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Introduction: We developed an open, large language model (LLM)-based 

pipeline to extract actionable incidental findings (AIFs) from [18F] 

fluorodeoxyglucose positron emission tomography-computed tomography 

([18F]FDG PET-CT) reports. This imaging modality often uncovers AIFs, which 

can affect a patient’s treatment. The pipeline classifies reports for the 

presence of AIFs, extracts the relevant sentences, and stores the results in 

structured JavaScript Object Notation format, enabling use in both short- and 

long-term applications.

Methods: Training, validation, and test datasets of 1,999, 248, and 250 lung 

cancer [18F]FDG PET-CT reports, respectively, were annotated by a nuclear 

medicine physician. An external test dataset of 460 reports was annotated by 

two nuclear medicine physicians. The training dataset was used to fine-tune 

an LLM using QLoRA and chain-of-thought (CoT) prompting. This was 

evaluated quantitatively and qualitatively on both test datasets.

Results: The pipeline achieved document-level F1 scores of 0.917 ± 0.016 and 

0.79 ± 0.025 on the internal and external test datasets. At the sentence-level, 

F1 scores of 0.754 ± 0.011 and 0.522 ± 0.012 were recorded, and qualitative 

analysis demonstrated even higher practical utility. This qualitative analysis 

revealed how sentence-level performance is better in practice.

Discussion: Llama-3.1-8B Instruct was the base LLM that provided the best 

combination of performance and computational efficiency. The utilisation of 

CoT prompting improved performance further. Radiology reporting 

characteristics such as length and style affect model generalisation.

Conclusion: We find that a QLoRA-adapted LLM utilising CoT prompting 

successfully extracts AIF information at both document- and sentence-level 

from both internal and external PET-CT reports. We believe this model can 

assist with short-term clinical challenges like clinical alerts and reminders, 

and long-term tasks like investigating comorbidities.
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1 Introduction

[18F]Fluorodeoxyglucose positron emission tomography- 

computed tomography (FDG PET-CT) is a medical imaging 

modality used extensively in cancer treatment (1). It frequently 

reveals actionable incidental findings (AIFs) (2), medical 

phenomena, separate from the reason for the scan, requiring 

clinical intervention or observation (3). Strategies for AIF 

management are a focus of wider study (4), and decision 

support systems utilising LLMs could benefit these efforts. 

Distinguishing between AIFs and other incidental findings is 

important for prioritising resources, developing a richer patient 

assessment, and improving patient wellbeing (3). Real-time AIF 

extraction could also ensure that appropriate action is taken 

promptly and preserve AIF details for comorbidity investigations 

later in a patient’s health journey.

Large language models (LLMs) have been shown to 

successfully extract clinical information from free text (5). 

Furthermore, parameter-efficient fine-tuning techniques, such 

as low-rank adaptation (LoRA) (6), prompt engineering 

techniques such as chain-of-thought (CoT) prompting (7), and 

quantisation techniques allow publicly available LLMs to be 

adapted to domain-specific tasks (8), even in resource- 

constrained environments.

Work has been done to extract incidental findings from 

radiology reports (9–12), but less for PET-CT specifically, where 

only one study attempting to extract ‘secondary findings’ 

alongside primary cancers was found (13). The methodologies 

in these studies differ. The earliest study found by Dutta et al. 

(9) utilised a rule-based approach to determine whether further 

imaging was required for incidental findings from a range of 

imaging modalities. Evans et al. (10) classified reports at the 

document level for the presence or absence of incidental 

findings using a random forest model. Trivedi et al. (11) used 

word and concept embeddings alongside various classification 

approaches to identify incidental findings at both the section 

and sentence levels. Woo et al. (12) utilised GPT-4 (14) to 

locate ‘definitely actionable’ and ‘possibly actionable’ incidental 

findings from x-ray, CT, and ultrasound scans. GPT-4 and 

similar proprietary LLMs can pose a risk both to patient privacy 

and methodological rigour. This is because patient data leaves 

hospital servers to be processed by OpenAI, whose lack of 

public version control jeopardises reproducibility (15). 

