& frontiers | Frontiers in Digital Health

") Check for updates

OPEN ACCESS

EDITED BY
Seedahmed S. Mahmoud,
Shantou University, China

REVIEWED BY

Akram Shehata,

Alexandria University, Egypt
Kangli Dong,

Shantou University, China

*CORRESPONDENCE
Stephen H. Barlow
stephen.barlow@kcl.ac.uk

'"These authors have contributed equally to
this work and share senior authorship

RECEIVED 09 September 2025
ACCEPTED 27 October 2025
PUBLISHED 14 November 2025

CITATION
Barlow SH, Chicklore S, He Y, Qurselin S,
Wagner T, Barnes A and Cook GJR (2025)
Open LLM-based actionable incidental finding
extraction from [*®F]fluorodeoxyglucose PET-
CT radiology reports.

Front. Digit. Health 7:1702082.

doi: 10.3389/fdgth.2025.1702082

COPYRIGHT
© 2025 Barlow, Chicklore, He, Ourselin,
Wagner, Barnes and Cook. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Digital Health

Original Research
14 November 2025
10.3389/fdgth.2025.1702082

Open LLM-based actionable
incidental finding extraction from
[*®F]fluorodeoxyglucose PET-CT
radiology reports

Stephen H. Barlow', Sugama Chicklore™, Yulan He***,
Sebastien Ourselin', Thomas Wagner®’, Anna Barnes*® and
Gary J. R. Cook™*

!School of Biomedical Engineering and Imaging Sciences, King's College London, London, United
Kingdom, 2King's College London and Guy's and St. Thomas' PET Centre, St. Thomas' Hospital,
London, United Kingdom, *Department of Informatics, King's College London, London, United
Kingdom, *Department of Computer Science, University of Warwick, Coventry, United Kingdom, °Alan
Turing Institute, London, United Kingdom, ®Department of Nuclear Medicine, Royal Free Hospital,
London, United Kingdom, "Department of Imaging, Centre for Medical Imaging, University College
London, London, United Kingdom, ®King's Technology Evaluation Centre (KiTEC), School of
Biomedical Engineering & Imaging Science, King's College London, London, United Kingdom

Introduction: We developed an open, large language model (LLM)-based
pipeline to extract actionable incidental findings (AIFs) from [*8F]
fluorodeoxyglucose positron emission tomography-computed tomography
([*®FIFDG PET-CT) reports. This imaging modality often uncovers AlFs, which
can affect a patient's treatment. The pipeline classifies reports for the
presence of AlFs, extracts the relevant sentences, and stores the results in
structured JavaScript Object Notation format, enabling use in both short- and
long-term applications.

Methods: Training, validation, and test datasets of 1,999, 248, and 250 lung
cancer [*|FIFDG PET-CT reports, respectively, were annotated by a nuclear
medicine physician. An external test dataset of 460 reports was annotated by
two nuclear medicine physicians. The training dataset was used to fine-tune
an LLM using QLoRA and chain-of-thought (CoT) prompting. This was
evaluated quantitatively and qualitatively on both test datasets.

Results: The pipeline achieved document-level F1 scores of 0.917 + 0.016 and
0.79 + 0.025 on the internal and external test datasets. At the sentence-level,
F1 scores of 0.754 + 0.011 and 0.522 + 0.012 were recorded, and qualitative
analysis demonstrated even higher practical utility. This qualitative analysis
revealed how sentence-level performance is better in practice.

Discussion: Llama-3.1-8B Instruct was the base LLM that provided the best
combination of performance and computational efficiency. The utilisation of
CoT prompting improved performance further. Radiology reporting
characteristics such as length and style affect model generalisation.
Conclusion: We find that a QLoRA-adapted LLM utilising CoT prompting
successfully extracts AlIF information at both document- and sentence-level
from both internal and external PET-CT reports. We believe this model can
assist with short-term clinical challenges like clinical alerts and reminders,
and long-term tasks like investigating comorbidities.

KEYWORDS

incidental findings, natural language processing, diagnostic imaging, artificial
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1 Introduction

['®F]Fluorodeoxyglucose positron emission tomography-
computed tomography (FDG PET-CT) is a medical imaging
modality used extensively in cancer treatment (1). It frequently
(AIFs) (2),
phenomena, separate from the reason for the scan, requiring

reveals actionable incidental findings medical
clinical intervention or observation (3). Strategies for AIF
management are a focus of wider study (4), and decision
support systems utilising LLMs could benefit these efforts.
Distinguishing between AIFs and other incidental findings is
important for prioritising resources, developing a richer patient
assessment, and improving patient wellbeing (3). Real-time AIF
extraction could also ensure that appropriate action is taken
promptly and preserve AIF details for comorbidity investigations
later in a patient’s health journey.

Large language models (LLMs) have been shown to
successfully extract clinical information from free text (5).
Furthermore, parameter-efficient fine-tuning techniques, such
adaptation (LoRA) (6),
techniques such as chain-of-thought (CoT) prompting (7), and

as low-rank prompt engineering
quantisation techniques allow publicly available LLMs to be
adapted to domain-specific tasks (8), even in resource-
constrained environments.

