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Background: Panic disorder (PD) is a disabling anxiety condition in which early 

improvement during treatment can predict better long-term outcomes.

Objectives: This study investigated whether a newly developed virtual reality- 

based assessment tool, the Virtual Reality Assessment of Panic Disorder (VRA- 

PD), can help predict early treatment response in individuals with PD.

Methods: In total, 52 participants, including 25 patients diagnosed with PD and 27 

healthy individuals, were evaluated every 2 months over a 6-month period. 

Assessments included self-reported anxiety levels and heart rate variability 

measured during virtual reality scenarios, as well as standard clinical 

questionnaires. Patients with PD were further categorized based on their 

treatment progress into early responders (n = 7) and delayed responders (n = 18). 

A machine-learning model (CatBoost) was used to classify participants into early 

responder, delayed responder, and healthy control groups.

Results: The model that combined virtual reality-based and conventional 

clinical data achieved higher accuracy (85%) and F1-score (0.71) than models 

using only clinical (accuracy: 77%, F1-score: 0.56) or only virtual reality data 

(accuracy: 75%, F1-score: 0.64). The most important predictors included 

anxiety levels during virtual scenarios, heart rate variability metrics, and scores 

from clinical scales such as the Panic Disorder Severity Scale and Anxiety 

Sensitivity Index.

Conclusions: This study highlights the value of virtual reality-based 

assessments for predicting early treatment outcomes in PD. By providing 

ecologically valid and individualized measures, virtual reality may enhance 

clinical decision-making and support personalized mental healthcare.
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1 Introduction

Virtual reality (VR) is an emerging technology with the 

potential to enhance and innovate diagnostic and therapeutic 

evaluations of mental health (1). Its immersive and controlled 

environment recreates clinical scenarios where patients can 

exhibit natural responses in a safe and regulated space (2). VR 

has been effectively applied in exposure-based therapies for 

anxiety disorders (3) and post-traumatic stress disorder (4), 

demonstrating that simulated VR experiences closely replicate 

real-world clinical practices (5). Moreover, VR facilitates the 

collection of behavioral and physiological data, such as heart 

rate variability (HRV), enabling reliable and ecologically valid 

assessments of patient responses (6).

Panic disorder (PD), classified as an anxiety disorder, is 

characterized by unexpected panic attacks—sudden episodes of 

intense anxiety accompanied by various physiological and cognitive 

symptoms without identifiable external triggers. This condition 

causes significant distress and functional impairment (7). Affecting 

approximately 2%–3% of the population, PD imposes a substantial 

burden on individuals and healthcare systems (8, 9). Early 

treatment response (ETR) in pharmacotherapy for PD is critical 

because failure to achieve early response may delay the onset of 

therapeutic benefit. Such delays can prolong the acute phase, 

increasing the risk of adverse events, premature discontinuation, or 

insufficient effectiveness (10–12). Identifying ETR allows for timely 

treatment adjustments, potentially improving outcomes and 

minimizing unnecessary exposure to ineffective regimens. 

Monitoring ETR enables clinicians to proactively adjust or 

introduce antidepressants during the acute phase, reducing the risk 

of relapse or recurrence (13). Thus, predicting ETR is pivotal for 

tailoring treatment strategies and improving patient outcomes.

The potential to utilize VR to develop assessments with 

high ecological validity and safety offers new opportunities to 

predict ETR and address the limitations of traditional assessments 

in clinical practice for PD. Conventional methods, such as 

questionnaires and clinician-based ratings or interviews, have shown 

limited success in predicting treatment response (14, 15). In 

contrast, integrating biological and behavioral data is increasingly 

recognized as essential for understanding and predicting treatment 

outcomes in mental disorders (16). This approach has demonstrated 

promise in related areas; for instance, ecological data, such as 

neuroimaging and molecular markers, significantly improved 

predictions of antidepressant treatment outcomes in depression 

compared to conventional models (17). In the context of PD, VR is 

particularly effective in objectively evaluating the transient nature of 

panic attacks, avoidance behaviors, and associated physiological 

responses. Unlike conventional self-report methods, which rely on 

subjective recall and lack ecological validity, VR-based assessments 

capture real-time behavioral and physiological metrics (18). As such, 

VR-based ecological assessments may contribute significantly to the 

prediction of ETR in PD.

