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Background: Panic disorder (PD) is a disabling anxiety condition in which early
improvement during treatment can predict better long-term outcomes.
Objectives: This study investigated whether a newly developed virtual reality-
based assessment tool, the Virtual Reality Assessment of Panic Disorder (VRA-
PD), can help predict early treatment response in individuals with PD.
Methods: In total, 52 participants, including 25 patients diagnosed with PD and 27
healthy individuals, were evaluated every 2 months over a 6-month period.
Assessments included self-reported anxiety levels and heart rate variability
measured during virtual reality scenarios, as well as standard clinical
questionnaires. Patients with PD were further categorized based on their
treatment progress into early responders (n = 7) and delayed responders (n = 18).
A machine-learning model (CatBoost) was used to classify participants into early
responder, delayed responder, and healthy control groups.

Results: The model that combined virtual reality-based and conventional
clinical data achieved higher accuracy (85%) and Fl-score (0.71) than models
using only clinical (accuracy: 77%, Fl-score: 0.56) or only virtual reality data
(accuracy: 75%, Fl-score: 0.64). The most important predictors included
anxiety levels during virtual scenarios, heart rate variability metrics, and scores
from clinical scales such as the Panic Disorder Severity Scale and Anxiety
Sensitivity Index.

Conclusions: This study highlights the value of virtual reality-based
assessments for predicting early treatment outcomes in PD. By providing
ecologically valid and individualized measures, virtual reality may enhance
clinical decision-making and support personalized mental healthcare.
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virtual reality, panic disorder, early treatment response, machine learning, anxiety,
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1 Introduction

Virtual reality (VR) is an emerging technology with the
potential to enhance and innovate diagnostic and therapeutic
evaluations of mental health (1). Its immersive and controlled
environment recreates clinical scenarios where patients can
exhibit natural responses in a safe and regulated space (2). VR
has been effectively applied in exposure-based therapies for
anxiety disorders (3) and post-traumatic stress disorder (4),
demonstrating that simulated VR experiences closely replicate
real-world clinical practices (5). Moreover, VR facilitates the
collection of behavioral and physiological data, such as heart
rate variability (HRV), enabling reliable and ecologically valid
assessments of patient responses (6).

Panic disorder (PD), classified as an anxiety disorder, is
characterized by unexpected panic attacks—sudden episodes of
intense anxiety accompanied by various physiological and cognitive
symptoms without identifiable external triggers. This condition
causes significant distress and functional impairment (7). Affecting
approximately 2%-3% of the population, PD imposes a substantial
burden on individuals and healthcare systems (8, 9). Early
treatment response (ETR) in pharmacotherapy for PD is critical
because failure to achieve early response may delay the onset of
therapeutic benefit. Such delays can prolong the acute phase,
increasing the risk of adverse events, premature discontinuation, or
insufficient effectiveness (10-12). Identifying ETR allows for timely
treatment adjustments, potentially improving outcomes and
minimizing unnecessary exposure to ineffective regimens.
Monitoring ETR enables clinicians to proactively adjust or
introduce antidepressants during the acute phase, reducing the risk
of relapse or recurrence (13). Thus, predicting ETR is pivotal for
tailoring treatment strategies and improving patient outcomes.

The potential to utilize VR to develop assessments with
high ecological validity and safety offers new opportunities to
predict ETR and address the limitations of traditional assessments
in clinical practice for PD. Conventional methods, such as
questionnaires and clinician-based ratings or interviews, have shown
limited success in predicting treatment response (14, 15). In
contrast, integrating biological and behavioral data is increasingly
recognized as essential for understanding and predicting treatment
outcomes in mental disorders (16). This approach has demonstrated
promise in related areas; for instance, ecological data, such as
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AS, anxiety score; ASI, anxiety sensitivity index; BFNE, brief fear of negative
evaluation; DR, delayed response; DU, head down; ETR, early treatment
response; GAD-7, generalized anxiety disorder scale; HADS, hospital anxiety
and depression scale; HF, high frequency; HMD, head-mounted display;
HRV, heart rate variability; HV, hyperventilation; IUS, intolerance of
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disorder; PDSS, panic disorder severity scale; PSWQ, Penn State worry
questionnaire; RMSSD, root mean square of successive differences; ROC,
receiver operating characteristic; RR, diaphragmatic respiratory relaxation;
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exPlanations; TP, total power; VAS, visual analog scale; VLF, very low
frequency; VR, virtual reality.
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neuroimaging and molecular markers, significantly improved
predictions of antidepressant treatment outcomes in depression
compared to conventional models (17). In the context of PD, VR is
particularly effective in objectively evaluating the transient nature of
panic attacks, avoidance behaviors, and associated physiological
responses. Unlike conventional self-report methods, which rely on
subjective recall and lack ecological validity, VR-based assessments
capture real-time behavioral and physiological metrics (18). As such,
VR-based ecological assessments may contribute significantly to the
prediction of ETR in PD.

