

Frontiers in Digital Health

In specific, the hybrid model performed the best on variance
(least class improvement) while the optimal and mean fitness
scores were the highest of the models, again illustrating the
hybrid strength of balancing exploration and exploitation. Of
the baseline algorithms, particle swarm optimization (PSO)
was the second-best performer with acceptable accuracy and
high variation while EAVOA had satisfactory stability. WHO
and HOA had low fitness and were both slow to converge,
ALO consistently ranked the lowest, indicating weak global
search capabilities. The comparative performance metrics of
the proposed Hybrid PSO-EAVOA and other algorithms are
presented in Table 5.
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FIGURE 8
Comparative ranking of algorithms based on weighted scores across different experimental settings (500 and 1,000 iterations; 10 and 30 runs).

TABLE 1 Performance comparison of optimization algorithms (500 iterations, 10 runs).

Algorithm/Runs Iteration EAVOA PSO WHO \Ko) HOA HYBRID_PSO_EAVOA
Run 1 500 0.65371 0.67056 0.63814 0.66555 0.66259 0.90473
Run 2 0.72163 0.73400 0.72695 0.60129 0.67555 0.95461
Run 3 0.57231 0.75571 0.60871 0.55505 0.66212 0.89550
Run 4 0.72885 0.88207 0.69319 0.57386 0.66066 0.89954
Run 5 0.66774 0.69918 0.70102 0.58121 0.70486 0.95218
Run 6 0.72920 0.70339 0.62844 0.65924 0.65341 0.94259
Run 7 0.75255 0.66018 0.68583 0.56137 0.67130 0.92419
Run 8 0.66984 0.82790 0.67628 0.61069 0.63946 0.94964
Run 9 0.83653 0.89580 0.67764 0.64320 0.73532 0.95771
Run 10 0.67383 0.72182 0.64767 0.57344 0.65624 0.93683
Mean 0.70062 0.75506 0.66839 0.60249 0.67215 0.93175
Std. Dev 0.06681 0.08045 0.03473 0.03870 0.02659 0.02284
Max Fitness 0.83653 0.89580 0.72695 0.66555 0.73532 0.95771
Weighted Score 0.78874 0.83138 0.74557 0.69346 0.75149 0.94872
Final Rank 3 2 5 6 4 1

Bold values indicate the best performance (optimal result) among the compared algorithms for the given benchmark or experimental setting.

5.4 Optimized drug prioritization As shown in Table 6, the hybrid PSO-EAVOA consistently
outperformed the baseline methods (PSO, EAVOA, WHO, ALO,

The proposed hybrid PSO-EAVOA optimization =~ HOA), providing higher fitness scores and clinically relevant
framework demonstrated superior ability in identifying drug rankings.There was variation based on recommendation
clinically meaningful and high-performance drug candidates  between competing methods, that while reading as a top
through a multi-criteria optimization process. This framework  recommended drug, have not conclusively evidence-based
offers a more holistic approach to treatment as it assesses  support in clinical trials. In comparison, the proposed model
patient evaluations, review counts and side effects maintained consistency and relationship with the data from the
simultaneously—producing balanced and evidence-informed  prior runs, essentially ensuring accurate earlier results when
treatment options which can be prioritized. considering new information.
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TABLE 2 Performance comparison of optimization algorithms (500 iterations, 30 runs).

Algorithm/Runs Iteration EAVOA PSO WHO ALO HOA HYBRID_PSO_EAVOA
Run 1 500 0.69908 0.67704 0.64442 0.63180 0.66003 0.91175
Run 2 0.66442 0.69214 0.64848 0.59618 0.64909 0.98248
Run 3 0.74452 0.73091 0.72890 0.59162 0.68359 0.97613
Run 4 0.72991 0.88765 0.65615 0.52331 0.64803 0.94111
Run 5 0.66389 0.70027 0.89389 0.55253 0.67653 0.96941
Run 6 0.69021 0.71475 0.66332 0.58378 0.65717 0.92309
Run 7 0.75392 0.95021 0.66993 0.63115 0.68051 0.95079
Run 8 0.71898 0.76651 0.67831 0.59824 0.64229 0.97612
Run 9 0.85801 0.72673 0.66452 0.55227 0.76678 0.83556
Run 10 0.75259 0.94247 0.69772 0.62561 0.64972 0.92740
Run 11 0.68655 0.69449 0.65703 0.65214 0.65979 0.76494
Run 12 0.63971 0.82946 0.64046 0.65069 0.79377 0.88411
Run 13 0.72177 0.98551 0.70102 0.67964 0.63359 0.96912
Run 14 0.63550 0.66256 0.65160 0.59720 0.64293 0.96578
Run 15 0.75281 0.89817 0.65350 0.60364 0.69088 0.92886
Run 16 0.61911 0.82507 0.78418 0.66119 0.63855 0.95600
Run 17 500 0.68823 0.72384 0.63797 0.59473 0.65781 0.79744
Run 18 0.68192 0.72352 0.67486 0.54611 0.65821 0.94916
Run 19 0.71910 0.82428 0.73101 0.61577 0.67586 0.90219
Run 20 0.70884 0.85008 0.67054 0.67936 0.65103 0.80717
Run 21 0.72477 0.81064 0.67083 0.64606 0.65843 0.91629
Run 22 0.71709 0.71898 0.65749 0.56393 0.64264 0.90784
Run 23 0.67519 0.72521 0.67753 0.57276 0.64931 0.93205
Run 24 0.63404 0.65238 0.65986 0.55250 0.69029 0.96435
Run 25 0.70440 0.67341 0.67035 0.57121 0.66368 0.92665
Run 26 0.75468 0.71713 0.64139 0.62627 0.70762 0.94291
Run 27 0.69357 0.78522 0.70542 0.61362 0.63665 0.97907
Run 28 0.85988 0.89243 0.68716 0.55480 0.64276 0.92235
Run 29 0.67346 0.85359 0.69181 0.61301 0.69738 0.97804
Run 30 0.74183 0.80586 0.69555 0.48906 0.74937 0.95538
Mean 0.71027 0.78135 0.68351 0.59901 0.67181 0.92478
Std. Dev 0.05447 0.09206 0.04986 0.04505 0.03814 0.05529
Max Fitness 0.85988 0.98551 0.89389 0.67964 0.79377 0.98248
Weighted Score 0.80277 0.86947 0.80042 0.69478 0.76669 0.94666
Final Rank 3 2 4 6 5 1