This study investigated whether a VR-based tool can predict 

treatment response at 2 months, correlating with ETR in patients 

with PD. The Virtual Reality Assessment of Panic Disorder (VRA- 

PD), validated in distinguishing patients with PD from healthy 

controls (HCs) through behavioral and biological markers in 

anxiety-inducing and relaxation scenarios (18), is utilized to 

develop a model that classifies patients with PD as early or delayed 

responders and identifies HCs. We hypothesized that behavioral 

metrics and HRV collected through the VRA-PD will effectively 

predict treatment response within 2 months.

2 Materials and methods

2.1 Sample and setting

Participants were enrolled between September 2021 and 

January 2023, with follow-up conducted every 2 months for 6 

months from September 2021 to July 2023. The study included 

52 individuals: 24 patients diagnosed with PD and 28 HCs. 

Patients with PD were recruited from outpatient clinics at the 

Department of Psychiatry, Korea University Guro Hospital. 

Psychiatric evaluations were conducted using the Mini- 

International Neuropsychiatric Interview 5.0 (MINI 5.0) to assess 

for psychiatric conditions and substance use disorders (19). The 

study prioritized recruiting patients with PD undergoing 

treatment rather than drug-naïve, first-episode patients, reDecting 

real-world clinical settings where treatment response can be 

monitored over 2 months. Efforts were made to exclude comorbid 

depression due to its significant impact on treatment outcomes 

and prognosis in PD (20, 21).

Eligibility for the PD group required: (i) a diagnosis of PD 

based on the MINI structured interview; (ii) age between 19 

and 50 years; and (iii) voluntary participation with written 

informed consent. Exclusion criteria included: (i) neurological 

disorders, other psychiatric illnesses, significant physical 

health conditions, or serious infections; (ii) alcohol or substance 

abuse/dependence; (iii) current or past diagnoses of major 

depressive episodes, bipolar I disorder, or psychotic disorders; 

(iv) pregnancy; and (v) difficulty using VR equipment.

For the HC group, inclusion criteria were: (i) age between 19 and 

50 years; (ii) absence of psychiatric symptoms or medication use; and 

(iii) voluntary participation with signed informed consent. Exclusion 

criteria were: (i) neurological or psychiatric disorders, major physical 

illnesses, or severe infections; (ii) alcohol or substance abuse/ 

dependence; (iii) history of neurological or psychiatric disorders; 

Abbreviations  

AS, anxiety score; ASI, anxiety sensitivity index; BFNE, brief fear of negative 

evaluation; DR, delayed response; DU, head down; ETR, early treatment 

response; GAD-7, generalized anxiety disorder scale; HADS, hospital anxiety 

and depression scale; HF, high frequency; HMD, head-mounted display; 

HRV, heart rate variability; HV, hyperventilation; IUS, intolerance of 

uncertainty scale; LOOCV, leave-one-out cross-validation; LF, low frequency; 

LSAS, liebowitz social anxiety scale; MINI, mini-international 

neuropsychiatric interview; MR, progressive muscle relaxation; PD, panic 

disorder; PDSS, panic disorder severity scale; PSWQ, Penn State worry 

questionnaire; RMSSD, root mean square of successive differences; ROC, 

receiver operating characteristic; RR, diaphragmatic respiratory relaxation; 

SDNN, standard deviation of NN intervals; SHAP, SHapley additive 

exPlanations; TP, total power; VAS, visual analog scale; VLF, very low 

frequency; VR, virtual reality.
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(iv) pregnancy; and (v) difficulty using VR equipment. HCs were 

recruited through online and print advertising and carefully 

screened to ensure adherence to the concept of “healthy” (i.e., 

meeting no exclusion criteria). The HC group was matched with 

the PD group by age and sex to ensure comparability.

A 6-month longitudinal study design was used to assess 

treatment outcomes and predict treatment response at 2 

months. The study included initial and follow-up in-depth 

interviews, clinical assessments, and VR-based assessments using 

the VRA-PD. Over the 6-month period, VR-based and 

conventional assessments, excluding the baseline MINI, were 

conducted identically every 2 months. At baseline, participants 

completed sociodemographic questionnaires and provided 

clinical history details, including the duration of PD and 

pharmacotherapy components (Table 1). All patients received 

routine care, including consultations for prescriptions, but they 

did not participate in psychotherapy sessions, such as cognitive 

behavioral therapy or similar therapeutic interventions. To 

account for antidepressants affecting PD treatment outcomes, 

standardized daily antidepressant doses were recorded by 

converting them into Duoxetine-equivalent doses following the 

methodology of Hayasaka et al. (22). For example, 40 mg/d of 

Duoxetine corresponded to 34.0 mg/d of paroxetine and 

18.0 mg/d of escitalopram.

