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Introduction: Large language models are capable of summarizing research,
supporting clinical reasoning, and engaging in coherent conversations.
However, their inputs are limited to user-generated text, which reflects
subjective reports, delayed responses, and consciously filtered impressions.
Integrating physiological signals provides a clear additional value, as it allows
language models to consider real-time indicators of autonomic state
alongside linguistic input, thereby enabling more adaptive and context-
sensitive interactions in learning, decision-making, and healthcare. Therefore,
we present a streamlined architecture for routing real-time heart rate
variability data from a wearable sensor directly into a generative Al environment.
Methods: Using a validated heart rate variability sensor, we decoded Bluetooth-
transmitted R-R intervals via a custom Python script and derived core heart rate
variability metrics (HR, RMSSD, SDNN, LF/HF ratio, pNN50) in real time. These
values were published via REST and WebSocket endpoints through a FastAPI
backend, making them continuously accessible to external applications—
including OpenAl's GPT models.

Results: A live data pipeline from autonomic input to conversational output. A
language model that does not just talk back, but responds to real-time
physiological shifts in natural language. In multiple proof-of-concept
scenarios, ChatGPT accessed real-time HRV data, performed descriptive
analyses, generated visualizations, and adapted its feedback in response to
autonomic shifts induced by low and high cognitive load.

Discussion: This system represents an early prototype of bioadaptive Al, in
which physiological signals are incorporated as part of the model's input
context.

KEYWORDS

embodied Al, physiologically coupled language models, biofeedback-enhanced LLM
interaction, stress detection via Al, affective computing
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1 Introduction

Large language models (LLMs) like ChatGPT have rapidly
moved from research labs into everyday environments (1).
Within just a few years, they have entered classrooms (2, 3),
clinics (4-6), and offices,—drafting feedback (7), generating
clinical reasoning (8, 9), and supporting learners across
disciplines (10-12). In education, LLMs assist learners in
organizing complex material, generating explanations, and
practicing problem-solving across a range of subjects (13).
In medicine, they assist in synthesizing differential diagnoses or
simplifying documentation (14). Their use is no longer
experimental—it’s infrastructural.

As language models become more capable, they increasingly
serve as interactive partners (15). People use systems like
ChatGPT not only to generate content, but to structure
thoughts, offload decisions, or seek reassurance. In many
domains, LLMs now act as always-available conversational
companions—fluent, responsive, and seemingly attentive (16).
But despite this fluid interaction, the data they process is almost
entirely linguistic. Prompts, questions, and reflections arrive as
text—consciously composed, shaped by intention, and filtered
through language. These inputs are inherently subjective: they
reflect what users choose to say, not necessarily what they
experience. Whether someone is calm, anxious, unfocused, or
overwhelmed—language alone offers, at best, an approximation.

A critical next step is to extend language model inputs beyond
linguistic content to include physiological responses that
accompany communication. Access to autonomic signals, such
as shifts reflecting tension, calm, or cognitive strain, would allow
models to interpret user states more directly during
interactionTo explore this possibility, we developed a real-time
interface that streams physiological signals directly into a
generative Al environment. Using a validated Heart Rate
Variability (HRV) sensor (17), we captured R-R intervals—the
time between successive heartbeats—as raw Bluetooth data.
These were decoded via a custom Python pipeline and used to
compute core HRV metrics in real time.

HRV refers to the natural fluctuation in the time interval
between heartbeats and serves as a proxy for autonomic nervous
system (ANS) activity (18). Certain markers reflect the balance
between parasympathetic (“rest and digest”) and sympathetic
(“fight or flight”) influences. For instance, RMSSD (root mean
square of successive differences) and pNN50 (percentage of
successive intervals differing by more than 50 ms) are widely
accepted as indicators of parasympathetic activity—often
interpreted as markers of calm, relaxation, or recovery (19).
SDNN (standard deviation of NN intervals) represents overall
variability in heart rate and reflects the combined influence of
both sympathetic and parasympathetic activity, serving as a
global indicator of autonomic regulation. In contrast, reductions
in overall varjability or a dominance of low-frequency
components (e.g., elevated LF/HF ratio) are associated with
increased sympathetic drive and physiological stress (18). It is
important to note, however, that the LF/HF ratio also contains

parasympathetic contributions, and its interpretation as a direct
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marker of sympathetic activation remains controversial. Recent
critiques have emphasized that LF/HF should be considered
with caution and primarily reported for comparability, rather
than as a definitive indicator of autonomic balance (20). HRV-
based stress detection has proven valuable across domains,
including medical settings (21) and educational environments
where cognitive load and emotional regulation are critical (22-25).