Work has been done to extract incidental findings from
radiology reports (9-12), but less for PET-CT specifically, where
only one study attempting to extract ‘secondary findings’
alongside primary cancers was found (13). The methodologies
in these studies differ. The earliest study found by Dutta et al.
(9) utilised a rule-based approach to determine whether further
imaging was required for incidental findings from a range of
imaging modalities. Evans et al. (10) classified reports at the
document level for the presence or absence of incidental
findings using a random forest model. Trivedi et al. (11) used
word and concept embeddings alongside various classification
approaches to identify incidental findings at both the section
and sentence levels. Woo et al. (12) utilised GPT-4 (14) to
locate ‘definitely actionable’ and ‘possibly actionable’ incidental
findings from x-ray, CT, and ultrasound scans. GPT-4 and
similar proprietary LLMs can pose a risk both to patient privacy
and methodological rigour. This is because patient data leaves
hospital servers to be processed by OpenAl, whose lack of
public jeopardises (15).
Developing alternatives with open LLMs is important for

version  control reproducibility
broader implementation in clinical practice. Accordingly, we
developed an open large language model (LLM)-based pipeline
to extract AIFs from PET-CT reports. It automatically classifies
reports for the presence of AIFs, extracts the relevant sentences,
and outputs the results in structured JavaScript Object Notation
(JSON) format, enabling use in both short- and long-term
applications. This provides an open LLM-based alternative to
Woo et al’s (12) closed-source approach and represents the first
work found to extract AIFs [as opposed to ‘secondary findings’
(13)] from PET-CT reports.
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2 Materials and methods

2.1 Clinical data

The PET-CT report dataset used in this study was created in
an earlier study (16) and consisted of an internal dataset from
King’s College London and Guy’s and St Thomas’ PET Centre
and an external test set from the Royal Free Hospital. The
internal reports were from 2012 to 2021, and the external
reports are from 2020. The training, validation, and test splits
were kept from the earlier study except for removing one
validation set report (where lung cancer was found to be an AIF
and not the reason for the scan) (16). This research was
developed with Guy’s Cancer Cohort (ref: 18/NW/0297), and
accordingly, the data use was approved by a UK Research Ethics
Committee (UK IRAS 228790) (17).

Guidelines to define AIFs were developed using resources
from both the American College of Radiology and the Royal
(18-20). As
guidelines, developed with multiple imaging modalities in

College of Radiologists these are general
mind, some inclusion/exclusion criteria were adapted to be
more suitable for PET-CT scans for lung cancer, as the
actionability of an incidental finding is not an absolute
characteristic but determined by the wider status of a patient’s
health (21). An example is emphysema, which is common in
lung cancer patients (22). Given the clinical context of a lung
cancer patient, it would be included when an intensifying
qualifier was used in conjunction with it (such as ‘severe’) but
excluded when diminishing or neutral qualifications were used
(‘mild’, Other of AIFs

abdominal aortic aneurysms and other

‘moderate’). examples include

incidental non-
pulmonary malignancies.

We used a two-stage annotation approach, where the reports
were initially annotated by either one (GC—internal data) or two
(GC and SC—external data) expert annotators with 30 and 14
years of PET experience, respectively. Two expert annotators
were used on the external data to test inter-annotator
agreement. Any disagreements between the two annotators on
the external data were resolved before the second annotation
stage. In the second stage, SB verified the annotations by
error-catching missed findings. For example, both annotators
may have agreed on a finding in the ‘Interpretation’ section of
the report but missed another reference to the same finding in
the ‘Findings’ section. Whenever a missed finding was found,
it was checked with the clinical annotators. This process
maximised annotation accuracy while using expert
time efficiently.

Following annotation, the internal and external data were
analysed to observe if differences in reporting style could
be quantified (16). We

class distributions, the number of tokens per report (using

investigated the document-level

Llama 3.1’s tokenizer), and the number of AIF sentences

per document. Figure 1 shows an example report

with annotations.
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Findings:

14.1).

Impression:

in comparison to the lung mass is relativel
adrenal is benign in nature.

An FDG scan was acquired from skull base to upper thighs together with a low dose
CT scan for attenuation correction and image fusion.

There is a 3.6cm right lower lobe mass which shows intense FDG uptake (SUV max

There is focal intense uptake in a right hilar node and a smaller subcarinal node.
The left adrenal gland is enlarged and is predominantly of low attenuation. It shows
low grade abnormal uptake (SUV max 3.8). There is a left paravertebral soft tissue
mass at the C7 level which shows intense uptake and is eroding the anterior edge of

No definite underlying CT correlate is present.

Scan findings are consistent with a malignant right lung tumour with right hilar and
subcarinal nodal involvement. The findings also suggest a soft tissue metastatic
mass in the left C7 paravertebral region. The level of uptake in the left adrenal gland

low and it is felt more likely that the

Non-actionable incidental finding
Related to AIF but not part of label

Key:

FIGURE 1

Example PET-CT report with highlighted text distinguishing between different types of incidental finding sentences.