All procedures were conducted in compliance with the local 

ethics committee’s approval at Korea University Guro Hospital 

(approval number 2021-GR0057; approval date July 12, 2021). 

Participants provided written informed consent after being 

thoroughly informed about the study’s aims, procedures, and 

potential risks. The study adhered to the principles of the 

Declaration of Helsinki (1964) for ethical research conduct. 

Furthermore, to ensure participant confidentiality, all data were 

anonymized, access was restricted to authorized researchers, and 

all sensitive information was encrypted and securely stored in 

compliance with relevant data protection regulations.

2.2 Measures

2.2.1 Outcomes
The primary outcome, ETR, was operationally defined as a 

reduction of 40% or more in Panic Disorder Severity Scale 

(PDSS) scores at 2 months from baseline, based on structured 

clinical interviews and PDSS assessments (23–26). Patients were 

categorized into early-response (ER) and delayed-response (DR) 

groups accordingly, with HCs included for comparison.

The primary analytic aim of this study was to evaluate whether 

integrating VR-based behavioral and physiological data with 

conventional clinical measures improves the prediction of ETR. 

Secondary outcomes included between-group comparisons of 

anxiety and heart rate variability metrics, as well as SHapley 

Additive exPlanations (SHAP)-based feature importance analyses 

to identify key predictors.

2.2.2 Predictors
We utilized variables from two key domains as predictors: the 

conventional domain and the VR-based domain measured 

concurrently using the VRA-PD.

The conventional domain included established clinical scales, 

such as the Liebowitz Social Anxiety Scale (LSAS) (27, 28), 

Generalized Anxiety Disorder Scale (GAD-7) (29, 30), Hospital 

Anxiety and Depression Scale (HADS) (31, 32), Intolerance of 

Uncertainty Scale (IUS) (33, 34), Anxiety Sensitivity Index (ASI) 

(35, 36), Brief Fear of Negative Evaluation (BFNE) (37, 38), and 

Penn State Worry Questionnaire (PSWQ) (39, 40), all administered 

at baseline. These instruments are widely validated measures of 

anxiety and provide a comprehensive profile of participants’ 

anxiety symptoms. Sociodemographic variables, such as age, sex, 

marital status, years of education, average alcohol consumption 

(drinks per day), and smoking habits (packs per day), were 

also included.

The VR-based domain involved subjective anxiety scores (AS) 

and HRV features collected through the VRA-PD. The VRA-PD 

has been validated as a reliable tool for assessing anxiety-related 

behaviors in patients with PD (18). The system configuration, 

operation, and content of each VRA-PD module were identical to 

those described in the validation study (18). The configuration 

diagram of the VRA-PD is shown in Supplementary Figure S1, and 

screenshots with descriptions of each module are presented in the 

Supplementary Figure S2 and Supplementary Text.

VRA-PD comprises four modules: “Baseline evaluation (M0)”, 

“Daily environment exposure (M1)”, “Relaxation (M2)”, and 

“Interoceptive exposure (M3)”. Through the VRA-PD, participants 

input AS, a subjective measure of their anxiety experience, while 

HRV data are measured at specific intervals. Participants rate their 

AS on a visual analog scale (VAS) ranging from “not at all” 

(0 points) to “very much” (100 points). HRV data are collected 

using a photoplethysmogram sensor [Model: ubpulse H3 (Pulse 

Analyzer, MFDS, Certification No. 11-1296), LAXTHA Inc., 

Daejeon, South Korea] placed on the index finger. Five key HRV 

parameters included well-known metrics associated with anxiety, 

such as the ratio of low-frequency to high-frequency power (LF/ 

TABLE 1 Schedule of clinical and virtual reality (VR)-based assessments 
across study timepoints.

