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Background: Post-COVID fatigue (pCF) represents a significant burden for 
many individuals following SARS-CoV-2 infection. The unpredictable nature 
of fatigue fluctuations impairs daily functioning and quality of life, creating 
challenges for effective symptom management.
Objective: This study investigated the feasibility of developing predictive models 
to forecast next-day fatigue levels in individuals with pCF, utilizing objective 
physiological and behavioral features derived from wearable device data.
Methods: We analyzed data from 68 participants with pCF who wore an Axivity 
AX6 device on their non-dominant wrist and a VitalPatch electrocardiogram 
(ECG) sensor on their chest for up to 21 days while completing fatigue 
questionnaires every other day. HRV features were extracted from the VitalPatch 
single-lead ECG signal using the NeuroKit Python package, while activity and 
sleep features were derived from the Axivity wrist-worn device using the GGIR 
package. Using a 5-fold cross-validation approach, we trained and evaluated the 
performances of two machine learning models to predict next-day fatigue levels 
using Visual Analogue Scale (VAS) fatigue scores: Random Forest and XGBoost.
Results: Using five-fold cross-validation, XGBoost outperformed Random Forest 
in predicting next-day fatigue levels (mean R² = 0.79 ± 0.04 vs. 0.69 ± 0.02; 
MAE = 3.18 ± 0.63 vs. 6.14 ± 0.96). Predicted and observed fatigue scores were 
strongly correlated for both models (XGBoost: r = 0.89 ± 0.02; Random Forest: 
r = 0.86 ± 0.01). Key predictors included heart rate variability features—sample 
entropy, low-frequency power, and approximate entropy—along with 
demographic (age, sex) and activity-related (moderate and vigorous duration) 
factors. These findings underscore the importance of integrating physiological, 
demographic, and activity data for accurate fatigue prediction.
Conclusions: This study demonstrates the feasibility of combining heart rate 
variability with activity and sleep features to predict next-day fatigue levels in 
individuals with pCF. Integrating physiological and behavioral data show 
promising predictive accuracy and provides insights that could inform future 
personalized fatigue management strategies.

KEYWORDS

post-COVID syndrome, fatigue prediction, machine learning, heart rate variability, 

accelerometry, wearable technology, XGBoost, digital biomarkers

TYPE Original Research 
PUBLISHED 18 November 2025 
DOI 10.3389/fdgth.2025.1689846

Frontiers in Digital Health 01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2025.1689846&domain=pdf&date_stamp=2020-03-12
mailto:n.y.aboagye2@newcastle.ac.uk
https://doi.org/10.3389/fdgth.2025.1689846
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdgth.2025.1689846/full
https://www.frontiersin.org/articles/10.3389/fdgth.2025.1689846/full
https://www.frontiersin.org/articles/10.3389/fdgth.2025.1689846/full
https://www.frontiersin.org/articles/10.3389/fdgth.2025.1689846/full
https://www.frontiersin.org/articles/10.3389/fdgth.2025.1689846/full
http://orcid.org/0000-0001-7627-4145
http://orcid.org/0000-0002-2747-9555
http://orcid.org/0000-0002-6735-2911
http://orcid.org/0000-0001-6916-1329
http://orcid.org/0000-0003-1154-4751
https://www.frontiersin.org/journals/digital-health
https://doi.org/10.3389/fdgth.2025.1689846


1 Introduction

Post-COVID fatigue (pCF) represents a significant and 

persistent symptom affecting 10%–35% of individuals 

following SARS-CoV-2 infection, even amongst those who 

only experienced mild initial symptoms of COVID-19 (1, 2). 

This debilitating symptom can persist for months or even 

years, severely impacting daily functioning, employment 

status, and overall quality of life (3). The World Health 

Organization has recognized post-COVID condition (PCC) as 

a major health concern, with fatigue consistently reported as 

one of the most prevalent and disabling symptoms (4). An 

estimated 1.3 million people in the UK are experiencing self- 

reported long COVID, with fatigue being the most reported 

symptom. This accounts for approximately 51% of individuals 

affected by long COVID (5).

The management of pCF presents unique challenges due to 

its unpredictable nature and complex etiology, which likely 

involves dysregulation of multiple physiological systems 

including autonomic nervous system dysfunction and circadian 

rhythm disruption (6, 7). Traditional fatigue management 

approaches often rely on retrospective symptom reporting via 

fatigue questionnaires and general energy conservation 

strategies, which are subjective and fail to account for the day- 

to-day variability in fatigue levels (8). This unpredictability of 

fatigue creates significant barriers to activity planning, pacing 

strategies, and effective symptom management, contributing to 

reduced quality of life, impaired work capacity, and increased 

healthcare utilization (9, 10).

The ability to predict next-day fatigue levels would represent 

a significant advancement in pCF management, enabling 

patients to proactively adjust their activity levels and implement 

targeted interventions before fatigue exacerbations occur. Recent 

advances in wearable technology and artificial intelligence 

have opened new possibilities for continuously monitoring 

physiological and behavioral parameters that may predict 

symptom =uctuations (11, 12). Wearable devices can capture 

detailed patterns of physical activity, rest, and sleep while 

providing physiological measurements such as heart rate 

variability (HRV) that might serve as digital biomarkers for 

fatigue prediction (13, 14).