Developing alternatives with open LLMs is important for 

broader implementation in clinical practice. Accordingly, we 

developed an open large language model (LLM)-based pipeline 

to extract AIFs from PET-CT reports. It automatically classifies 

reports for the presence of AIFs, extracts the relevant sentences, 

and outputs the results in structured JavaScript Object Notation 

(JSON) format, enabling use in both short- and long-term 

applications. This provides an open LLM-based alternative to 

Woo et al.’s (12) closed-source approach and represents the first 

work found to extract AIFs [as opposed to ‘secondary findings’ 

(13)] from PET-CT reports.

2 Materials and methods

2.1 Clinical data

The PET-CT report dataset used in this study was created in 

an earlier study (16) and consisted of an internal dataset from 

King’s College London and Guy’s and St Thomas’ PET Centre 

and an external test set from the Royal Free Hospital. The 

internal reports were from 2012 to 2021, and the external 

reports are from 2020. The training, validation, and test splits 

were kept from the earlier study except for removing one 

validation set report (where lung cancer was found to be an AIF 

and not the reason for the scan) (16). This research was 

developed with Guy’s Cancer Cohort (ref: 18/NW/0297), and 

accordingly, the data use was approved by a UK Research Ethics 

Committee (UK IRAS 228790) (17).

Guidelines to define AIFs were developed using resources 

from both the American College of Radiology and the Royal 

College of Radiologists (18–20). As these are general 

guidelines, developed with multiple imaging modalities in 

mind, some inclusion/exclusion criteria were adapted to be 

more suitable for PET-CT scans for lung cancer, as the 

actionability of an incidental finding is not an absolute 

characteristic but determined by the wider status of a patient’s 

health (21). An example is emphysema, which is common in 

lung cancer patients (22). Given the clinical context of a lung 

cancer patient, it would be included when an intensifying 

qualifier was used in conjunction with it (such as ‘severe’) but 

excluded when diminishing or neutral qualifications were used 

(‘mild’, ‘moderate’). Other examples of AIFs include 

abdominal aortic aneurysms and other incidental non- 

pulmonary malignancies.

We used a two-stage annotation approach, where the reports 

were initially annotated by either one (GC—internal data) or two 

(GC and SC—external data) expert annotators with 30 and 14 

years of PET experience, respectively. Two expert annotators 

were used on the external data to test inter-annotator 

agreement. Any disagreements between the two annotators on 

the external data were resolved before the second annotation 

stage. In the second stage, SB verified the annotations by 

error-catching missed findings. For example, both annotators 

may have agreed on a finding in the ‘Interpretation’ section of 

the report but missed another reference to the same finding in 

the ‘Findings’ section. Whenever a missed finding was found, 

it was checked with the clinical annotators. This process 

maximised annotation accuracy while using expert 

time efficiently.

Following annotation, the internal and external data were 

analysed to observe if differences in reporting style could 

be quantified (16). We investigated the document-level 

class distributions, the number of tokens per report (using 

Llama 3.1’s tokenizer), and the number of AIF sentences 

per document. Figure 1 shows an example report 

with annotations.
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2.2 LLMs

LLMs are computationally expensive and beyond the resources 

of most hospitals. This creates issues as patient data is confidential, 

often requiring model development to be performed on-site. Using 

open LLMs mitigates this concern while offering greater 

replicability, both for research and clinical validation. Accordingly, 

no proprietary LLMs would be used, and the LLMs used must be 

trainable on consumer-level equipment. The graphics processing 

unit (GPU) used in this project was an NVIDIA GeForce RTX 

3090. This is still unlikely to be available to most UK hospitals, 

but it has the potential to be achieved locally. Models from the 

Llama, Phi, Gemma, and Mistral families of LLMs were tested 

with parameter counts ranging from 1 to 14 billion (23–28). Due 

to our small fine-tuning dataset, we used the instruction-tuned 

variants of each LLM to benefit from the additional training these 

have undergone. Additionally, we trialled Saama’s OpenBioLLM- 

Llama3-8B to test if using an LLM that has undergone further 

medical domain adaptation improves performance (29). The fine- 

tuning objective was next-token prediction on the prompt, report, 

and desired output for each training example. Finally, we trained a 

binary sentence classification model using GatorTron [a 355 

million-parameter Bidirectional encoder representations from 

transformers (BERT)-style model shown to perform well on PET- 

CT reports] to serve as a non-generative baseline (16, 30).

2.3 Prompting

The format of the instruction given to an LLM has been shown 

to impact the quality and reliability of responses (7, 31). 