Bold values indicate the best performance (optimal result) among the compared algorithms for the given benchmark or experimental setting.

TABLE 3 Performance comparison of optimization algorithms (1,000 iterations, 10 runs).

Algorithm/Runs Iteration EAVOA HYBRID_PSO_EAV
Run 1 1,000 0.68995 0.79368 0.71024 0.62017 0.72230 0.97002
Run 2 0.74251 0.93852 0.69705 0.61535 0.65453 0.97411
Run 3 0.69693 0.93326 0.69605 0.63442 0.66830 0.98991
Run 4 0.70573 0.78849 0.73235 0.63782 0.68946 0.97292
Run 5 0.88439 0.71112 0.72585 0.62226 0.66099 0.92447
Run 6 0.72718 0.84413 0.65086 0.60375 0.69319 0.98216
Run 7 0.67867 0.73928 0.69115 0.59348 0.69511 0.95360
Run 8 0.71680 0.87630 0.69362 0.56552 0.65907 0.93143
Run 9 0.71424 0.93939 0.69622 0.62604 0.68146 0.97549
Run 10 0.69446 0.74302 0.74247 0.60147 0.68962 0.80581
Mean 0.72509 0.83072 0.70358 0.61203 0.68140 0.94799
Std. Dev 0.05600 0.08349 0.02463 0.02057 0.01985 0.05152
Max Fitness 0.88439 0.93939 0.74247 0.63782 0.72230 0.98991
Weighted Score 0.81726 0.88177 0.76972 0.69333 0.75350 0.96117
Final Rank 3 2 4 6 5 1

Bold values indicate the best performance (optimal result) among the compared algorithms for the given benchmark or experimental setting.

Frontiers in Digital Health 16 frontiersin.org



Suruthi and Ganesh 10.3389/fdgth.2025.1708730

TABLE 4 Performance comparison of optimization algorithms (1,000 iterations, 30 runs).

Algorithm/Runs Iteration EAVOA PSO WHO ALO HOA HYBRID_PSO_EAVOA
Run 1 1,000 0.69084 0.66036 0.69943 0.68504 0.75786 1.00619
Run 2 0.68456 0.83018 0.75026 0.63964 0.66340 0.96101
Run 3 0.67507 0.67718 0.70961 0.63159 0.65579 0.97877
Run 4 0.67803 0.74834 0.74698 0.61511 0.81761 0.99446
Run 5 0.76364 0.72154 0.65865 0.66110 0.67375 0.96116
Run 6 0.67322 0.99685 0.69569 0.60266 0.66965 0.94422
Run 7 0.73397 0.83883 0.69371 0.60965 0.70792 0.95082
Run 8 0.90862 0.63787 0.70824 0.58493 0.65741 0.99297
Run 9 0.75041 0.89595 0.66866 0.62478 0.71939 0.95205
Run 10 0.68105 1.02671 0.68512 0.61707 0.71139 0.97397
Run 11 0.69071 0.90990 0.67442 0.61494 0.64825 0.95583
Run 12 0.67643 0.75420 0.69017 0.64449 0.64993 0.95698
Run 13 0.58191 0.84379 0.69741 0.56555 0.65447 0.97373
Run 14 0.71767 0.69667 0.68337 0.61857 0.79212 0.95950
Run 15 0.92841 0.66518 0.71720 0.62498 0.68546 0.95452
Run 16 0.89967 0.79207 0.64224 0.64286 0.69285 0.95456
Run 17 0.62173 0.72153 0.67957 0.62029 0.66925 0.97715
Run 18 0.66534 0.84758 0.72549 0.65161 0.69908 0.95360
Run 19 0.78025 0.71605 0.71954 0.62552 0.68922 0.96261
Run 20 0.86909 0.72452 0.71310 0.63868 0.67718 1.01932
Run 21 0.68857 0.74993 0.80864 0.60425 0.66109 1.00987
Run 22 0.65583 0.89666 0.68267 0.60039 0.69576 0.96011
Run 23 0.75744 0.97978 0.66584 0.59470 0.66879 0.97593
Run 24 0.64200 0.97338 0.67439 0.60921 0.66146 0.95182
Run 25 0.91683 0.65233 0.68501 0.70721 0.68361 0.94275
Run 26 0.61999 0.72986 0.76422 0.67041 0.74579 0.96386
Run 27 0.72753 0.94894 0.75256 0.61855 0.66442 0.96809
Run 28 0.76742 0.82405 0.72056 0.58932 0.69034 0.97358
Run 29 0.73684 0.80566 0.73610 0.68429 0.73349 0.97071
Run 30 0.70796 0.83048 0.78287 0.58540 0.69096 0.95474
Mean 0.72970 0.80321 0.70772 0.62609 0.69292 0.96850
Std. Dev 0.09046 0.10985 0.03741 0.03180 0.04061 0.01901
Max Fitness 0.92841 1.02671 0.80864 0.70721 0.81761 1.01932
Weighted Score 0.82678 0.88982 0.78924 0.71904 0.78394 0.98631
Final Rank 3 2 4 6 5 1