Timepoint Clinical 
interviews

Clinical scales VR-based 
assessment

Baseline MINI 

PDSS

LSAS, GAD-7, 

HADS, IUS, ASI, 

BFNE, PSWQ

VRA-PD modules 

(AS + HRV)

2 months PDSS LSAS, GAD-7, 

HADS, IUS, ASI, 

BFNE, PSWQ

VRA-PD modules 

(AS + HRV)

4 months PDSS LSAS, GAD-7, 

HADS, IUS, ASI, 

BFNE, PSWQ

VRA-PD modules 

(AS + HRV)

6 months PDSS LSAS, GAD-7, 

HADS, IUS, ASI, 

BFNE, PSWQ

VRA-PD modules 

(AS + HRV)

MINI, mini-international neuropsychiatric interview 5.0; PDSS, panic disorder severity 

scale; LSAS, liebowitz social anxiety scale; GAD-7, generalized anxiety disorder scale; 

HADS, hospital anxiety and depression scale; IUS, intolerance of uncertainty scale; ASI, 

anxiety sensitivity index; BFNE, brief fear of negative evaluation; PSWQ, Penn State 

worry questionnaire; VRA-PD, virtual reality assessment of panic disorder; AS, subjective 

anxiety scores; HRV, heart rate variability.
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HF), very low-frequency power (VLF), root mean square of 

successive differences (RMSSD), standard deviation of NN intervals 

(SDNN), and total power (TP) (41–43). A total of 50 VR-based 

variables (10 AS and 40 HRV features) were used as predictors 

(Supplementary Table S1).

2.3 Analyses

2.3.1 Statistical analysis
Group comparisons of demographic and clinical characteristics 

were conducted using non-parametric tests due to the small sample 

size of the ER group (n = 7). The Kruskal–Wallis H-test was 

employed to examine differences across the three groups (HC, ER, 

and DR), followed by Mann–Whitney U-tests with Bonferroni 

correction for pairwise post-hoc comparisons. Although non- 

parametric tests were used, descriptive statistics are presented as 

means and standard deviations for consistency with previous 

literature and to facilitate comparisons across studies.

For the evaluation of machine-learning model performance, we 

employed a three-class classification approach, where the model 

was trained to distinguish between HC, ER, and DR. Performance 

metrics (precision, recall, and F1-score) were calculated for each 

group separately as well as for overall model performance. For the 

HC group, these metrics represent the model’s ability to distinguish 

non-patients from patients with PD. Specifically, precision for the 

HC group indicates the proportion of instances predicted as HC 

that were correctly classified, while recall represents the proportion 

of actual HC participants correctly identified by the model.

The receiver operating characteristic (ROC) curves were 

generated by extracting binary classification performance from our 

multi-class models (specifically for ER vs. non-ER classification) to 

evaluate the discriminative power of the different predictive 

domains. Area under the curve (AUC) values were calculated to 

quantify model performance, with higher values indicating better 

discriminative ability.

2.3.2 Machine-learning model training
We trained a machine-learning classification model to predict the 

three treatment response groups—HC, ER, and DR—using 

predictors obtained from the initial assessment. No dropouts 

occurred between baseline and the 2-month follow-up period, 

ensuring the completeness of data for this phase of the study. 

Specifically, we trained a CatBoost classifier model, an advanced 

tree-based model (44). CatBoost was selected for its ability to 

handle categorical features natively and its robustness in mitigating 

overfitting, particularly in studies with small and imbalanced 

sample sizes (44, 45). As an ensemble learning method based on 

gradient boosting over decision trees, CatBoost constructs a forest 

of trees to enhance predictive performance by capturing complex 

non-linear relationships and interactions within the data (46).

To address the limited sample size, we used leave-one-out cross- 

validation (LOOCV), which is particularly suitable for small datasets 

because it maximizes the use of available information and reduces the 

risk of overfitting (47). Classification performance was quantified 

using precision and the F1 score. The F1-score, which balances 

precision and recall, provided a robust measure of performance, 

particularly for classes with imbalanced samples. Final precision 

and F1 scores were averaged over all LOOCV iterations to 

comprehensively evaluate the model’s ability to classify each group 

accurately. Confusion matrices were plotted to visually assess true 

positives, false positives, true negatives, and false negatives for each 

class. Model training, testing, and visualization were implemented 

using the scikit-learn (v0.24.1) (48) and catboost (v1.2.7) (44) 

Python libraries.

2.3.3 Input feature importance evaluation
The contribution of each input feature to prediction was 

assessed using SHAP feature importance approach, applied to 

the aggregated findings to evaluate the relevance of predictors 

for the group classification task (49). SHAP is a model-agnostic 

technique for analyzing feature significance, employing a 

game-theoretic approach. By calculating SHAP values, the 

contribution of each input feature to the final model prediction 

was quantified, with feature significance determined as the 

average of the absolute SHAP values across aggregated samples.