HRV, re=ecting autonomic nervous system function, has 

emerged as a promising physiological biomarker for fatigue and 

stress-related conditions. HRV features derived from time- 

domain (RMSSD, pNN50, SDNN), frequency-domain (LF/HF 

ratio, HF power), and non-linear analysis (SD1, SD2, entropy 

measures) provide insights into autonomic regulation that 

may be disrupted in post-COVID conditions. Integrating HRV 

with activity and sleep patterns offers a more comprehensive 

understanding of fatigue mechanisms and prediction. However, 

the complex, non-linear relationships between these 

physiological and behavioral parameters and next-day fatigue, 

particularly in pCF, remain poorly understood.

Several studies have explored the relationship between 

activity patterns and fatigue in chronic conditions such 

as multiple sclerosis (15), cancer-related fatigue (16), 

and myalgic encephalomyelitis/chronic fatigue syndrome 

(ME/CFS) (17). These investigations have identified 

potential associations between fatigue levels and various 

activity metrics, including daily step count (18), and time 

spent in some activity intensity levels like moderate-to- 

vigorous physical activity (MVPA) (19). Sleep parameters 

such as sleep efficiency, duration, and timing have also been 

linked to daytime fatigue in various populations (20, 21).

Traditional statistical approaches often struggle to capture 

these complex relationships due to their reliance on 

linear associations and predefined interaction terms (22). 

Machine learning (ML) techniques, on the other hand, can 

identify complex patterns in high-dimensional data without 

requiring a priori assumptions about feature relationships 

(23). These methods have shown promise in predicting 

symptom =uctuations in various chronic conditions 

(24, 25). Some studies have demonstrated the utility of ML 

approaches for classifying fatigue levels in immune and 

neurodegenerative disorders using gait variability, with 

support vector machines and other classification methods 

showing promise for fatigue identification (11). However, 

their application to pCF fatigue prediction using combined 

physiological and behavioral data remains limited. Tree-based 

ensemble methods, like Random Forest and XGBoost, are 

particularly suited for this task, as they can capture non- 

linear feature interactions while providing interpretable 

feature importance rankings (26).

This study aims to address these gaps by exploring machine 

learning models for next-day fatigue level prediction in 

individuals with pCF using a combination of heart rate 

variability and activity/sleep metrics. Specifically, we employ two 

distinct machine learning frameworks: 

1. Random Forest: An ensemble learning method that builds 

multiple decision trees and averages their predictions, 

particularly effective at capturing complex feature 

interactions while providing robust feature importance 

estimates (27).

2. XGBoost: An optimized gradient boosting implementation 

that provides superior performance through iterative 

refinement of predictions, with built-in regularization to 

prevent overfitting (28).

By combining physiological HRV features with behavioral 

activity and sleep patterns, we aim to predict the next day’s 

fatigue state using previous-day data while gaining insights into 

the relative importance of different physiological and behavioral 

factors. This approach addresses a critical need in pCF research: 

developing tools to predict fatigue =uctuations using objective, 

continuously monitored parameters. By identifying the key 

predictors of next-day fatigue, this work could inform strategies 

for behavioral and therapeutic interventions, though we 

acknowledge that association does not imply causation, and 

interventional studies would be needed to establish 

causal relationships.
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2 Methods

2.1 Study design and participants

2.1.1 Study design and ethical approval

This investigation was conducted as part of a larger single-site, 

single-blind, sham-controlled, randomized research study 

examining the efficacy of non-invasive vagus nerve stimulation on 

post-COVID fatigue syndrome (https://research.ncl.ac.uk/ 

covidfatigue/). The protocol received full ethical approval from the 

Faculty of Medical Sciences Research Ethics Committee at 

Newcastle University (Medical School, Framlington Place, NE2 

4HH, UK) [Reference: (2284/18447/2021)] and the Declaration of 

Helsinki was followed in all study procedures, and the trial was 

registered in the ISRCTN registry, trial number (ISRCTN18015802).

2.1.2 Participant Recruitment and Eligibility 

Criteria
Recruitment was conducted between May 2022 and April 2024 

through multiple channels, including the dedicated trial website 

(covidfatigue.co.uk) and various social media platforms. 

Potential participants were initially screened using an electronic 

implementation of the Fatigue Impact Scale. Participants were 

eligible for inclusion if they met the following criteria: (1) adults 

aged 18–65 years; (2) documented positive COVID-19 test result 

without requiring hospitalization; (3) minimum of 4 weeks post- 

diagnosis; (4) self-reported fatigue affecting daily functioning; 

(5) desire for fatigue treatment; and (6) English language 

=uency. Exclusion criteria comprised: (1) pre-existing 

neurological or psychiatric disorders; (2) cardiac disease 

(including cardiomyopathy, myocardial infarction, arrhythmia, 

or prolonged QT interval); (3) presence of implanted electronic 

devices (e.g., pacemakers); (4) pregnancy or breastfeeding; and 

(5) contraindications for transcranial magnetic stimulation.