To operationalize this concept, we built a technical pipeline
that feeds live HRV metrics into an LLM-enabled environment
—effectively allowing a language model to “sense” the
physiological state of its user in real time. Our architecture
combines a validated HRV sensor with custom Python scripts
for Bluetooth decoding and HRV computation, a FastAPI
backend for structured data routing, and both REST and
WebSocket endpoints for flexible access. In proof-of-concept
tests, OpenAl's GPT model responded to shifts in autonomic
state by commenting on stress indicators, offering supportive
feedback, and adapting its tone dynamically. The significance of
this work lies in demonstrating that physiological data can be
integrated into generative Al environments in real time. This
proof-of-concept contributes to the emerging field of
bioadaptive AI by showing how autonomic signals can augment
linguistic input, thereby creating systems that are not only
conversational but also physiologically responsive. By explicitly
linking biosignals to language models, this study provides a
technical foundation for future applications in education, mental

health, robotics, and digital health.

2 Material and methods

To enable generative Al systems to respond to physiological
signals in real time, we developed a modular pipeline that
captures HRV data and delivers it as contextual input to a LLM.
All  proof-of-concept interactions were conducted using
OpenAl's GPT-4 model, accessed via the official API (OpenAl,
San Francisco, CA, USA). The system is designed to stream
autonomic markers continuously into a conversational Al
interface, thereby enabling the model to generate responses
informed not only by user language, but also by the user’s
current physiological state. The architecture consists of four
core modules:

Signal acquisition using a wearable HRV sensor,

2. Real-time signal decoding and HRV computation via a custom
Python pipeline, running on a Raspberry Pj,

3. Backend infrastructure that exposes computed HRV features
through REST and WebSocket endpoints, and

4. Integration with a generative language model, such as
OpenAT's GPT, capable of interpreting and responding to
biosignal-informed prompts.

This end-to-end system transforms raw RR interval data into
interpretable autonomic markers (e.g., RMSSD, SDNN, LF/HF
ratio), which are published to a FastAPI backend hosted via
continuous deployment infrastructure. From there, external
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consumer applications—including language models—can access
the data in either real-time or on-demand mode (Figure 1).
HRV data were collected using the Polar H10 (Polar Electro
Oy, Kempele, Finland) chest strap, a validated wearable sensor
that records inter-beat intervals (IBIs) with high temporal
resolution. The device supports dual-mode wireless transmission
via both Bluetooth Low Energy (BLE, 2.4 GHz) and 5 kHz
analog transmission, enabling reliable signal acquisition. For this
study, the BLE mode was used exclusively. The sensor was
paired with a custom acquisition pipeline implemented in
Python 3.11, using the Bleak library (v0.20.2) to manage a
persistent Bluetooth Low Energy (BLE) connection. The HRV
sensor transmits hexadecimal-encoded R-R interval data packets
at ~1 Hz,
timestamps within our acquisition script. Our implementation

which were decoded into millisecond-resolution
relied solely on real-time streaming, with data captured
continuously during testing sessions.

Physiological plausibility limits were applied, retaining only
R-R values within 300-2000ms. Second, the R-R series was
denoised with a 3-sample median filter to suppress isolated
spikes. Third, outliers were removed using an interquartile-range
(IQR) criterion (Q1-1.5%IQR to Q3 + 1.5 xIQR) applied to the
filtered R-R values. Time-domain metrics (SDNN, RMSSD,
pNN50) were computed only when at least 10 NN intervals
were available after filtering. For frequency-domain analysis, R-
R intervals were converted to uniformly sampled data by linear
interpolation at 10 Hz and analyzed using Welch’s method
(nperseg <256). LF (0.04-0.15Hz) and HF (0.15-0.40 Hz)
powers were integrated by trapezoidal rule; LF/HF was reported
only when HF power exceeded 1x107° to avoid numerical
instability. All metrics were derived on a rolling 60-s buffer to
limit the impact of transient artifacts and missing data.

Following acquisition, the R-R interval data were processed in
real time to compute core HRV metrics. These metrics serve as
proxies for autonomic nervous system (ANS) activity and are
well-established in both clinical and research contexts.

