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Traditional Electronic Health Record (EHR) systems suffer from critical 

vulnerabilities in security, interoperability, and patient data control. This paper 

introduces PolyMed, a novel decentralized platform designed to address 

these challenges. PolyMed combines blockchain, Artificial Intelligence (AI), 

and edge computing into a synergistic architecture. It uses the Polygon 

blockchain for immutable record-keeping and a Decentralized Autonomous 

Organization (DAO) for transparent governance. Patient identity is secured 

through privacy-preserving zero-knowledge proofs (ZKPs) and anchored to 

non-transferable Soulbound Tokens (SBTs), granting users true sovereignty 

over their data. The platform also includes a Decentralized Finance (DeFi) 

module to improve healthcare accessibility. Empirical evaluations on the 

Polygon Mainnet confirm the system’s viability, showing sub-4-second 

transaction latencies and over 90% cost savings compared to legacy systems. 

The integrated AI model, leveraging a LightGBM classifier on a rich set of 

engineered features, achieves an Area Under the Curve (AUC) of 0.8543 and 

an accuracy of 80.33% in emergency detection, demonstrating high reliability 

on a clinically relevant and imbalanced dataset. By aligning with global 

standards like General Data Protection Regulation (GDPR) and Health 

Insurance Portability and Accountability Act (HIPAA), PolyMed offers an 

integrated platform for patient-centric digital health management.
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1 Introduction

The digital transformation of healthcare, centered on Electronic Health Records 

(EHRs), promises a future of seamless, data-driven medicine (1). However, the 

predominantly centralized architecture of current EHR systems presents a fundamental 

!aw. These systems create single points of failure, making them prime targets for 

cyberattacks that can cripple hospital operations and compromise patient safety. 

Furthermore, proprietary data silos prevent interoperability, hindering clinical 

decision-making and large-scale medical research. In this paradigm, patients lack true 

ownership of their most sensitive information, creating a critical need for a more 

secure, interoperable, and patient-centric model.
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In response to this increasingly untenable situation, blockchain 

technology has emerged over the last decade as a powerful and 

promising architectural alternative. By leveraging a decentralized, 

cryptographically secure, and immutable ledger, blockchain offers a 

fundamentally different approach to data management—one that is 

inherently resilient to single points of failure and resistant to 

unauthorized tampering. The potential for this technology to 

revolutionize healthcare was recognized early on by early research 

projects that provided crucial proofs-of-concept. MedRec, 

introduced in 2016, was an in!uential study that demonstrated 

how smart contracts on the Ethereum blockchain could be used to 

create a decentralized record management system with a focus on 

granular, patient-driven permissioning for their medical records 

(2). Following this, FHIRChain proposed a novel architecture that 

combined the interoperability benefits of the Fast Healthcare 

Interoperability Resources (FHIR) standard with the security of a 

blockchain ledger, aiming to create a system where standardized 

clinical data could be shared securely and scalably (3). These 

foundational works were instrumental in establishing the viability 

of using blockchain for EHRs.

However, these first-generation systems, while innovative, also 

illuminated a more complex research gap. They primarily focused 

on the challenges of data storage and access control, leaving 

several other critical dimensions of a truly patient-centric 

ecosystem unaddressed. A significant limitation was the 

handling of digital identity; these systems often relied on raw 

cryptographic wallet addresses as identifiers, which lack the real- 

world verifiability required for clinical and legal contexts and do 

little to prevent impersonation. Furthermore, their architectural 

models were largely designed for static, episodic health records 

(like a doctor’s visit summary), failing to account for the 

paradigm shift towards continuous, real-time health monitoring 

driven by the proliferation of wearable sensors and Internet of 

Things (IoT) devices. A modern EHR system must be able to 

securely ingest and analyze these dynamic data streams to 

enable proactive, preventative care. Finally, these early models 

did not incorporate frameworks for democratic governance or 

financial inclusion. They did not answer crucial questions such 

as: Who decides on the rules for data sharing and system 

upgrades? And how can technology alleviate the financial 

barriers that prevent patients from accessing care?

This paper posits that solving these interconnected challenges 

requires a more sophisticated, synergistic integration of multiple 

emerging technologies. A truly comprehensive solution for next- 

generation EHR management must be built on a converged 

architecture that places the patient at its absolute center. This 

vision requires a platform that can: (1) cryptographically verify a 

user’s real-world identity in a privacy-preserving manner; (2) 

intelligently analyze physiological data by engineering 

descriptive statistical and temporal features to predict and 

preempt medical emergencies; (3) empower a community of 

patients and providers to collectively and transparently govern 

the digital ecosystem; and (4) provide novel financial tools that 

enhance healthcare accessibility. Addressing this comprehensive 

research gap is the primary motivation for this research. The 

paper introduces PolyMed, a holistic, patient-centric EHR 

management platform architected from the ground up to realize 

this vision of a secure, intelligent, and empowered digital health 

ecosystem (the source code for key components is provided 

(23), as described in the Data and Code Availability Section: 8.1).

The following contributions are made through systematic 

integration: 

• A Novel Integrated Architecture: A unified framework is 

presented that combines the Polygon blockchain, AI-driven 

analytics, edge computing for health sensor data, a 

Decentralized Autonomous Organization (DAO) for 

governance, Zero-Knowledge Proof (ZKP) for identity 

verification, and Decentralized Finance (DeFi) for microloans. 

This holistic approach distinguishes PolyMed from prior 

systems that typically focus on only one or two of these aspects.

• Privacy-Preserving Verifiable Identity: The system 

incorporates Anon-Aadhaar, a ZKP-based solution, to verify 

user identities without exposing sensitive personal data. This 

is further secured by binding verified identities to non- 

transferable Soulbound Tokens (SBTs), ensuring robust, self- 

sovereign identity management.

• AI-Powered Clinical Intelligence: An integrated and validated 

LightGBM (LGBM) model provides emergency detection from 

physiological data. By transforming raw time-series data into a 

comprehensive set of tabular features, the model achieves a 

high Area Under the Curve (AUC) score on a public clinical 

dataset, demonstrating the potential for proactive clinical 

intervention even with highly imbalanced data.

• Comprehensive Empirical Validation: A rigorous 

performance evaluation conducted on the Polygon Mainnet 

analyzes transaction latency, gas costs, system throughput, 

and operational resilience. This is complemented by a 

usability study and a detailed economic analysis, confirming 

the platform’s practical viability and cost-effectiveness.

This paper is organized as follows. Section 2 surveys related work 

in blockchain-based healthcare. Section 3 details the proposed 

system architecture and methodology. Section 4 presents the 

performance analysis and scalability tests. Section 5 discusses 

the security and compliance frameworks. Section 6 covers 

the usability and economic implications. Section 7 interprets the 

findings and discusses limitations, and Section 8 concludes the 

paper and outlines future work.

2 Literature survey

The application of blockchain technology to re-architect EHR 

systems has been a vibrant and rapidly evolving field of research. 

The academic literature re!ects a clear progression from initial 

conceptual models to more sophisticated, multi-layered 

platforms designed to tackle the nuanced challenges of modern 

healthcare. Literature analysis reveals several key themes that 

have dominated the discourse, though comprehensive 

integration remains underexplored: the establishment of 

foundational architectures for decentralized data sharing; the 

continuous effort to enhance patient privacy through advanced 
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cryptography; the critical integration of real-time data from the 

IoT; the persistent drive to solve the blockchain trilemma of 

scalability, security, and decentralization; and the emerging, yet 

underexplored, domains of decentralized governance and 

economic models.

The genesis of this research area was rooted in the 

fundamental promises of blockchain itself. The core properties 

of decentralization, which eliminates single points of failure; 

immutability, which ensures the integrity of the medical record 

against tampering; and cryptographic transparency, which 

provides a provably fair and auditable trail of all data 

interactions, were immediately recognized as powerful antidotes 

to the vulnerabilities of centralized EHR systems (5). Early 

researchers grappled with fundamental architectural decisions, 

such as the trade-offs between permissionless (public) 

blockchains, which offer maximum transparency, and 

permissioned (private or consortium) blockchains, which 

provide greater control over network participants—a critical 

consideration for a regulated industry like healthcare. The 

consensus quickly formed around hybrid storage models, 

recognizing the prohibitive cost and privacy risks of storing 

voluminous, sensitive health data directly on-chain (1). This led 

to the dominant architectural pattern where the blockchain is 

used as a lean, highly secure transaction and access-control 

layer, while the encrypted data itself resides in off-chain storage.

This foundational work gave rise to the first generation of 

tangible platforms that served as crucial proofs-of-concept. The 

MedRec system, emerging from MIT in 2016, provided a 

landmark demonstration of this hybrid model. It utilized smart 

contracts on an Ethereum-based ledger to manage a registry of 

pointers to medical records, which were stored in traditional 

off-chain databases. Its primary innovation was a sophisticated 

permissioning system that empowered patients to grant and 

revoke access to their records for various healthcare providers, 

creating a patient-mediated audit trail of data access (2). Soon 

after, FHIRChain addressed another critical dimension: data 

standardization. While MedRec was data-agnostic, FHIRChain 

proposed an architecture that intrinsically linked the security of 

the blockchain to the interoperability of the Fast Healthcare 

Interoperability Resources (FHIR) standard (3). This was a 

conceptual advancement, as it envisioned a future where 

standardized clinical data could be shared not just securely, but 

also meaningfully, between disparate systems. While these 

pioneering systems were instrumental, their focus remained 

primarily on the access control of static, episodic health records, 

and they generally relied on pseudonymous wallet addresses for 

identity, which lack the real-world, verifiable credentials 

required for clinical practice.

As the field matured, the research focus intensified on 

strengthening the privacy and security guarantees of these 

systems. The inherent transparency of many blockchains 

presented a privacy paradox, leading researchers to explore 

advanced cryptographic solutions. One prominent avenue of 

exploration has been fully homomorphic encryption, a powerful 

technique that allows for mathematical computations to be 

performed on encrypted data without ever needing to decrypt it. 

This holds immense potential for privacy-preserving analytics, 

where a healthcare provider could, for instance, outsource 

complex data analysis to a third-party cloud service without 

exposing the underlying patient information (6). However, the 

significant computational overhead associated with current 

homomorphic encryption schemes has largely confined them to 

theoretical or niche applications, limiting their use in high- 

throughput, real-time clinical environments. This performance 

bottleneck has fueled a growing interest in more efficient 

privacy-enhancing technologies, particularly Zero-Knowledge 

Proofs (ZKPs). ZKPs offer a notable capability: the ability to 

prove the validity of a statement without revealing the 

underlying data that supports the statement (7–9). This is 

perfectly suited for healthcare use cases, such as a patient 

proving they have a valid prescription to a pharmacy without 

revealing their name or diagnosis. Recent research has begun to 

explore how ZKPs can enable large-scale, privacy-preserving 

data analytics, a critical requirement for advancing public 

health research without compromising individual patient 

confidentiality (10).