This study investigated whether a VR-based tool can predict
treatment response at 2 months, correlating with ETR in patients
with PD. The Virtual Reality Assessment of Panic Disorder (VRA-
PD), validated in distinguishing patients with PD from healthy
controls (HCs) through behavioral and biological markers in
anxiety-inducing and relaxation scenarios (18), is utilized to
develop a model that classifies patients with PD as early or delayed
responders and identifies HCs. We hypothesized that behavioral
metrics and HRV collected through the VRA-PD will effectively
predict treatment response within 2 months.

2 Materials and methods
2.1 Sample and setting

Participants were enrolled between September 2021 and
January 2023, with follow-up conducted every 2 months for 6
months from September 2021 to July 2023. The study included
52 individuals: 24 patients diagnosed with PD and 28 HCs.
Patients with PD were recruited from outpatient clinics at the
Department of Psychiatry, Korea University Guro Hospital.
Mini-

International Neuropsychiatric Interview 5.0 (MINI 5.0) to assess

Psychiatric evaluations were conducted using the
for psychiatric conditions and substance use disorders (19). The
study prioritized recruiting patients with PD undergoing
treatment rather than drug-naive, first-episode patients, reflecting
real-world clinical settings where treatment response can be
monitored over 2 months. Efforts were made to exclude comorbid
depression due to its significant impact on treatment outcomes
and prognosis in PD (20, 21).

Eligibility for the PD group required: (i) a diagnosis of PD
based on the MINI structured interview; (ii) age between 19
and 50 years; and (iii) voluntary participation with written
informed consent. Exclusion criteria included: (i) neurological
other
health conditions, or serious infections; (ii) alcohol or substance

disorders, psychiatric illnesses, significant physical
abuse/dependence; (iii) current or past diagnoses of major
depressive episodes, bipolar I disorder, or psychotic disorders;
(iv) pregnancy; and (v) difficulty using VR equipment.

For the HC group, inclusion criteria were: (i) age between 19 and
50 years; (ii) absence of psychiatric symptoms or medication use; and
(iii) voluntary participation with signed informed consent. Exclusion
criteria were: (i) neurological or psychiatric disorders, major physical
illnesses, or severe infections; (ii) alcohol or substance abuse/

dependence; (iii) history of neurological or psychiatric disorders;
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(iv) pregnancy; and (v) difficulty using VR equipment. HCs were
recruited through online and print advertising and carefully
screened to ensure adherence to the concept of “healthy” (ie.,
meeting no exclusion criteria). The HC group was matched with
the PD group by age and sex to ensure comparability.

A 6-month longitudinal study design was used to assess
treatment outcomes and predict treatment response at 2
months. The study included initial and follow-up in-depth
interviews, clinical assessments, and VR-based assessments using
the VRA-PD. Over the 6-month period, VR-based and
conventional assessments, excluding the baseline MINI, were
conducted identically every 2 months. At baseline, participants
completed sociodemographic questionnaires and provided
clinical history details, including the duration of PD and
pharmacotherapy components (Table 1). All patients received
routine care, including consultations for prescriptions, but they
did not participate in psychotherapy sessions, such as cognitive
behavioral therapy or similar therapeutic interventions. To
account for antidepressants affecting PD treatment outcomes,
standardized daily antidepressant doses were recorded by
converting them into fluoxetine-equivalent doses following the
methodology of Hayasaka et al. (22). For example, 40 mg/d of
fluoxetine corresponded to 34.0 mg/d of paroxetine and
18.0 mg/d of escitalopram.