3 Results

3.1 Participant demographics and 
psychometric scale scores

The demographic and clinical characteristics of each group are 

summarized in Table 2. Among demographic variables, only years 

of education showed a significant difference across groups 

(H = 9.37, P = 0.009). In terms of anxiety-related measures, all 

scales except for the LSAS revealed significant differences between 

groups. post-hoc analysis indicated that compared to the HC group, 

the ER and DR groups exhibited significantly higher symptoms of 

PD as measured by the PDSS. Specifically, the DR group scored 

significantly higher than the HC group on all anxiety-related 

measures except for the LSAS. In contrast, the ER group differed 

significantly from the HC group only on the GAD-7, the anxiety 

subscale of the HADS, and the ASI. No significant differences were 

observed between the ER and DR groups on any anxiety-related 

measures, except for years of education, where the ER group had 

relatively higher educational levels.

3.2 Participant demographics and 
psychometric scale scores

The significant results of the three-group ANOVA obtained 

within the VRA-PD are presented in Table 3, while results for 

all VRA-PD variables are provided in Supplementary Table S2. 

Significant group differences were identified for all seven AS 

measures. Post-hoc analysis revealed that AS was significantly 

higher in the DR group than that in the ER group in M1-P-AS, 

M2-P-AS, M1-E6-AS, M2-RR-AS, M3-P-AS, M3-HV-AS, and 

M3-DU-AS. The DR group also exhibited higher AS than the 

HC group across all virtual environments in all modules. 
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However, no significant differences in AS were observed between 

the HC and ER groups.

Three HRV parameters showed significant differences across 

groups: M2-RR-SDNN, M2-RR-VLF, and M3-HV-SDNN. In 

particular, M2-RR-SDNN and M2-RR-VLF were significantly 

lower in the DR group compared to the HC group (P = 0.020 and 

0.048, respectively), while no significant differences were observed 

between ER and DR groups after Bonferroni correction. Similarly, 

M3-HV-SDNN was lower in the DR group than in the HC group 

(P = 0.033), but not significantly different between ER and DR. 

These findings suggest that reductions in autonomic Dexibility 

during VR-based interoceptive or relaxation tasks may be 

associated with delayed treatment response.

3.3 Performance of the prediction model 
by data domain

The performance of models utilizing the conventional, 

VR-based, and combined domains to predict early treatment 

response at 2 months in patients with PD is summarized in 

Table 4. The VR-based domain prediction model (precision = 0.75, 

macro-average F1 score = 0.64) demonstrated performance 

comparable to the conventional domain-based model 

(precision = 0.77, macro-average F1 score = 0.56). However, 

combining the two domains resulted in the highest performance, 

achieving the highest accuracy (precision = 0.85, macro-average F1 

score = 0.71).

TABLE 2 Group differences in demographics and anxiety-related clinical characteristics.

Variable HC (n = 27) ER (n = 7) DR (n = 18) H-value† post-hoc test‡

Mean SD Mean SD Mean SD P-value HC vs. ER HC vs. DR ER vs. DR

Age (years) 33.3 9.61 39.71 8.06 33.33 11.5 2.52 (.283) .414 1.000 .406

Education (years) 15.15 1.61 15.43 1.9 13.11 2.37 9.37 (.009) 1.000 .016 .021

Smoking (pack/d) 0.09 0.27 0.3 0.37 0.33 0.48 7.00 (.030) .130 .080 1.000

Alcohol (unit/wk) 4.97 7.16 7.97 6.38 5.61 6.21 2.19 (.334) .417 1.000 .841

PDSS 0 0 16.14 4.22 14.11 3.18 44.98 (<.001) <.001 <.001 1.000

LSAS-fear 21.26 15 21 14.09 31.5 15.24 5.12 (.077) 1.000 .087 .455

LSAS-avoidance 19.74 13.07 21.14 17.1 30.06 15.99 4.460 (.108) 1.000 .118 .610

GAD 3.67 3.61 10 5.6 12.28 5.51 22.76 (<.001) .007 <.001 1.000

HADS-anxiety 4.63 2.98 11.43 3.41 13.28 5.03 28.22 (<.001) <.001 <.001 .862

HADS-depression 6.93 3.97 9.71 4.57 11.94 3.65 14.37 (<.001) .480 <.001 .644

IUS 27.19 7.96 30.14 8.97 36.11 6.74 11.73 (.003) 1.000 .002 .217

ASI 11.41 9.43 34.57 13.24 39.44 13.47 29.43 (<.001) .004 <.001 1.000

BFNE 32.07 7.3 34.14 5.21 38 5.37 8.67 (.013) 1.000 .010 .580

PSWQ 46.33 14.01 59.43 16.4 65.22 11.71 16.23 (<.001) .129 <.001 1.000

HC, healthy control; ER, early response; DR, delayed response; PDSS, panic disorder severity scale; LSAS, liebowitz social anxiety scale; GAD-7, generalized anxiety disorder scale; HADS, 