Parallel to the advancements in cryptography, another major 

research thrust has been the integration of real-time data from 

the burgeoning Internet of Medical Things (IoMT). The 

proliferation of wearable sensors, smart medical devices, and 

remote patient monitoring tools has fundamentally changed the 

nature of health data from static and episodic to continuous and 

dynamic. This has created an urgent need for architectures 

capable of securely ingesting, storing, and analyzing these high- 

velocity data streams. The synergy between IoMT and 

blockchain is a powerful one; blockchain can provide an 

immutable, auditable record of data originating from a 

distributed network of devices, ensuring its provenance and 

integrity (11). The necessity of pairing these trusted data 

streams with Machine Learning (ML) and Artificial Intelligence 

(AI) for proactive care—such as early disease detection, chronic 

condition management, and real-time emergency alerts—has 

become a central theme in many recent studies (12, 13). 

However, the sheer volume of IoMT data makes direct on-chain 

storage infeasible. To solve this, edge computing has emerged as 

a critical architectural component. By deploying computational 

resources at the network edge, closer to the patient, data can be 

pre-processed, filtered, and analyzed locally. This approach 

reduces latency for time-sensitive alerts, minimizes the data load 

on the core network, and enhances security by ensuring that 

only relevant and validated information is transmitted to the 

blockchain layer (14).

The inherent challenge of achieving scalability without 

sacrificing decentralization or security—often referred to as the 

“blockchain trilemma”—has been a constant driver of 

innovation in this space. The high transaction fees and low 

throughput of early blockchains like Ethereum Classic made 

them unsuitable for large-scale healthcare applications. In 

response, the field has widely adopted solutions built on more 

scalable platforms and Layer-2 technologies. High-throughput 

blockchains and sidechains, such as Polygon, have become 

popular choices due to their low transaction costs and 
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compatibility with the Ethereum Virtual Machine (EVM), making 

it possible to build complex decentralized applications that are 

economically viable (15). The hybrid, “thin blockchain” model, 

where the ledger is used for high-value transactions like identity 

verification and access control while bulk data is stored off- 

chain, is now a standard design pattern (16, 17). Comprehensive 

frameworks have been proposed to bundle these components 

into integrated platforms (4, 18), and multi-chain solutions are 

being explored to further enhance trust and transparency in 

complex, multi-stakeholder healthcare environments (19).

Despite this impressive and multifaceted body of research, a 

comprehensive review of the literature reveals two critical, yet 

largely unaddressed, pillars of a truly patient-centric ecosystem: 

decentralized governance and integrated economic models. The 

vast majority of prior work has focused on solving the technical 

challenges of data management, while implicitly assuming a 

centralized or consortium-based model for governance. Critical 

questions—such as who sets the rules for data access, how the 

protocol is upgraded, and how disputes are resolved—were often 

left unanswered. The emergence of Decentralized Autonomous 

Organizations (DAOs) offers a powerful solution, enabling 

communities of stakeholders to collectively and transparently 

govern a digital platform (5). Similarly, while the technical 

aspects of healthcare are well-studied, the economic barriers to 

accessing care are often overlooked in these systems. The rise of 

Decentralized Finance (DeFi) presents a new frontier of 

programmable, transparent financial tools that could be 

integrated into healthcare platforms to provide novel solutions 

like microloans for medical expenses, automated insurance 

claims processing, and staking mechanisms to fund community 

health initiatives (20). The integration of these social, 

governmental, and economic layers into a technically robust 

EHR framework remains an active research area.

In summary, while substantial progress has been made in 

individual domains, a comprehensive system that integrates 

privacy-preserving verifiable identity, real-time AI-driven clinical 

intelligence, genuine patient-led governance, and integrated 

financial inclusion into a single, cohesive, and empirically 

validated framework has remained an open and significant 

research gap. Table 1 provides a detailed comparative analysis of 

key existing systems against the proposed architecture, PolyMed, 

to visually and conceptually summarize this research gap and 

underscore the novelty of the integrated approach.

3 System architecture and 
methodology

The PolyMed platform is architected as a multi-layered, 

decentralized system meticulously designed to address the 

foundational challenges of security, interoperability, privacy, and 

patient empowerment in modern Electronic Health Record 

(EHR) management. The architecture is not a monolithic 

application but rather a synergistic composition of several core 

technological pillars, each selected for its specific capacity to 

solve a distinct problem within the healthcare data ecosystem. 

The design philosophy is rooted in the principles of privacy- 

by-design, patient-centricity, and zero-trust, where control 

is cryptographically guaranteed and distributed among 

stakeholders rather than being concentrated in a single 

administrative entity. This section provides an exhaustive 

exploration of this architecture, beginning with its high-level 

design philosophy, delving into the technical intricacies of its 

core technological pillars, detailing the specific components and 

their end-to-end work!ows, and finally, dissecting the advanced 

modules that provide PolyMed with its intelligent, autonomous, 

and financially inclusive capabilities.

3.1 Architectural philosophy and high-level 
design

PolyMed’s design is based on a fundamental goal: giving 

patients full control over their own health data. This principle of 

patient data sovereignty is the platform’s core philosophical 

commitment. Unlike traditional systems where providers control 

TABLE 1 Comparative analysis of Key blockchain-based EHR systems.

Feature MedRec (2) FHIRChain (3) BC IoMT U6 HCS 
(4)

PolyMed (Proposed)

Data storage Off-chain with on-chain 

metadata/hashes.

Off-chain with on-chain FHIR 

resource pointers.

Cloud storage with 

blockchain for access 

control.

IPFS storage with on-chain hashes and edge 

computing pre-processing.

Identity 

management

Ethereum addresses. Relies on 

external identity verification.

Not explicitly detailed; assumes pre- 

verified identities.

Traditional authentication 

methods.

ZKP-based identity verification (Anon-Aadhaar) 

and non-transferable Soulbound Tokens (SBTs).

IoT integration Not a primary focus. Data is 

primarily static EHR entries.

Not a primary focus. Designed for 

FHIR resources, not real-time 

streams.

Yes, focuses on IoMT data 

integrity and authentication.

Deep integration with real-time health data streams 

via a dedicated edge layer for filtering and anomaly 

detection.

Governance Centralized system 

administrators or consortium- 

based.

Centralized or consortium-based. Centralized control over the 

framework.

Fully decentralized governance via a token-based 

Decentralized Autonomous Organization (DAO).

Financial 

inclusion

Not addressed. Not addressed. Not addressed. Integrated DeFi module for on-chain microloans 

and staking for medical expenses.

AI integration Not included. Not included. Not included. Validated AI model for real-time emergency 

detection and an architecture for AI-driven 

scheduling and patient assistance.
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the data, PolyMed uses strong cryptography to guarantee that only 

the patient can own and share their records. To ensure this 

guarantee is secure, the system relies on strong encryption. The 

strength of this protection is formally measured by entropy 

(Hkey), where a higher value means it is exponentially harder for 

an attacker to guess the key. The entropy is directly 

proportional to the key’s length in bits (Lbits):

Hkey ¼ Lbits (1) 

By employing 256-bit keys, PolyMed establishes a foundation that 

is secure against all known brute-force attacks with current and 

foreseeable computing technology. Every patient’s record is 

linked to their private key, and no access or transaction can 

occur without their explicit, digitally signed consent. This 

paradigm shift aims to rebalance the power dynamic in 

healthcare data, fostering a new level of trust and transparency 

between patients and the healthcare ecosystem.

To achieve this without compromising scalability or privacy, a 

thin blockchain design philosophy was adopted. This 

architectural pattern dictates a strategic separation of concerns 

between on-chain and off-chain environments. The blockchain 

layer, while being the system’s core trust anchor, is used 

sparingly and efficiently. It is reserved exclusively for operations 

that require absolute immutability, transparency, and 

decentralized validation: identity verification, access control 

permissions, critical metadata (such as record hashes), and the 

execution of governance and financial logic via smart contracts. 

The voluminous and highly sensitive EHR data itself—such as 

clinical notes, lab results, and high-resolution medical imagery— 

is never stored directly on the blockchain. This hybrid model 

provides the best of both worlds: the strong security and 

auditability of a blockchain for trust-sensitive operations, and 

the scalability, cost-effectiveness, and privacy of off-chain 

storage for bulk data. This approach directly addresses the 

prohibitive costs and inherent privacy risks associated with 

storing large datasets on a public or semi-public ledger.

The architecture also draws inspiration from established 

software engineering principles, adapted for a decentralized 

context. The design of the smart contracts and off-chain services 

adheres to the SOLID principles. For example, each smart 

contract is designed with a Single Responsibility, such as the 

“AuthSC” focusing exclusively on identity and the 

“DeFiLoanSC” on financial logic. This modularity enhances 

security and simplifies auditing. The contracts are designed to 

be extensible via proxy patterns but immutable in their core 

logic, embodying the Open/Closed Principle. Furthermore, 

interactions between contracts and between on-chain and off- 

chain components occur through well-defined, minimal 

interfaces, re!ecting the Interface Segregation Principle and 

reducing the attack surface of the system.

The overall system can be conceptualized in several distinct, 

interacting layers. The Presentation Layer consists of the user- 

facing web application, providing an intuitive interface for 

patients, clinicians, and administrators to interact with the 

system’s functionalities. The Logic Layer is composed of the 

suite of smart contracts deployed on the Polygon blockchain, 

which encode the core business rules, governance mechanisms, 

and financial protocols of the ecosystem. The Data Layer is a 

hybrid construct, comprising the Polygon blockchain for 

immutable metadata and pointers, and the InterPlanetary File 

System (IPFS) for the distributed storage of the actual encrypted 

EHR data. Finally, the Intelligence Layer consists of the off- 

chain Artificial Intelligence (AI) and machine learning models 

that provide clinical decision support. For this study, time-series 

data is first converted into a rich set of tabular features (e.g., 

statistical summaries, trends). A powerful gradient boosting 

model then analyzes this feature set to make predictions. 

Because blockchains cannot natively access external data, this 

layer interacts with on-chain contracts through a secure oracle 

system. This addresses the fundamental “oracle problem” by 

providing a trusted bridge to bring off-chain computational 

results, such as an AI-driven emergency assessment, into the 

deterministic on-chain environment. These layers are designed 

with principles of loose coupling and high cohesion, allowing 

for modular development, independent scalability, and 

easier maintenance.