All procedures were conducted in compliance with the local
ethics committee’s approval at Korea University Guro Hospital
(approval number 2021-GR0057; approval date July 12, 2021).
Participants provided written informed consent after being
thoroughly informed about the study’s aims, procedures, and
potential risks. The study adhered to the principles of the
Declaration of Helsinki (1964) for ethical research conduct.
Furthermore, to ensure participant confidentiality, all data were
anonymized, access was restricted to authorized researchers, and
all sensitive information was encrypted and securely stored in

compliance with relevant data protection regulations.

TABLE 1 Schedule of clinical and virtual reality (VR)-based assessments
across study timepoints.

Timepoint Clinical Clinical scales VR-based
interviews assessment

Baseline MINI LSAS, GAD-7, VRA-PD modules
PDSS HADS, IUS, ASI, (AS + HRV)
BENE, PSWQ
2 months PDSS LSAS, GAD-7, VRA-PD modules
HADS, 1US, ASI, (AS +HRV)
BENE, PSWQ
4 months PDSS LSAS, GAD-7, VRA-PD modules
HADS, IUS, ASL, (AS + HRV)
BENE, PSWQ
6 months PDSS LSAS, GAD-7, VRA-PD modules
HADS, 1US, ASI, (AS + HRV)
BENE, PSWQ

MINI, mini-international neuropsychiatric interview 5.0; PDSS, panic disorder severity
scale; LSAS, liebowitz social anxiety scale; GAD-7, generalized anxiety disorder scale;
HADS, hospital anxiety and depression scale; IUS, intolerance of uncertainty scale; ASI,
anxiety sensitivity index; BFNE, brief fear of negative evaluation; PSWQ, Penn State
worry questionnaire; VRA-PD, virtual reality assessment of panic disorder; AS, subjective
anxiety scores; HRV, heart rate variability.
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2.2 Measures

2.2.1 Outcomes

The primary outcome, ETR, was operationally defined as a
reduction of 40% or more in Panic Disorder Severity Scale
(PDSS) scores at 2 months from baseline, based on structured
clinical interviews and PDSS assessments (23-26). Patients were
categorized into early-response (ER) and delayed-response (DR)
groups accordingly, with HCs included for comparison.

The primary analytic aim of this study was to evaluate whether
integrating VR-based behavioral and physiological data with
conventional clinical measures improves the prediction of ETR.
Secondary outcomes included between-group comparisons of
anxiety and heart rate variability metrics, as well as SHapley
Additive exPlanations (SHAP)-based feature importance analyses
to identify key predictors.

2.2.2 Predictors

We utilized variables from two key domains as predictors: the
conventional domain and the VR-based domain measured
concurrently using the VRA-PD.

The conventional domain included established clinical scales,
such as the Liebowitz Social Anxiety Scale (LSAS) (27, 28),
Generalized Anxiety Disorder Scale (GAD-7) (29, 30), Hospital
Anxiety and Depression Scale (HADS) (31, 32), Intolerance of
Uncertainty Scale (IUS) (33, 34), Anxiety Sensitivity Index (ASI)
(35, 36), Brief Fear of Negative Evaluation (BFNE) (37, 38), and
Penn State Worry Questionnaire (PSWQ) (39, 40), all administered
at baseline. These instruments are widely validated measures of
anxiety and provide a comprehensive profile of participants’
anxiety symptoms. Sociodemographic variables, such as age, sex,
marital status, years of education, average alcohol consumption
(drinks per day), and smoking habits (packs per day), were
also included.

The VR-based domain involved subjective anxiety scores (AS)
and HRV features collected through the VRA-PD. The VRA-PD
has been validated as a reliable tool for assessing anxiety-related
behaviors in patients with PD (18). The system configuration,
operation, and content of each VRA-PD module were identical to
those described in the validation study (18). The configuration
diagram of the VRA-PD is shown in Supplementary Figure S1, and
screenshots with descriptions of each module are presented in the
Supplementary Figure S2 and Supplementary Text.