2.1.3 Sample characteristics

While the trial enrolled 114 participants, not all had 

complete datasets for VitalPatch physiological monitoring, 

activity monitoring, and questionnaires due to technical issues, 

including Bluetooth connectivity problems, device malfunctions, 

and varying compliance with questionnaire completion. 

Therefore, our analysis focused on 68 participants with complete 

and usable data across these domains. Demographic and clinical 

characteristics of the analytical sample are presented in Table 1.

2.1.4 Intervention protocol
Participants were randomized to one of three intervention 

conditions, all utilizing transcutaneous electrical nerve stimulation 

(TENS) via a FlexiStim device applied to the external ear: 

1. Active taVNS: Stimulation of the auricular branch of the vagus 

nerve via the tragus (nVNS wing)

2. Sham control: Resistor-modified clip on the tragus designed to 

prevent actual stimulation

3. Electrical stimulation control: Stimulation of the greater 

auricular nerve via the earlobe (Placebo)

The intervention protocol required participants to self-administer 

the assigned treatment three times daily for eight weeks. During 

the second phase of the trial, control group participants crossed 

over to active stimulation so that all participants received active 

stimulation during the study.

2.2 Data collection

2.2.1 Activity, sleep assessment and 
electrocardiography

Participants wore two devices during the study period:

Wearable device for activity and sleep assessment: An Axivity 

AX6 device (Axivity Ltd, UK) was worn continuously on the 

participant’s non-dominant wrist for up to 21 days (14 days at 

baseline, 7 days at follow-up). The AX6 is a small 

(23 × 32.5 × 8.9 mm), lightweight (11 g) triaxial accelerometer with 

built-in temperature and light sensors. The device was configured 

to record raw acceleration data at 100 Hz with a dynamic triaxial 

accelerometer range of ±8 g, and a triaxial gyroscope range of 

±2,000 degrees per second. This was passive monitoring requiring 

no participant interaction with the device.

ECG measurement: A VitalPatch biosensor (VitalConnect, 

Campbell, CA, USA) was utilized to collect continuous ECG data 

from participants during baseline and follow-up periods, each 

lasting 7 days. The device was worn on the left chest and adhered 

to the skin using a fully disposable, medical-grade patch. It features 

a single-lead ECG sensor, a triaxial accelerometer, and a 

thermistor, recording ECG at a sampling frequency of 125 Hz. 

Equipped with a zinc-air battery, the device lasts up to 7 days and 

can store up to 10 h of data locally, transmitting encrypted 

recordings wirelessly to a secure cloud platform for remote 

monitoring. The ECG data collected by VitalPatch facilitated the 

extraction of heart rate variability (HRV) features. Participants 

were instructed to wear the device continuously.

2.2.2 Fatigue assessment
Participants completed fatigue assessments every other day at 

any time during the day throughout the study using a Visual 

TABLE 1 Sample characteristics.

Characteristic Value

Participants 68

Total observations 383

Sex

Male 19

Female 49

Age (years)

Mean ± SD 47.9 ± 12.0

Range 0–64

Treatment condition

nVNS 24

Sham 23

Placebo 21

VAS fatigue score

Mean ± SD 63.1 ± 16.1

Range 19–100
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Analogue Scale (VAS) delivered through a secure web application. 

Each assessment day, participants rated their average fatigue level 

on a scale from 0 (no fatigue) to 100 (worst fatigue imaginable). 

The VAS for fatigue has demonstrated good reliability and 

validity in various clinical populations (29).

2.3 Data processing

2.3.1 Activity, sleep and HRV data processing

Raw accelerometer data from the Axivity AX6 device were 

processed using the validated GGIR package (version 2.7-1) (30) in 

R (version 4.1.0) (31), which handled auto-calibration, non-wear 

detection, and the extraction of physical activity, sleep, and 

circadian rhythm features from 24-hour wrist-worn recordings. 

A summary of all Activity and sleep features and their definitions is 

provided in Table 2.

ECG data from the VitalPatch sensors were processed to derive 

HRV features using the NeuroKit2 Python library. The HRV 

analysis pipeline consisted of: (1) ECG signal preprocessing and 

quality control, (2) R-peak detection and RR interval extraction, (3) 

segmentation into 5-minute windows, (4) computation of standard 

time-domain, frequency-domain, and non-linear HRV features for 

each window, and (5) aggregation of these features into daily 

summaries using 12 statistical descriptors (mean, median, standard 

deviation, minimum, maximum, first and third quartiles, 

interquartile range, range, coefficient of variation, skewness, and 

kurtosis). A summary of all HRV features and their definitions is 

provided in Table 3. Movement artifacts were addressed through 

multiple approaches: (1) chest-mounted device positioning to 

minimize motion artifacts,(2) automated quality control and 

artifact removal via NeuroKit2’s built-in algorithms, (3) 5-minute 

windowing to ensure local stationarity of the signal, and (4) robust 

statistical aggregation (median, interquartile range, etc.) that 

naturally down-weights outlier windows affected by movement. 