The core components of the Logic Layer are a suite of 

specialized smart contracts, each with a distinct function, as 

summarized in Table 2. The high-level interaction between these 

components is illustrated in the overall system architecture 

diagram (Figure 1). A more dynamic view of these interactions 

is provided in the work!ow sequence diagram (Figure 2), which 

traces a typical user journey from the initial, privacy-preserving 

authentication process through to the secure retrieval of a 

medical record by an authorized clinician, showcasing the end- 

to-end !ow of control and data within the PolyMed ecosystem.

3.2 Polygon blockchain: a deep dive into 
the trust layer

While other scalable blockchain solutions like optimistic 

rollups and alternative Layer-1s exist, the decision to build 

PolyMed on Polygon was driven by a con!uence of four key 

advantages: 

1. EVM Compatibility and a Mature Ecosystem: Polygon is 

fully compatible with the Ethereum Virtual Machine (EVM). 

This is arguably its most significant advantage, as it means 

smart contracts can be written in Solidity, the most widely 

used and well-audited smart contract language. More 

importantly, it grants access to the entire, unparalleled 

ecosystem of Ethereum development tools (Truf!e, Hardhat), 

security libraries (OpenZeppelin), and infrastructure 

providers (Infura, Alchemy). This drastically reduces 

development time, lowers the risk of introducing novel 

vulnerabilities, and ensures long-term access to a massive 

global pool of developer talent.

2. High Throughput and Low Transaction Costs: Compared to 

Ethereum’s 15–30 Transactions Per Second (TPS), Polygon 
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can theoretically handle up to 7,000 TPS, with practical 

throughput being in the hundreds. This is more than sufficient 

to handle the transactional load of a large network of hospitals 

and patients. Furthermore, transaction costs on Polygon are 

typically orders of magnitude lower than on Ethereum, often 

costing fractions of a cent. This economic viability is non- 

negotiable for a healthcare system, as it ensures that core 

functionalities like updating a health record or granting access 

remain affordable and accessible to all users.

3. Robust Security and Decentralization: The consensus 

and security are managed by the Heimdall layer. This 

layer consists of a set of validators who participate in a 

Proof-of-Stake (PoS) consensus mechanism. To do so, 

they “stake” their own MATIC tokens, which acts like a 

security deposit; this economic incentive ensures they 

validate transactions honestly to protect the network. These 

validators periodically bundle up blocks and commit a 

cryptographic “checkpoint” to the Ethereum mainnet. This 

checkpointing mechanism is crucial, as it allows the Polygon 

chain to periodically anchor its state to the strong security of 

Ethereum, making it extremely difficult to reverse or tamper 

with transactions.

4. Interoperability and Future-Proofing: As a key part of the 

Ethereum ecosystem, Polygon is at the forefront of research 

TABLE 2 Key smart contracts and their functions in the PolyMed ecosystem.

Smart 
contract

Primary functions Description

AuthSC User authentication, ZKP verification, SBT 

minting, emergency access control

Manages user identities and access permissions, serving as the gatekeeper for the entire system.

EHRDataSC EHR storage (hashes/CIDs), record retrieval, access 

logging

Core contract for managing the pointers and metadata associated with patient health records 

stored on IPFS.

AppointmentSC Appointment scheduling, doctor availability 

management

Automates the booking and management of medical appointments between patients and 

verified clinicians.

PrescriptionSC Prescription issuance, verification, fulfillment 

tracking

Handles the lifecycle of digital prescriptions, ensuring they are issued by verified doctors and 

fulfilled securely.

DAOGovernanceSC Proposal submission, voting, treasury 

management, dispute resolution

Facilitates decentralized governance, including the management of system parameters and the 

economic policies of the DeFi module.

DeFiLoanSC Microloan requests, disbursement, repayment, 

staking

Manages financial services for patients, allowing them to access undercollateralized loans for 

medical expenses funded by community liquidity providers.

IoTDataSC IoT data ingestion (validated/hashed), alert 

!agging

Processes and secures real-time data from authenticated IoMT devices, creating an immutable 

on-chain log of vital measurements.

FIGURE 1 

The overall system architecture of PolyMed. This diagram provides a holistic view of the platform, illustrating the interaction between end-users 

(patients, doctors), the web application frontend, the edge computing layer for pre-processing IoT data, the Polygon blockchain which hosts the 

core smart contracts and DAO, and the decentralized storage layer (IPFS) for encrypted EHR data. Each component is designed to work 

synergistically to create a secure, patient-centric health ecosystem.
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into future scaling solutions, including ZK-rollups. By building 

on Polygon, PolyMed is well-positioned to take advantage of 

these future technologies, ensuring the long-term scalability 

and relevance of the platform.

3.3 Self-Sovereign identity: a paradigm shift 
with ZKPs and SBTs

A cornerstone of the PolyMed architecture is its novel 

approach to digital identity, which moves away from traditional, 

centralized models towards a paradigm of Self-Sovereign 

Identity (SSI). SSI is a model where individuals have sole 

control over their own digital identities, without depending on 

any intermediary or central authority. It is built on the 

principles of user control, consent, data minimization, and 

portability. In the context of healthcare, SSI is transformative 

because it allows a patient to own, manage, and share their 

verifiable health credentials in a secure and granular way. 

PolyMed implements SSI by integrating two powerful 

cryptographic and tokenomic primitives: Zero-Knowledge Proofs 

(ZKPs) and Soulbound Tokens (SBTs).

Furthermore, the structure of the identity objects is designed 

with an eye toward compatibility with the emerging W3C 

Verifiable Credentials (VC) data model. While SBTs provide a 

simple and robust on-chain representation, the off-chain data 

that is cryptographically proven can be structured as a VC, 

containing claims, metadata, and a digital signature from an 

issuer (e.g., a government or a medical board). This ensures that 

while the system is self-contained, it is also future-proof and 

capable of interoperating with a broader, standards-based digital 

identity ecosystem.

Zero-Knowledge Proofs represent a breakthrough in 

cryptography and are the engine of PolyMed’s privacy- 

preserving verification system. A ZKP allows a “prover” to 

convince a “verifier” that they know a secret or that a statement 

is true, without revealing the secret or any other information 

whatsoever. This is achieved using a type of non-interactive ZKP 

known as a zk-SNARK (Zero-Knowledge Succinct Non- 

Interactive Argument of Knowledge), which produces proofs 

that are very small and fast to verify, making them ideal for on- 

chain applications. In conceptual terms, this process is 

analogous to proving knowledge of a password by providing a 

valid cryptographic hash of it, without revealing the password 

itself. The computational cost of generating these proofs, 

CZKP gen, is a critical factor and can be approximated as being 

quasi-linear in the number of constraints in the ZKP circuit:

CZKP gen ¼ O(Nconstraints � log Nconstraints) (2) 

where Nconstraints is the number of Rank-1 Constraint System 

(R1CS) constraints in the circuit, a detail discussed in 

foundational works such as (7). For this implementation, the 

FIGURE 2 

System workflow sequence diagram. This diagram illustrates a typical user interaction flow, detailing the sequence of operations from patient 

authentication to a doctor accessing a medical record. (1) The patient initiates a session, authenticating via MetaMask and verifying their identity 

with an Anon-Aadhaar ZKP. (2) IoT sensors stream vitals to the edge device. (3) The edge device processes the data and sends a validated hash 

to the PolyMed smart contracts on Polygon. (4) Later, a doctor authenticates and requests access. (5) The smart contract verifies the doctor’s 

permissions and retrieves the data hash and IPFS link for the encrypted record, granting access.
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Anon-Aadhaar SDK is integrated. The Aadhaar system in India 

provides a unique digital identity to over a billion people. 

Anon-Aadhaar leverages this by allowing a user to generate a 

zk-SNARK locally on their device. The user scans the QR code 

on their Aadhaar card, which contains their digitally signed 

demographic data. A ZKP circuit then processes this data to 

generate a proof that attests to certain facts (e.g., “I am a unique 

person in the database,” or “I am over the age of 18”) without 

revealing the underlying name, date of birth, or Aadhaar 

number. This proof is then submitted to a verifier smart 

contract on the Polygon blockchain. The smart contract can 

verify the proof’s validity in a gas-efficient manner, confirming 

the user’s identity without ever having access to their Personal 

Identifiable Information (PII). This verification is a boolean 

function, formally represented as:

VerifyZK(Proof, PublicInput) ¼ true=false (3) 

Once a user’s identity is verified via a ZKP, this verification needs 

to be represented on-chain in a persistent and non-speculative 

manner. For this, Soulbound Tokens (SBTs) are used. An SBT 

is a type of non-fungible token (NFT) that is designed to be 

non-transferable. Once an SBT is minted to a specific wallet 

address (a “soul”), it cannot be sold, gifted, or otherwise 

transferred to another wallet. This non-transferability makes 

them perfect for representing personal credentials, achievements, 

and affiliations that define an identity. In PolyMed, upon 

successful ZKP verification, the “AuthSC” smart contract mints 

a role-specific SBT to the user’s wallet. These SBTs function as a 

persistent, on-chain passport, allowing smart contracts 

throughout the ecosystem to instantly and efficiently check a 

user’s role and permissions simply by querying the presence of a 

specific SBT in their wallet. This entire authentication !ow is 

specified in Algorithm 1.

A similar credentialing process applies to healthcare providers. 

A clinician would submit their verifiable credentials (e.g., medical 

license) to a DAO-governed verification contract. Upon successful 

off-chain validation by a designated committee, a “Doctor” role 

SBT would be minted to their wallet, granting them the 

necessary permissions within the system. This ensures that only 

verified professionals can access patient data.

Algorithm 1 Auth Layer Work!ow: MetaMask & Anon-Aadhaar 

Integration

1: Init: u (end-user), w (wallet addr), qr (Aadhaar-QR), z (ZK- 

proof), sc (Auth SC)

2: function CONNECTWALLET()

3:  w ← METAMASK.CONNECT()

4:  n ← RANDNONCE()

5:  σ ← METAMASK.SIGN(n)

6:  if ECRECOVER (n, s) ¼ ¼w then

7:   session.valid ← true

8:  else

9:   return fail

10:   end if

11: end function

12: function GENPROOF(qr)

13:  z ← ANONAADHAAR.GENERATEZK(qr)

14:  return z

15: end function

16: function SUBMITPROOF(z)

17:  if SC.VERIFYZK(w, z) == true then

18:   SC.MINTSBT(w) . Soul-bind the identity

19:   userTable [w] ← verified

20:  else

21:   return fail

22: end if

23: end function

/* Emergency-only shortcut for clinicians */

24: function CHKEMERGENCY(w)

25:  if userTable [w] == verified then

26:   return grant_access

27:  else

28:   return deny

29:  end if

30: end function

3.4 The IoMT data pipeline: from sensor to 
ledger

The secure and efficient management of real-time data from 

the Internet of Medical Things (IoMT) is a core functional 

requirement of the PolyMed platform. While the core focus of 

the empirical validation was the on-chain and AI software 

components, a representative hardware prototype was 

constructed to ensure the data pipeline was designed and tested 

for a realistic, real-world use case. The IoT sensor node was 

architected around the ESP32 microcontroller, selected for its 

integrated Wi-Fi and Bluetooth Low Energy (BLE) capabilities. 

