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Background: Post-COVID fatigue (pCF) represents a significant burden for
many individuals following SARS-CoV-2 infection. The unpredictable nature
of fatigue fluctuations impairs daily functioning and quality of life, creating
challenges for effective symptom management.

Objective: This study investigated the feasibility of developing predictive models
to forecast next-day fatigue levels in individuals with pCF, utilizing objective
physiological and behavioral features derived from wearable device data.
Methods: We analyzed data from 68 participants with pCF who wore an Axivity
AX6 device on their non-dominant wrist and a VitalPatch electrocardiogram
(ECG) sensor on their chest for up to 21 days while completing fatigue
questionnaires every other day. HRV features were extracted from the VitalPatch
single-lead ECG signal using the NeuroKit Python package, while activity and
sleep features were derived from the Axivity wrist-worn device using the GGIR
package. Using a 5-fold cross-validation approach, we trained and evaluated the
performances of two machine learning models to predict next-day fatigue levels
using Visual Analogue Scale (VAS) fatigue scores: Random Forest and XGBoost.
Results: Using five-fold cross-validation, XGBoost outperformed Random Forest
in predicting next-day fatigue levels (mean R?=0.79 +0.04 vs. 0.69 +0.02;
MAE = 3.18 + 0.63 vs. 6.14 + 0.96). Predicted and observed fatigue scores were
strongly correlated for both models (XGBoost: r = 0.89 + 0.02; Random Forest:
r=0.86+ 0.01). Key predictors included heart rate variability features—sample
entropy, low-frequency power, and approximate entropy—along with
demographic (age, sex) and activity-related (moderate and vigorous duration)
factors. These findings underscore the importance of integrating physiological,
demographic, and activity data for accurate fatigue prediction.

Conclusions: This study demonstrates the feasibility of combining heart rate
variability with activity and sleep features to predict next-day fatigue levels in
individuals with pCF. Integrating physiological and behavioral data show
promising predictive accuracy and provides insights that could inform future
personalized fatigue management strategies.

KEYWORDS

post-COVID syndrome, fatigue prediction, machine learning, heart rate variability,
accelerometry, wearable technology, XGBoost, digital biomarkers
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1 Introduction

Post-COVID fatigue (pCF) represents a significant and
10%-35% of
following SARS-CoV-2 infection, even amongst those who

persistent symptom affecting individuals
only experienced mild initial symptoms of COVID-19 (1, 2).
This debilitating symptom can persist for months or even
years, severely impacting daily functioning, employment
status, and overall quality of life (3). The World Health
Organization has recognized post-COVID condition (PCC) as
a major health concern, with fatigue consistently reported as
one of the most prevalent and disabling symptoms (4). An
estimated 1.3 million people in the UK are experiencing self-
reported long COVID, with fatigue being the most reported
symptom. This accounts for approximately 51% of individuals
affected by long COVID (5).

The management of pCF presents unique challenges due to
its unpredictable nature and complex etiology, which likely
involves dysregulation of multiple physiological systems
including autonomic nervous system dysfunction and circadian
rhythm disruption (6, 7). Traditional fatigue management
approaches often rely on retrospective symptom reporting via
fatigue questionnaires and general energy conservation
strategies, which are subjective and fail to account for the day-
to-day variability in fatigue levels (8). This unpredictability of
fatigue creates significant barriers to activity planning, pacing
strategies, and effective symptom management, contributing to
reduced quality of life, impaired work capacity, and increased
healthcare utilization (9, 10).

The ability to predict next-day fatigue levels would represent
a significant advancement in pCF management, enabling
patients to proactively adjust their activity levels and implement
targeted interventions before fatigue exacerbations occur. Recent
advances in wearable technology and artificial intelligence
have opened new possibilities for continuously monitoring
physiological and behavioral parameters that may predict
symptom fluctuations (11, 12). Wearable devices can capture
detailed patterns of physical activity, rest, and sleep while
providing physiological measurements such as heart rate
variability (HRV) that might serve as digital biomarkers for
fatigue prediction (13, 14).

HRV, reflecting autonomic nervous system function, has
emerged as a promising physiological biomarker for fatigue and
stress-related conditions. HRV features derived from time-
domain (RMSSD, pNN50, SDNN), frequency-domain (LF/HF
ratio, HF power), and non-linear analysis (SD1, SD2, entropy
measures) provide insights into autonomic regulation that
may be disrupted in post-COVID conditions. Integrating HRV
with activity and sleep patterns offers a more comprehensive
understanding of fatigue mechanisms and prediction. However,
the complex, non-linear relationships between these
physiological and behavioral parameters and next-day fatigue,
particularly in pCF, remain poorly understood.