VRA-PD comprises four modules: “Baseline evaluation (M0)”,
“Daily environment exposure (Ml1)”, “Relaxation (M2)”, and
“Interoceptive exposure (M3)”. Through the VRA-PD, participants
input AS, a subjective measure of their anxiety experience, while
HRV data are measured at specific intervals. Participants rate their
AS on a visual analog scale (VAS) ranging from “not at all”
(0 points) to “very much” (100 points). HRV data are collected
using a photoplethysmogram sensor [Model: ubpulse H3 (Pulse
Analyzer, MFDS, Certification No. 11-1296), LAXTHA Inc,
Daejeon, South Korea] placed on the index finger. Five key HRV
parameters included well-known metrics associated with anxiety,
such as the ratio of low-frequency to high-frequency power (LF/
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HF), very low-frequency power (VLF), root mean square of
successive differences (RMSSD), standard deviation of NN intervals
(SDNN), and total power (TP) (41-43). A total of 50 VR-based
variables (10 AS and 40 HRV features) were used as predictors
(Supplementary Table S1).

2.3 Analyses

2.3.1 Statistical analysis

Group comparisons of demographic and clinical characteristics
were conducted using non-parametric tests due to the small sample
size of the ER group (n=7). The Kruskal-Wallis H-test was
employed to examine differences across the three groups (HC, ER,
and DR), followed by Mann-Whitney U-tests with Bonferroni
correction for pairwise post-hoc comparisons. Although non-
parametric tests were used, descriptive statistics are presented as
means and standard deviations for consistency with previous
literature and to facilitate comparisons across studies.

For the evaluation of machine-learning model performance, we
employed a three-class classification approach, where the model
was trained to distinguish between HC, ER, and DR. Performance
metrics (precision, recall, and Fl-score) were calculated for each
group separately as well as for overall model performance. For the
HC group, these metrics represent the model’s ability to distinguish
non-patients from patients with PD. Specifically, precision for the
HC group indicates the proportion of instances predicted as HC
that were correctly classified, while recall represents the proportion
of actual HC participants correctly identified by the model.

The receiver operating characteristic (ROC) curves were
generated by extracting binary classification performance from our
multi-class models (specifically for ER vs. non-ER classification) to
evaluate the discriminative power of the different predictive
domains. Area under the curve (AUC) values were calculated to
quantify model performance, with higher values indicating better
discriminative ability.

2.3.2 Machine-learning model training

We trained a machine-learning classification model to predict the
three treatment response groups—HC, ER, and DR—using
predictors obtained from the initial assessment. No dropouts
occurred between baseline and the 2-month follow-up period,
ensuring the completeness of data for this phase of the study.
Specifically, we trained a CatBoost classifier model, an advanced
tree-based model (44). CatBoost was selected for its ability to
handle categorical features natively and its robustness in mitigating
overfitting, particularly in studies with small and imbalanced
sample sizes (44, 45). As an ensemble learning method based on
gradient boosting over decision trees, CatBoost constructs a forest
of trees to enhance predictive performance by capturing complex
non-linear relationships and interactions within the data (46).

To address the limited sample size, we used leave-one-out cross-
validation (LOOCV), which is particularly suitable for small datasets
because it maximizes the use of available information and reduces the
risk of overfitting (47). Classification performance was quantified
using precision and the F1 score. The Fl-score, which balances
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precision and recall, provided a robust measure of performance,
particularly for classes with imbalanced samples. Final precision
and F1 scores were averaged over all LOOCV iterations to
comprehensively evaluate the model’s ability to classify each group
accurately. Confusion matrices were plotted to visually assess true
positives, false positives, true negatives, and false negatives for each
class. Model training, testing, and visualization were implemented
using the scikit-learn (v0.24.1) (48) and catboost (v1.2.7) (44)
Python libraries.

2.3.3 Input feature importance evaluation

The contribution of each input feature to prediction was
assessed using SHAP feature importance approach, applied to
the aggregated findings to evaluate the relevance of predictors
for the group classification task (49). SHAP is a model-agnostic
technique for analyzing feature significance, employing a
game-theoretic approach. By calculating SHAP values, the
contribution of each input feature to the final model prediction
was quantified, with feature significance determined as the
average of the absolute SHAP values across aggregated samples.