2.2 LLMs

LLMs are computationally expensive and beyond the resources
of most hospitals. This creates issues as patient data is confidential,
often requiring model development to be performed on-site. Using
open LLMs this
replicability, both for research and clinical validation. Accordingly,

mitigates concern while offering greater
no proprietary LLMs would be used, and the LLMs used must be
trainable on consumer-level equipment. The graphics processing
unit (GPU) used in this project was an NVIDIA GeForce RTX
3090. This is still unlikely to be available to most UK hospitals,
but it has the potential to be achieved locally. Models from the
Llama, Phi, Gemma, and Mistral families of LLMs were tested
with parameter counts ranging from 1 to 14 billion (23-28). Due
to our small fine-tuning dataset, we used the instruction-tuned
variants of each LLM to benefit from the additional training these
have undergone. Additionally, we trialled Saama’s OpenBioLLM-
Llama3-8B to test if using an LLM that has undergone further
medical domain adaptation improves performance (29). The fine-
tuning objective was next-token prediction on the prompt, report,
and desired output for each training example. Finally, we trained a
binary sentence classification model using GatorTron [a 355
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Bidirectional encoder from

transformers (BERT)-style model shown to perform well on PET-

million-parameter representations

CT reports] to serve as a non-generative baseline (16, 30).

2.3 Prompting

The format of the instruction given to an LLM has been shown
to impact the quality and reliability of responses (7, 31).
Accordingly, we experimented with four prompt templates:
‘Standard—JSON’, ‘CoT—JSON’, ‘Standard’, and ‘CoT’. Figure 2
demonstrates these templates. The CoT approach frames the
problem as a document classification task (for the presence or
absence of one or more AIFs), with the intermediate steps being
the generation of the sentences that would constitute AIFs. The
‘Standard’ the AIFs the
classification label is determined by whether any AIFs are

approach  requests only, and
returned. We also experimented with formatting instructions for
the outputs, JSON or free text. The AIFs extracted from reports
would be stored and used in other applications, so a defined
output format such as JSON is useful. However, there is

evidence that constraining LLM outputs can be harmful to
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Standard - JSON

CoTl -JSON

The following text is a PET-CT report for lung
cancer:

REPORT: <REPORT TEXT HERE>

INSTRUCTION: Extract any sentences in the
report indicating actionable incidental findings
requiring medical intervention.

The output should be a markdown code snippet
formatted in the following json schema:
{"sentences": list of strings // a list of the
actionable incidental findings as strings, or an
empty list if there are no actionable incidental
findings in the report.}

Standard

The following text is a PET-CT report for lung
cancer:

REPORT: <REPORT TEXT HERE>

INSTRUCTION: Extract any sentences in the
report indicating actionable incidental findings
requiring medical intervention, then label the
overall report "positive" (if there are any
actionable incidental findings in the report), or
"negative".

The output should be a markdown code snippet
formatted in the following json schema:
{"sentences": list of strings // a list of the
actionable incidental findings as strings, or an
empty list if there are no actionable incidental
findings in the report., "label": string // "positive" if
there are any actionable incidental findings in the
report, or "negative" only.}

Col

The following text is a PET-CT report for lung
cancer:

REPORT: <REPORT TEXT HERE>

INSTRUCTION: INSTRUCTION: Extract the
sentences in the report indicating actionable
incidental findings requiring medical intervention.

FIGURE 2

4

The following text is a PET-CT report for lung
cancer:

REPORT: <REPORT TEXT HERE>

INSTRUCTION: Extract the sentences in the
report indicating actionable incidental findings
requiring medical intervention, then label the
overall report "positive" (if there are any
actionable incidental findings in the report), or

"negative".

The four prompt templates used for training the model. <REPORT TEXT HERE> represents where the text of each PET-CT report would be inserted
into the prompt before tokenization and being inputted to the model.

performance (32), so we experimented with both approaches. The = was not effective on this task. We instead utilised QLoRA, a
prompts were preprocessed by using each LLM’s tokenizer and  technique that combines 4-bit model quantisation with LoRA
instruction template. (6, 8). The size of the models used in this project prohibits full
fine-tuning (as would be standard with smaller language models

such as BERT), and LoRA overcomes this by fine-tuning a

2.4 QLoRA subsection of the base model’s weights. Early experiments
revealed that model quantisation did not reduce model

Preliminary experiments demonstrated that in-context performance and provided the opportunity to trial larger models
learning (33), a transfer learning technique where demonstration  such as Phi-4. This would not have been feasible with our
example(s) are provided in the prompt (e.g., ‘few-shot learning’),  hardware without quantisation. The QLoRA approach reduced
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the amount of video random access memory (VRAM) required to
fine-tune the LLMs to the task and made it feasible on a
GPU. Please see Supplementary material
(Section 11) for the comparison table of 16-bit LoRA vs. (4-bit)
QLoRA.