Several studies have explored the relationship between
activity patterns and fatigue in chronic conditions such
sclerosis  (15), (16),

as multiple cancer-related fatigue
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and myalgic encephalomyelitis/chronic syndrome
(ME/CFS) (17). These identified
potential associations between fatigue levels and various

fatigue
investigations  have
activity metrics, including daily step count (18), and time
spent in some activity intensity levels like moderate-to-
vigorous physical activity (MVPA) (19). Sleep parameters
such as sleep efficiency, duration, and timing have also been
linked to daytime fatigue in various populations (20, 21).
Traditional statistical approaches often struggle to capture
these their
linear associations and predefined interaction terms (22).

complex relationships due to reliance on
Machine learning (ML) techniques, on the other hand, can
identify complex patterns in high-dimensional data without
requiring a priori assumptions about feature relationships
(23). These methods have shown promise in predicting
symptom fluctuations in various chronic conditions
(24, 25). Some studies have demonstrated the utility of ML
approaches for classifying fatigue levels in immune and
using gait with

support vector machines and other classification methods

neurodegenerative disorders variability,
showing promise for fatigue identification (11). However,
their application to pCF fatigue prediction using combined
physiological and behavioral data remains limited. Tree-based
ensemble methods, like Random Forest and XGBoost, are
particularly suited for this task, as they can capture non-
linear feature interactions while providing interpretable
feature importance rankings (26).

This study aims to address these gaps by exploring machine
learning models for next-day fatigue level prediction in
individuals with pCF using a combination of heart rate
variability and activity/sleep metrics. Specifically, we employ two

distinct machine learning frameworks:

1. Random Forest: An ensemble learning method that builds
multiple decision trees and averages their predictions,
particularly  effective at capturing complex feature
interactions while providing robust feature importance
estimates (27).

2. XGBoost: An optimized gradient boosting implementation
that

refinement of predictions, with built-in regularization to

provides superior performance through iterative

prevent overfitting (28).

By combining physiological HRV features with behavioral
activity and sleep patterns, we aim to predict the next day’s
fatigue state using previous-day data while gaining insights into
the relative importance of different physiological and behavioral
factors. This approach addresses a critical need in pCF research:
developing tools to predict fatigue fluctuations using objective,
continuously monitored parameters. By identifying the key
predictors of next-day fatigue, this work could inform strategies
for behavioral and therapeutic interventions, though we
acknowledge that association does not imply causation, and
would be needed to establish

interventional  studies

causal relationships.
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2 Methods
2.1 Study design and participants

2.1.1 Study design and ethical approval

This investigation was conducted as part of a larger single-site,
single-blind, ~sham-controlled, randomized research study
examining the efficacy of non-invasive vagus nerve stimulation on
post-COVID

covidfatigue/). The protocol received full ethical approval from the

fatigue  syndrome  (https://research.nclac.uk/
Faculty of Medical Sciences Research Ethics Committee at
Newcastle University (Medical School, Framlington Place, NE2
4HH, UK) [Reference: (2284/18447/2021)] and the Declaration of
Helsinki was followed in all study procedures, and the trial was

registered in the ISRCTN registry, trial number (ISRCTN18015802).

2.1.2 Participant Recruitment and Eligibility
Criteria

Recruitment was conducted between May 2022 and April 2024
through multiple channels, including the dedicated trial website
(covidfatigue.co.uk) and various social media platforms.
Potential participants were initially screened using an electronic
implementation of the Fatigue Impact Scale. Participants were
eligible for inclusion if they met the following criteria: (1) adults
aged 18-65 years; (2) documented positive COVID-19 test result
without requiring hospitalization; (3) minimum of 4 weeks post-
diagnosis; (4) self-reported fatigue affecting daily functioning;
(5) desire for fatigue treatment; and (6) English language
fluency. Exclusion criteria

comprised: (1)  pre-existing

neurological or psychiatric disorders; (2) cardiac disease
(including cardiomyopathy, myocardial infarction, arrhythmia,
or prolonged QT interval); (3) presence of implanted electronic
devices (e.g., pacemakers); (4) pregnancy or breastfeeding; and

(5) contraindications for transcranial magnetic stimulation.

2.1.3 Sample characteristics

While the trial enrolled 114 participants, not all had
complete datasets for VitalPatch physiological monitoring,
activity monitoring, and questionnaires due to technical issues,
including Bluetooth connectivity problems, device malfunctions,
and varying compliance with questionnaire completion.
Therefore, our analysis focused on 68 participants with complete
and usable data across these domains. Demographic and clinical

characteristics of the analytical sample are presented in Table 1.

2.1.4 Intervention protocol

Participants were randomized to one of three intervention
conditions, all utilizing transcutaneous electrical nerve stimulation
(TENS) via a FlexiStim device applied to the external ear:

1. Active taVNS: Stimulation of the auricular branch of the vagus
nerve via the tragus (nVNS wing)

2. Sham control: Resistor-modified clip on the tragus designed to
prevent actual stimulation

3. Electrical stimulation control: Stimulation of the greater
auricular nerve via the earlobe (Placebo)
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TABLE 1 Sample characteristics.