3 Results

3.1 Participant demographics and
psychometric scale scores

The demographic and clinical characteristics of each group are
summarized in Table 2. Among demographic variables, only years
of education showed a significant difference across groups
(H=9.37, P=0.009). In terms of anxiety-related measures, all
scales except for the LSAS revealed significant differences between
groups. post-hoc analysis indicated that compared to the HC group,
the ER and DR groups exhibited significantly higher symptoms of
PD as measured by the PDSS. Specifically, the DR group scored
significantly higher than the HC group on all anxiety-related
measures except for the LSAS. In contrast, the ER group differed
significantly from the HC group only on the GAD-7, the anxiety
subscale of the HADS, and the ASI. No significant differences were
observed between the ER and DR groups on any anxiety-related
measures, except for years of education, where the ER group had
relatively higher educational levels.

3.2 Participant demographics and
psychometric scale scores

The significant results of the three-group ANOVA obtained
within the VRA-PD are presented in Table 3, while results for
all VRA-PD variables are provided in Supplementary Table S2.
Significant group differences were identified for all seven AS
measures. Post-hoc analysis revealed that AS was significantly
higher in the DR group than that in the ER group in MI1-P-AS,
M2-P-AS, M1-E6-AS, M2-RR-AS, M3-P-AS, M3-HV-AS, and
M3-DU-AS. The DR group also exhibited higher AS than the
HC group across all virtual environments in all modules.
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TABLE 2 Group differences in demographics and anxiety-related clinical characteristics.

Variable HC (n =27) ER (n=7) DR (n=18) H-value’ post-hoc test?
Mean SD Mean SD Mean SD P-value HC vs. ER HC vs. DR ER vs. DR

Age (years) 333 9.61 39.71 8.06 3333 115 2.52 (283) 414 1.000 406
Education (years) 15.15 161 15.43 19 13.11 237 9.37 (.009) 1.000 016 021
Smoking (pack/d) 0.09 0.27 0.3 0.37 0.33 0.48 7.00 (.030) 130 080 1.000
Alcohol (unit/wk) 197 7.16 7.97 6.38 5.61 621 2.19 (.334) 417 1.000 841
PDSS 0 0 16.14 42 14.11 3.18 | 44.98 (<.001) <001 <001 1.000
LSAS-fear 2126 15 21 14.09 315 15.24 5.12 (077) 1.000 087 455
LSAS-avoidance 19.74 13.07 21.14 17.1 30.06 1599 |  4.460 (.108) 1.000 118 610
GAD 3.67 361 10 56 12.28 551 | 2276 (<001) 007 <001 1.000
HADS-anxiety 463 2.98 11.43 341 13.28 503 | 2822 (<.001) <001 <001 862
HADS-depression 6.93 3.97 9.71 457 11.94 365 | 1437 (<001) 480 <001 644
Us 27.19 7.96 30.14 8.97 36.11 6.74 11.73 (.003) 1.000 002 217
ASI 11.41 9.43 3457 13.24 39.44 1347 | 29.43 (<.001) 004 <001 1.000
BENE 3207 73 3414 521 38 5.37 8.67 (013) 1.000 010 580
PSWQ 4633 14.01 59.43 164 65.22 1171 | 1623 (<.001) 129 <001 1.000

HC, healthy control; ER, early response; DR, delayed response; PDSS, panic disorder severity scale; LSAS, liebowitz social anxiety scale; GAD-7, generalized anxiety disorder scale; HADS,
hospital anxiety and depression scale; IUS, intolerance of uncertainty scale; ASI, anxiety sensitivity index; BFNE, brief fear of negative evaluation; PSWQ, Penn State worry questionnaire.
"Kruskal-Wallis H-test was used instead of analysis of variation due to small sample size in the ER group (n=7).

*Post-hoc comparisons were performed using Mann-Whitney U-tests with Bonferroni correction for multiple comparisons.

P <.05, statistically significant.

TABLE 3 Significant group differences in anxiety scores and HRV parameters in VRA-PD.