Accordingly, we experimented with four prompt templates: 

‘Standard—JSON’, ‘CoT—JSON’, ‘Standard’, and ‘CoT’. Figure 2

demonstrates these templates. The CoT approach frames the 

problem as a document classification task (for the presence or 

absence of one or more AIFs), with the intermediate steps being 

the generation of the sentences that would constitute AIFs. The 

‘Standard’ approach requests the AIFs only, and the 

classification label is determined by whether any AIFs are 

returned. We also experimented with formatting instructions for 

the outputs, JSON or free text. The AIFs extracted from reports 

would be stored and used in other applications, so a defined 

output format such as JSON is useful. However, there is 

evidence that constraining LLM outputs can be harmful to 

FIGURE 1 

Example PET-CT report with highlighted text distinguishing between different types of incidental finding sentences.
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performance (32), so we experimented with both approaches. The 

prompts were preprocessed by using each LLM’s tokenizer and 

instruction template.

2.4 QLoRA

Preliminary experiments demonstrated that in-context 

learning (33), a transfer learning technique where demonstration 

example(s) are provided in the prompt (e.g., ‘few-shot learning’), 

was not effective on this task. We instead utilised QLoRA, a 

technique that combines 4-bit model quantisation with LoRA 

(6, 8). The size of the models used in this project prohibits full 

fine-tuning (as would be standard with smaller language models 

such as BERT), and LoRA overcomes this by fine-tuning a 

subsection of the base model’s weights. Early experiments 

revealed that model quantisation did not reduce model 

performance and provided the opportunity to trial larger models 

such as Phi-4. This would not have been feasible with our 

hardware without quantisation. The QLoRA approach reduced 

FIGURE 2 

The four prompt templates used for training the model. <REPORT TEXT HERE> represents where the text of each PET-CT report would be inserted 

into the prompt before tokenization and being inputted to the model.
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the amount of video random access memory (VRAM) required to 

fine-tune the LLMs to the task and made it feasible on a 

consumer-level GPU. Please see Supplementary material

(Section 11) for the comparison table of 16-bit LoRA vs. (4-bit) 

QLoRA.

2.5 Inference/decoding

LLMs output probabilities for each token in the vocabulary at 

each generation timestep, and there are different strategies to 

convert these into text. Four such strategies were trialled: greedy 

sampling, nucleus sampling (34), beam search, and a hybrid 

approach combining greedy and nucleus sampling. Greedy 

sampling takes the most probable token at each timestep, 

whereas nucleus sampling probabilistically selects tokens. It 

introduces two parameters: Temperature which controls the 

amount of variability in the generations (35) and ‘top p’, which 

sets a probability threshold limiting the selection of tokens to 

those whose accumulated probabilities meet the threshold (34). 

Beam search generates multiple candidate answers (or ‘beams’) 

and then selects the candidate with the highest overall 

probability (36). We trialled four and eight beams. Once 

decoded, a rule-based parser removed artefacts from the text 

before verifying the generation is valid JSON. The hybrid 

decoding method combined greedy search and nucleus 

sampling. It worked as follows: If greedy search failed to result 

in valid JSON, nucleus sampling was attempted with both 

temperature and top p set to 0.5, only stopping when an 

attempt resulted in valid JSON, or a five-attempt limit was 

reached. In the latter case, a JSON-parsable ‘null’ answer would 

be returned and considered incorrect in evaluation. This ensures 

that even if the model cannot provide a valid answer, these 

errors are not propagated to downstream applications.

2.6 Hyperparameters

Optimal hyperparameters were found via experimentation on 

the validation dataset. The rank (‘r’) hyperparameter is 

particularly important as it contributes to how large the LoRA 

matrices are. We found setting r at 16 and alpha at 64 offered 

the best balance of performance and memory consumption. The 

models were trained for three epochs using a linearly decaying 

learning rate of 2 × 10−4 with an 8-bit AdamW optimiser (37). 

Eight gradient accumulation steps of mini-batch size of one 

were used (38), creating an overall batch size of eight.

2.7 Evaluation

To evaluate the model, we considered both document- and 

sentence-level performance. For document-level evaluation, we 

used accuracy, precision, recall, and F1 score metrics. As both 

the positive and negative classes at the document level are 

significant, we used the macro-average of precision, recall, and 

F1 score. A document-level positive label was defined as one or 

more sentences corresponding to AIF(s) being in the report, and 

a negative label was no AIF-related sentences being present.