[

Participants 68
Total observations 383
Sex

Male 19

Female 49
Age (years)

Mean + SD 479 +12.0

Range 0-64
Treatment condition

nVNS 24

Sham 23

Placebo 21
VAS fatigue score

Mean + SD 63.1+16.1

Range 19-100

The intervention protocol required participants to self-administer
the assigned treatment three times daily for eight weeks. During
the second phase of the trial, control group participants crossed
over to active stimulation so that all participants received active
stimulation during the study.

2.2 Data collection

2.2.1 Activity, sleep assessment and
electrocardiography

Participants wore two devices during the study period:

Wearable device for activity and sleep assessment: An Axivity
AX6 device (Axivity Ltd, UK) was worn continuously on the
participant’s non-dominant wrist for up to 21 days (14 days at
baseline, The AX6 is a
(23 x 32.5 x 8.9 mm), lightweight (11 g) triaxial accelerometer with

7 days at follow-up). small
built-in temperature and light sensors. The device was configured
to record raw acceleration data at 100 Hz with a dynamic triaxial
accelerometer range of 8¢, and a triaxial gyroscope range of
+2,000 degrees per second. This was passive monitoring requiring
no participant interaction with the device.

ECG measurement: A VitalPatch biosensor (VitalConnect,
Campbell, CA, USA) was utilized to collect continuous ECG data
from participants during baseline and follow-up periods, each
lasting 7 days. The device was worn on the left chest and adhered
to the skin using a fully disposable, medical-grade patch. It features
a single-lead ECG sensor, a triaxial accelerometer, and a
thermistor, recording ECG at a sampling frequency of 125 Hz.
Equipped with a zinc-air battery, the device lasts up to 7 days and
can store up to 10h of data locally, transmitting encrypted
recordings wirelessly to a secure cloud platform for remote
monitoring. The ECG data collected by VitalPatch facilitated the
extraction of heart rate variability (HRV) features. Participants
were instructed to wear the device continuously.

2.2.2 Fatigue assessment

Participants completed fatigue assessments every other day at
any time during the day throughout the study using a Visual

frontiersin.org
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Analogue Scale (VAS) delivered through a secure web application.

Each assessment day, participants rated their average fatigue level

on a scale from 0 (no fatigue) to 100 (worst fatigue imaginable).

The VAS for fatigue has demonstrated good reliability and

validity in various clinical populations (29).

2.3 Data processing

2.3.1 Activity, sleep and HRV data processing

Raw accelerometer data from the Axivity AX6 device were

processed using the validated GGIR package (version 2.7-1) (30) in

R (version 4.1.0) (31), which handled auto-calibration, non-wear
detection, and the extraction of physical activity, sleep, and

circadian rhythm features from 24-hour wrist-worn recordings.

TABLE 2 Activity features.

Activity

category

Feature type

Description

Physical activity ACC_ Accelerometry-based activity
measures
dur_day_ Duration of daytime activity
periods
dur_night_ Duration of nighttime activity
periods
quantile_ Activity intensity quantiles
Total physical
activity
Sleep metrics sleep_ Sleep duration and quality metrics

efficiency

Sleep efficiency measures

Total sleep metrics

Circadian rhythm M5

Most active 5-hour period

L5

Least active 5-hour period

rhythm

Total circadian

TABLE 3 HRV features.

10.3389/fdgth.2025.1689846

A summary of all Activity and sleep features and their definitions is
provided in Table 2.

ECG data from the VitalPatch sensors were processed to derive
HRV features using the NeuroKit2 Python library. The HRV
analysis pipeline consisted of: (1) ECG signal preprocessing and
quality control, (2) R-peak detection and RR interval extraction, (3)
segmentation into 5-minute windows, (4) computation of standard
time-domain, frequency-domain, and non-linear HRV features for
each window, and (5) aggregation of these features into daily
summaries using 12 statistical descriptors (mean, median, standard
deviation, minimum, maximum, first and third quartiles,
interquartile range, range, coefficient of variation, skewness, and
kurtosis). A summary of all HRV features and their definitions is
provided in Table 3. Movement artifacts were addressed through
multiple approaches: (1) chest-mounted device positioning to
minimize motion artifacts,(2) automated quality control and
artifact removal via NeuroKit2’s built-in algorithms, (3) 5-minute
windowing to ensure local stationarity of the signal, and (4) robust
statistical aggregation (median, interquartile range, etc.) that
naturally down-weights outlier windows affected by movement.
HRYV was computed across all 24-hour periods rather than isolated
rest states to capture the full range of autonomic function
throughout daily activities.

Overall, a comprehensive set of daily features was derived

from the recordings and grouped into four primary domains:

1. Activity features (e.g., mean acceleration, intensity-specific
time, activity bouts, and fragmentation indices),

2. Sleep features (e.g., total sleep duration, sleep -efficiency,
timing, and movement-based parameters),

3. Circadian rhythm features (e.g., M5, L5, and relative amplitude),
HRV features, reflecting autonomic nervous system function
based on ECG-derived RR intervals.