This node was designed to interface with a suite of common 

medical-grade sensors to capture a wide range of vital signs, 

including an ECG/EEG monitor for cardiac and neural activity, 

a glucometer for blood glucose, a pulse oximeter for SpO2 and 

heart rate, a clinical-grade temperature sensor, and a digital 

blood pressure monitor. This prototype was subsequently used 

to generate realistic and diverse time-series data that served as 

the input for testing the edge processing logic and for validating 

the on-chain transaction throughput of the system. The 

cryptographic chain of custody starts at the point of capture: 

each data packet transmitted from the sensor can be digitally 

signed with a private key embedded in the device’s secure 

hardware module. This signature ensures the data’s origin 

and integrity.

Once onboarded, the device begins capturing physiological 

data, with the ESP32 microcontroller itself acting as the local 

edge computing device. This Edge Processing is algorithmically 

sophisticated and serves multiple purposes: 
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1. Noise Filtering and Signal Enhancement: Raw sensor data is 

often noisy. The quality of the signal can be formally measured 

by the Signal-to-Noise Ratio (SNR):

SNR (V) ¼ 10 log10

Psignal

Pnoise

� �

(4) 

where Psignal is the power of the physiological signal and Pnoise 

is the power of the noise. The edge layer applies digital signal 

processing algorithms, such as a 4th-order Butterworth filter, 

to improve this ratio.

2. Data Aggregation and Summarization: To reduce the sheer 

volume of data, the edge device performs aggregation.

3. Real-Time Anomaly Detection: The edge device runs 

lightweight anomaly detection algorithms, such as an 

Exponentially Weighted Moving Average (EWMA) model, 

which adapts to a patient’s changing baseline.

4. Data Serialization and Encryption: Before any data leaves 

the edge device, it is serialized into a compact binary 

format, end-to-end encrypted using Advanced Encryption 

Standard (AES)-256, and then signed by the edge device’s 

private key.

Mitigation Framework for Connectivity and Power Constraints. 

To address the real-world challenges of intermittent connectivity 

and power limitations inherent in wearable devices, a systematic 

mitigation framework is integrated into the edge layer. This 

framework employs a three-pronged strategy: (1) Edge Caching 

and Store-and-Forward: The ESP32 device utilizes its !ash 

memory as a temporary buffer to cache encrypted data packets 

during periods of network unavailability. Once connectivity is 

restored, a store-and-forward mechanism transmits the buffered 

data in chronological order, ensuring no data is lost. (2) 

Of8ine-First Synchronization: The device operates in an 

“of!ine-first” mode, where all critical data processing and 

anomaly detection occur locally without requiring a constant 

network connection. Data synchronization is treated as a 

background task that executes opportunistically. (3) Adaptive 

Power Management: The device implements an energy 

efficiency protocol that adjusts the data transmission frequency 

based on the device’s battery level and the clinical stability of 

the patient’s vitals. For instance, transmission frequency is 

reduced during periods of normal readings and low battery, 

conserving power for critical events.

Only after this rigorous pre-processing is the data ready for the 

final stage. For this prototype, standard clinical thresholds were 

used for anomaly detection; however, in a production system, 

these thresholds would be configurable on a per-patient basis as 

determined by a clinician. The edge device uploads the 

encrypted data blob to the InterPlanetary File System (IPFS). 

The edge device then initiates a transaction on the Polygon 

network, calling a function on the “IoTDataSC” smart contract 

and passing it the resulting Content Identifier (CID). The 

transaction itself is signed by the patient’s private key, 

completing the cryptographic chain of custody. This entire 

monitoring and data validation work!ow is formalized 

in Algorithm 2.

Algorithm 2 IoT-Blockchain-Based Health Monitoring and 

Alerting Work!ow

1: Init: S [HR, SpO2, BP, Glu]

2:    T  {HR:(40,160), SpO2:(85,100), BP:[90/60,180/120],       

Glu:(70,200)}

3:    PID Patient ID, DID Device ID

4:    SC SmartContract

5: Constants: DATA_INTERVAL = 10s

6: function INITIALIZE (PID)

7:  Register DID to PID on blockchain

8:  Bind sensors S to DID, authorize with SC

9: end function

10: function MONITOR(DID)

11:  while true do

12:    D READVITALS()

13:   if VALIDATE(D) then

14:     E ENCRYPT(D, PID)

15:    SC.STOREDATA(PID, E)

16:    LOG“OK”, time(“OK”, time)

17:   else

18:    TRIGGERALERT(PID, D)

19:    LOG“Anomaly”, time(“Anomaly”, time)

20:   end if

21:   SLEEPDATA_INTERVAL(DATA_INTERVAL)

22:  end while

23: end function

24: function VALIDATE(D)

25:  return T:HR[0] � D:HR � T:HR[1] and

T:SpO2[0] � D:SpO2 � T:SpO2[1] and

T:BP[0] � D:BP � T:BP[1] and

T:Glu[0] � D:Glu � T:Glu[1]

26: end function

27: function TRIGGERALERT(PID, D)

28:  Emit blockchain event: EMR(PID, D)

29:  Notify caregiver

30:  SC.FLAG(PID, D)

31: end function

3.5 Core EHR and clinical workflows

The management of clinical data and work!ows is orchestrated 

by a set of interconnected smart contracts that handle everything 

from record creation to prescription fulfillment. The core work!ow 

for creating, storing, and accessing EHRs is governed by smart 

contracts to ensure patient consent and data integrity. Patient data 

is encrypted client-side using a strong symmetric encryption 

scheme like AES-256, formally represented as:

E ¼ Encrypt (Data, Ksym) (5) 
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where Ksym is a symmetric key exclusively managed by the patient, 

often derived from their wallet’s signature. The hash of this 

encrypted data, H(E), along with the IPFS CID, is then stored on- 

chain to provide a tamper-proof seal of integrity:

OnChainData ¼ {PatientID, Timestamp, H(E), IPFS CID} (6) 

This ensures that while the data remains private off-chain, its 

integrity and existence can be publicly and irrefutably verified 

against the on-chain record. The general logic for these clinical 

interactions is specified in Algorithm 3.

Algorithm 3 Secure EHR Management Work!ow Logic

1: Init: p, d, iot, b, ph, pid, did

2: data ← [“heart”, “oxygen”, “bp”, “glucose”]

3: function REGISTERp(p)

4:   if p � b then

5:    Auth, Add(pid,b)

6:   else

7:    Auth

8:   end if

9: end function

10: function COLLECT()

11:   while true do

12:     d iot[pid]:capture()

13:    if valid(d) then

14:     Send(d → b)

15:    else

16:     Discard

17:    end if

18:   end while

19: end function

20: function APPOINT()

21:   if Req(did) then

22:    Get(rec), Analyze, Store

23:   else

24:    Notify

25:   end if

26: end function

27: function PURCHASE()

28:   if hasRx && verify(rx) then

29:    Notify(ph), Log(rx → b)

30:   else

31:    Notify

32:   end if

33: end function

34: function EMERGENCY()

35:   while isEmerg(d) do

36:    Alert, Act, Update(b)

37:   end while

38: end function

39: function ISEMERGd (d)

40:   return abnormal vitals

41: end function

3.6 Advanced system modules and 
governance

Beyond the core infrastructure for identity and data 

management, PolyMed incorporates several advanced modules 

that provide its unique intelligent, autonomous, and financially 

inclusive capabilities. These modules are designed to be 

interoperable and composable, building upon the foundational 

layers of identity and data.

The integration of Artificial Intelligence is central to 

PolyMed’s vision of proactive healthcare. The primary 

component of the intelligence engine is the AI model for 

emergency detection. This model is a LightGBM (LGBM) 

classifier, a highly efficient gradient boosting framework adept at 

handling tabular data. The architectural work!ow involves an 

initial feature engineering step where raw time-series data is 

converted into a structured feature set. This tabular data is then 

fed into the LGBM model, which is deployed on a secure off- 

chain server. For the purposes of this prototype, this server 

functions as a centralized, trusted oracle. However, a 

production-grade deployment would require a decentralized 

approach to eliminate this single point of trust. This could be 

achieved by leveraging a decentralized oracle network like 

Chainlink, which could fetch the AI model’s output from 

multiple independent nodes. The primary challenges in such a 

decentralized system include ensuring verifiable computation 

(cryptographically proving that the correct model was executed 

on the correct data), designing robust economic incentives for 

the AI node runners, and preserving the privacy of the model’s 

intellectual property.

This server runs a listener service that continuously monitors 

the Polygon blockchain for events emitted by the “IoTDataSC” 

smart contract. If the model classifies the situation as “Critical,” it 

can trigger a high-priority alert back to the blockchain. The end- 

to-end work!ow relies on a suite of specialized smart contracts 

and oracles. These include core contracts for authentication 

(CAuth) and data management (CData), alongside specific contracts 

for payments (CPay), cross-chain interactions (CX), and 

immutable logging (CLog). The system also leverages oracles to 

securely bring real-world information on-chain, including a 

health oracle for emergencies (OH), a reputation oracle (ORep), 

and a market oracle for pricing (OMkt). This alert can, in turn, 

call specialized on-chain contracts. These contracts can grant 

emergency services temporary data access for a duration managed 

by DAO governance (e.g., EMERGENCY_ACCESS_DURATION) 

and, crucially, can also interact with the DeFi module. For 

instance, a verified on-chain emergency event could automatically 

notify the patient of their pre-assessed eligibility for a microloan, 

streamlining their access to funds for urgent treatment and 

demonstrating a seamless link between clinical events and 
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financial support. The full end-to-end !ow, integrating 

authentication, data access, and AI-triggered emergency 

responses, is detailed in Algorithm 4.