Bold values indicate the best performance (optimal result) among the compared algorithms for the given benchmark or experimental setting.

Based on this comparison, Table 7 lists the final top three  outcomes, drug safety profiles and real-world usage data into
drugs that were prioritized exclusively by hybrid PSO-EAVOA: clinically meaningful drug rankings. By combining EAVOA’s

1. Phentermine (weight loss)—Patient Rating: 8.7; Fitness Score: robust  exploration  capability enhanced by Levy Flight

1.9076. A consistent first-place ranking across three different perturbations and elite protection with PSO’s fast convergence,

treatment options indicates strong therapeutic efficacy and the algorithm achieved a strong balance between exploration

an exceptional benefit-to-risk profile for weight management. and exploitation, consistently outperforming baseline optimizers.

2. Methergine (migraine)—Patient Rating: 9.7; Fitness Score: This method has the potential to integrate unstructured real-

0.7974. Clinically demonstrates a relatively high value to world evidence and - clinical decision-making, allowing for

treat migraine with robust pharmacological evidence and multidisciplinary and multi-criteria evaluation of drugs, taking

satisfaction amongst patients into account pharmacological efficacy and patient experience. It
3. Pernax (acne)—Patient Rating: 10.0; Fitness Score: 0.5887. The

valid evaluation demonstrated the excellent therapeutic value

has scalability for a wide range of applications such as drug
repurposing, post-marketing surveillance and personalized
and relative adherence from patients. treatment planning and its modular configuration allows
integration with electronic health records and clinical decision

support systems to provide personalized and dynamic

recommendations for each patient. In addition to the immediate

5.5 Discussion application of this research, it demonstrates the promising
capabilities of hybrid metaheuristic optimization in health care

The proposed hybrid PSO-EAVOA optimization framework and the development of Al-based precision medicine systems is
demonstrated an exceptional ability to integrate patient-reported  expected to one day be capable of reducing prescribing errors,
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TABLE 7 Final optimized drug prioritization results from the hybrid PSO-EAVOA algorithm.

‘ Drug name

Medical condition Rating
Phentermine Weight Loss
Methergine Migraine 9.7
Pernox Acne 10.0

improving adherence and accelerating evidence-based decision-
making. Three primary evaluation criteria: effectiveness, side
effects and number of reviews were specifically chosen in this
measurable

These
throughout the dataset and reflect the critical balance of

paper to reflect and patient-centred drug

performance indicators. parameters are present
therapeutic benefit, tolerability and experiential evidence. An

extension to other clinical features, including patient
demographics or drug-drug interactions would necessitate
structured clinical data, which are usually not available on open
review-based sources and may undermine comparability. The
existing design guarantees consistency in methodology and

clinical interpretability and computational tractability.

6 Conclusion

This work introduced a hybrid PSO-EAVOA optimization

framework for multi-criteria drug prioritization, patient
perception, side effect profiles and real-world treatment data
integration to generate clinically relevant recommendations. By
combining the exploratory strength of EAVOA with the fast
of PSO, further

perturbations and elite conservation strategies, the algorithm

convergence enhanced by Levy Flight
achieved stable optimization performance and stability over
multiple independent runs, outperforming basic metaheuristic
algorithms. These findings highlight the power of hybrid
metaheuristic development to yield meaningful knowledge from
large-scale, unstructured health databases for evidence-based
decision making, drug repurposing and personalized treatment
planning. In our future work, extend the framework to integrate
genomic data, demographic and longitudinal clinical data and
pharmacoeconomic data to increase prediction accuracy and
generalizability to a clinical setting. Moreover, incorporating this
optimization model within ACT-DR capabilities and Al-enabled
clinical decision support systems (CDSS) will ensure real-time,
dynamic, patient-specific, drug recommendations that will
reduce the frequency and magnitude of prescribing errors,
improve adherence and convert real-world evidence into
clinically relevant solutions.
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