Variable HC (n =27) ER (n=7) DR (n=18) H-value' post-hoc test*
IS SD Mean SD Mean SD P-value HC vs. ER HC vs. DR ER vs. DR

MO-AS 10.74 20.37 4.29 535 33.33 33.95 8.04 (.018) 1.000 029 103
MI-P-AS 5.19 1221 8.57 10.69 32.78 24.69 22.13 (<.001) 1.000 <.001 059
MI-E2-AS 5.19 12.82 14.29 25.07 34.44 23.57 19.19 (<.001) 672 <.001 200
MI-E6-AS 593 12.79 17.14 24.98 46.67 29.31 22.91 (<.001) 663 <.001 106
M2-P-AS 4.81 1221 571 7.87 40.00 27.65 24.25 (<.001) 1.000 <.001 014
M2-RR-AS 4.07 10.47 4.29 7.87 30.56 27.33 20.50 (<.001) 1.000 <.001 016
M2-MR-AS 222 8.01 2.86 4.88 21.67 23.07 19.20 (<.001) 1.000 <.001 052
M3-P-AS 4.07 9.31 4.29 7.87 30.56 29.20 19.17 (<.001) 1.000 <.001 018
M3-HV-AS 5.56 10.86 571 7.87 30.00 26.57 15.06 (<.001) 1.000 <.000 075
M3-DU-AS 333 10.00 1.43 378 27.22 29.47 17.99 (<.001) 1.000 <.001 010
M2-RR-SDNN 67.79 18.45 81.70 70.77 55.70 34.97 7.35 (.025) 1.000 020 641
M2-RR-VLF 864.47 923.28 1640.53 2599.15 411.88 424.18 7.27 (.026) 1.000 048 108
M3-HV-SDNN 58.71 30.10 56.36 19.54 4227 26.53 7.15 (.028) 211 033 1.000

HC, healthy control; ER, early response group; DR, delayed response; VLF, very low frequency; SDNN, standard deviation of NN intervals.
"Kruskal-Wallis H-test was used instead of ANOVA due to small sample size in the ER group (n=7).
*Post-hoc comparisons were performed using Mann-Whitney U-tests with Bonferroni correction for multiple comparisons.

P <.05, statistically significant.

However, no significant differences in AS were observed between
the HC and ER groups.

Three HRV parameters showed significant differences across
groups: M2-RR-SDNN, M2-RR-VLF, and M3-HV-SDNN. In
particular, M2-RR-SDNN and M2-RR-VLF were significantly
lower in the DR group compared to the HC group (P =0.020 and
0.048, respectively), while no significant differences were observed
between ER and DR groups after Bonferroni correction. Similarly,
M3-HV-SDNN was lower in the DR group than in the HC group
(P=0.033), but not significantly different between ER and DR.
These findings suggest that reductions in autonomic flexibility
during VR-based interoceptive or relaxation tasks may be
associated with delayed treatment response.
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3.3 Performance of the prediction model
by data domain

The performance of models utilizing the conventional,
VR-based, and combined domains to predict early treatment
response at 2 months in patients with PD is summarized in
Table 4. The VR-based domain prediction model (precision = 0.75,
F1 score=0.64)

the

macro-average

macro-average demonstrated  performance
conventional ~domain-based model
F1 score=0.56).

combining the two domains resulted in the highest performance,

comparable  to

(precision =0.77, However,

achieving the highest accuracy (precision = 0.85, macro-average F1
score =0.71).
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For the conventional domain, the model achieved perfect
precision, recall, and Fl-score for the HC group but showed no
predictive capability for the ER group. Prediction for the DR group
was moderate, with a precision, recall, and F1 score of 0.65, 0.72,
and 0.68, respectively. The VR-based domain model improved
prediction performance for the DR group (precision=0.87,
recall=0.72, F1 score=0.79)
improvements for the ER group, achieving an F1 score of 0.31.

and demonstrated modest

When combining both domains, the model maintained perfect
prediction for the HC group, while showing improved precision
(0.40), recall (0.29), and FI1 score (0.33) for the ER group, along
with comparable performance for the DR group (precision = 0.75,
recall = 0.83, F1 score = 0.79).

Confusion matrices visualizing predictions relative to correct
labels are shown in Figure 1 to illustrate classification errors. For
the ER group, the conventional domain model misclassified all ER
cases as DR (Figure 1A). In contrast, the VR-based model slightly
improved performance, with some ER cases misclassified as HC
instead of DR (Figure 1B). In the combined domain model, all
misclassifications of ER cases were directed solely toward the DR
group (Figure 1C). Despite these differences, the overall error rate
for ER classification remained the same as in the VR-based model.

To further analyze the performance of the three-group
classification model, we focused on the ER group and evaluated
its classification against the combined HC and DR groups.
Although the original model was designed for multi-class

TABLE 4 Prediction model performance by data domain.