HRV category Feature Description

Time domain Mean_RR Mean RR interval between consecutive heartbeats (ms)
SDNN Standard deviation of NN intervals, measuring overall HRV
RMSSD Root mean square of successive RR interval differences
PNN50 Percentage of successive RR intervals differing by >50ms
SDSD Standard deviation of successive RR interval differences
Total time domain

Frequency domain VLF_Power Very low frequency power (0.003-0.04 Hz)
LF_Power Low frequency power (0.04-0.15 Hz)
HF_Power High frequency power (0.15-0.4 Hz)
LF_HF_Ratio Low frequency to high frequency power ratio

Total frequency domain

Geometric SD1 Standard deviation perpendicular to line of identity (Poincaré plot)
SD2 Standard deviation along line of identity (Poincaré plot)
SD1_SD2_Ratio Ratio of short-term to long-term variability
Total geometric

Nonlinear ApEn Approximate entropy, measuring regularity of heart rate patterns
SampEn Sample entropy, measuring pattern complexity in RR intervals
DFA_alphal Short-term detrended fluctuation analysis scaling exponent
DFA_alpha2 Long-term detrended fluctuation analysis scaling exponent

Total nonlinear
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In total, 279 daily features were extracted per participant per day:
192 from HRV and 82 from activity, sleep, and circadian rhythm
domains, plus 5 demographic and treatment condition variables,
age, sex, and intervention condition dummy variables).
(Tables 2,3 show a breakdown of all the activity, sleep, circadian

rhythm and HRV features used).

2.3.2 Data preprocessing and feature engineering

Prior to model training, comprehensive data quality control
was implemented. Exact duplicate observations were identified
and removed from the dataset. Participants with less than 2 days
of complete data were excluded to ensure adequate data
representation. Missing values were handled through complete case
analysis, removing any observations with missing feature values.

Treatment conditions were consolidated into three categories
(nVNS, Sham, Placebo) and converted to dummy variables
for model input. Sex was encoded numerically (Male=0,
Female=1). All continuous features were standardized using z-
score normalization to ensure equal contribution to model training.

To predict next-day fatigue, we aligned the accelerometer and
HRV features from each day (day n) with the fatigue score
reported on the following day (day n+1). This temporal
alignment ensures that models learn to predict future fatigue
states based on current physiological and behavioral patterns,
reflecting real-world application scenarios where predictions
would be made for the following day.

2.4 Predictive modeling

2.4.1 Model selection and implementation
We implemented two machine learning modeling approaches:

1. Random Forest (RF) is an ensemble of decision trees trained
on bootstrap samples from the data. We utilized the
“RandomForestRegressor” implementation in the scikit-learn
package in Python, with hyperparameters optimized via grid
search cross-validation.

2. XGBoost is a gradient boosting algorithm that builds trees
sequentially, with each tree correcting errors made by earlier
trees. We utilized the “XGBRegressor” package in Python,
with learning rate, maximum tree depth, regularization
parameters, and other hyperparameters optimized through
extensive grid search.

Both models were optimized using a comprehensive grid search
with 5-fold cross-validation to identify the best hyperparameter
combinations for minimizing mean absolute error (MAE). The
grid search explored multiple hyperparameter combinations for
each model.

2.4.2 Training and evaluation strategy

We employed a rigorous 5-fold cross-validation methodology
to ensure robust assessment of model performance and prevent
overfitting. While participant-level validation (leave-one-subject-
out cross-validation) would provide the most stringent test of
generalizability across individuals, this approach was not feasible
given our data structure. With participants contributing varying
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amounts of data (range: 2-11 days, median: 3.0 days), many
participants had insufficient observations to serve as meaningful
test sets in a leave-one-subject-out framework.

Therefore, we implemented standard 5-fold cross-validation
where the complete dataset was randomly divided into five equal-
sized, non-overlapping segments (folds) using stratified sampling
to maintain representative distributions of fatigue scores across
folds. This approach led to an 80%/20% train/test division for each
fold, where four segments (80% of the data, approximately 306
observations) were used for model training while the remaining
segment (20%, approximately 77 observations) acted as the
independent test set. While this approach may include data from
the same participants in both training and test sets within a fold, it
provides more stable performance estimates given our data
constraints and reflects the practical scenario where prediction
models would be personalized to individual users over time.

The cross-validation process was implemented as follows: For
each of the five iterations, one-fold was held out as the test set
while the remaining four folds formed the training set.
Hyperparameter optimization was performed exclusively on the
training data using nested cross-validation to prevent data leakage.
Feature scaling (standardization) was fit on the training data only
and then applied to the test data to ensure no information from
test sets influenced model training. This process was repeated five
times, with each segment serving as the test set exactly once,
ensuring that every observation was used for testing once while
being utilized for training four times. Final performance metrics
were calculated as the mean and standard deviation across all five
folds, providing robust estimates of model generalizability.
model evaluation, we

For comprehensive quantified

performance using the following metrics:

1. R2 score: Proportion of variance in fatigue levels explained by
the model.

2. Mean Absolute Error (MAE): Average absolute prediction
error between predicted and actual fatigue levels.

3. Correlation coefficient: A Measure of linear association

between predicted and actual fatigue levels.