consumer-level

2.5 Inference/decoding

LLMs output probabilities for each token in the vocabulary at
each generation timestep, and there are different strategies to
convert these into text. Four such strategies were trialled: greedy
sampling, nucleus sampling (34), beam search, and a hybrid
approach combining greedy and nucleus sampling. Greedy
sampling takes the most probable token at each timestep,
whereas nucleus sampling probabilistically selects tokens. It
introduces two parameters: Temperature which controls the
amount of variability in the generations (35) and ‘top p’, which
sets a probability threshold limiting the selection of tokens to
those whose accumulated probabilities meet the threshold (34).
Beam search generates multiple candidate answers (or ‘beams’)
and then selects the candidate with the highest overall
probability (36). We trialled four and eight beams. Once
decoded, a rule-based parser removed artefacts from the text
before verifying the generation is valid JSON. The hybrid
decoding method combined greedy search and nucleus
sampling. It worked as follows: If greedy search failed to result
in valid JSON, nucleus sampling was attempted with both
temperature and top p set to 0.5, only stopping when an
attempt resulted in valid JSON, or a five-attempt limit was
reached. In the latter case, a JSON-parsable ‘null’ answer would
be returned and considered incorrect in evaluation. This ensures
that even if the model cannot provide a valid answer, these

errors are not propagated to downstream applications.

2.6 Hyperparameters

Optimal hyperparameters were found via experimentation on
the validation dataset. The rank (‘7) hyperparameter is
particularly important as it contributes to how large the LoRA
matrices are. We found setting r at 16 and alpha at 64 offered
the best balance of performance and memory consumption. The
models were trained for three epochs using a linearly decaying
learning rate of 2x 10™* with an 8-bit AdamW optimiser (37).
Eight gradient accumulation steps of mini-batch size of one
were used (38), creating an overall batch size of eight.

2.7 Evaluation

To evaluate the model, we considered both document- and
sentence-level performance. For document-level evaluation, we
used accuracy, precision, recall, and F1 score metrics. As both
the positive and negative classes at the document level are
significant, we used the macro-average of precision, recall, and
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F1 score. A document-level positive label was defined as one or
more sentences corresponding to AIF(s) being in the report, and
a negative label was no AIF-related sentences being present.

An exact string match is the simplest method to compare the
gold annotation sentences against the model’s generations and
This
sentence-level evaluation to provide the lowest estimate of

guarantees semantic equivalence. allows automatic
performance (as an exact match guarantees the semantic
accuracy of anything deemed correct). However, sentence
boundaries can be ambiguous, and the model may determine
them to be different from the (39).

A common example of this was omitting the number at the

sentence tokenizer

start of a numbered list entry. This would be considered wrong
as an exact string match but correct by an end user. Therefore,
we normalised the sentences by removing whitespace,
punctuation, and numbers from the beginning and end of
This alleviates the

evaluating correct incidentals as incorrect without jeopardising

generations and annotations. issue of
the meaning of the sentence. Precision, recall, and F1 score were
used to evaluate the sentences once normalised with no macro-
averaging. We also qualitatively analysed errors to account for
examples that our normalisation process does not account for,
as these would be marked as incorrect even if semantically
equivalent, and assessed other generation characteristics which
may affect how the system would perform in practice.

Neural network training involves a degree of randomness, so
the final models used for external evaluation were trained three
times with three random seeds before any evaluation on the
internal or external test sets took place. This allowed the mean
and 95% confidence intervals for the quantitative metrics
outlined above to be reported, while avoiding any test set bias
during development.

The final evaluation consideration was whether the LLM
always generates parsable output or produces errors. These
errors were recorded when comparing different decoding and
prompting techniques for further comparison.

3 Results

Our best performing model, a QLoRA-adapted Llama-3.1-8B
Instruct with the CoT-JSON prompting strategy, achieved strong
performance on internal data and demonstrated generalisability
to external data.

In terms of dataset characteristics, the inter-annotator
agreement measured 0.75 using Cohen’s kappa, signifying either
(40, 41), before the

outlines quantitative

‘substantial’ or ‘excellent’ agreement

disagreements were resolved. Table 1
differences between the internal and external datasets. The
external reports were noticeably longer and contained more AIF
sentences per report. The class distribution at the document
level was also different, with most external reports being positive
compared with a minority of internal reports. Figure 3 shows
how the median length of external reports was both greater and

lay outside the interquartile range of the internal datasets.
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TABLE 1 Statistics of the datasets used in this study.

10.3389/fdgth.2025.1702082

Dataset No. of No. of AIF positive = AIF negative AIF positive/ Mean tokens Mean AIF
reports patients reports reports negative ratio per report sentences per
report
Internal 1,999 1,847 786 1,213 0.64 392 0.781
training
Internal 248 230 103 145 0.71 391.9 0.806
validation
Internal test 250 231 104 146 0.71 405.9 0.908
External test 460 N/A 286 174 1.64 570.3 1.697
Mean tokens per report is derived using Llama 3.1 8B’s tokenizer. Individual patient information was not available for the external test set.
Box-and-Whisker Plots Comparing Distribution of Number of Tokens per Report for each Dataset
Internal Train }—-—’—w GHNID OIS & ¢
Internal Validation }—-—{» (3 0
Internal Test }—-—{0 DS 3
External Test I . ll:mm ¢ » 0 3 ¢ 3
0 500 1000 1500 2000 2500
Number of tokens in report
FIGURE 3
Box-and-whisker plot demonstrating the difference in token lengths of reports between internal and external reports. Token counts were using the
Llama 3.1 8B Instruct tokenizer.