10.3389/fdgth.2025.1684001

classification (HC, ER, DR), we extracted results specifically for
ER vs. non-ER
construction of an ROC curve, representing the model’s ability
to distinguish ER from the other groups (Figure 2). The ROC
analysis highlights the discriminative performance of the model,
with AUCs indicating that the combined domain achieved the
highest predictive accuracy (AUC=0.93, Figure 2C). This was
followed by the conventional domain (AUC =0.85, Figure 3A)
and the VR-based domain (AUC =0.82, Figure 3B).

classifications. This analysis enabled the

3.4 Feature importance analysis

The feature importance analysis, based on SHAP values
estimated from the CatBoost model, is presented as a bar plot in
Figure 3. Out of 67 features, the top 10 predictors included
variables from the conventional domain (PDSS, ASI, depression
subscale of HADS, and avoidance subscale of LSAS) and the VR-
based domain (M2-P-AS, MI1-P-SDNN, M2-MR-LF/HF,
M1-E6-AS, M1-P-VLF, and MB3-HV-LF/HF). This reflects
significant from conventional and VR-based
domains. The contribution of each domain, variable category
within the VR-based domain, and modules of the VR-based
domain to the importance values are visualized in Figures 3B-D,
the
demonstrated a higher importance value sum than the VR-based

contributions

respectively.  Across domains, conventional domain

Dataset Accuracy Macro average F1 score group Precision Recall Fl-score
Conventional domain 0.77 0.56 HC 1.00 1.00 1.00
ER 0.00 0.00 0.00
DR 0.65 0.72 0.68
VR-based domain 0.75 0.64 HC 0.77 0.89 0.83
ER 0.33 0.29 0.31
DR 0.87 0.72 0.79
Combined 0.85 0.71 HC 1.00 1.00 1.00
ER 0.40 0.29 0.33
DR 0.75 0.83 0.79
HC, healthy control; ER, early response; DR, delayed response.
(A) Conventional domain (B) VR-based domain (C) Combined
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FIGURE 1

Confusion matrices for early treatment response (2
(C) Combined domain. VR, virtual reality.

months) prediction across data domains. (A)

Conventional domain. (B) VR-based domain.
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FIGURE 2

Receiver operating characteristic (ROC) curves for classification of early responders (ER) versus non-ER at 2 months across data domains.
(A) Conventional domain. (B) VR-based domain. (C) Combined domain. ROC, receiver operating characteristic; ER, early response; VR, virtual reality.

(A) Feature importance bar plot top ten important features from prediction models based on combined domain
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FIGURE 3
Feature-importance analysis derived from the CatBoost model. (A) Top 10 most important features selected from conventional and VR-based
domains, ranked by SHAP values. (B) Comparative contribution of the conventional and VR-based domains to the total feature-importance sum.
(C) Distribution of feature-importance sums across variable categories within the VR-based domain (subjective anxiety vs. HRV features). (D)
Distribution of feature-importance sums across modules within the VR-based domain (Baseline [MOQ], Daily Environment Exposure [M1],
Relaxation [M2], and Interoceptive Exposure [M3]). Feature-importance values were estimated using the SHAP method applied to the CatBoost
model with leave-one-out cross-validation (LOOCV). VR, virtual reality; SHAP, SHapley Additive exPlanations; LOOCYV, leave-one-out cross-
validation.

domain (Figure 3B). Within the VR-based domain, Module 2 yielded
the highest importance value sum, followed by Module 1, Module 3,
and baseline (Figure 3D). Lastly, among the variable categories in the
VR-based domain, AS variables exhibited a higher importance value
sum than HRV variables (Figure 3C).
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4 Discussion

This study provides initial evidence supporting the utility of a
VR-based assessment in predicting ETR among patients with PD.
The model incorporating subjective and physiological measures
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within immersive VR environments demonstrated superior
performance in identifying ER, relative to models based solely
on conventional assessment data. In addition, subjective
experiences and biosignals collected within VR environments
that of

conventional clinical measures, offering unique insights that

contributed to predictive value comparable to
extend beyond traditional assessment tools.