hospital anxiety and depression scale; IUS, intolerance of uncertainty scale; ASI, anxiety sensitivity index; BFNE, brief fear of negative evaluation; PSWQ, Penn State worry questionnaire.
†Kruskal–Wallis H-test was used instead of analysis of variation due to small sample size in the ER group (n = 7).
‡Post-hoc comparisons were performed using Mann–Whitney U-tests with Bonferroni correction for multiple comparisons.

P < .05, statistically significant.

TABLE 3 Significant group differences in anxiety scores and HRV parameters in VRA-PD.

Variable HC (n = 27) ER (n = 7) DR (n = 18) H-value† post-hoc test‡

Mean SD Mean SD Mean SD P-value HC vs. ER HC vs. DR ER vs. DR

M0-AS 10.74 20.37 4.29 5.35 33.33 33.95 8.04 (.018) 1.000 .029 .103

M1-P-AS 5.19 12.21 8.57 10.69 32.78 24.69 22.13 (<.001) 1.000 <.001 .059

M1-E2-AS 5.19 12.82 14.29 25.07 34.44 23.57 19.19 (<.001) .672 <.001 .200

M1-E6-AS 5.93 12.79 17.14 24.98 46.67 29.31 22.91 (<.001) .663 <.001 .106

M2-P-AS 4.81 12.21 5.71 7.87 40.00 27.65 24.25 (<.001) 1.000 <.001 .014

M2-RR-AS 4.07 10.47 4.29 7.87 30.56 27.33 20.50 (<.001) 1.000 <.001 .016

M2-MR-AS 2.22 8.01 2.86 4.88 21.67 23.07 19.20 (<.001) 1.000 <.001 .052

M3-P-AS 4.07 9.31 4.29 7.87 30.56 29.20 19.17 (<.001) 1.000 <.001 .018

M3-HV-AS 5.56 10.86 5.71 7.87 30.00 26.57 15.06 (<.001) 1.000 <.000 .075

M3-DU-AS 3.33 10.00 1.43 3.78 27.22 29.47 17.99 (<.001) 1.000 <.001 .010

M2-RR-SDNN 67.79 18.45 81.70 70.77 55.70 34.97 7.35 (.025) 1.000 .020 .641

M2-RR-VLF 864.47 923.28 1640.53 2599.15 411.88 424.18 7.27 (.026) 1.000 .048 .108

M3-HV-SDNN 58.71 30.10 56.36 19.54 42.27 26.53 7.15 (.028) .211 .033 1.000

HC, healthy control; ER, early response group; DR, delayed response; VLF, very low frequency; SDNN, standard deviation of NN intervals.
†Kruskal–Wallis H-test was used instead of ANOVA due to small sample size in the ER group (n = 7).
‡Post-hoc comparisons were performed using Mann–Whitney U-tests with Bonferroni correction for multiple comparisons.

P < .05, statistically significant.
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For the conventional domain, the model achieved perfect 

precision, recall, and F1-score for the HC group but showed no 

predictive capability for the ER group. Prediction for the DR group 

was moderate, with a precision, recall, and F1 score of 0.65, 0.72, 

and 0.68, respectively. The VR-based domain model improved 

prediction performance for the DR group (precision = 0.87, 

recall = 0.72, F1 score = 0.79) and demonstrated modest 

improvements for the ER group, achieving an F1 score of 0.31. 

When combining both domains, the model maintained perfect 

prediction for the HC group, while showing improved precision 

(0.40), recall (0.29), and F1 score (0.33) for the ER group, along 

with comparable performance for the DR group (precision = 0.75, 

recall = 0.83, F1 score = 0.79).

Confusion matrices visualizing predictions relative to correct 

labels are shown in Figure 1 to illustrate classification errors. For 

the ER group, the conventional domain model misclassified all ER 

cases as DR (Figure 1A). In contrast, the VR-based model slightly 

improved performance, with some ER cases misclassified as HC 

instead of DR (Figure 1B). In the combined domain model, all 

misclassifications of ER cases were directed solely toward the DR 

group (Figure 1C). Despite these differences, the overall error rate 

for ER classification remained the same as in the VR-based model.