2.4.3 Feature importance analysis

For tree-based models (RF and XGBoost), we used their built-
in feature importance methods, which measure how much each
feature contributes to prediction accuracy. For Random Forest,
this indicates the mean decrease in impurity (Gini importance).
In contrast, for XGBoost, it indicates the gain in information for
each feature based on its contribution to model predictions.

We calculated feature importances from each fold of the 5-fold
cross-validation process to ensure robust feature importance
estimates and then aggregated these across all folds. This
approach provides more stable rankings of importance and
accounts for variability across different training sets. For each
model and each fold, we extracted the feature importances
attribute and then calculated:

1. Mean importance: Average importance across all five folds
2. Standard deviation: Variability in importance across folds

frontiersin.org
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3. Consistency score: A Measure of how consistently important a
feature is across folds

This
guarantees that our rankings accurately reflect the learned

cross-validation-based ~ feature importance analysis
relationships during model evaluation, rather than relying on
importance calculated from a single training set. Features were

ranked by their mean importance across all folds.

3 Results
3.1 Participant characteristics

The final analysis dataset included 389 observations from 68
unique participants with a mean age of 47.3 + 11.5 years (range:
0-64 years). Participants were distributed across intervention
conditions as follows: nVNS (n =24 participants), Sham (n =23
participatns), and placebo (n =21 participatns).

Data availability varied across participants, with an average of 3.5
days of data per participant (range: 1-11 days, median: 3.0 days).
This variation in data availability reflects the every-other-day
assessment schedule and individual differences in questionnaire
completion rates. All participants had complete data for the
features included in the final models, and the processed dataset
used for machine learning analysis had no missing values.

TABLE 4 Model results.

10.3389/fdgth.2025.1689846

3.2 Model performance

Table 4 presents the cross-validated performance metrics for each
model across all five folds. The XGBoost model demonstrated the
strongest predictive performance, achieving a mean R® score of
0.789+0.041 and a mean absolute error of 3.18 +0.63 (see
Figure 1). The model showed excellent correlation between
predicted and actual fatigue scores (r=0.892+0.022)
Figure 2). Random Forest achieved a mean R® score of
0.691 £0.023 with a mean absolute error of 6.14+0.96 and
correlation coefficient of 0.864 + 0.013.

Both strong predictive
capability, with XGBoost showing superior performance across all

(see

tree-based models demonstrated
metrics. The consistently high correlation coefficients (>0.86 for
both models) indicate strong linear relationships between predicted
and actual fatigue scores, while the R values demonstrate that
both models can explain a substantial proportion of variance in
next-day fatigue levels. The cross-validation standard deviations
indicate good stability of performance across different data splits,
with Random Forest showing slightly more consistent performance
(lower standard deviation) than XGBoost.

XGBoost Top 5 Features:

LF_Power_min—Low frequency power minimum

SDSD_std—SDSD standard deviation

ApEn_mean—Approximate entropy mean

Model Metric Mean SD Fold_1 Fold_2 Fold_3 Fold_4 Fold_5
Random forest R?* Score 0.691 0.023 0.731 0.681 0.661 0.697 0.683
Random forest MAE 6.14 0.96 5.39 7.39 6.67 4.72 6.56
Random forest Correlation 0.864 0.013 0.878 0.876 0.845 0.852 0.872
XGBoost R?* Score 0.789 0.041 0.849 0.799 0.796 0.78 0.722
XGBoost MAE 3.18 0.63 2.49 3.34 3.68 241 3.98
XGBoost Correlation 0.892 0.022 0.925 0.899 0.893 0.886 0.856
Lo A) R? Score Performance B) Mean Absolute Error (MAE)
74
og Mean90.789
’ T— M 14
Mean©00.691 o .
o=
0.6
§
w 5
2 <
o =
e
0.4
4 B
0.2 M 18
3 g
0.0 T T T T
Random Forest XGBoost Random Forest XGBoost
FIGURE 1
Model performance metrics. R? and MAE scores for both machine learning models. (A) R? values. (B) MAE values.
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A) Random Forest: Predicted vs Actual Fatigue Scores
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FIGURE 2

Prediction accuracy comparison. Correlation between observed and predicted fatigue scores for each model. (A) Random Forest. (B) XGBoost.