Algorithm 4 Cross-Chain Healthcare Flow Integrating ZKP 

Authentication & AI-Driven Operations

1: Input: ID, R, zkP, op, Sig, AI

2: Contracts: CAuth, CData, CPay, CX, CLog

3: Oracles: OH , ORep, OMkt

4: Constants: EMERGENCY_ACCESS_DURATION = 1h

5: function AUTHZK(ID, zkP, R)

6:    ok CAuth:checkZKP(ID, zkP, R)

7:   require ok else revert

8:   MINTSBT(ID, R)

9: end function

10: function RUNOP(ID, op)

11:   if op ¼ ``appt} then

12:     root  CData:getRoot(}doc})

13:    require VERIFYMP(root) else revert

14:     t AI:pickTime()

15:     slot CData:book(ID, t)

16:    EMIT“Booked”, ID, slot (“Booked”, ID, slot)

17:   else if op ¼ ``buy} then

18:     rx CData:getRx(ID)

19:    require DECRYPTRX(rx, zkP) else revert

20:     p OMkt:price(rx:drug)

21:     CPay:pay(ID, }Pharma}, p)

22:     CX:logRx(ID, rx:hash())

23:   else if op ¼ ``emg} then

24:     v CData:vitals(ID)

25:     crit AI:isCritical(v)

26:    require crit else revert

27: CAuth.grant(“EMT”, ID, EMERGENCY_ 

ACCESS_DURATION)

28:     OH:callAmbulance(ID)

29:   end if

30:    CLog :log(op, ID, ORep:score(ID))

31: end function

Looking toward the future, this feature-engineering-first 

architecture is designed to support more advanced, privacy- 

preserving machine learning paradigms. A significant avenue for 

future work is the implementation of Federated Learning. In a 

federated model, the feature engineering pipeline would be 

executed locally within each participating hospital or clinic. 

A global model could then be trained on these anonymized, 

aggregated feature sets without the raw patient data ever leaving 

the secure confines of the local institution. This approach would 

allow the PolyMed AI engine to learn from a diverse, multi- 

institutional dataset—improving its accuracy and reducing bias 

—while maintaining the highest standards of patient privacy.

To achieve true decentralization, a system needs a 

mechanism for distributed decision-making and evolution. 

PolyMed achieves this through a Decentralized Autonomous 

Organization (DAO). The PolyMed DAO is a set of 

smart contracts that allow the community of stakeholders 

to govern the platform collectively. The entire lifecycle 

of a proposal is managed on-chain, ensuring transparency 

and censorship resistance. The DAO operates on a 

principle of token-weighted voting, where the in!uence 

of a vote is proportional to the number of tokens the 

voter has staked in the governance contract. The voting 

power, Vp, of a participant is directly proportional to their 

staked tokens, Tp:

Vp ¼ a � Tp (7) 

where a is a weighting factor. A proposal is approved if the 

cumulative voting weight of affirmative votes surpasses a 

predefined quorum threshold, Q:

X

p[YesVotes

Vp � Q (8) 

The DAO acts as the steward of the ecosystem’s economic 

health, with its primary tool being the control over a central 

Treasury. The treasury is a smart contract that holds a pool 

of community-owned funds. These funds can be sourced from 

various mechanisms, such as a small percentage of the interest 

generated by the DeFi module, fees for specific enterprise-level 

services, or initial token allocations. The DAO has sole control 

over the treasury, and funds can only be spent if a proposal to do 

so is passed by the token holders. To mitigate the risk of 

governance attacks or plutocracy, future iterations of the DAO 

could explore more advanced voting mechanisms like quadratic 

voting. The core logic of governance and identity management is 

specified in Algorithm 5.

DAO Onboarding and Education Framework. To address 

the “DAO literacy gap” identified in usability studies, a 

concrete onboarding framework is proposed. This framework 

is designed to educate and empower all stakeholders, 

regardless of their technical background. It consists of three 

main components: 

• Interactive Tutorials: A series of guided, in-app tutorials will 

walk new users through the core concepts of the DAO, 

including how to view proposals, the mechanics of token- 

weighted voting, and how to submit a proposal.

• User-Friendly Guides and Documentation: A dedicated 

section of the platform will host comprehensive, non- 

technical documentation with clear examples and FAQs 

explaining the governance process, the role of the treasury, 

and the impact of key proposals.

• Incentivized Participation Program: To encourage active 

engagement, a rewards program will be implemented. Users 

will earn small amounts of governance tokens for completing 

educational modules, participating in their first five votes, 

and successfully submitting their first proposal. This program 
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aims to lower the barrier to entry and foster a more inclusive 

and active governance community.

Algorithm 5 Governance and Identity Management Primitives

1: Init: Q (Quorum threshold)

2: function VOTEDAO(id, s)

3:    w (tokens�%)=100

4:   proposal.votes þ¼s?w:� w

5: end function

6: function EXECDAO(id)

7:   if proposal.votes � Q then . Vote weight exceeds quorum

8:    require treasury ≥ proposal.amt . Check funds

9:    treasury −= proposal.amt

10:    PAYproposal.rcv, proposal.amt(proposal.rcv, 

proposal.amt)

11:   end if

12: end function

13: function ISSUESBT(rcv, uri)

14:    tid tokenCtr

15:   MINT(rcv, tid)

16:   SETURI(tid, uri)

17:   soulbound[tid] = true

18:   tokenCtr++

19: end function

A key innovation of PolyMed is the integration of a 

Decentralized Finance (DeFi) module to address the economic 

barriers to care. The “DeFiLoanSC” smart contract establishes 

an on-chain protocol for undercollateralized microloans. The 

capital for these loans is sourced from liquidity pools, where 

any member of the community can stake their POL tokens to 

provide liquidity and, in return, earn a passive yield generated 

from the interest paid on loans. This creates a self-sustaining, 

community-funded financial engine within the platform. This 

model algorithmically encourages good repayment behavior and 

adapts to the broader DeFi market.

Since these are microloans, they are undercollateralized. 

Instead of requiring a patient to lock up significant capital, the 

system leverages their on-chain identity and reputation— 

represented by their SBT—as a form of social collateral. Should 

a user default on a loan, this event is permanently recorded on- 

chain, which can be used by the protocol to restrict future 

access to financial services. Key economic parameters, such as 

the maximum loan amount, interest rate, and staking APR, are 

established as on-chain variables that can be modified via DAO 

governance, allowing the DAO to adjust them in response to 

market conditions and community consensus. This ensures the 

long-term economic sustainability of the protocol.

Smart Contract Security Framework: Recognizing the 

inherent risks of DeFi protocols, the PolyMed system 

implements a three-tier security architecture: (1) Pre- 

deployment automated static analysis via Slither and manual 

audits by certified firms, (2) Runtime circuit breakers triggering 

automatic pauses when loan defaults exceed 15% in 24 h, and 

(3) Post-incident 48-h time-locked emergency functions 

requiring 67% DAO consensus. All critical administrative 

functions are placed under time-locks, giving the community 

time to review and veto changes through DAO votes.

Economic Attack Prevention: Flash loan protection is achieved 

through minimum 24-h holding periods before loan eligibility. To 

mitigate risks such as !ash loan-based price manipulation, oracle 

resistance is achieved by sourcing data from a reputable, 

decentralized provider like Chainlink and using its 5-min time- 

weighted average pricing (TWAP) feeds, with on-chain logic to 

revert transactions if prices deviate more than 3% from the last 

known value. Liquidity drain protection caps individual 

withdrawals at 10% of total pool value per 24-h period.

Emergency Procedures: Critical failure scenarios trigger 

automated responses: Oracle failure activates fallback to 

secondary price feeds, smart contract exploits trigger immediate 

fund migration to predetermined safe contracts, and governance 

attacks activate emergency pause by any of 5 pre-designated 

multisig wallets. The logic for this module is formalized in 

Algorithm 6.

Algorithm 6 DeFi Microloan Work!ow Logic

1:      . System parameters, governable by DAO

2: Init: u (user), t (treasury), amt (amount), loanDB, stakeDB

3: Constants: MAX_LOAN = 500, INTEREST_BPS = 500,    

STAKING_APR_BPS = 1,200, LOAN_COOLDOWN = 86,400

4: function REQUESTLOAN(amt)

5:   require(verified[u], “User not verified”);

6:   require(!loanDB[u].active, “Loan already active”);

7:   require(amt �MAX_LOAN, “Amount exceeds max loan”);

8:   require(NOW -loanDB[u].repaidTimestamp ¿ = LOAN_     

COOLDOWN, “Cooldown period active”);

9:    loanDB[u] {principal: amt, repaid: 0, loanTimestamp:      

NOW, repaidTimestamp: 0, active: true}

10:   POL.TRANSFER(u, amt)

11: end function

12: function REPAYLOAN(amt)

13:   require(loanDB[u].active, “No active loan”);

14:   POL.TRANSFERFROM(u, t, amt)

15:    loanDB[u].repaid += amt

16:   interestOwed  loanDB[u].principal * INTEREST_       

BPS/10,000;

17:   if loanDB[u].repaid � loanDB[u].principal + interestOwed      

then

18:     loanDB[u].active ← false;

19:     loanDB[u].repaidTimestamp ← NOW;

20:   end if

21: end function

22: function STAKE(amt)

23:   require(verified[u], “User not verified”);

24:   require(amt . 0, “Cannot stake zero”);

25:   POL.TRANSFERFROM(u, t, amt)

26:   stakeDB[u].amount += amt;

27:   stakeDB[u].timestamp ← NOW;

28: end function
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29: function UNSTAKE()

30:    s stakeDB[u];

31:   require(s:amount . 0, “No funds staked”);

32:       . Note: This APR is likely unsustainable if higher        

than loan interest.

33:   elapsedTime ← NOW -s:timestamp;

34:   rewards       

 (s:amount�STAKING APR BPS=

10, 000elapsedTime)=(365�86, 400);

35:   POL.TRANSFER(u, s:amount þ rewards)

36:   stakeDB[u] ← null

37: end function

4 Performance analysis and scalability

To validate the PolyMed architecture and assess its 

viability for real-world clinical deployment, a rigorous 

performance evaluation was conducted. The evaluation was 

designed to be comprehensive, focusing on two critical 

areas: first, the efficiency, cost, and scalability of the 

foundational on-chain operations, and second, the 

predictive accuracy and reliability of the AI-driven clinical 

intelligence module. This section details the evaluation 

methodology, presents the empirical results from the 

benchmarking tests, and provides a detailed validation of 

the AI model’s performance.

4.1 On-chain performance benchmarking

The evaluation of the blockchain backbone of PolyMed was 

conducted on the Polygon Mainnet. This choice was deliberate 

to ensure that the results re!ect real-world network conditions, 

including variable gas prices and network congestion, rather 

than the idealized conditions of a local testnet. This approach 

provides a much more accurate assessment of the system’s 

operational performance.