10.3389/fdgth.2025.1670464

The HRV computation pipeline included the following time-
domain and frequency-domain metrics:

1. RMSSD (Root Mean Square of Successive Differences):

RMSSD quantifies short-term variations in heart rate (HR) and is
primarily sensitive to parasympathetic (vagal) activity. It is
calculated as:

RMSSD = /[(1/(N—1)) x /' (RR;y; — RR,)’]

where R-R; represents the i-th R-R interval in milliseconds, and
N is the total number of intervals. Higher RMSSD values are
generally interpreted as indicative of a calm or relaxed
physiological state.

SDNN reflects overall HRV and captures both sympathetic
and parasympathetic influences. It is computed using the
standard deviation of all R-R intervals:

SDNN = /[(1 /(N —1)) x 3 (RR, — meanRR)*]

where meanR-R is the average R-R interval over the analysis
window. SDNN is particularly useful in assessing global
autonomic regulation.

The pNN50 metric serves as another time-domain indicator of
vagal tone and is calculated as the proportion of adjacent interval
differences exceeding 50 ms:

PNN50 = (Number of |RR;y; — RR;| ) 50 ms) / (N — 1)
x 100

Derived via Fast Fourier Transform (FFT), the LF/HF ratio
the
parasympathetic influences. LF was defined as 0.04-0.15 Hz, HF

characterizes balance  between  sympathetic and

FIGURE 1

The diagram illustrates a real-time pipeline for autonomic signal processing and cloud-based data access. R—R intervals are captured using a
validated HRV chest strap and transmitted over Bluetooth to a local Python processing layer, which decodes the raw signals via the bleak library
and computes HRV metrics (including HR, RMSSD, SDNN, LF/HF ratio, and pNN50) with NumPy and SciPy. These metrics are made available
through REST API endpoints (/all,/latest,/data_by_time,/download_hrv_json) as well as optional WebSocket streaming, all implemented in a
FastAPI backend. The backend is hosted on Render.com and automatically rebuilt and redeployed using a CI/CD workflow linked to GitHub. This
infrastructure enables external clients—such as generative Al models (e.g., OpenAl's GPT)—to retrieve physiological data in real time or
retrospectively for adaptive feedback, interactive analysis, or stress-aware applications. Created using Eraser.
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as 0.15-0.40 Hz. The ratio is commonly interpreted as a marker of
autonomic balance or stress load.

All computations were implemented in Python using NumPy
and SciPy libraries, with time-domain metrics calculated over
successive 60-second sliding windows. The processed values
were published to the backend API in real time for downstream
consumption by the LLM.

To enable real-time access to computed HRV metrics, we
implemented a web-based backend infrastructure based on
FastAPI, a modern, high-performance web framework for
building APIs with Python. The backend was hosted via an
external cloud provider (Render.com), allowing for continuous
deployment and centralized management of the API service.

The HRV backend provides a set of REST API endpoints for
structured data exchange:

o A GET request to/all returns a list of all recorded datasets

o A GET request to/latest delivers the most recent dataset

o A GET request to/data_by_time with start and end parameters
retrieves all entries within a specified time window

o A GET request to/download_hrv_json enables bulk download
of all raw data in JSON format.

submitted via a POST
receive_hrv_data, which adds an additional dataset to the server.
token-based
authentication; clients must provide a valid API key with each

New data can be request to/

Access to all endpoints is secured using
request to retrieve or submit HRV data. The system returns
HRV metrics in JSON format, including HR, RMSSD, SDNN,
LF/HF ratio, and pNN50. Data are updated every 5 s based on a
rolling window of R-R intervals. The API backend is linked to a
GitHub repository that hosts the source code. This connection
enables automatic redeployment whenever changes are pushed
to the main branch (continuous deployment), ensuring that
updates are immediately reflected in the live environment. This
setup allows rapid iteration, reproducibility, and extensibility of
the pipeline architecture.