HRV was computed across all 24-hour periods rather than isolated 

rest states to capture the full range of autonomic function 

throughout daily activities.

Overall, a comprehensive set of daily features was derived 

from the recordings and grouped into four primary domains: 

1. Activity features (e.g., mean acceleration, intensity-specific 

time, activity bouts, and fragmentation indices),

2. Sleep features (e.g., total sleep duration, sleep efficiency, 

timing, and movement-based parameters),

3. Circadian rhythm features (e.g., M5, L5, and relative amplitude),

4. HRV features, re=ecting autonomic nervous system function 

based on ECG-derived RR intervals.

TABLE 3 HRV features.

HRV category Feature Description

Time domain Mean_RR Mean RR interval between consecutive heartbeats (ms)

SDNN Standard deviation of NN intervals, measuring overall HRV

RMSSD Root mean square of successive RR interval differences

pNN50 Percentage of successive RR intervals differing by >50ms

SDSD Standard deviation of successive RR interval differences

Total time domain

Frequency domain VLF_Power Very low frequency power (0.003–0.04 Hz)

LF_Power Low frequency power (0.04–0.15 Hz)

HF_Power High frequency power (0.15–0.4 Hz)

LF_HF_Ratio Low frequency to high frequency power ratio

Total frequency domain

Geometric SD1 Standard deviation perpendicular to line of identity (Poincaré plot)

SD2 Standard deviation along line of identity (Poincaré plot)

SD1_SD2_Ratio Ratio of short-term to long-term variability

Total geometric

Nonlinear ApEn Approximate entropy, measuring regularity of heart rate patterns

SampEn Sample entropy, measuring pattern complexity in RR intervals

DFA_alpha1 Short-term detrended =uctuation analysis scaling exponent

DFA_alpha2 Long-term detrended =uctuation analysis scaling exponent

Total nonlinear

TABLE 2 Activity features.

Activity 
category

Feature type Description

Physical activity ACC_ Accelerometry-based activity 

measures

dur_day_ Duration of daytime activity 

periods

dur_night_ Duration of nighttime activity 

periods

quantile_ Activity intensity quantiles

Total physical 

activity

Sleep metrics sleep_ Sleep duration and quality metrics

efficiency Sleep efficiency measures

Total sleep metrics

Circadian rhythm M5 Most active 5-hour period

L5 Least active 5-hour period

Total circadian 

rhythm
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In total, 279 daily features were extracted per participant per day: 

192 from HRV and 82 from activity, sleep, and circadian rhythm 

domains, plus 5 demographic and treatment condition variables, 

age, sex, and intervention condition dummy variables). 

(Tables 2,3 show a breakdown of all the activity, sleep, circadian 

rhythm and HRV features used).

2.3.2 Data preprocessing and feature engineering
Prior to model training, comprehensive data quality control 

was implemented. Exact duplicate observations were identified 

and removed from the dataset. Participants with less than 2 days 

of complete data were excluded to ensure adequate data 

representation. Missing values were handled through complete case 

analysis, removing any observations with missing feature values.

Treatment conditions were consolidated into three categories 

(nVNS, Sham, Placebo) and converted to dummy variables 

for model input. Sex was encoded numerically (Male = 0, 

Female = 1). All continuous features were standardized using z- 

score normalization to ensure equal contribution to model training.

To predict next-day fatigue, we aligned the accelerometer and 

HRV features from each day (day n) with the fatigue score 

reported on the following day (day n + 1). This temporal 

alignment ensures that models learn to predict future fatigue 

states based on current physiological and behavioral patterns, 

re=ecting real-world application scenarios where predictions 

would be made for the following day.

2.4 Predictive modeling

2.4.1 Model selection and implementation
We implemented two machine learning modeling approaches: 

1. Random Forest (RF) is an ensemble of decision trees trained 

on bootstrap samples from the data. We utilized the 

“RandomForestRegressor” implementation in the scikit-learn 

package in Python, with hyperparameters optimized via grid 

search cross-validation.

2. XGBoost is a gradient boosting algorithm that builds trees 

sequentially, with each tree correcting errors made by earlier 

trees. We utilized the “XGBRegressor” package in Python, 

with learning rate, maximum tree depth, regularization 

parameters, and other hyperparameters optimized through 

extensive grid search.

Both models were optimized using a comprehensive grid search 

with 5-fold cross-validation to identify the best hyperparameter 

combinations for minimizing mean absolute error (MAE). The 

grid search explored multiple hyperparameter combinations for 

each model.

2.4.2 Training and evaluation strategy
We employed a rigorous 5-fold cross-validation methodology 

to ensure robust assessment of model performance and prevent 

overfitting. While participant-level validation (leave-one-subject- 

out cross-validation) would provide the most stringent test of 

generalizability across individuals, this approach was not feasible 

given our data structure. With participants contributing varying 

amounts of data (range: 2–11 days, median: 3.0 days), many 

participants had insufficient observations to serve as meaningful 

test sets in a leave-one-subject-out framework.