SDSD_kurtosis—SDSD kurtosis
ApEn_ql—Approximate entropy Q1

Random Forest Top 5 Features:

SampEn_cv (- Sample entropy coefficient of variation
SampEn_kurtosis—Sample entropy kurtosis
LF_Power_cv—Low frequency power coefficient of variation
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age_at_baseline—Age

SDNN_kurtosis—SDNN kurtosis

The
key patterns:

feature importance analysis revealed several
HRV Dominance: Heart rate variability features, particularly
non-linear measures (sample entropy variability, approximate

entropy) and frequency domain characteristics (low-frequency
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power), emerged as the most important predictive features. These
metrics reflect autonomic nervous system function and heart
rate complexity.

Demographic Factors: Age emerged as a significant predictor
in the Random Forest model (ranked 4th), while sex appeared
in the top 10 for Random Forest, suggesting potential

10.3389/fdgth.2025.1689846

demographic differences in fatigue patterns or responses to
physiological and behavioral factors.

Activity Patterns: Features related to the distribution and timing
of physical activity were essential, particularly duration of moderate
and vigorous activity periods, supporting the relationship between
activity levels and next-day fatigue (see Figure 3).

A) Random Forest: Top 10 Most Important Features

Sex A 0.0120

SampEn_std A 0.0122
VLF_Power_q1 A
dur_day_MOD_unbt_min -
VLF_Power_cv -
SDNN_kurtosis A
age_at_baseline
LF_Power_cv A

SampEn_kurtosis

SampEn_cv -

0.0146

0.0168

0.0179

0.0193

0.0209

0.0372

0.0385

0.0434

0.00

B) XGBoost: Top 10 Most Important Features

0.02 0.03

Feature Importance

SampEn_kurtosis

ACC_day_total_IN_mg

SampEn_max

dur_day_total_VIG_min

VLF_Power_ql

ApEn_qgl

SDSD_kurtosis

ApEn_mean

SDSD_std

LF_Power_min

0.00 0.02 0.04

FIGURE 3

Feature importance rankings. Top 10 most influential predictors of next-day fatigue identified by each model. (A) Random Forest. (B) XGBoost.

0.06
Feature Importance

0.08

Frontiers in Digital Health

08 frontiersin.org



Aboagye et al.

4 Discussion

This pilot study has demonstrated the feasibility of using
machine learning approaches to predict next-day fatigue levels
in individuals with post-COVID fatigue based on objective
physiological and behavioral metrics from wearable devices. Our
findings suggest that it is possible to achieve a moderate
prediction accuracy for next day fatigue state in participants
with Long Covid by combining heart rate variability measures
with activity and sleep patterns, indicating the potential for
digital biomarkers to inform personalized fatigue management
strategies in future larger-scale studies.

4.1 Key findings

4.1.1 Intervention control and model robustness
Intervention condition (nVNS, Sham, Placebo) was included as
dummy variables in all predictive models to control for potential
The final
participants (19 males, 49 females) with 389 total observations

treatment  effects. analysis included 68 unique
distributed across intervention groups: nVNS (n =24 participants,
35.3%), Placebo (n=23 participants, 33.8%), and Sham (n=21
participants, 30.9%). Intervention control analysis revealed that
model performance remained robust when intervention variables
were excluded from the feature set. For XGBoost, R?> decreased
only slightly from 0.789+0.041 (with
0.759 £0.043 (without intervention), while Random Forest
showed minimal change from 0.691 +0.023 to 0.689 + 0.018. This

indicates that the physiological and behavioral patterns captured

intervention) to

by our features predict independent of

intervention status, demonstrating the generalizability of our

next-day fatigue
predictive models across different treatment conditions.

4.1.2 Model performance

The performance of the tree-based models, particularly
XGBoost, demonstrates that next-day fatigue prediction involves
complex, non-linear interactions between physiological and
behavioral features. XGBoost outperformed Random Forest likely
due to its advanced gradient boosting algorithm and built-in
regularization capabilities, which better handle feature interactions
and prevent overfitting in this complex prediction task. This
finding aligns with previous research in symptom prediction for
chronic conditions, showing that ensemble methods often
outperform traditional statistical approaches (33). The high
correlation coefficients (>0.88) and significant variance explained
(R2 score >0.8) indicate that objective wearable-derived metrics
provide some form of predictive power for next-day fatigue levels.
The achieved mean absolute errors of 3.04 and 6.54 for XGBoost
and Random Forest, respectively, represent clinically meaningful
prediction accuracy on the 0-100 VAS fatigue scale, as these fall
within ranges that could inform practical decision-making for
fatigue management. While minimal clinically important
differences (MCID) for VAS fatigue scales in post-COVID
populations have not been fully established, our prediction errors
are minimal given a scale of a 0-100.
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4.1.3 Feature importance

The emergence of HRV metrics as the strongest predictors
represents a significant finding, highlighting the role of
autonomic nervous system dysfunction in post-COVID fatigue.
Frequency domain measures (LF_power), and non-linear
ranked

predictors, suggesting that autonomic dysregulation may be a

measures (SampEn) consistently among the top
key mechanism underlying fatigue fluctuations in pCF. This
finding aligns with previous research demonstrating that real-
world cardiorespiratory measures can stratify participants with
persistent fatigue in other conditions, supporting the utility of
physiological monitoring for fatigue assessment (34).