3 Results

In an initial proof-of-concept scenario, we successfully
demonstrated that a generative language model can retrieve and
process HRV data in real time through a live API connection to
a wearable HRV sensor. Upon receiving a natural language
prompt querying the current physiological state, the model was
successfully able to access the most recent R-R intervals and
output a complete set of HRV parameters, including HR,
SDNN, RMSSD, pNN50, and LF/HF. Following continuous R-R
data acquisition, the model was further prompted to compute
and display descriptive statistics for each HRV marker. This
computation—including mean, standard deviation, minimum,
and maximum—was conducted entirely within the language
model in real time, demonstrating its capability to perform
structured data summarization on physiological input without
external statistical tools. The resulting output was returned in
clean tabular format and served as the basis for subsequent
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visualization and interpretation. To further evaluate the model’s
analytical capacity, the descriptive results were transformed into
a visualization. The model generated multi-panel plots depicting
temporal fluctuations in HRV metrics, utilizing a professional
illustrated the
dynamic nature of the autonomic signal over the sampled

scientific color scheme. These visualizations

period and allowed for direct inspection of short-term
variability. Further, we tested our system in a series of real-time
interaction scenarios, including a cognitive arousal experiment
in which the language model adapted its output based on HRV
responses to low- and high-demand prompts. This example was
not designed as a validated stress-induction paradigm. Instead, it
was intended as a simple proof-of-concept demonstration,
illustrating one possible prompting approach to show how the
biomarker-to-LLM

responses to tasks of varying cognitive demand.

interface can differentiate autonomic

To initiate interaction with the generative AI model, we first
prompted it to access our real-time HRV data via the connected
API and extract standard HRV metrics from the most recent R-
R intervals (see Supplementary Prompt S1). The requested
parameters included HR, RMSSD, SDNN, pNN50, and the LF/
HF ratio. Subsequently, a second prompt instructed the model
to perform a comprehensive descriptive statistical analysis based
on the latest 200 R-R intervals (see Supplementary Prompt S2).
The model computed a detailed set of statistical descriptors—
maximum, mean, median, standard deviation,
(IQR), of variation (CV),

skewness, kurtosis, and range—for each HRV parameter. The

minimum,

interquartile range coefficient
results were returned in a structured, publication-ready table

and included a concise interpretation summarizing key

distributional  characteristics, such as central tendency,
variability, and shape (Figures 2A,B).

To complement the tabular summary, we further prompted
the model to generate a publication-ready figure visualizing the
real-time HRV data (see Supplementary Prompt S3). The model
was instructed to produce a two-part figure with a clean
scientific aesthetic in dark mode. The upper panel displays a
line plot of the most recent 200 R-R intervals over time (x-axis:
beat number; y-axis: R-R interval in milliseconds), capturing the
raw variability in beat-to-beat timing. The lower panel presents
a bar plot summarizing the computed HRV markers in the
following order: HR, SDNN, RMSSD, pNN50, and LF/HF ratio.
Visual elements were rendered using the “Purples_d” color
palette from seaborn, and the overall design adheres to modern
standards—dark

high-contrast labels, no grid lines, and consistent subplot

scientific visualization background,
styling (Figure 3).

In a final structured experiment, we implemented a cognitive
arousal protocol designed to elicit varying levels of mental
engagement. The generative Al model was instructed to ask the
participant two sequential general knowledge questions: one
low-arousal ~ condition and

representing  a (simple

undemanding), and another representing a high-arousal

condition (difficult and thought-provoking). Immediately after
submitted, the
participant’s current HRV data via a live API connection and

each response was model accessed the
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Hello. Do you currently have access to my real-time heart rate

variability (HRV) data? If so, could you please extract and display the
following HRV markers based on the most recent RR interval data you
received:

Heart Rate (HR)

RMSSD (Root Mean Square of Successive Differences)

SDNN (Standard Deviation of NN intervals)

PNNSO (Percentage of successive intervals differing by more than 50
ms)

LF/HF Ratio (Low Frequency / High Frequency)

rently have access to your most recent HRV data via the connected AP1. Here are your latest HRV.

markers based on the most recent R interval data:
+ Heart Rate (HR): 75.85 bpm

* RMSSD (Root Mean Square of Successive Differences): 55.61

+ SDNN (Standard Deviation of NN intervals): 92.14

+ PNNSO (Percentage of successive intervals differing by more than 50 ms): 11.69

+ LF/HF Ratio (Low Frequency / High Frequency): 385

f you would like an explanation of these metrics or a visualization of your HRV trends, just let me know!

FIGURE 2

(A) Output of the first prompt (see supplementary prompt 1) showing the extraction of five HRV parameters—HR, RMSSD, SDNN, pNN50, and LF/HF
—based on the most recent 200 R—R intervals acquired through a live APl connection to a wearable sensor. (B) Descriptive statistical analysis of the
same data sample, performed and formatted entirely within the language model environment (see Supplementary Prompt 2). Metrics include
minimum, maximum, mean, median, standard deviation (SD), interquartile range (IQR), coefficient of variation (CV), skewness, kurtosis, and range.
The accompanying textual interpretation contextualizes the distribution and variability of HRV markers, indicating a normal autonomic profile
with moderate variability and no pathological outliers.