External outliers could also be much longer than the
internal outliers.

Figure 4 demonstrates document-level macro-average F1
scores and sentence-level F1 scores for different fine-tuned
LLMs on the validation set when using the four different
prompt strategies outlined in Figure 2. The document-level
classification was close across all models and prompt strategies,
with only Llama 3.2-1B (the smallest LLM tested) achieving an
F1 score below the GatorTron baseline. The sentence-level
component of the task was where the larger models performed
significantly better. The best performing models were Llama 3.1
8B and Phi-4 14B using the CoT-JSON prompt strategy. Llama
3.1 8B was ultimately chosen for further internal and external
evaluation as it had a marginally higher mean of document and
sentence-level metrics (0.816 vs. 0.815 for Phi-4) and achieved
this performance with 57% of the parameters of Phi-4, making
it significantly more efficient.

Table 2 shows the performance of the Llama 3.1 8B model on
both test datasets with different decoding methods. Strong
performance was observed on the internal data using the
automatic evaluation approach, but we see a drop in all
document-level and sentence-level metrics on the external data.
On internal data, hybrid, greedy, and nucleus sampling
performed similarly; however, on the external data, the greedy

Frontiers in Digital Health 06

and hybrid decoding methods performed the best. Hybrid
decoding scored higher due to the greedy method failing to
output JSON on one example. The hybrid method overcame
this with its nucleus sampling fallback. Looking at the beam
search performance, eight beams outperformed four beams but
fell short of the hybrid, greedy,
techniques on both datasets.

and nucleus sampling

Table 3 shows the effect of the different prompt templates
(Figure 2) on performance on both internal and external data
(using hybrid decoding). The prompt combining both CoT and
JSON output instructions provided the best document-level
performance on both datasets and the best overall sentence-level
F1 score on the external data, primarily due to its better recall.
Due to using different parsers for JSON and non-JSON outputs,
the parsing error scores serve as a point of comparison only
within the same output format. In this regard, the CoT-JSON
prompt outputs were also more robust to JSON parsing errors
on the external data than the standard prompting approach.

Figure 5 displays confusion matrices of the document-level
classification for both test datasets. The performance on the
internal data was strong, with the errors being split evenly
between false positives and false negatives. With the external
data, there was an increase in false positives that resulted in
lower classification performance.

frontiersin.org
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Comparison of QLoRA Fine-tuned LLMs with Multiple Prompting Strategies
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FIGURE 4
Grouped bar chart demonstrating sentence-level F1 scores and document-level macro-average F1 scores on the validation dataset for LLMs with
parameter counts ranging from 1 to 14 billion parameters using four different prompting strategies. Gold and silver stars represent the first and
second highest F1 scores at the sentence and document level. The dashed black line shows the performance of the baseline encoder-only
GatorTron model (fine-tuned as a binary sentence classifier).

Figure 6 shows generations from the model compared against
the gold standard data. Errors can be described as ‘soft’ or ‘hard’
depending on whether they would realistically affect clinical
practice. Three key soft error types were identified: (1) ‘sentence
boundary errors’, (2) ‘multiple-reference errors’, and (3) ‘text
artefact errors’. The automatic evaluation process would classify
these as incorrect, but they are correct in practice (or at least
unharmful). Hard types included (1)

error ‘contextual

Frontiers in Digital Health

misinterpretation of actionability’, (2) ‘missed AIF finding’, and
(3) ‘not an AIF. These are also evaluated as incorrect by the
automatic evaluation process and are true mistakes. Some of the
examples in Figure 6 reveal examples where the automatic
evaluation metrics penalised the model for soft errors. The first
example shows how the model generated the correct AIF
sentences from the report, but did not include ‘other findings’
at the start of one AIF, a ‘sentence boundary error’. This error

frontiersin.org
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TABLE 2 Comparison of decoding strategies using QLoRA fine-tuned Llama 3.1 8B Instruct model on both the internal and external test datasets.