Therefore, we implemented standard 5-fold cross-validation 

where the complete dataset was randomly divided into five equal- 

sized, non-overlapping segments (folds) using stratified sampling 

to maintain representative distributions of fatigue scores across 

folds. This approach led to an 80%/20% train/test division for each 

fold, where four segments (80% of the data, approximately 306 

observations) were used for model training while the remaining 

segment (20%, approximately 77 observations) acted as the 

independent test set. While this approach may include data from 

the same participants in both training and test sets within a fold, it 

provides more stable performance estimates given our data 

constraints and re=ects the practical scenario where prediction 

models would be personalized to individual users over time.

The cross-validation process was implemented as follows: For 

each of the five iterations, one-fold was held out as the test set 

while the remaining four folds formed the training set. 

Hyperparameter optimization was performed exclusively on the 

training data using nested cross-validation to prevent data leakage. 

Feature scaling (standardization) was fit on the training data only 

and then applied to the test data to ensure no information from 

test sets in=uenced model training. This process was repeated five 

times, with each segment serving as the test set exactly once, 

ensuring that every observation was used for testing once while 

being utilized for training four times. Final performance metrics 

were calculated as the mean and standard deviation across all five 

folds, providing robust estimates of model generalizability.

For comprehensive model evaluation, we quantified 

performance using the following metrics: 

1. R2 score: Proportion of variance in fatigue levels explained by 

the model.

2. Mean Absolute Error (MAE): Average absolute prediction 

error between predicted and actual fatigue levels.

3. Correlation coefficient: A Measure of linear association 

between predicted and actual fatigue levels.

2.4.3 Feature importance analysis
For tree-based models (RF and XGBoost), we used their built- 

in feature importance methods, which measure how much each 

feature contributes to prediction accuracy. For Random Forest, 

this indicates the mean decrease in impurity (Gini importance). 

In contrast, for XGBoost, it indicates the gain in information for 

each feature based on its contribution to model predictions.

We calculated feature importances from each fold of the 5-fold 

cross-validation process to ensure robust feature importance 

estimates and then aggregated these across all folds. This 

approach provides more stable rankings of importance and 

accounts for variability across different training sets. For each 

model and each fold, we extracted the feature importances 

attribute and then calculated: 

1. Mean importance: Average importance across all five folds

2. Standard deviation: Variability in importance across folds

Aboagye et al.                                                                                                                                                        10.3389/fdgth.2025.1689846 

Frontiers in Digital Health 05 frontiersin.org



3. Consistency score: A Measure of how consistently important a 

feature is across folds

This cross-validation-based feature importance analysis 

guarantees that our rankings accurately re=ect the learned 

relationships during model evaluation, rather than relying on 

importance calculated from a single training set. Features were 

ranked by their mean importance across all folds.

3 Results

3.1 Participant characteristics

The final analysis dataset included 389 observations from 68 

unique participants with a mean age of 47.3 ± 11.5 years (range: 

0–64 years). Participants were distributed across intervention 

conditions as follows: nVNS (n = 24 participants), Sham  (n = 23 

participatns), and placebo (n = 21 participatns).

Data availability varied across participants, with an average of 3.5 

days of data per participant (range: 1–11 days, median: 3.0 days). 

This variation in data availability re=ects the every-other-day 

assessment schedule and individual differences in questionnaire 

completion rates. All participants had complete data for the 

features included in the final models, and the processed dataset 

used for machine learning analysis had no missing values.

3.2 Model performance

Table 4 presents the cross-validated performance metrics for each 

model across all five folds. The XGBoost model demonstrated the 

strongest predictive performance, achieving a mean R2 score of 

0.789 ± 0.041 and a mean absolute error of 3.18 ± 0.63 (see 

Figure 1). The model showed excellent correlation between 

predicted and actual fatigue scores (r = 0.892 ± 0.022) (see 

Figure 2). Random Forest achieved a mean R2 score of 

0.691 ± 0.023 with a mean absolute error of 6.14 ± 0.96 and 

correlation coefficient of 0.864 ± 0.013.

Both tree-based models demonstrated strong predictive 

capability, with XGBoost showing superior performance across all 

metrics. The consistently high correlation coefficients (>0.86 for 

both models) indicate strong linear relationships between predicted 

and actual fatigue scores, while the R2 values demonstrate that 

both models can explain a substantial proportion of variance in 

next-day fatigue levels. The cross-validation standard deviations 

indicate good stability of performance across different data splits, 

with Random Forest showing slightly more consistent performance 

(lower standard deviation) than XGBoost.

XGBoost Top 5 Features:

LF_Power_min—Low frequency power minimum

SDSD_std—SDSD standard deviation

ApEn_mean—Approximate entropy mean

TABLE 4 Model results.