An exact string match is the simplest method to compare the 

gold annotation sentences against the model’s generations and 

guarantees semantic equivalence. This allows automatic 

sentence-level evaluation to provide the lowest estimate of 

performance (as an exact match guarantees the semantic 

accuracy of anything deemed correct). However, sentence 

boundaries can be ambiguous, and the model may determine 

them to be different from the sentence tokenizer (39). 

A common example of this was omitting the number at the 

start of a numbered list entry. This would be considered wrong 

as an exact string match but correct by an end user. Therefore, 

we normalised the sentences by removing whitespace, 

punctuation, and numbers from the beginning and end of 

generations and annotations. This alleviates the issue of 

evaluating correct incidentals as incorrect without jeopardising 

the meaning of the sentence. Precision, recall, and F1 score were 

used to evaluate the sentences once normalised with no macro- 

averaging. We also qualitatively analysed errors to account for 

examples that our normalisation process does not account for, 

as these would be marked as incorrect even if semantically 

equivalent, and assessed other generation characteristics which 

may affect how the system would perform in practice.

Neural network training involves a degree of randomness, so 

the final models used for external evaluation were trained three 

times with three random seeds before any evaluation on the 

internal or external test sets took place. This allowed the mean 

and 95% confidence intervals for the quantitative metrics 

outlined above to be reported, while avoiding any test set bias 

during development.

The final evaluation consideration was whether the LLM 

always generates parsable output or produces errors. These 

errors were recorded when comparing different decoding and 

prompting techniques for further comparison.

3 Results

Our best performing model, a QLoRA-adapted Llama-3.1-8B 

Instruct with the CoT-JSON prompting strategy, achieved strong 

performance on internal data and demonstrated generalisability 

to external data.

In terms of dataset characteristics, the inter-annotator 

agreement measured 0.75 using Cohen’s kappa, signifying either 

‘substantial’ or ‘excellent’ agreement (40, 41), before the 

disagreements were resolved. Table 1 outlines quantitative 

differences between the internal and external datasets. The 

external reports were noticeably longer and contained more AIF 

sentences per report. The class distribution at the document 

level was also different, with most external reports being positive 

compared with a minority of internal reports. Figure 3 shows 

how the median length of external reports was both greater and 

lay outside the interquartile range of the internal datasets. 
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External outliers could also be much longer than the 

internal outliers.

Figure 4 demonstrates document-level macro-average F1 

scores and sentence-level F1 scores for different fine-tuned 

LLMs on the validation set when using the four different 

prompt strategies outlined in Figure 2. The document-level 

classification was close across all models and prompt strategies, 

with only Llama 3.2-1B (the smallest LLM tested) achieving an 

F1 score below the GatorTron baseline. The sentence-level 

component of the task was where the larger models performed 

significantly better. The best performing models were Llama 3.1 

8B and Phi-4 14B using the CoT-JSON prompt strategy. Llama 

3.1 8B was ultimately chosen for further internal and external 

evaluation as it had a marginally higher mean of document and 

sentence-level metrics (0.816 vs. 0.815 for Phi-4) and achieved 

this performance with 57% of the parameters of Phi-4, making 

it significantly more efficient.

Table 2 shows the performance of the Llama 3.1 8B model on 

both test datasets with different decoding methods. Strong 

performance was observed on the internal data using the 

automatic evaluation approach, but we see a drop in all 

document-level and sentence-level metrics on the external data. 

On internal data, hybrid, greedy, and nucleus sampling 

performed similarly; however, on the external data, the greedy 

and hybrid decoding methods performed the best. Hybrid 

decoding scored higher due to the greedy method failing to 

output JSON on one example. The hybrid method overcame 

this with its nucleus sampling fallback. Looking at the beam 

search performance, eight beams outperformed four beams but 

fell short of the hybrid, greedy, and nucleus sampling 

techniques on both datasets.

Table 3 shows the effect of the different prompt templates 

(Figure 2) on performance on both internal and external data 

(using hybrid decoding). The prompt combining both CoT and 

JSON output instructions provided the best document-level 

performance on both datasets and the best overall sentence-level 

F1 score on the external data, primarily due to its better recall. 