Decoding Document-level (macro-average) Sentence-level Parsing
strategy Precision | Recall F1 Accuracy | Precision  Recall SO
Internal test | Hybrid 0.919+0.017 | 0.916 +0.016 | 0.917 +0.016 | 0.92+0.016 | 0.787 +0.009 | 0.724 +0.013 | 0.754+0.011 0
Greedy 0.919+0.017 | 0.916 +0.016 | 0.917 +0.016 | 0.92+0.016 | 0.787 +0.009 | 0.724 +0.013 | 0.754+0.011 0
Nucleus 0.92+0.008 | 0.915+0.008 | 0.917%0.008 | 0.92+0.008 | 0.79+0.025 | 0.724%0.016 | 0.756 % 0.02 0
Beam (4 beams) 0.891+0.004 | 0.879+0.014 | 0.883+0.011 | 0.888+0.009 | 0.805+0.032 | 0.607+0.04 | 0.691+0.016 0
Beam (8 beams) 0.897 +0.004 | 0.889+0.004 | 0.892+0.001 | 0.896+0.0 | 0.816+0.034 | 0.649 +0.045 | 0.722+0.032 0
External test | Hybrid 0.797 +0.019 | 0.815+0.02 | 0.79+0.025 | 0.793 +0.025 | 0.588+0.021 | 0.47+0.024 | 0.522+0.012 0-1
Greedy 0.796+0.018 | 0.815+0.02 | 0.79+0.024 | 0.792+0.024 | 0.589+0.018 | 0.468 +0.022 | 0.521 +0.012 0-5*
Nucleus 0.798+0.019 | 0.816+0.02 | 0.789+0.024 | 0.791+0.025 | 0.585+0.023 | 0.463+0.019 | 0.517%0.01 0
Beam (4 beams) 0.773+0.011 | 0.786+0.008 | 0.754+0.009 | 0.755+0.01 | 0.7+0.027 | 0.392+0.018 | 0.503+0.018 0
Beam (8 beams) 0.787 +0.009 | 0.803 +0.007 | 0.773 +0.005 | 0.775+0.005 | 0.696 +0.026 | 0.405 +0.007 | 0.512+0.012 0

The best performing metrics on each dataset are highlighted in bold. A parsing error occurs when the model has to retry the generation. Each model was trained three times, with three
different random seeds, and we report the mean and 95% confidence intervals for each metric, along with the range of parsing errors (per run) over three runs.
*Represents that this parsing error was fatal, and after five attempts, a ‘null’ response was provided and automatically marked as incorrect.

TABLE 3 Comparison of prompt strategies using Llama 3.1 8B Instruct on the internal and external test datasets.

Dataset | Prompt strategy Document-level (macro-average) Sentence-level Parsing errors
Precision | Recall F1 Accuracy | Precision  Recall

Internal test | CoT—JSON 0.919+0.017 | 0.916%0.016 | 0.917+0.016 | 0.92+0.016 | 0.787 +0.009 | 0.724+0.013 | 0.754 +0.011 0
Standard—JSON 0.891+0.041 | 0.88+0.045 | 0.885+0.043 | 0.889+0.041 | 0.82+0.049 | 0.706+0.016 | 0.758 +0.013 0
CoT 0.894 +0.005 | 0.882+0.005 | 0.887 +0.005 | 0.892+0.005 | 0.71+0.152 | 0.68+0.025 | 0.69+0.072 0*
Standard 0.902 +0.004 | 0.897 +0.008 | 0.899 +0.006 | 0.903 +0.005 | 0.647+0.124 | 0.705+0.031 | 0.67 +0.049 0*

External test | COT—JSON 0.797+0.019 | 0.815+0.02 | 0.79+0.025 | 0.793 +0.025 | 0.588 +0.021 | 0.47 +0.024 | 0.522 +0.012 0-1
Standard—JSON 0.785+0.015 | 0.801+0.015 | 0.775+0.008 | 0.778+0.008 | 0.579+0.022 | 0.459 +0.025 | 0.512+0.01 3-4
CoT 0.793+0.005 | 0.81+0.006 | 0.782+0.007 | 0.784+0.008 | 0.544+0.086 | 0.466+0.011 | 0.501 +0.041 0*
Standard 0.793+0.014 | 0.811+0.014 | 0.784+0.013 | 0.787 +0.012 | 0.349+0.08 | 0.455+0.012 | 0.393 +0.054 0*

Best performing metrics on each dataset are marked in bold. Each model was trained three times, with three different random seeds, and we report the mean and 95% confidence intervals for
each metric, along with the range of parsing errors over three runs.
*Denotes metric derived using a whitespace parser rather than the more stringent JSON parser, so * values should not be compared with ‘non *” values in the ‘Parsing Errors’ column.

Confusion Matrix (Internal Test Data) Confusion Matrix (External Test Data)
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FIGURE 5
Confusion matrices demonstrating the document-level classifications on the internal and external datasets, using the final selected Llama 3.1 8B
Instruct model trained with the CoT prompt with JSON output, and using the hybrid decoding method.
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EXAMPLE 1 - EXTERNAL TEST DATA INDEX: 70

LLM GENERATED AIF SENTENCES

[

3. Focus of intense uptake either adjacent or within the greater curvature of the stomach is of uncertain origin.',
'Dilated ascending aorta measured at 4.3 cm.',

‘Focus of intense uptake in the greater curvature of the stomach or just adjacent to it between the greater curvature of
the stomach and spleen, measured at 1.3 cm in longest axial dimension, SUVmax 8.3.'

GOLD STANDARD AIF SENTENCES

[

'3. Focus of intense uptake either adjacent or within the greater curvature of the stomach is of uncertain origin.',

'Focus of intense uptake in the greater curvature of the stomach or just adjacent to it between the greater curvature of
the stomach and spleen, measured at 1.3 cm in longest axial dimension, SUVmax 8.3.,

'Other findings: Dilated ascending aorta measured at 4.3 cm."