To ensure the replicability and transparency of the findings, 

the full system configuration used for benchmarking is detailed 

in Table 3. This standardized testing environment was 

employed consistently across all empirical evaluations 

presented in this paper. Core smart contract functions that 

represent the most common interactions within the PolyMed 

ecosystem were selected: EHR Upload, Record Retrieval, 

Appointment Scheduling, Prescription Issuance, Doctor 

Verification, DAO Proposal Submission, and Token- 

Weighted Voting. The statistical analysis in this study is 

primarily descriptive, and the AI model evaluation employs 

standard performance metrics common in the machine 

learning domain. To generate a realistic transactional load 

and to ensure the results were statistically significant, each of 

these operations was executed 500 times. The load was 

generated by 30 concurrent clients, a number chosen to 

simulate the activity of a small-to-medium-sized clinic. The 

clients were run on virtual machines and orchestrated using 

a custom test script built with the Hardhat and Ethers.js, 

interacting with the Polygon Mainnet via an Infura API 

endpoint. Average latency and gas consumption were 

recorded for each operation type.

The performance results, summarized in Table 4, demonstrate 

the high efficiency of the PolyMed system on the Polygon 

network. All core operations achieved average transaction 

confirmation latencies of under 4 s. This is a critical finding, as 

this sub-4-second response time directly improves clinical 

work!ows by meeting the demand for near-instant data access 

during patient consultations or emergencies. Furthermore, the 

average gas costs were minimal, highlighting the platform’s 

economic viability.

To provide a more granular analysis of these latency results, 

Figure 3 breaks down the total transaction time for each core 

operation into its primary components. This composition 

analysis reveals that blockchain confirmation constitutes the 

largest portion of the latency, which is an expected 

characteristic of the underlying network’s consensus 

mechanism. The contributions from MetaMask signing and 

IPFS storage are comparatively minor, confirming that the 

on-chain validation step is the main determinant of overall 

response time.

To assess the system’s ability to scale, a comprehensive 

evaluation was conducted using the experimental setup detailed 

in Section 4.1. The throughput test, scaling from 30 to 800 

concurrent clients, is illustrated in Figure 4. The system 

maintained stable throughput up to approximately 800 

concurrent users, beyond which latency increased due to rate- 

limiting at the public IPFS gateway. This result is consistent 

with findings on scalable blockchain architectures for healthcare 

(15). Operational resilience, tested under various fault 

TABLE 3 Standardized system configuration used for All performance 
evaluation benchmarks.

Component Specification

Blockchain network Polygon mainnet

Client machines 30 virtual machines (2 vCPU, 4 GB RAM)

Web3 provider Infura API

Client wallet MetaMask (automated via Ethers.js)

Test framework Hardhat, chai

Network connection 1 Gbps fiber optic

TABLE 4 Average transaction latency and Gas consumption for core 
system operations, measured on the polygon mainnet (N = 500 runs per 
operation).

Operation Avg. latency (s) Avg. gas (POL)

EHR upload 3.87 0.0125

Record retrieval 2.16 0.0073

Appointment scheduling 2.91 0.0097

DAO proposal submission 3.44 0.0157

Token-weighted voting 3.02 0.0113

Prescription issuance 2.78 0.0107
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conditions (Table 5), proved to be robust, with high success rates 

supported by effective fallback mechanisms. The consistency of 

the system’s performance is further demonstrated in Figure 5, 

which plots the latency for 100 consecutive transactions for each 

core operation. Despite natural network !uctuations, the 

latencies remain within a stable and predictable range, affirming 

the platform’s operational reliability under a sustained 

transactional load.

FIGURE 3 

Latency composition analysis by operation. This chart dissects the total average latency for each transaction type, with the aggregate values detailed 

in Table 4. The visualization highlights that on-chain confirmation is the most time-consuming step, whereas client-side signing and off-chain 

storage operations are significantly faster.

FIGURE 4 

Transaction throughput vs. Concurrent Users. The system demonstrates linear scaling up to approximately 800 concurrent users, reaching a peak 

throughput of over 160 transactions per second. This confirms the platform’s ability to handle the load of a medium-to-large clinical environment, 

with current limitations defined by off-chain dependencies like public IPFS gateways.
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4.2 AI Model performance validation

The clinical viability of the PolyMed platform is critically 

dependent on the reliability of its AI-driven emergency 

detection module. To ensure a robust evaluation, a 10-fold 

stratified cross-validation methodology was employed, and the 

proposed LightGBM model was rigorously benchmarked against 

a standard Logistic Regression baseline.

The emergency detection module was trained on the public 

PhysioNet/Computing in Cardiology Challenge 2012 dataset 

(21). An advanced feature engineering pipeline was used to 

transform raw time-series data into a rich tabular feature set by 

calculating statistical moments and trend slopes across multiple 

time windows (6, 12, 24, and 48 h). A LightGBM (LGBM) 

classifier was trained on this feature set. To handle the 

significant class imbalance, the “scale_pos_weight” parameter 

was utilized. Hyperparameters were tuned using the Optuna 

framework over 50 trials, with a 10-fold cross-validation strategy 

inside each trial. The final optimized hyperparameters are 

shown in Table 6.

The final performance of both models, averaged across the 10 

folds, is detailed in Table 7. A key clinical requirement was to 

minimize missed emergencies, so both models were calibrated to 

achieve a high-sensitivity operating point targeting a minimum 

recall of 70%. The results show that the proposed LGBM model 

significantly outperforms the baseline across all other key 

metrics. A visual comparison of the models’ error types is 

presented in the aggregated confusion matrices in Figure 6.

The superior discriminative power of the LGBM model is 

further illustrated by the comparative ROC curve in Figure 8, 

which shows a substantially higher Mean AUC. The stability of 

this performance is confirmed by the comparative box plot in 

TABLE 5 System resilience under Various simulated fault conditions, 
showing high success rates and effective fallback mechanisms.

Scenario Success 
rate

Fallback mechanism

Polygon 

Congestion

98.3% Client-side Delayed Retry

IPFS Partial 

Failure

95.6% Redundant Gateway Connection

MetaMask 

Disconnect

93.1% Session Re-authentication

DAO Vote 

Timeout

100% Commit-Reveal Logic (a two-stage voting 

process to prevent vote in!uence)

FIGURE 5 

Blockchain operation latency trends (100 consecutive transactions). This line graph illustrates the latency for a sequence of 100 transactions for each 

major operation. The stable, bounded fluctuations visually confirm the system’s consistent performance over time, a key requirement for real-world 

blockchain applications.

TABLE 6 Optimized hyperparameters for the LightGBM model.

Hyperparameter Optimized value

n_estimators 1,200

learning_rate 0.0364

num_leaves 90

max_depth 14

subsample 0.8557

colsample_bytree 0.8009

TABLE 7 Ai model performance comparison (mean ± Std. Dev.) from 
10-fold Cross-Validation.

Metric LGBM (proposed) Logistic regression (baseline)

Accuracy 80.33% ± 1.56% 65.45% ± 5.26%

AUC 0.8543 ± 0.0099 0.7389 ± 0.0230

Precision 38.60% ± 2.43% 24.80% ± 3.49%

Recall 70.04% ± 1.65% 70.93% ± 2.60%

F1-Score 0.4972 ± 0.0202 0.3660 ± 0.0369
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FIGURE 6 

Aggregated confusion matrices for (left) the proposed LGBM model and (right) the logistic regression baseline. These matrices show the summed 

predictions across all 10 folds, providing a clear view of each model’s error profile. The LGBM model demonstrates a superior balance, 

committing significantly fewer False Positive errors (incorrectly flagged emergencies) while successfully identifying the majority of True Positives 

(correctly identified emergencies).

FIGURE 7 

Comparison of AUC score distributions from 10-Fold cross-validation. This plot visualizes the performance and stability of each model across the 10 

folds. The LGBM model exhibits both a higher median AUC and a much tighter interquartile range, indicating that it is not only more accurate on 

average but also significantly more consistent in its performance than the baseline.

Kumar A. et al.                                                                                                                                                        10.3389/fdgth.2025.1685628 

Frontiers in Digital Health 16 frontiersin.org



Figure 7, which visualizes the distribution of AUC scores from 

each of the 10 folds. Finally, the comparative Precision-Recall 

curve in Figure 9 is particularly insightful for this imbalanced 

dataset, demonstrating that for any given level of recall, the 

LGBM model maintains significantly higher precision.

To formally prove that the observed performance difference 

between the LGBM classifier and the Logistic Regression baseline 

was not due to chance, a suite of complementary statistical tests 

was performed. A Logistic Regression model was chosen as the 

baseline because it is a robust, well-established, and highly 

interpretable industry standard for binary classification.

First, a paired t-test was chosen to compare the means of the 

two related samples (LGBM and baseline scores) generated from 

the 10-fold cross-validation. This test confirmed a statistically 

significant advantage for the LGBM model [t(9) = 16.20, 

p < 0.001]. To confirm this finding without relying on the 

assumption of normal distribution, the non-parametric Wilcoxon 

signed-rank test was also applied as a robust alternative. This test 

corroborated the t-test’s conclusion, likewise indicating a 

statistically significant improvement (W = 0.0, p = 0.002).

Finally, to determine if there was a significant difference in the 

types of errors made by the two models, McNemar’s test was 

performed, as it is specifically designed for comparing paired 

nominal data from two classifiers. This test is specifically 

designed to assess the significance of the difference between two 

classifiers by analyzing the discordant pairs (cases where one 

model was correct and the other was incorrect). As shown in 

the contingency data in Table 8, the proposed LGBM model 

made significantly fewer errors than the baseline on these 

discordant cases (834 vs. 239). The resulting Chi-squared 

statistic, calculated from the discordant pairs where the models 

disagreed (834 vs. 239), confirms that this difference in error 

rates is highly significant (x2(1) ¼ 328:8, p , 0:001). Taken 

together, these three tests provide converging statistical evidence 

that the LGBM classifier delivers a robust and practically 

meaningful improvement over the baseline.

5 Security and compliance 
frameworks

PolyMed places a paramount emphasis on security and 

regulatory compliance, adopting a “privacy-by-design” approach 

that is explicitly aligned with leading global mandates governing 

FIGURE 8 

Comparative ROC curves (averaged over 10 folds). This curve illustrates a model’s ability to distinguish between classes across all classification 

thresholds. The mean Area Under the Curve (AUC) of 0.8543 for the LGBM model demonstrates its strong and superior discriminative power 

compared to the baseline model’s AUC of 0.7389.
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personal health data. This commitment is demonstrated through 

formal threat modeling and a comprehensive compliance analysis.

5.1 Threat modeling and mitigation

A formal threat analysis was conducted using the STRIDE 

framework (Spoofing, Tampering, Repudiation, Information 

Disclosure, Denial of Service, and Elevation of Privilege) to 

ensure system-wide resilience. The analysis systematically 

identified potential threats and outlined corresponding 

mitigation strategies, detailed in Table 9. These mitigations 

leverage the specific architectural components detailed in the 

methodology, such as ZKPs for spoofing resistance and on-chain 

immutability for tamper evidence. PolyMed’s security is further 

hardened by a suite of industry-standard cryptographic 

primitives, as detailed in Table 10, ensuring data confidentiality, 

integrity, and authenticity at every stage.