Model Metric Mean SD Fold_1 Fold_2 Fold_3 Fold_4 Fold_5

Random forest R2 Score 0.691 0.023 0.731 0.681 0.661 0.697 0.683

Random forest MAE 6.14 0.96 5.39 7.39 6.67 4.72 6.56

Random forest Correlation 0.864 0.013 0.878 0.876 0.845 0.852 0.872

XGBoost R2 Score 0.789 0.041 0.849 0.799 0.796 0.78 0.722

XGBoost MAE 3.18 0.63 2.49 3.34 3.68 2.41 3.98

XGBoost Correlation 0.892 0.022 0.925 0.899 0.893 0.886 0.856

FIGURE 1 

Model performance metrics. R² and MAE scores for both machine learning models. (A) R² values. (B) MAE values.
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SDSD_kurtosis—SDSD kurtosis

ApEn_q1—Approximate entropy Q1

Random Forest Top 5 Features:

SampEn_cv (- Sample entropy coefficient of variation

SampEn_kurtosis—Sample entropy kurtosis

LF_Power_cv—Low frequency power coefficient of variation

age_at_baseline—Age

SDNN_kurtosis—SDNN kurtosis

The feature importance analysis revealed several 

key patterns:

HRV Dominance: Heart rate variability features, particularly 

non-linear measures (sample entropy variability, approximate 

entropy) and frequency domain characteristics (low-frequency 

FIGURE 2 

Prediction accuracy comparison. Correlation between observed and predicted fatigue scores for each model. (A) Random Forest. (B) XGBoost.
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power), emerged as the most important predictive features. These 

metrics re=ect autonomic nervous system function and heart 

rate complexity.

Demographic Factors: Age emerged as a significant predictor 

in the Random Forest model (ranked 4th), while sex appeared 

in the top 10 for Random Forest, suggesting potential 

demographic differences in fatigue patterns or responses to 

physiological and behavioral factors.

Activity Patterns: Features related to the distribution and timing 

of physical activity were essential, particularly duration of moderate 

and vigorous activity periods, supporting the relationship between 

activity levels and next-day fatigue (see Figure 3).

FIGURE 3 

Feature importance rankings. Top 10 most influential predictors of next-day fatigue identified by each model. (A) Random Forest. (B) XGBoost.

Aboagye et al.                                                                                                                                                        10.3389/fdgth.2025.1689846 

Frontiers in Digital Health 08 frontiersin.org



4 Discussion

This pilot study has demonstrated the feasibility of using 

machine learning approaches to predict next-day fatigue levels 

in individuals with post-COVID fatigue based on objective 

physiological and behavioral metrics from wearable devices. Our 

findings suggest that it is possible to achieve a moderate 

prediction accuracy for next day fatigue state in participants 

with Long Covid by combining heart rate variability measures 

with activity and sleep patterns, indicating the potential for 

digital biomarkers to inform personalized fatigue management 

strategies in future larger-scale studies.

4.1 Key findings

4.1.1 Intervention control and model robustness

Intervention condition (nVNS, Sham, Placebo) was included as 

dummy variables in all predictive models to control for potential 

treatment effects. The final analysis included 68 unique 

participants (19 males, 49 females) with 389 total observations 

distributed across intervention groups: nVNS (n = 24 participants, 

35.3%), Placebo (n = 23 participants, 33.8%), and Sham (n = 21 

participants, 30.9%). Intervention control analysis revealed that 

model performance remained robust when intervention variables 

were excluded from the feature set. For XGBoost, R2 decreased 

only slightly from 0.789 ± 0.041 (with intervention) to 

0.759 ± 0.043 (without intervention), while Random Forest 

showed minimal change from 0.691 ± 0.023 to 0.689 ± 0.018. This 

indicates that the physiological and behavioral patterns captured 

by our features predict next-day fatigue independent of 

intervention status, demonstrating the generalizability of our 

predictive models across different treatment conditions.

4.1.2 Model performance

The performance of the tree-based models, particularly 

XGBoost, demonstrates that next-day fatigue prediction involves 

complex, non-linear interactions between physiological and 

behavioral features. XGBoost outperformed Random Forest likely 

due to its advanced gradient boosting algorithm and built-in 

regularization capabilities, which better handle feature interactions 

and prevent overfitting in this complex prediction task. This 

finding aligns with previous research in symptom prediction for 

chronic conditions, showing that ensemble methods often 

outperform traditional statistical approaches (33). The high 

correlation coefficients (>0.88) and significant variance explained 

(R2 score >0.8) indicate that objective wearable-derived metrics 

provide some form of predictive power for next-day fatigue levels. 

The achieved mean absolute errors of 3.04 and 6.54 for XGBoost 

and Random Forest, respectively, represent clinically meaningful 

prediction accuracy on the 0–100 VAS fatigue scale, as these fall 

within ranges that could inform practical decision-making for 

fatigue management. While minimal clinically important 

differences (MCID) for VAS fatigue scales in post-COVID 

populations have not been fully established, our prediction errors 

are minimal given a scale of a 0–100.

4.1.3 Feature importance

The emergence of HRV metrics as the strongest predictors 

represents a significant finding, highlighting the role of 

autonomic nervous system dysfunction in post-COVID fatigue. 

Frequency domain measures (LF_power), and non-linear 

measures (SampEn) consistently ranked among the top 

predictors, suggesting that autonomic dysregulation may be a 

key mechanism underlying fatigue =uctuations in pCF. This 

finding aligns with previous research demonstrating that real- 

world cardiorespiratory measures can stratify participants with 

persistent fatigue in other conditions, supporting the utility of 

physiological monitoring for fatigue assessment (34).