EXAMPLE 2 - INTERNAL TEST DATA INDEX: 5

LLM GENERATED AIF SENTENCES

[
]

'There is a non FDG-avid exophytic nodule or cyst on the lower pole of the left kidney.'

GOLD STANDARD AIF SENTENCES

[

‘The left renal mass/cyst should be correlated with US as FDG PET is poor at characterising renal lesions.’,

'There is a non FDG-avid exophytic nodule or cyst on the lower pole of the left kidney.'

EXAMPLE 3 - EXTERNAL TEST DATA INDEX: 50

LLM GENERATED AIF SENTENCES

[

'4. No extrathoracic hypermetabolic focus is seen.’,

'‘Descending thoracic aorta aneurysm, measuring 6 cm.',

'Ectatic abdominal aorta, with stable infrarenal abdominal aorta aneurysm measuring 4.4 cm.',
'Intense activity within a subcarinal node which measures approximately 2 cm, SUV max 16.7.",

'Intense uptake of tracer within the middle lobe lung mass which has increased in size from 4.2 cm to 5.6 cm
and likely invading the RLL',

‘The prostate is enlarged.'

GOLD STANDARD AIF SENTENCES

[

'Descending thoracic aorta aneurysm, measuring 6 cm.',
'Ectatic abdominal aorta, with stable infrarenal abdominal aorta aneurysm measuring 4.4 cm.',

'Foci of calcification within the pancreas noted.'

FIGURE 6
Three error analysis examples from the internal and external test sets. The difference between the gold standard sentences and the model-generated
sentences is highlighted in red.
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resulted in both a false positive and false negative being recorded,
even though the model is semantically correct. This error occurs
due to an annotation decision, where it could be argued that
either sentence boundary is appropriate. Example 2 shows how
the model generates a reference to the only AIF in the report, a
nodule on the left kidney, but misses the other reference to the
same AIF (a ‘multiple-reference error’). This is unlikely to make
a difference in clinical practice. Example 3 demonstrates some
true (‘hard’) errors, all accounted for correctly by the automatic
evaluation. The false positive enlarged prostate finding is worth
noting as this was in the original report and is an incidental
finding, but not considered ‘actionable’ by the annotators
(a ‘contextual misinterpretation of actionability’ error).

4 Discussion

We developed a deep learning pipeline utilising open LLMs that
classifies FDG PET-CT radiology reports for the presence or
absence of AIFs by also extracting the key sentences that refer to
them. Our quantitative evaluation approach demonstrates an
impressive lowest estimate of performance on the internal data,
with a document-level macro-average F1 score of 0.925 and a
sentence-level F1 score of 0.745. On external data, this lowest
estimate of performance drops to 0.812 and 0.524, respectively,
demonstrating domain shift between the two hospitals reporting,
which causes difficulty for LLMs. However, error analysis
demonstrated that the ‘real-world’ performance is higher on both
with
complications surrounding sentence boundaries and writing

datasets, correct answers being penalised due to
styles. The model can label and extract sentences from thousands
of reports in a fraction of the time it would take an expert.
Accordingly, this pipeline has the potential to be used for both
real-time clinical alerts and reminders when reports are submitted
and retrospective analysis of comorbidities from past reports.

The various LLMs performed differently on the document-
and sentence-level parts of the task (Figure 4). Interestingly,
most models perform well at a document-level, but sentence-
level performance generally increases with the number of
parameters in the base LLM. For the sentence-level component,
the model must distinguish between sentences referring to lung
cancer and unexpected incidental findings and then, within
these sentences, distinguish between actionable and non-
actionable findings. This is a complex task that all but highly
trained experts would find challenging. It follows that more
parameters in a model would increase its ability to make these
Llama 3.1 8B outperforming Phi-4 14B
demonstrates that raw parameter count is not the only

distinctions.

factor, however.

The results also demonstrate how choosing the correct
prompting technique for a given LLM is important for the more
challenging sentence-level task (Figure 4). For example, Llama
3.1 8B was the best performing with a ‘CoT-JSON’ strategy but
performed poorly with the ‘Standard’ prompt. In contrast, the
Mistral model tested was more invariant to prompt changes but
overall. The

slightly ~ worse middling performance of
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OpenBioLLM also suggested that further medical domain
adaptation seems less important with larger models, when
compared with the more significant benefits with smaller models
reported in previous work (16). The significant increase in the
number of tokens these models are trained on (~90 billion
tokens for GatorTron, ~15 trillion tokens for Llama 3.1) may
minimise the advantage of further specialisation (23, 30).

The challenge of evaluating generative models is widely
discussed in the field (42-44). The specific nature of our single-
task system (as opposed to a general chatbot/assistant, etc.)
allowed us to approach evaluation differently from other LLM
projects. We utilised a two-stage approach, firstly using a
quantitative  guaranteed  assessment of the  worst-case
performance of the model and secondly a qualitative approach
using actual examples from the model. The error analysis in this
second phase revealed many examples where the quantitative
approach punished the model unfairly. Despite these strengths
in evaluation, our results suggest some potential implementation
challenges. The increase in false positives in Figure 5 could
cause ‘alert fatigue’ in an end user (a concern in the wider field)
(45, 46). Future work would be to develop user guidance in
consultation with nuclear medicine physicians to ensure it helps
and does not hinder their practice. We would also like to
develop a robust human evaluation protocol for the model, as
this could inform how it is inserted into clinical workflows, and
how to best utilise the extracted AIFs in downstream practice.
However, human evaluation of LLMs is labour-intensive and has
its own shortcomings to be overcome (47, 48).