To further analyze the performance of the three-group 

classification model, we focused on the ER group and evaluated 

its classification against the combined HC and DR groups. 

Although the original model was designed for multi-class 

classification (HC, ER, DR), we extracted results specifically for 

ER vs. non-ER classifications. This analysis enabled the 

construction of an ROC curve, representing the model’s ability 

to distinguish ER from the other groups (Figure 2). The ROC 

analysis highlights the discriminative performance of the model, 

with AUCs indicating that the combined domain achieved the 

highest predictive accuracy (AUC = 0.93, Figure 2C). This was 

followed by the conventional domain (AUC = 0.85, Figure 3A) 

and the VR-based domain (AUC = 0.82, Figure 3B).

3.4 Feature importance analysis

The feature importance analysis, based on SHAP values 

estimated from the CatBoost model, is presented as a bar plot in 

Figure 3. Out of 67 features, the top 10 predictors included 

variables from the conventional domain (PDSS, ASI, depression 

subscale of HADS, and avoidance subscale of LSAS) and the VR- 

based domain (M2-P-AS, M1-P-SDNN, M2-MR-LF/HF, 

M1-E6-AS, M1-P-VLF, and M3-HV-LF/HF). This reDects 

significant contributions from conventional and VR-based 

domains. The contribution of each domain, variable category 

within the VR-based domain, and modules of the VR-based 

domain to the importance values are visualized in Figures 3B–D, 

respectively. Across domains, the conventional domain 

demonstrated a higher importance value sum than the VR-based 

TABLE 4 Prediction model performance by data domain.

Dataset Accuracy Macro average F1 score group Precision Recall F1-score

Conventional domain 0.77 0.56 HC 1.00 1.00 1.00

ER 0.00 0.00 0.00

DR 0.65 0.72 0.68

VR-based domain 0.75 0.64 HC 0.77 0.89 0.83

ER 0.33 0.29 0.31

DR 0.87 0.72 0.79

Combined 0.85 0.71 HC 1.00 1.00 1.00

ER 0.40 0.29 0.33

DR 0.75 0.83 0.79

HC, healthy control; ER, early response; DR, delayed response.

FIGURE 1 

Confusion matrices for early treatment response (2 months) prediction across data domains. (A) Conventional domain. (B) VR-based domain. 

(C) Combined domain. VR, virtual reality.
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domain (Figure 3B). Within the VR-based domain, Module 2 yielded 

the highest importance value sum, followed by Module 1, Module 3, 

and baseline (Figure 3D). Lastly, among the variable categories in the 

VR-based domain, AS variables exhibited a higher importance value 

sum than HRV variables (Figure 3C).

4 Discussion

This study provides initial evidence supporting the utility of a 

VR-based assessment in predicting ETR among patients with PD. 

The model incorporating subjective and physiological measures 

FIGURE 2 

Receiver operating characteristic (ROC) curves for classification of early responders (ER) versus non-ER at 2 months across data domains. 

(A) Conventional domain. (B) VR-based domain. (C) Combined domain. ROC, receiver operating characteristic; ER, early response; VR, virtual reality.

FIGURE 3 

Feature-importance analysis derived from the CatBoost model. (A) Top 10 most important features selected from conventional and VR-based 

domains, ranked by SHAP values. (B) Comparative contribution of the conventional and VR-based domains to the total feature-importance sum. 

(C) Distribution of feature-importance sums across variable categories within the VR-based domain (subjective anxiety vs. HRV features). (D) 

Distribution of feature-importance sums across modules within the VR-based domain (Baseline [M0], Daily Environment Exposure [M1], 

Relaxation [M2], and Interoceptive Exposure [M3]). Feature-importance values were estimated using the SHAP method applied to the CatBoost 

model with leave-one-out cross-validation (LOOCV). VR, virtual reality; SHAP, SHapley Additive exPlanations; LOOCV, leave-one-out cross- 

validation.
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within immersive VR environments demonstrated superior 

performance in identifying ER, relative to models based solely 

on conventional assessment data. In addition, subjective 

experiences and biosignals collected within VR environments 

contributed to predictive value comparable to that of 

conventional clinical measures, offering unique insights that 

extend beyond traditional assessment tools.