The residual risk, visualized in the heatmap in Figure 10, 

highlights identity spoofing and data tampering as the 

highest initial risk areas, confirming that PolyMed’s 

cryptographic safeguards are appropriately focused on the most 

critical vulnerabilities. While not experimentally computed 

in this study, the overall system security score, Ssys, can be 

formally modeled as a weighted average of the inverse of these 

residual risks, providing a framework for future quantitative 

security audits:

Ssys ¼

Pi¼1
Nthreats

wi=Riski
Pi¼1

Nthreats
wi

(9) 

5.2 Regulatory and compliance alignment

PolyMed is developed to align with core provisions of 

three leading regulatory frameworks: GDPR, HIPAA, and 

FIGURE 9 

Comparative precision-recall curves (averaged over 10 folds). This curve is particularly insightful for imbalanced datasets as it visualizes the trade-off 

between a model’s Precision and Recall on the positive class. For any given level of recall (sensitivity), the LGBM model achieves substantially higher 

precision than the baseline, highlighting its superior predictive accuracy for identifying “Emergency” events.

TABLE 8 Contingency table for mcNemar’s test, showing prediction 
agreement and disagreement between the models over 4,000 
aggregated samples.

Outcome Baseline correct Baseline incorrect

LGBM correct
2,379 834

LGBM incorrect
239 548
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India’s Digital Personal Data Protection (DPDP) Act. The 

compliance matrix in Table 11 details these features. A key 

challenge is reconciling the “right to erasure”—a right 

guaranteed under regulations like GDPR and India’s DPDP Act 

—with the technical immutability of a blockchain. PolyMed 

resolves this via a cryptographic “soft delete” mechanism: the 

off-chain encrypted data is permanently deleted, and a DAO- 

approved transaction disassociates its on-chain link from the 

patient’s identity. This approach functionally fulfills the erasure 

request without altering blockchain history, a recognized best 

practice for decentralized systems. This targeted solution is part 

of a broader compliance framework, detailed in Table 11, 

which maps system features to specific regulatory requirements. 

The Venn diagram in Figure 11 visually summarizes this 

multi-jurisdictional alignment, illustrating how core features like 

encryption and access control satisfy the overlapping mandates 

of all three frameworks, while other features address specific 

regional laws.

6 Usability and economic implications

Beyond technical and security validation, real-world viability 

depends on user experience and economic sustainability.

6.1 Usability study

To gather initial feedback on the platform’s design, a 

preliminary usability study was conducted with 20 participants 

(10 medical students, 5 licensed clinicians, 5 non-technical 

administrators). Participants performed core tasks and were 

evaluated using two primary instruments: a 5-point Likert scale 

for specific usability heuristics (summarized in Table 12) and 

the standardized System Usability Scale (SUS) questionnaire for 

a holistic measure of user satisfaction.

The SUS questionnaire captures a spectrum of user 

perceptions through a series of 10 statements. To provide 

insight into the scope of the evaluation, these included items 

assessing desirability (“I think that I would like to use this 

system frequently”), perceived complexity (“I found the system 

unnecessarily complex”), and user confidence (“I felt very 

confident using the system”). The SUS score provides a 

composite measure of usability and can be formally calculated as:

SUS Score ¼ 2:5�
X

i¼1

10

TransformedScorei

 !

(10) 

where “TransformedScore” is derived from the user’s Likert scale 

responses to the 10 SUS items.

TABLE 9 STRIDE threat analysis and mitigation strategies for the PolyMed system.

Type Threat description Likelihood Impact Mitigation strategy

S Identity Spoofing via forged 

credentials

High High Multi-factor authentication using MetaMask wallet signatures combined with the ZKP-based 

Aadhaar verification work!ow detailed in Section 3. Non-transferable Soulbound Tokens (SBTs) 

bind verified identities to specific wallets, preventing credential reuse.

T Tampering with on-chain/off- 

chain health data

Medium High On-chain immutability of record hashes prevents tampering with pointers. Off-chain data is 

end-to-end encrypted (AES-256) and its integrity is verifiable against the on-chain hash, as per 

the IoMT pipeline design.

R Transaction repudiation by 

malicious actors

Low Medium All transactions are cryptographically signed and permanently recorded on the Polygon 

blockchain, creating a non-repudiable audit trail of all actions, including access grants and data 

modifications.

I Information disclosure through 

unauthorized access

Medium High Fine-grained, role-based access control is enforced by smart contracts that check for specific 

SBTs. ZKP-based queries are architected to enable aggregate analytics without revealing 

individual records.

D Denial-of-Service attacks targeting 

APIs and chains

Medium Medium The decentralized nature of the Polygon validator set provides high resilience. Rate limiting on 

API endpoints and the use of multiple redundant IPFS gateways further mitigate risks.

E Unauthorized privilege escalation Low High Access privileges are programmatically tied to non-transferable SBTs. Any change in a user’s role 

or core system permissions must be approved via a formal DAO proposal, requiring community 

consensus.

TABLE 10 Cryptographic primitives and their applications in PolyMed.

Primitive Application Purpose Security strength 
(bits)

SHA-256 Hashing EHR data, transaction IDs, Merkle 

roots

Data integrity, tamper detection, unique identification 256

AES-256 End-to-end encryption of off-chain EHR data Data confidentiality, privacy protection 256

ECDSA MetaMask wallet signatures, transaction signing User authentication, transaction authenticity, non-repudiation 256 (eq. to 3,072-bit RSA)

ZK-SNARKs Anon-Aadhaar identity verification, privacy- 

preserving queries

Identity verification without revealing PII, anonymous data analytics Varies, typically >128

Merkle Trees Transaction audits, data integrity verification in 

IPFS

Efficient verification of data integrity and consistency (akin to a digital table 

of contents for data blocks)

Logarithmic in data size
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The quantitative results are summarized in Table 12. To 

satisfy the reviewer’s call for more robust analysis, a formal 

statistical analysis was conducted. Descriptive statistics 

including mean, standard deviation (Std. Dev.), and 95% 

confidence intervals (CI), selected in accordance with scientific 

convention, were calculated from the raw scores of the 20 

participants for each metric. The standard deviation measures 

the dispersion of participant responses, while the 95% CI 

provides an estimated range for the true mean of the broader 

user population. The CIs were calculated using the sample 

mean, the standard error, and a critical value derived from a 

standard t-distribution. The specific critical value is 

determined by the degrees of freedom (n − 1 = 19) and the 

chosen confidence level, making this the appropriate method 

for a small sample size (N = 20). Furthermore, a one-sample 

Wilcoxon signed-rank test was performed for each heuristic 

against a neutral midpoint of 3.0, confirming that all user 

scores were statistically significantly positive (p < 0.01). The 

platform excelled in Satisfaction (4.8 ± 0.41) and Error 

Prevention (4.7 ± 0.47), indicating high user satisfaction and a 

low error rate. The radar chart in Figure 12 visualizes these 

strong results, culminating in a high overall average score of 

4.6 out of 5.0.

Qualitative feedback was also positive, with participants 

highlighting the transparency of on-chain processes. However, 

several users noted a “DAO Literacy Gap,” indicating a need for 

better user onboarding for the governance module, a challenge 

addressed by the framework described in Section 3. This feedback 

aligns with the relatively lower score for Efficiency (4.3 ± 0.66), 

which suggests that work!ows around advanced features could be 

streamlined. The small sample size of this study is a significant 

limitation, and a larger, more diverse study including real patients 

is a key area for future work. Figure 13 shows mockups of the 

user interface evaluated in the study.

6.2 Economic analysis

PolyMed is engineered for affordability, leveraging Polygon’s 

low transaction costs. Table 13 details the average cost of core 

TABLE 11 Regulatory compliance feature matrix for PolyMed.

Compliance feature GDPR HIPAA DPDP act (IN)

Consent-based access ✓ ✓ ✓
Right to erasure (soft delete) ✓ ✗ ✓
End-to-end encryption ✓ ✓ ✓
Role-based access control ✓ ✓ ✓
Tamper-proof audit trails ✓ ✓ ✓
Pseudonymization (ZK proofs) ✓ ✗ ✓
Data portability (IPFS link) ✓ ✗ ✓

FIGURE 10 

Residual risk heatmap. This heatmap visualizes the residual risk for each STRIDE category after mitigation strategies are applied, confirming that 

identity and tampering risks, while high in impact, are significantly mitigated by the system’s multi-layered cryptographic design.
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operations in INR, demonstrating remarkable cost efficiency. The 

relative contribution of each operation to the total cost per visit is 

visualized in Figure 14.

Figure 15 provides a comparative analysis, detailed further in 

Table 14, showing that PolyMed offers substantial cost savings 

over traditional EHR systems. While a direct cost comparison 

with other Layer-2 blockchain solutions is complex, Polygon is 

consistently ranked as one of the most cost-effective platforms 

for high-volume transactions. The reliance on the POL token 

introduces price volatility, a risk that could be mitigated in 

future iterations through the integration of stablecoins. To 

translate these cost savings into a standard business metric, the 

Return on Investment (ROI) for a healthcare provider adopting 

the system can be calculated using the framework in Equation 11.

ROI ¼
(Annual Savings� Implementation Cost)

Implementation Cost
� 100% (11) 

7 Discussion

The empirical results from the performance, usability, and 

economic analyses demonstrate that PolyMed is a technically 

viable and highly efficient platform for decentralized EHR 

management. This section interprets these findings, discusses 

their broader implications for the healthcare paradigm, 

contextualizes the architectural choices made in the study, and 

FIGURE 11 

Venn diagram of overlapping compliance features. This diagram visually illustrates the common and distinct requirements of GDPR, HIPAA, and 

India’s DPDP Act, highlighting PolyMed’s ability to address shared mandates like encryption and access control.

TABLE 12 User perception scores on PolyMed’s usability heuristics (1–5 
scale, N = 20). All scores were statistically significant (p < 0.01) 
compared to a neutral midpoint of 3.0.

Usability metric Mean score Std. dev. 95% CI

Learnability 4.6 0.50 [4.37, 4.83]

Efficiency 4.3 0.66 [3.99, 4.61]

Memorability 4.5 0.51 [4.26, 4.74]

Error Prevention 4.7 0.47 [4.48, 4.92]

Satisfaction 4.8 0.41 [4.61, 4.99]
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frankly addresses the limitations of the current study and outlines 

key open research challenges.