The importance of activity patterns, particularly moderate-to-
vigorous physical activity duration and moderate activity bouts
aligns with the energy envelope theory and the concept of post-
exertional malaise observed in ME/CFS (35). Stratified analyses
revealed that morning activity patterns (M5TIME <12 h) were
associated with superior predictive performance (XGBoost
R*=0.792 £ 0.106) compared to afternoon (R*>=0.070 +0.985)
and evening (R*>=0.525 + 0.438) patterns. These findings suggest
that the distribution and timing of activity throughout the day,
rather than simply the total amount, play a crucial role in
determining next-day fatigue levels, with morning activity
patterns showing higher predictability.

While some sleep-related variables (sleep duration, sleep
efficiency) were included in the model, they did not rank among
the most important predictors, suggesting that physiological
measures (HRV) and activity patterns are more predictive of
next-day fatigue than sleep metrics in this population.

Demographic factors, particularly sex and age, emerged as
important predictors, suggesting potential gender and age-
related differences in fatigue mechanisms or responses to
physiological and behavioral factors. Stratified analyses revealed
that models performed Dbetter for females (XGBoost
R*=0.703 + 0.074, Random Forest R*=0.694 + 0.037) compared
to males (XGBoost R?*=0.387+0.321, Random Forest
R?=0.480 + 0.206), with the difference reflecting both sample
size disparities (49 vs. 19 unique participants) and distinct
physiological This further
investigation into sex-specific approaches to fatigue management.

patterns. finding  warrants

4.1.4 Physiological vs. behavioral contributions

The dominance of HRV features (40%-50% of top predictors)
suggests that physiological monitoring provides the strongest
signals for fatigue prediction, while behavioral factors (activity
patterns, sleep) contribute approximately 45%-50% of predictive
information. This finding supports the integration of both
physiological and behavioral monitoring for comprehensive
fatigue assessment and management.

4.2 Clinical implications
4.2.1 Personalized fatigue management

The strong predictive power of HRV metrics suggests that
continuous autonomic monitoring could provide early warning
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signals for fatigue exacerbations. By identifying optimal HRV
patterns associated with lower next-day fatigue, clinicians could
develop personalized autonomic regulation strategies through
interventions such as heart rate variability biofeedback,
breathing exercises, or stress management techniques.

The importance of activity timing patterns indicates that
personalized activity scheduling based on individual circadian
rhythms and activity tolerance could help optimize next-day
fatigue levels. Rather than generic activity recommendations,
interventions could focus on identifying individual-specific
timing windows and activity distributions associated with better
autonomic function and lower fatigue.

Integrating physiological (HRV) and behavioral (activity/
sleep) monitoring enables a more comprehensive approach to
fatigue management than either domain alone. This multi-
modal approach could inform personalized recommendations
that both

pacing strategies.

address autonomic regulation and behavioral

4.2.2 Treatment planning

The identification of HRV metrics—particularly SampEn
and LF_power—as the strongest predictors indicates that
interventions targeting autonomic nervous system regulation
may be especially effective for post-COVID fatigue. Potential
strategies include heart rate variability biofeedback training to
enhance autonomic control, breathing exercises and mindfulness
practices to promote parasympathetic activation, and activity
pacing approaches that integrate HRV monitoring for real-time
feedback and self-regulation.

The observed importance of activity timing patterns
(M5TIME) highlights the potential role of circadian rhythm-
based interventions, such as light therapy or chronotherapy,
in optimizing activity distribution and reducing next-day
fatigue. were associated with
superior predictive performance (XGBoost R*=0.792 +0.106)
(R? = 0.070 + 0.985)
(R*=0.525+0.438) patterns, suggesting that promoting earlier

Morning activity patterns

compared to afternoon and evening
daily activity may represent a viable behavioral strategy for
fatigue management.

The marked gender differences in model performance
(females: R*=0.703 +0.074; males: R*>=0.387 +£0.321) further
suggest the need for personalized, sex-specific intervention
reflect the
physiological and behavioral fatigue patterns observed in each

frameworks. Tailoring protocols to distinct
sex could enhance the efficacy of treatment strategies.

Importantly, the robust performance of our models even after
excluding intervention variables (XGBoost R* decreased only from
0.789 to 0.759) indicates that physiological and behavioral patterns
can predict fatigue independently of treatment status, supporting
the potential generalizability of these findings across different
clinical and lifestyle contexts.

Nevertheless, these associations are correlational and should
not be interpreted as causal. Further validation through
randomized controlled trials is essential to determine whether
interventions targeting these identified predictors can directly
improve fatigue outcomes.
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4.2.3 Monitoring and prevention

The model’s performance suggests that wearable-based
prediction algorithms could serve as early warning systems for
high-fatigue days. Real-time HRV monitoring combined with
activity tracking could provide personalized alerts when
physiological or behavioral patterns indicate an increased risk of
next-day fatigue exacerbation.