The integration of VR-based and conventional predictors 

enhanced the model’s classification of ER and DR, while 

maintaining high accuracy in identifying healthy controls. This 

approach mirrors previous findings where the inclusion of 

objective physiological data such as HRV and neuroimaging 

improved prediction in psychiatric treatment response models 

(15, 41, 50). These results are particularly notable given prior 

findings on HRV-based prediction. Prior research has shown 

that HRV parameters were not reliable predictors of 

pharmacotherapy response in PD (51), and findings have been 

similarly inconsistent in generalized anxiety disorder (52, 53). 

One critical advancement in the present study is the use of 

HRV recorded and subjective anxiety scores during immersive 

and ecologically valid VR scenarios, rather than relying on 

resting-state or artificial cognitive stressors. This approach 

enabled the detection of anxiety-specific physiological patterns 

that were previously obscured in less dynamic contexts.

Although predictive accuracy is important, one of the key 

advantages of VR-based assessments lies in their enhanced 

interpretability. In this study, conventional clinical measures did 

not differentiate ER from DR, suggesting that these traditional 

indicators may be insufficient to capture early therapeutic shifts 

during pharmacotherapy (14). Conversely, the VR-based domain 

revealed consistent and significant differences between ER and DR 

groups across multiple scenarios. These included anxiety-inducing, 

interoceptive, and even post-stimulus relaxation conditions— 

contexts that evoke subtle emotional and physiological reactions. 

Importantly, ERs exhibited lower subjective anxiety throughout 

these immersive scenarios, while appearing indistinguishable from 

HCs. This highlights the ecological sensitivity of VR-based 

assessments, which can elicit and measure clinically meaningful 

variance in real-time emotional reactivity (1). Such granularity not 

only supports early differentiation between treatment trajectories 

but also enhances the clinician’s ability to interpret behavioral and 

physiological markers in context, thus offering a more dynamic 

and individualized understanding of patient change.

The SHAP feature importance analysis revealed that subjective 

anxiety scores, derived from participant responses during 

immersive VR experiences, demonstrated unexpectedly high 

predictive value—comparable to that of physiological HRV 

metrics. This is particularly noteworthy given that HRV has 

traditionally been emphasized as an objective and quantitative 

biomarker in psychiatric research (41). In contrast, subjective 

anxiety ratings—often collected via VAS—have historically been 

viewed as less robust due to limitations in discriminative power, 

standardization, and contextual relevance (54–56). However, the 

structured and ecologically valid nature of VR environments 

appears to overcome many of these limitations. Because all 

participants are exposed to the same controlled anxiety-inducing 

scenarios, subjective responses become more directly comparable 

and interpretable (57). These findings highlight that, within VR 

settings, subjective experience is not merely a supplementary 

input but a core signal that reDects clinically meaningful 

emotional reactivity.

This study has some limitations. First, the small sample size, 

particularly the number of ERs (n = 7), constrains statistical power 

and raises concerns about the stability of machine-learning results. 

Although LOOCV was used to mitigate overfitting, external 

replication in larger multi-site cohorts will be necessary to confirm 

generalizability. Second, participants were not drug-naïve, and 

medication heterogeneity may have introduced uncontrolled 

variance. Third, the absence of an independent test dataset, despite 

use of LOOCV, limits claims regarding model generalizability. 

Fourth, all participants were recruited from a single center, which 

may reduce the ecological diversity of the sample. Furthermore, the 

VR-induced anxiety state may not fully capture the spontaneous 

and unpredictable nature of panic attacks, which are central to the 

clinical complexity of PD. Future studies should prioritize 

replication in larger, multi-site cohorts and consider integration of 

neuroimaging, cognitive, and ecological momentary data to further 

elucidate mechanisms underlying ETR. Standardization of VR- 

based assessment protocols across studies will be essential for 

establishing normative data and enabling cross-study comparisons.

The encouraging results, obtained even in a small sample, 

highlight the potential clinical utility of VR-based assessment for 

predicting ETR in patients with PD. By capturing subjective 

experiences and physiological signals within standardized, 

ecologically valid environments, the approach enables early 

identification of treatment trajectories that are not discernible 

through conventional assessments alone. The integration of 

immersive VR technology provides predictive precision and 

interpretive depth, offering a path toward more personalized, 

adaptive interventions in clinical psychiatry. Replication in larger 

and multicenter cohorts is warranted to consolidate these 

preliminary but promising findings. These findings lay important 

groundwork for the future development of scalable VR-based 

tools that can complement traditional evaluations and optimize 

early decision-making in pharmacological treatment planning.
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