Most Recent 200 RR Intervals

RR Interval (ms)
©
=3
3

100
Beat #

HRV Metrics (Recent 200 RR)

68.35

80.71

FIGURE 3

(A) Time series plot of the most recent 200 R—-R intervals (x-axis: beat number; y-axis: R-R interval duration in milliseconds). The plot illustrates the
temporal fluctuations in autonomic cardiac control. Corresponding summary bar plot displaying the calculated HRV markers: HR, SDNN, RMSSD,
pNN50, and LF/HF.The figure was generated directly from the retrieved data using a predefined prompt (see Supplementary Prompt 3) and
follows a publication-ready dark theme with Seaborn’s “Purples_d" palette.

extracted five autonomic markers: HR, SDNN, RMSSD, pNN50,
and LF/HF. After both responses were recorded, the model
generated a side-by-side visualization comparing autonomic
responses across the two conditions. This included a bar chart
displaying all five HRV markers, with consistent ordering (HR,
SDNN, RMSSD, pNN50, LF/HF) and clear panel labels for
“Low Arousal” and “High Arousal.” The figure was rendered
using a modern scientific aesthetic with dark background,
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publication-ready typography, and Seaborn’s Purples_d color
palette. This experiment demonstrated the model’s capacity to
detect autonomic shifts in response to cognitively distinct
prompts—supporting the notion that conversational AI can
adapt its output based on real-time physiological context
(Figure 4). All the
experiments are available in the Supplementary Materials

prompts used in proof-of-concept

(see Supplementary Prompts S1-54).
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FIGURE 4

Seaborn’s Purples_d color palette (see Supplementary Prompt 4).

Differential Autonomic Activation in Response to Low and High Cognitive tasks: HRV-Based Comparison via Generative Al

Bar plot comparing five HRV parameters—heart rate (HR), standard deviation of NN intervals (SDNN), root mean square of successive differences
(RMSSD), proportion of adjacent intervals differing by more than 50 ms (pNN50), and low-frequency to high-frequency ratio (LF/HF)—between a
low cognitive load task (light purple) and a high cognitive load task (dark purple). HRV data were recorded immediately after each user response
and retrieved in real time via APl by the generative Al model. The figure illustrates a clear decrease in parasympathetic markers (RMSSD, pNN50)
and an increase in HR under higher cognitive load, reflecting differential autonomic activation. Visualization rendered using a dark theme and

Il | ow Cognitive Load
Higher Cognitive Load

4 Discussion

While there is a growing body of work exploring the
integration of biosignals with large language models, most of
these studies are very recent and remain at the preprint stage.
They primarily rely on offline or aggregated data processing,
where physiological signals are analyzed post hoc and
subsequently provided to an LLM. By contrast, the present study
real-time HRV-to-LLM

demonstrating the feasibility of live physiological adaptation in

establishes a continuous interface,

generative Al environments. By developing a real-time
biomarker-to-language model interface, this study provides both
a technical proof of concept and a foundational step toward
physiologically adaptive AI systems—enabling language models
to process not only what users say, but how their bodies
respond. By coupling HRV metrics with a generative language
model, we enabled a form of interaction that goes beyond
purely linguistic input—allowing the model to access indicators
of physiological state during live exchanges. Our approach
successfully established a stable data pipeline that captured,
processed, and transmitted HRV parameters (e.g., pNN50,
RMSSD, SDNN, LF/HF ratio) from a wearable sensor into an
LLM environment. In response, the model reflected on these
signals, interpreted them within the conversational context, and
generated output aligned with the inferred autonomic state.
Beyond passive feedback, it also performed time-synchronized

statistical summaries, compiled HRV values into structured

Frontiers in Digital Health

tables, created visualizations, and supported dynamic testing
protocols—including real-time recording and visualization of
autonomic shifts during experimentally induced cognitive load,
where the model compared HRV responses following low- vs.
high-demand test questions. It is important to note that this
procedure was not intended as a validated stress-induction
paradigm, but rather as an illustrative prompting example to
demonstrate how the system can be applied in an educational
research context.