The importance of activity patterns, particularly moderate-to- 

vigorous physical activity duration and moderate activity bouts 

aligns with the energy envelope theory and the concept of post- 

exertional malaise observed in ME/CFS (35). Stratified analyses 

revealed that morning activity patterns (M5TIME < 12 h) were 

associated with superior predictive performance (XGBoost 

R2 = 0.792 ± 0.106) compared to afternoon (R2 = 0.070 ± 0.985) 

and evening (R2 = 0.525 ± 0.438) patterns. These findings suggest 

that the distribution and timing of activity throughout the day, 

rather than simply the total amount, play a crucial role in 

determining next-day fatigue levels, with morning activity 

patterns showing higher predictability.

While some sleep-related variables (sleep duration, sleep 

efficiency) were included in the model, they did not rank among 

the most important predictors, suggesting that physiological 

measures (HRV) and activity patterns are more predictive of 

next-day fatigue than sleep metrics in this population.

Demographic factors, particularly sex and age, emerged as 

important predictors, suggesting potential gender and age- 

related differences in fatigue mechanisms or responses to 

physiological and behavioral factors. Stratified analyses revealed 

that models performed better for females (XGBoost 

R2 = 0.703 ± 0.074, Random Forest R2 = 0.694 ± 0.037) compared 

to males (XGBoost R2 = 0.387 ± 0.321, Random Forest 

R2 = 0.480 ± 0.206), with the difference re=ecting both sample 

size disparities (49 vs. 19 unique participants) and distinct 

physiological patterns. This finding warrants further 

investigation into sex-specific approaches to fatigue management.

4.1.4 Physiological vs. behavioral contributions

The dominance of HRV features (40%–50% of top predictors) 

suggests that physiological monitoring provides the strongest 

signals for fatigue prediction, while behavioral factors (activity 

patterns, sleep) contribute approximately 45%–50% of predictive 

information. This finding supports the integration of both 

physiological and behavioral monitoring for comprehensive 

fatigue assessment and management.

4.2 Clinical implications

4.2.1 Personalized fatigue management
The strong predictive power of HRV metrics suggests that 

continuous autonomic monitoring could provide early warning 
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signals for fatigue exacerbations. By identifying optimal HRV 

patterns associated with lower next-day fatigue, clinicians could 

develop personalized autonomic regulation strategies through 

interventions such as heart rate variability biofeedback, 

breathing exercises, or stress management techniques.

The importance of activity timing patterns indicates that 

personalized activity scheduling based on individual circadian 

rhythms and activity tolerance could help optimize next-day 

fatigue levels. Rather than generic activity recommendations, 

interventions could focus on identifying individual-specific 

timing windows and activity distributions associated with better 

autonomic function and lower fatigue.

Integrating physiological (HRV) and behavioral (activity/ 

sleep) monitoring enables a more comprehensive approach to 

fatigue management than either domain alone. This multi- 

modal approach could inform personalized recommendations 

that address both autonomic regulation and behavioral 

pacing strategies.

4.2.2 Treatment planning

The identification of HRV metrics—particularly SampEn 

and LF_power—as the strongest predictors indicates that 

interventions targeting autonomic nervous system regulation 

may be especially effective for post-COVID fatigue. Potential 

strategies include heart rate variability biofeedback training to 

enhance autonomic control, breathing exercises and mindfulness 

practices to promote parasympathetic activation, and activity 

pacing approaches that integrate HRV monitoring for real-time 

feedback and self-regulation.

The observed importance of activity timing patterns 

(M5TIME) highlights the potential role of circadian rhythm– 

based interventions, such as light therapy or chronotherapy, 

in optimizing activity distribution and reducing next-day 

fatigue. Morning activity patterns were associated with 

superior predictive performance (XGBoost R2 = 0.792 ± 0.106) 

compared to afternoon (R2 = 0.070 ± 0.985) and evening 

(R2 = 0.525 ± 0.438) patterns, suggesting that promoting earlier 

daily activity may represent a viable behavioral strategy for 

fatigue management.

The marked gender differences in model performance 

(females: R2 = 0.703 ± 0.074; males: R2 = 0.387 ± 0.321) further 

suggest the need for personalized, sex-specific intervention 

frameworks. Tailoring protocols to re=ect the distinct 

physiological and behavioral fatigue patterns observed in each 

sex could enhance the efficacy of treatment strategies.

Importantly, the robust performance of our models even after 

excluding intervention variables (XGBoost R2 decreased only from 

0.789 to 0.759) indicates that physiological and behavioral patterns 

can predict fatigue independently of treatment status, supporting 

the potential generalizability of these findings across different 

clinical and lifestyle contexts.

Nevertheless, these associations are correlational and should 

not be interpreted as causal. Further validation through 

randomized controlled trials is essential to determine whether 

interventions targeting these identified predictors can directly 

improve fatigue outcomes.