Due to using different parsers for JSON and non-JSON outputs, 

the parsing error scores serve as a point of comparison only 

within the same output format. In this regard, the CoT-JSON 

prompt outputs were also more robust to JSON parsing errors 

on the external data than the standard prompting approach.

Figure 5 displays confusion matrices of the document-level 

classification for both test datasets. The performance on the 

internal data was strong, with the errors being split evenly 

between false positives and false negatives. With the external 

data, there was an increase in false positives that resulted in 

lower classification performance.

TABLE 1 Statistics of the datasets used in this study.

Dataset No. of 
reports

No. of 
patients

AIF positive 
reports

AIF negative 
reports

AIF positive/ 
negative ratio

Mean tokens 
per report

Mean AIF 
sentences per 

report

Internal 

training

1,999 1,847 786 1,213 0.64 392 0.781

Internal 

validation

248 230 103 145 0.71 391.9 0.806

Internal test 250 231 104 146 0.71 405.9 0.908

External test 460 N/A 286 174 1.64 570.3 1.697

Mean tokens per report is derived using Llama 3.1 8B’s tokenizer. Individual patient information was not available for the external test set.

FIGURE 3 

Box-and-whisker plot demonstrating the difference in token lengths of reports between internal and external reports. Token counts were using the 

Llama 3.1 8B Instruct tokenizer.
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Figure 6 shows generations from the model compared against 

the gold standard data. Errors can be described as ‘soft’ or ‘hard’ 

depending on whether they would realistically affect clinical 

practice. Three key soft error types were identified: (1) ‘sentence 

boundary errors’, (2) ‘multiple-reference errors’, and (3) ‘text 

artefact errors’. The automatic evaluation process would classify 

these as incorrect, but they are correct in practice (or at least 

unharmful). Hard error types included (1) ‘contextual 

misinterpretation of actionability’, (2) ‘missed AIF finding’, and 

(3) ‘not an AIF’. These are also evaluated as incorrect by the 

automatic evaluation process and are true mistakes. Some of the 

examples in Figure 6 reveal examples where the automatic 

evaluation metrics penalised the model for soft errors. The first 

example shows how the model generated the correct AIF 

sentences from the report, but did not include ‘other findings’: 

at the start of one AIF, a ‘sentence boundary error’. This error 

FIGURE 4 

Grouped bar chart demonstrating sentence-level F1 scores and document-level macro-average F1 scores on the validation dataset for LLMs with 

parameter counts ranging from 1 to 14 billion parameters using four different prompting strategies. Gold and silver stars represent the first and 

second highest F1 scores at the sentence and document level. The dashed black line shows the performance of the baseline encoder-only 

GatorTron model (fine-tuned as a binary sentence classifier).
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TABLE 2 Comparison of decoding strategies using QLoRA fine-tuned Llama 3.1 8B Instruct model on both the internal and external test datasets.

Dataset Decoding 
strategy

Document-level (macro-average) Sentence-level Parsing 
errors

Precision Recall F1 Accuracy Precision Recall F1

Internal test Hybrid 0.919 ± 0.017 0.916 ± 0.016 0.917 ± 0.016 0.92 ± 0.016 0.787 ± 0.009 0.724 ± 0.013 0.754 ± 0.011 0

Greedy 0.919 ± 0.017 0.916 ± 0.016 0.917 ± 0.016 0.92 ± 0.016 0.787 ± 0.009 0.724 ± 0.013 0.754 ± 0.011 0

Nucleus 0.92 ± 0.008 0.915 ± 0.008 0.917 ± 0.008 0.92 ± 0.008 0.79 ± 0.025 0.724 ± 0.016 0.756 ± 0.02 0

Beam (4 beams) 0.891 ± 0.004 0.879 ± 0.014 0.883 ± 0.011 0.888 ± 0.009 0.805 ± 0.032 0.607 ± 0.04 0.691 ± 0.016 0

Beam (8 beams) 0.897 ± 0.004 0.889 ± 0.004 0.892 ± 0.001 0.896 ± 0.0 0.816 ± 0.034 0.649 ± 0.045 0.722 ± 0.032 0

External test Hybrid 0.797 ± 0.019 0.815 ± 0.02 0.79 ± 0.025 0.793 ± 0.025 0.588 ± 0.021 0.47 ± 0.024 0.522 ± 0.012 0–1