7.1 Interpretation of key findings

The performance benchmarks presented in Section 4 are not 

merely technical metrics; they represent critical enablers for 

real-world clinical adoption. The sub-4-second transaction 

latency is particularly significant, as it falls within the acceptable 

threshold for interactive clinical work!ows, where physicians 

need near-instant access to patient records during consultations 

or emergencies. Furthermore, the demonstrated throughput of 

handling over 800 concurrent users confirms the system’s 

suitability for a medium-to-large hospital environment. When 

combined with the over 90% reduction in operational costs 

compared to traditional EHR systems, PolyMed presents a 

compelling economic case, directly addressing a major barrier to 

the digitization of healthcare in developing economies.

In parallel, the AI model’s performance, validated through a 

rigorous 10-fold cross-validation, underscores the platform’s 

clinical potential. The model’s strong and stable discriminative 

power, evidenced by a Mean AUC of 0.8543 ± 0.0099, confirms 

its ability to reliably distinguish between emergency and non- 

emergency patient states. Crucially, the model was calibrated for 

a high-sensitivity clinical use case, achieving a Mean Recall of 

70.04%. This demonstrates that the architecture can transition 

healthcare from a reactive to a proactive model by successfully 

identifying the majority of adverse events, a key step towards 

improving patient outcomes.

7.2 The movement towards a patient- 
centric economy

Beyond technical efficiency, PolyMed’s core contribution is its 

architectural shift towards a patient-centric healthcare economy. 

Unlike most prior systems that focused primarily on the 

technical problem of data storage, PolyMed integrates 

governance and economic layers that empower patients as first- 

class citizens of the digital health ecosystem. The integration of 

a DAO for governance is a direct response to the ethical 

questions surrounding data sovereignty. While challenges such 

as the “DAO Literacy Gap” identified in the usability study exist, 

they are addressed by design through a concrete onboarding 

framework, providing a transparent and democratic path for 

FIGURE 12 

Polymed usability evaluation (N = 20). The radar chart visualizes the mean scores for key usability heuristics, showing strong performance across all 

categories. The detailed numerical scores, including statistical analysis, are presented in Table 7.
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FIGURE 13 

Polymed user interface mockups evaluated in the usability study. (Top) The main patient dashboard designed for intuitive management of health 

records. (Bottom) The portal for participating in DAO governance, which was identified as an area needing improved user onboarding.
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patients to have a verifiable say in the policies that govern 

their own data.

Furthermore, the DeFi module addresses a fundamental socio- 

economic barrier to healthcare: access to funds for treatment. By 

automating microloans through transparent smart contracts, the 

system provides a tangible financial utility that is inextricably 

linked to the patient’s health journey. This fusion of clinical, 

governance, and financial services within a single, trustless 

ecosystem represents a significant advancement. It reframes the 

EHR from a passive data repository into an active platform for 

patient empowerment, a concept largely unexplored in the 

systems detailed in Table 1. Crucially, this model also introduces 

important ethical considerations, such as mitigating predatory 

lending risks and defining fair policies for loan defaults, 

particularly for vulnerable patients. The DAO governance 

framework is designed to directly address these challenges by 

enabling the community to transparently set and enforce ethical, 

patient-centric lending parameters.

7.3 Limitations and open research 
challenges

Despite promising results, this study has several limitations 

that must be acknowledged and that pave the way for future 

research. 

• Limited Generalizability of AI Model: The AI model, while 

achieving a robust and stable performance across a 10-fold 

cross-validation, was trained and validated on a single public 

dataset (PhysioNet/CinC 2012). Its performance may not 

generalize perfectly to different patient demographics or 

clinical settings. Future work is essential to validate the 

model on diverse, multi-institutional datasets, ideally using 

privacy-preserving techniques like Federated Learning.

• Small-Scale and Skewed Usability Study: The usability study 

provided valuable initial feedback but was limited to 20 

participants who were primarily students or healthcare 

professionals with a degree of technical familiarity. A larger- 

scale study including a diverse cohort of real patients with 

varying ages, technical literacy, and demographic backgrounds 

is required to fully assess the platform’s user experience.

• Lack of a Clinical Pilot Study: While the on-chain 

components were tested on the Polygon Mainnet, the entire 

system has not yet been deployed in a live clinical 

environment. A pilot study within a hospital or clinic is the 

critical next step to test the system’s resilience, utility, and 

integration capabilities under real-world operational pressures.

• Hardware and Connectivity Robustness: The IoT data pipeline 

was validated using a prototype in a controlled environment. 

TABLE 13 Gas Fee breakdown for core operations (rate: |75/POL, April 
2024), highlighting the Low cost of on-chain interactions.

Operation Avg. gas (POL) Cost (INR)

EHR upload 0.0125 |0.94

Appointment scheduling 0.0097 |0.73

Prescription issuance 0.0107 |0.80

DAO voting 0.0113 |0.85

Doctor verification 0.0149 |1.12

Cumulative (per visit) 0.0591 |4.44

FIGURE 14 

Relative Gas cost Per patient visit by operation (INR). This chart illustrates the breakdown of the total on-chain cost for a typical patient interaction. 

The precise cost and percentage for each operation are provided in Table 8.
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While a mitigation framework for connectivity and power issues 

was designed into the edge layer, a production-grade 

deployment would require extensive field testing to validate its 

real-world effectiveness against challenges such as intermittent 

network coverage and device power constraints.

• Private Key Management: Like all decentralized applications, 

PolyMed relies on users to securely manage their own 

cryptographic private keys. This remains a significant 

usability and security hurdle for non-technical users. Future 

work must explore the integration of more user-friendly key 

management solutions, such as smart contract wallets with 

social recovery mechanisms.

• Legacy System Interoperability: To achieve widespread 

adoption, seamless integration with existing Hospital 

Information Systems is crucial (22). A concrete roadmap is 

proposed to develop and validate a fully HL7 FHIR-compliant 

API layer. The plan involves a three-phase pilot program: 

Phase 1 (Q2 2026): Develop and test a read-only FHIR API in 

partnership with a mid-sized clinical partner, focusing on 

patient demographic and lab data. Phase 2 (Q4 2026): Expand 

the API to support write-back capabilities for prescriptions 

and clinical notes in a limited trial. Phase 3 (2027): Full 

integration trial with the partner’s primary information system.

• Global Identity Interoperability: The current prototype’s 

reliance on Anon-Aadhaar for ZKP-based identity 

verification, while effective for the Indian context, presents a 

clear limitation for global applicability. To evolve into a 

universally accessible platform, the modular “AuthSC” must 

be extended to support a wider range of verifiable identity 

standards. Future work will focus on integrating ZKP 

frameworks compatible with established national e-ID 

systems, such as the EU’s eIDAS regulation, and embracing 

emerging W3C standards like Decentralized Identifiers 

(DIDs) and Verifiable Credentials (VCs). This would allow 

users worldwide to anchor their on-chain identity to their 

respective trusted national or decentralized credentials.

8 Conclusion and future work

This paper introduced PolyMed, a novel, decentralized 

architecture for patient-centric EHR management that addresses 

critical vulnerabilities in traditional centralized systems. By 

synergistically integrating the Polygon blockchain, validated AI, 

FIGURE 15 

Cross-Country comparison of EHR interaction costs (per patient visit). This chart visualizes the dramatic cost efficiency of PolyMed’s on-chain 

operations compared to the estimated operational costs of traditional EHR systems. The corresponding data is listed in Table 14.

TABLE 14 Comparison of estimated EHR interaction costs across different 
systems and regions.

Region/ 
System

Avg. cost per patient 
visit (INR)

Source/Basis

PolyMed (India) ₹4.44 On-chain gas cost 

analysis

US EHR Systems ₹50 Industry estimates

EU EHR Systems ₹250 Industry estimates

UK NHS Systems ₹150 Public data estimates

Singapore Systems ₹180 Industry estimates
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ZKP-based self-sovereign identity, and DAO-led governance, 

PolyMed establishes a secure, transparent, and efficient 

ecosystem for health data. The empirical evaluation confirms the 

platform’s practical viability, demonstrating sub-4-second 

transaction latencies, significant cost reductions, and a clinically- 

calibrated AI-driven emergency detection model. The model’s 

strong discriminative power (Mean AUC 0.8543) was confirmed 

through a rigorous 10-fold cross-validation, demonstrating its 

potential to improve patient safety. The platform’s privacy-by- 

design architecture is aligned with global data protection 

mandates, ensuring patient data sovereignty. PolyMed’s holistic 

approach, combining clinical utility with patient empowerment, 

represents a significant step towards a more equitable and 

proactive digital health paradigm.

8.1 Future work

Building on the robust foundation established in this work, 

future research directions will focus on scaling, feature 

enhancement, and ecosystem expansion.

A key priority is to conduct a full-scale clinical pilot study in a 

partner hospital to validate the system in a real-world setting. 

Concurrently, the HL7 FHIR-compliant interoperability 

bridge, outlined in the limitations, will be developed following a 

phased roadmap to ensure seamless data exchange with legacy 

hospital systems. To prepare for large-scale adoption, an 

exploration of advanced Layer-2 scaling solutions, such as ZK- 

Rollups, could further enhance throughput and reduce costs.

Further research will also enrich the user experience and 

clinical utility. The use of SBTs will be expanded to create 

portable medical credentials, allowing records like 

immunization histories to function as secure, verifiable digital 

artifacts. Advanced AI Clinical Assistants could be deployed, 

leveraging transformer-based models for tasks like symptom 

triage and diagnostic support, while real-time Clinical 

Visualization Dashboards will provide clinicians with 

actionable insights. Critically, this phase will address the most 

significant usability and security hurdle for non-technical 

patients: user-managed private keys. The reliance on wallets 

like MetaMask creates a single point of failure leading to 

irreversible data loss. This will be mitigated by 

integrating advanced solutions such as smart contract wallets 

that enable user-friendly social recovery via designated 

guardians, and by exploring Multi-Party Computation 

(MPC)-based key management to eliminate the single point 

of failure entirely.

A long-term vision is to grow PolyMed into a self-sustaining 

digital health ecosystem. This includes expanding the DeFi 

module into a comprehensive Decentralized Health Finance 

platform, supporting community-funded microinsurance and 

peer-to-peer lending. A dedicated ZK Analytics Engine that 

utilizes optimized SNARK queries could be developed to 

allow researchers to perform complex, privacy-preserving 

analyses on aggregated health data. This will be 

complemented by the use of Federated Learning to train the 

AI models on diverse datasets without centralizing sensitive 

information. Finally, Governance Expansion will be pursued, 

enhancing the DAO’s capabilities with formal mechanisms for 

on-chain policy audits and dispute resolution, ensuring the 

long-term stewardship of the platform.

With the digital healthcare landscape rapidly evolving toward 

decentralized architectures, PolyMed contributes a robust and 

ethically-sound framework for the next generation of globally 

interoperable eHealth systems.
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