4.2.3 Monitoring and prevention

The model’s performance suggests that wearable-based 

prediction algorithms could serve as early warning systems for 

high-fatigue days. Real-time HRV monitoring combined with 

activity tracking could provide personalized alerts when 

physiological or behavioral patterns indicate an increased risk of 

next-day fatigue exacerbation.

Such systems could enable proactive intervention by alerting 

individuals when HRV patterns suggest increased fatigue risk, 

recommending activity modifications based on current 

physiological state, providing feedback on optimal timing for 

activities based on individual patterns, and guiding pacing 

decisions through integration of autonomic and activity data.

The dominance of physiological markers suggests that 

objective monitoring may be more reliable than subjective 

symptom reporting for fatigue prediction, offering a path toward 

more precise and personalized management approaches.

4.3 Limitations and future directions

4.3.1 Study limitations
Several limitations should be considered when interpreting 

our findings. First, the sample size, while adequate for initial 

modeling, could be expanded for more robust validation, 

particularly given the heterogeneity of post-COVID conditions. 

Second, the monitoring period (14 days at baseline plus 7 days 

at follow-up) might not capture longer-term patterns in activity 

and fatigue that could be relevant for prediction. Seasonal 

variations and major life events could in=uence both predictors 

and outcomes over longer timeframes.

Third, our cross-validation approach used standard 5-fold CV 

rather than participant-level (leave-one-subject-out) validation 

due to the limited number of observations per participant. 

While this provides stable performance estimates, it may 

overestimate model performance compared to true cross- 

participant generalization, as data from the same participants 

can appear in both training and test sets within folds. The 

varying data availability across participants (2–11 days per 

participant) necessitated this methodological choice, but future 

studies with more extensive longitudinal data per participant 

would benefit from participant-level validation to better assess 

cross-individual generalizability.

Our study population was limited to those with access to wearable 

technology and the ability to complete digital assessments every other 

day, potentially limiting generalizability to all individuals with pCF. 

Additionally, while our cohort showed a higher proportion of women 

compared to men, this gender distribution aligns with some 

published long-COVID literature showing consistent female 

predominance (ranging from 56%–79% across major cohorts) (2, 32) 

and likely re=ects genuine sex differences in post-viral fatigue 

susceptibility rather than sampling bias. However, single-site 

recruitment and limited ethnic diversity may limit generalizability to 

other geographic regions and populations with different demographic 

characteristics. The study was conducted in a single center with 

limited ethnic diversity, which may not re=ect the broader post- 
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COVID population globally. Furthermore, while we controlled 

treatment conditions, the study was conducted in the context of an 

intervention trial, which might have in=uenced participants’ activity 

patterns and fatigue reporting. Finally, these conclusions are based on 

a single cohort, and validation in external, independent cohorts 

would strengthen the generalizability of our findings.

4.3.2 Future research
Future research should focus on validating these findings in 

larger, more diverse populations of individuals with pCF. 

Multicenter studies with extended monitoring periods (ideally 

6–12 weeks per participant) would enhance generalizability and 

allow for examination of longer-term patterns. Such studies 

should aim to collect sufficient longitudinal data per participant 

to enable participant-level cross-validation, providing more 

stringent tests of cross-individual generalizability. Additionally, 

prospective validation studies could assess the real-world utility 

of predictive models for fatigue management.

Investigation of longer-term patterns and their impact on fatigue 

prediction could provide insights into adaptation processes and 

disease trajectories in pCF. Development of real-time monitoring 

systems based on these models represents a promising direction for 

clinical application. Such systems could provide personalized activity 

recommendations and early warnings of fatigue exacerbations, 

potentially improving self-management and quality of life.

Finally, investigation of causal relationships between identified 

predictors and fatigue through interventional studies would 

strengthen the evidence base for targeted interventions. 

Experimental manipulation of key predictors, such as activity 

distribution or sleep timing, could test causal hypotheses and 

inform intervention development.

5 Conclusions

This study demonstrates the feasibility of using machine 

learning approaches to predict next-day fatigue levels in 

individuals with post-COVID fatigue using objective 

physiological and behavioral metrics derived from wearable 

devices. The XGBoost model achieved strong performance 

(mean R2 score = 0.789 ± 0.041, MAE = 3.18 ± 0.63), suggesting 

that combined HRV and activity/sleep metrics provide valuable 

predictive information for fatigue forecasting in larger studies.

Key findings include that heart rate variability features emerged 

as the strongest predictors of next-day fatigue levels, particularly 

non-linear measures such as sample entropy variability and 

approximate entropy, highlighting the importance of autonomic 

nervous system complexity monitoring. Activity timing patterns 

and demographic factors (age, sex) also showed significant 

predictive power. Finally, the integration of physiological (HRV) 

and behavioral (activity/sleep) data provides superior prediction 

compared to either domain alone.

These findings have important implications for personalized fatigue 

management strategies and the development of early warning systems 

for high-fatigue days. Future research should focus on validating 

these findings in larger, more diverse populations and developing 

real-time monitoring systems that integrate HRV and activity data. 

Such efforts could ultimately lead to more effective, personalized 

interventions for individuals living with post-COVID fatigue.
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