Greedy 0.796 ± 0.018 0.815 ± 0.02 0.79 ± 0.024 0.792 ± 0.024 0.589 ± 0.018 0.468 ± 0.022 0.521 ± 0.012 0–5*

Nucleus 0.798 ± 0.019 0.816 ± 0.02 0.789 ± 0.024 0.791 ± 0.025 0.585 ± 0.023 0.463 ± 0.019 0.517 ± 0.01 0

Beam (4 beams) 0.773 ± 0.011 0.786 ± 0.008 0.754 ± 0.009 0.755 ± 0.01 0.7 ± 0.027 0.392 ± 0.018 0.503 ± 0.018 0

Beam (8 beams) 0.787 ± 0.009 0.803 ± 0.007 0.773 ± 0.005 0.775 ± 0.005 0.696 ± 0.026 0.405 ± 0.007 0.512 ± 0.012 0

The best performing metrics on each dataset are highlighted in bold. A parsing error occurs when the model has to retry the generation. Each model was trained three times, with three 

different random seeds, and we report the mean and 95% confidence intervals for each metric, along with the range of parsing errors (per run) over three runs.

*Represents that this parsing error was fatal, and after five attempts, a ‘null’ response was provided and automatically marked as incorrect.

TABLE 3 Comparison of prompt strategies using Llama 3.1 8B Instruct on the internal and external test datasets.

Dataset Prompt strategy Document-level (macro-average) Sentence-level Parsing errors

Precision Recall F1 Accuracy Precision Recall F1

Internal test CoT—JSON 0.919 ± 0.017 0.916 ± 0.016 0.917 ± 0.016 0.92 ± 0.016 0.787 ± 0.009 0.724 ± 0.013 0.754 ± 0.011 0

Standard—JSON 0.891 ± 0.041 0.88 ± 0.045 0.885 ± 0.043 0.889 ± 0.041 0.82 ± 0.049 0.706 ± 0.016 0.758 ± 0.013 0

CoT 0.894 ± 0.005 0.882 ± 0.005 0.887 ± 0.005 0.892 ± 0.005 0.71 ± 0.152 0.68 ± 0.025 0.69 ± 0.072 0*

Standard 0.902 ± 0.004 0.897 ± 0.008 0.899 ± 0.006 0.903 ± 0.005 0.647 ± 0.124 0.705 ± 0.031 0.67 ± 0.049 0*

External test CoT—JSON 0.797 ± 0.019 0.815 ± 0.02 0.79 ± 0.025 0.793 ± 0.025 0.588 ± 0.021 0.47 ± 0.024 0.522 ± 0.012 0–1

Standard—JSON 0.785 ± 0.015 0.801 ± 0.015 0.775 ± 0.008 0.778 ± 0.008 0.579 ± 0.022 0.459 ± 0.025 0.512 ± 0.01 3–4

CoT 0.793 ± 0.005 0.81 ± 0.006 0.782 ± 0.007 0.784 ± 0.008 0.544 ± 0.086 0.466 ± 0.011 0.501 ± 0.041 0*

Standard 0.793 ± 0.014 0.811 ± 0.014 0.784 ± 0.013 0.787 ± 0.012 0.349 ± 0.08 0.455 ± 0.012 0.393 ± 0.054 0*

Best performing metrics on each dataset are marked in bold. Each model was trained three times, with three different random seeds, and we report the mean and 95% confidence intervals for 

each metric, along with the range of parsing errors over three runs.

*Denotes metric derived using a whitespace parser rather than the more stringent JSON parser, so * values should not be compared with ‘non *’ values in the ‘Parsing Errors’ column.

FIGURE 5 

Confusion matrices demonstrating the document-level classifications on the internal and external datasets, using the final selected Llama 3.1 8B 

Instruct model trained with the CoT prompt with JSON output, and using the hybrid decoding method.
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FIGURE 6 

Three error analysis examples from the internal and external test sets. The difference between the gold standard sentences and the model-generated 

sentences is highlighted in red.
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resulted in both a false positive and false negative being recorded, 

even though the model is semantically correct. This error occurs 

due to an annotation decision, where it could be argued that 

either sentence boundary is appropriate. Example 2 shows how 

the model generates a reference to the only AIF in the report, a 

nodule on the left kidney, but misses the other reference to the 

same AIF (a ‘multiple-reference error’). This is unlikely to make 

a difference in clinical practice. Example 3 demonstrates some 

true (‘hard’) errors, all accounted for correctly by the automatic 

evaluation. The false positive enlarged prostate finding is worth 

noting as this was in the original report and is an incidental 

finding, but not considered ‘actionable’ by the annotators 

(a ‘contextual misinterpretation of actionability’ error).