This study demonstrated some interesting findings regarding
The two different
characteristics (Table 1 and Figure 4), and previous work with

LLM  generalisation. datasets  have
this dataset noted that the internal and external reports used a
different reporting style (16). The internal reports order the
findings section by priority where the most significant findings
are stated first, whereas the external reports order findings
anatomically (i.e., sequentially from head down to legs). Rohren
(49) provides details on these established styles. Table 1 and
Figure 4 show that an anatomical reporting style potentially
results in significantly longer reports with more AIF sentences.
There is evidence that longer reports are harder to understand
for humans, and perhaps LLMs find longer reports more
challenging also (50). This difference in performance could also
have implications in deployment if a hospital changes its
imaging reporting protocols.

LLMs can hallucinate, where they generate incorrect but
seemingly plausible content (51), an issue of concern in the
healthcare domain (52). Throughout our evaluation, we found
no instances of hallucination: All extracted sentences, correct or
not, were present in the original report text. This reliability is
likely because we have adapted the LLM for a single task, and
this has successfully enforced consistency on new examples. This
provides confidence in the real-world deployment of such a
system. A caveat is that we were unable to formally check every
individual generation for hallucinations.

There is increasing evidence that LLMs perform better when
trained with explicit reasoning steps, most notably with
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DeepSeek-R1 (53). We found that even a simple CoT prompting
approach results in better document-level performance on both
test datasets (Table 3). We also found that training the LLM to
output JSON generally improved performance in contrast with
previous work (32). LLM prompt engineering is widely
discussed when using closed LLMs such as ChatGPT for
inference (54), but less so when fine-tuning models for specific
tasks. We found that it makes a performance difference and
argue that it always needs investigation when developing an
LLM-based system.

In terms of decoding, we found that the computationally
cheaper greedy and nucleus searches worked better than beam
search (Table 2). This is likely due to how these decoding styles
are more aligned with the next-token prediction objective. The
hybrid approach proposed improved on these decoding styles,
allowing the model to escape JSON parsing errors by using
nucleus search as a fallback for greedy decoding when it failed
to provide parsable output. The hybrid approach also ensures
that a JSON-parsable ‘null’ error is returned in the event of a
challenging report that the model cannot solve, ensuring
downstream applications are not affected. Another advantage of
non-beam approaches is an increase in the speed of processing
and less memory required for processing.

Our approach only requires one consumer-level GPU, not
only making it more accessible from a resources standpoint but
also demonstrating that LLM benefits can be harnessed at a
lower energy cost than an application such as ChatGPT would
at inference time (55).

A key limitation of the model is that it is designed for lung
cancer, and due to the inherently contextual nature of incidental
findings, it cannot be guaranteed to work for other conditions.
We believe the AIF extraction methodology presented could be
applied to other imaging modalities and conditions, however.
Two possible extensions we are looking at addressing in future
work are prostate cancer scans for PSMA (prostate-specific
membrane antigen) PET-CT and AIFs in brain MRI scans (56).
The extensible nature of LoRA adapters means a future
‘mixture-of-experts’ model for AIFs could utilise all these
models as part of one comprehensive system (57). This work
would serve as a blueprint for training the ‘experts’ in such a
system. Another limitation is the number of data points and
annotators available for the project, an issue for most supervised
learning tasks. Limitations on expert annotator time also
prevented us from testing inter-annotator agreement on the
internal data. This could result in some bias in the trained
model towards the sole annotator’s judgement; however, since
the agreement of the two annotators was consistent on external
data, and the internal data are from the same hospital as both
annotators, we considered this a reasonable compromise and the
best use of the expert annotation hours available. Especially
considering agreement was still quantified on the external data.
We were also unable to stratify performance based on different
demographic groups, which would in turn have allowed us to
evaluate the fairness and bias of the model. The ethical approval
and data retrieval process for the initial study, this dataset was
used in ensured anonymity to an extent that the relevant

Frontiers in Digital Health

1

10.3389/fdgth.2025.1702082

features were not in our dataset (16). We acknowledge this is an
important step for acceptance of such models and hope to
these
although we use open LLMs in this work to ensure repeatability,

incorporate experiments into future work. Finally,
these models cannot be considered truly open source. For
example, our final model utilised Llama 3.1 8B Instruct, which
has open weights, but the exact pretraining data makeup was

not published (23).

5 Conclusion

We developed an LLM-based model that both classifies PET-
CT reports for the presence or absence of AIFs and extracts the
sentences from the text that inform that classification. We
demonstrate its efficacy by quantitatively and qualitatively
analysing its performance on both internal and external reports.
We believe this model would be effective in assisting clinicians
by providing real-time alerts and reminders and for future
analysis of AIFs in patient histories.
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