The integration of VR-based and conventional predictors
enhanced the model’s classification of ER and DR, while
maintaining high accuracy in identifying healthy controls. This
approach mirrors previous findings where the inclusion of
objective physiological data such as HRV and neuroimaging
improved prediction in psychiatric treatment response models
(15, 41, 50). These results are particularly notable given prior
findings on HRV-based prediction. Prior research has shown
that
pharmacotherapy response in PD (51), and findings have been

HRV parameters were not reliable predictors of
similarly inconsistent in generalized anxiety disorder (52, 53).
One critical advancement in the present study is the use of
HRV recorded and subjective anxiety scores during immersive
and ecologically valid VR scenarios, rather than relying on
resting-state or artificial cognitive stressors. This approach
enabled the detection of anxiety-specific physiological patterns
that were previously obscured in less dynamic contexts.

Although predictive accuracy is important, one of the key
advantages of VR-based assessments lies in their enhanced
interpretability. In this study, conventional clinical measures did
not differentiate ER from DR, suggesting that these traditional
indicators may be insufficient to capture early therapeutic shifts
during pharmacotherapy (14). Conversely, the VR-based domain
revealed consistent and significant differences between ER and DR
groups across multiple scenarios. These included anxiety-inducing,
interoceptive, and even post-stimulus relaxation conditions—
contexts that evoke subtle emotional and physiological reactions.
Importantly, ERs exhibited lower subjective anxiety throughout
these immersive scenarios, while appearing indistinguishable from
HCs. This highlights the ecological sensitivity of VR-based
assessments, which can elicit and measure clinically meaningful
varijance in real-time emotional reactivity (1). Such granularity not
only supports early differentiation between treatment trajectories
but also enhances the clinician’s ability to interpret behavioral and
physiological markers in context, thus offering a more dynamic
and individualized understanding of patient change.

The SHAP feature importance analysis revealed that subjective
anxiety scores, derived from participant responses during
immersive VR experiences, demonstrated unexpectedly high
predictive value—comparable to that of physiological HRV
metrics. This is particularly noteworthy given that HRV has
traditionally been emphasized as an objective and quantitative
biomarker in psychiatric research (41). In contrast, subjective
anxiety ratings—often collected via VAS—have historically been
viewed as less robust due to limitations in discriminative power,
standardization, and contextual relevance (54-56). However, the
structured and ecologically valid nature of VR environments
appears to overcome many of these limitations. Because all
participants are exposed to the same controlled anxiety-inducing
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scenarios, subjective responses become more directly comparable
and interpretable (57). These findings highlight that, within VR
settings, subjective experience is not merely a supplementary
input but a core signal that reflects clinically meaningful
emotional reactivity.

This study has some limitations. First, the small sample size,
particularly the number of ERs (n=7), constrains statistical power
and raises concerns about the stability of machine-learning results.
Although LOOCV was used to mitigate overfitting, external
replication in larger multi-site cohorts will be necessary to confirm
generalizability. Second, participants were not drug-naive, and
medication heterogeneity may have introduced uncontrolled
variance. Third, the absence of an independent test dataset, despite
use of LOOCYV, limits claims regarding model generalizability.
Fourth, all participants were recruited from a single center, which
may reduce the ecological diversity of the sample. Furthermore, the
VR-induced anxiety state may not fully capture the spontaneous
and unpredictable nature of panic attacks, which are central to the
clinical complexity of PD. Future studies should prioritize
replication in larger, multi-site cohorts and consider integration of
neuroimaging, cognitive, and ecological momentary data to further
elucidate mechanisms underlying ETR. Standardization of VR-
based assessment protocols across studies will be essential for
establishing normative data and enabling cross-study comparisons.

The encouraging results, obtained even in a small sample,
highlight the potential clinical utility of VR-based assessment for
predicting ETR in patients with PD. By capturing subjective
experiences and physiological signals within standardized,
ecologically valid environments, the approach enables early
identification of treatment trajectories that are not discernible
through conventional assessments alone. The integration of
immersive VR technology provides predictive precision and
interpretive depth, offering a path toward more personalized,
adaptive interventions in clinical psychiatry. Replication in larger
and multicenter cohorts is warranted to consolidate these
preliminary but promising findings. These findings lay important
groundwork for the future development of scalable VR-based
tools that can complement traditional evaluations and optimize

early decision-making in pharmacological treatment planning.
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