4 Discussion

We developed a deep learning pipeline utilising open LLMs that 

classifies FDG PET-CT radiology reports for the presence or 

absence of AIFs by also extracting the key sentences that refer to 

them. Our quantitative evaluation approach demonstrates an 

impressive lowest estimate of performance on the internal data, 

with a document-level macro-average F1 score of 0.925 and a 

sentence-level F1 score of 0.745. On external data, this lowest 

estimate of performance drops to 0.812 and 0.524, respectively, 

demonstrating domain shift between the two hospitals reporting, 

which causes difficulty for LLMs. However, error analysis 

demonstrated that the ‘real-world’ performance is higher on both 

datasets, with correct answers being penalised due to 

complications surrounding sentence boundaries and writing 

styles. The model can label and extract sentences from thousands 

of reports in a fraction of the time it would take an expert. 

Accordingly, this pipeline has the potential to be used for both 

real-time clinical alerts and reminders when reports are submitted 

and retrospective analysis of comorbidities from past reports.

The various LLMs performed differently on the document- 

and sentence-level parts of the task (Figure 4). Interestingly, 

most models perform well at a document-level, but sentence- 

level performance generally increases with the number of 

parameters in the base LLM. For the sentence-level component, 

the model must distinguish between sentences referring to lung 

cancer and unexpected incidental findings and then, within 

these sentences, distinguish between actionable and non- 

actionable findings. This is a complex task that all but highly 

trained experts would find challenging. It follows that more 

parameters in a model would increase its ability to make these 

distinctions. Llama 3.1 8B outperforming Phi-4 14B 

demonstrates that raw parameter count is not the only 

factor, however.

The results also demonstrate how choosing the correct 

prompting technique for a given LLM is important for the more 

challenging sentence-level task (Figure 4). For example, Llama 

3.1 8B was the best performing with a ‘CoT-JSON’ strategy but 

performed poorly with the ‘Standard’ prompt. In contrast, the 

Mistral model tested was more invariant to prompt changes but 

slightly worse overall. The middling performance of 

OpenBioLLM also suggested that further medical domain 

adaptation seems less important with larger models, when 

compared with the more significant benefits with smaller models 

reported in previous work (16). The significant increase in the 

number of tokens these models are trained on (∼90 billion 

tokens for GatorTron, ∼15 trillion tokens for Llama 3.1) may 

minimise the advantage of further specialisation (23, 30).

The challenge of evaluating generative models is widely 

discussed in the field (42–44). The specific nature of our single- 

task system (as opposed to a general chatbot/assistant, etc.) 

allowed us to approach evaluation differently from other LLM 

projects. We utilised a two-stage approach, firstly using a 

quantitative guaranteed assessment of the worst-case 

performance of the model and secondly a qualitative approach 

using actual examples from the model. The error analysis in this 

second phase revealed many examples where the quantitative 

approach punished the model unfairly. Despite these strengths 

in evaluation, our results suggest some potential implementation 

challenges. The increase in false positives in Figure 5 could 

cause ‘alert fatigue’ in an end user (a concern in the wider field) 

(45, 46). Future work would be to develop user guidance in 

consultation with nuclear medicine physicians to ensure it helps 

and does not hinder their practice. We would also like to 

develop a robust human evaluation protocol for the model, as 

this could inform how it is inserted into clinical workQows, and 

how to best utilise the extracted AIFs in downstream practice. 

However, human evaluation of LLMs is labour-intensive and has 

its own shortcomings to be overcome (47, 48).

This study demonstrated some interesting findings regarding 

LLM generalisation. The two datasets have different 

characteristics (Table 1 and Figure 4), and previous work with 

this dataset noted that the internal and external reports used a 

different reporting style (16). The internal reports order the 

findings section by priority where the most significant findings 

are stated first, whereas the external reports order findings 

anatomically (i.e., sequentially from head down to legs). Rohren 

(49) provides details on these established styles. Table 1 and 

Figure 4 show that an anatomical reporting style potentially 

results in significantly longer reports with more AIF sentences. 