Such systems could enable proactive intervention by alerting
individuals when HRV patterns suggest increased fatigue risk,
recommending activity —modifications based on current
physiological state, providing feedback on optimal timing for
activities based on individual patterns, and guiding pacing
decisions through integration of autonomic and activity data.

The dominance of physiological markers suggests that
objective monitoring may be more reliable than subjective
symptom reporting for fatigue prediction, offering a path toward

more precise and personalized management approaches.

4.3 Limitations and future directions

4.3.1 Study limitations

Several limitations should be considered when interpreting
our findings. First, the sample size, while adequate for initial
modeling, could be expanded for more robust validation,
particularly given the heterogeneity of post-COVID conditions.
Second, the monitoring period (14 days at baseline plus 7 days
at follow-up) might not capture longer-term patterns in activity
and fatigue that could be relevant for prediction. Seasonal
variations and major life events could influence both predictors
and outcomes over longer timeframes.

Third, our cross-validation approach used standard 5-fold CV
rather than participant-level (leave-one-subject-out) validation
due to the limited number of observations per participant.
While this provides stable performance estimates, it may
overestimate model performance compared to true cross-
participant generalization, as data from the same participants
can appear in both training and test sets within folds. The
varying data availability across participants (2-11 days per
participant) necessitated this methodological choice, but future
studies with more extensive longitudinal data per participant
would benefit from participant-level validation to better assess
cross-individual generalizability.

Our study population was limited to those with access to wearable
technology and the ability to complete digital assessments every other
day, potentially limiting generalizability to all individuals with pCF.
Additionally, while our cohort showed a higher proportion of women
compared to men, this gender distribution aligns with some
published long-COVID
predominance (ranging from 56%-79% across major cohorts) (2, 32)

literature showing consistent female
and likely reflects genuine sex differences in post-viral fatigue
susceptibility rather than sampling bias. However, single-site
recruitment and limited ethnic diversity may limit generalizability to
other geographic regions and populations with different demographic
characteristics. The study was conducted in a single center with

limited ethnic diversity, which may not reflect the broader post-

frontiersin.org



Aboagye et al.

COVID population globally. Furthermore, while we controlled
treatment conditions, the study was conducted in the context of an
intervention trial, which might have influenced participants’ activity
patterns and fatigue reporting. Finally, these conclusions are based on
a single cohort, and validation in external, independent cohorts
would strengthen the generalizability of our findings.

4.3.2 Future research

Future research should focus on validating these findings in
larger, more diverse populations of individuals with pCF.
Multicenter studies with extended monitoring periods (ideally
6-12 weeks per participant) would enhance generalizability and
allow for examination of longer-term patterns. Such studies
should aim to collect sufficient longitudinal data per participant
to enable participant-level cross-validation, providing more
stringent tests of cross-individual generalizability. Additionally,
prospective validation studies could assess the real-world utility
of predictive models for fatigue management.

Investigation of longer-term patterns and their impact on fatigue
prediction could provide insights into adaptation processes and
disease trajectories in pCF. Development of real-time monitoring
systems based on these models represents a promising direction for
clinical application. Such systems could provide personalized activity
recommendations and early warnings of fatigue exacerbations,
potentially improving self-management and quality of life.

Finally, investigation of causal relationships between identified
predictors and fatigue through interventional studies would
the
Experimental manipulation of key predictors, such as activity

strengthen evidence base for targeted interventions.
distribution or sleep timing, could test causal hypotheses and

inform intervention development.

5 Conclusions

This study demonstrates the feasibility of using machine
learning approaches to predict next-day fatigue levels in
with  post-COVID
physiological and behavioral metrics derived from wearable

individuals fatigue using objective
devices. The XGBoost model achieved strong performance
(mean R* score=0.789 +0.041, MAE=3.18+0.63), suggesting
that combined HRV and activity/sleep metrics provide valuable
predictive information for fatigue forecasting in larger studies.

Key findings include that heart rate variability features emerged
as the strongest predictors of next-day fatigue levels, particularly
non-linear measures such as sample entropy variability and
approximate entropy, highlighting the importance of autonomic
nervous system complexity monitoring. Activity timing patterns
and demographic factors (age, sex) also showed significant
predictive power. Finally, the integration of physiological (HRV)
and behavioral (activity/sleep) data provides superior prediction
compared to either domain alone.

These findings have important implications for personalized fatigue
management strategies and the development of early warning systems
for high-fatigue days. Future research should focus on validating
these findings in larger, more diverse populations and developing
real-time monitoring systems that integrate HRV and activity data.
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Such efforts could ultimately lead to more effective, personalized
interventions for individuals living with post-COVID fatigue.
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