There is evidence that longer reports are harder to understand 

for humans, and perhaps LLMs find longer reports more 

challenging also (50). This difference in performance could also 

have implications in deployment if a hospital changes its 

imaging reporting protocols.

LLMs can hallucinate, where they generate incorrect but 

seemingly plausible content (51), an issue of concern in the 

healthcare domain (52). Throughout our evaluation, we found 

no instances of hallucination: All extracted sentences, correct or 

not, were present in the original report text. This reliability is 

likely because we have adapted the LLM for a single task, and 

this has successfully enforced consistency on new examples. This 

provides confidence in the real-world deployment of such a 

system. A caveat is that we were unable to formally check every 

individual generation for hallucinations.

There is increasing evidence that LLMs perform better when 

trained with explicit reasoning steps, most notably with 
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DeepSeek-R1 (53). We found that even a simple CoT prompting 

approach results in better document-level performance on both 

test datasets (Table 3). We also found that training the LLM to 

output JSON generally improved performance in contrast with 

previous work (32). LLM prompt engineering is widely 

discussed when using closed LLMs such as ChatGPT for 

inference (54), but less so when fine-tuning models for specific 

tasks. We found that it makes a performance difference and 

argue that it always needs investigation when developing an 

LLM-based system.

In terms of decoding, we found that the computationally 

cheaper greedy and nucleus searches worked better than beam 

search (Table 2). This is likely due to how these decoding styles 

are more aligned with the next-token prediction objective. The 

hybrid approach proposed improved on these decoding styles, 

allowing the model to escape JSON parsing errors by using 

nucleus search as a fallback for greedy decoding when it failed 

to provide parsable output. The hybrid approach also ensures 

that a JSON-parsable ‘null’ error is returned in the event of a 

challenging report that the model cannot solve, ensuring 

downstream applications are not affected. Another advantage of 

non-beam approaches is an increase in the speed of processing 

and less memory required for processing.

Our approach only requires one consumer-level GPU, not 

only making it more accessible from a resources standpoint but 

also demonstrating that LLM benefits can be harnessed at a 

lower energy cost than an application such as ChatGPT would 

at inference time (55).

A key limitation of the model is that it is designed for lung 

cancer, and due to the inherently contextual nature of incidental 

findings, it cannot be guaranteed to work for other conditions. 

We believe the AIF extraction methodology presented could be 

applied to other imaging modalities and conditions, however. 

Two possible extensions we are looking at addressing in future 

work are prostate cancer scans for PSMA (prostate-specific 

membrane antigen) PET-CT and AIFs in brain MRI scans (56). 

The extensible nature of LoRA adapters means a future 

‘mixture-of-experts’ model for AIFs could utilise all these 

models as part of one comprehensive system (57). This work 

would serve as a blueprint for training the ‘experts’ in such a 

system. Another limitation is the number of data points and 

annotators available for the project, an issue for most supervised 

learning tasks. Limitations on expert annotator time also 

prevented us from testing inter-annotator agreement on the 

internal data. This could result in some bias in the trained 

model towards the sole annotator’s judgement; however, since 

the agreement of the two annotators was consistent on external 

data, and the internal data are from the same hospital as both 

annotators, we considered this a reasonable compromise and the 

best use of the expert annotation hours available. Especially 

considering agreement was still quantified on the external data. 

We were also unable to stratify performance based on different 

demographic groups, which would in turn have allowed us to 

evaluate the fairness and bias of the model. The ethical approval 

and data retrieval process for the initial study, this dataset was 

used in ensured anonymity to an extent that the relevant 

features were not in our dataset (16). We acknowledge this is an 

important step for acceptance of such models and hope to 

incorporate these experiments into future work. Finally, 

although we use open LLMs in this work to ensure repeatability, 

these models cannot be considered truly open source. For 

example, our final model utilised Llama 3.1 8B Instruct, which 

has open weights, but the exact pretraining data makeup was 

not published (23).

5 Conclusion

We developed an LLM-based model that both classifies PET- 

CT reports for the presence or absence of AIFs and extracts the 

sentences from the text that inform that classification. We 

demonstrate its efficacy by quantitatively and qualitatively 

analysing its performance on both internal and external reports. 

We believe this model would be effective in assisting clinicians 

by providing real-time alerts and reminders and for future 

analysis of AIFs in patient histories.
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