As early as 1997, Rosalind Picard argued that truly intelligent
machines must go beyond logic and language—they must be able
to recognize, interpret, and respond to human emotions. In her
work Affective Computing, she emphasized that natural interaction
between humans and computers requires emotional awareness as
a core component of machine intelligence (26). Since Picard’s
foundational work, advances in LLMs and natural language
processing technology have profoundly transformed the landscape
of human-computer interaction and psychology (15)—enabling
systems that not only understand and generate human-like
language, but increasingly act as conversational partners capable of
simulating empathy, reflection, and support (15, 27). This
evolution is further exemplified by AMIE (Articulate Medical
Intelligence Explorer), a recently introduced diagnostic system
published in Nature, which leverages a LLM to engage in clinically
meaningful dialogue—demonstrating physician-level performance
in diagnostic reasoning, history-taking, communication, and
empathy within simulated patient consultations (28).
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While LLMs are trained on vast datasets and can process a
wide range of input formats, their real-world use remains
overwhelmingly text-based—users submit questions, prompts, or
structured data such as tables for analysis. What our approach
demonstrates is a shift toward real-time physiological data
integration: enabling language models to receive and interpret
continuous streams of biosignals during interaction. This opens
up new application domains. In education, learning is closely
linked to physiological state—with stress capable of enhancing
or impairing cognitive performance (29). By adapting input
dynamically based on autonomic markers, AI tutors could
optimize timing, complexity, or feedback to the learner’s current
condition, for example by offering calming prompts when
overload is detected or by encouraging cognitive challenge when
indicators of under-arousal are present. In telemedicine,
physiological streaming could support continuous monitoring of
vital parameters during remote consultations. In mental health
and coaching, AI systems could modulate tone and content in
response to signs of stress or dysregulation, for instance by
providing biofeedback during stress-management training,
adapting therapeutic dialogue in digital coaching, or supporting
ahead,

continuous physiological monitoring could also play a role in

teletherapy with continuous monitoring. Looking
Al-based healthcare, where biosignals are streamed in real time
and interpreted by generative models to inform autonomous or
semi-autonomous agents, such as assistive or care robots. By
linking physiological feedback to adaptive AI behaviors, such
systems could contribute to more responsive, personalized, and
context-sensitive healthcare delivery.

Despite the
biomarker-to-LLM interface, several limitations of the current

successful implementation of a real-time

prototype must be acknowledged. Technically, the integration
with the OpenAI API remains fragile. Although ongoing
improvements in API functionality occur rapidly, we observed
that ChatGPT occasionally required repeated prompts to
establish or maintain the expected connection, and in some
cases, returned fabricated data instead of accessing live
physiological input. During final testing (~2h of continuous
recording), repeated prompts were required six times to re-
establish API connection. Fabricated values were observed once,
which was resolved after pipeline adjustments. Several backend
iterations were necessary during development to achieve stable
data flow, but after finalization the system ran continuously
without further interruptions. Although these observations
provide initial insight into reliability, systematic long-term
quantification will be essential in future studies. From an ethical
and legal perspective, the continuous processing of physiological
signals raises important questions regarding data security,
privacy, and informed consent—especially in clinical or
educational contexts. To address ethical, security, and privacy
of biomarker-to-LLM

interfaces must integrate concrete safeguards. First, participants

concerns, future implementations
need to provide informed consent, with full transparency about
what data are collected and how they are used. Data collection
should follow the principle of minimization, capturing only the

physiological signals strictly necessary for the intended purpose.
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Where possible, preprocessing should occur locally, so that data
are filtered and anonymized before leaving the acquisition
device. For data transmission, end-to-end encryption (e.g., TLS
1.3) is required, combined with role-based access control to
ensure that only authorized users can retrieve or process the
data. To further protect individuals, physiological recordings
should be anonymized or pseudonymized so that they cannot be
linked back to identifiable persons. All data access and
processing steps should be logged in audit trails to allow
accountability. Users should also retain control over their data,
including the ability to pause streaming, review stored values, or
request deletion. Beyond technical safeguards, ethical oversight
by institutional review boards or equivalent ethics committees
will be essential prior to deployment. Finally, adherence to
existing regulatory frameworks such as the General Data
Protection Regulation (GDPR) in Europe or HIPAA in the
United States must be guaranteed to ensure full compliance with
established standards of data protection and medical privacy.
These aspects must be addressed thoroughly before real-
world implementation.

Finally, our current system relies on a single physiological
input—HRV—which, while informative, provides only a partial
view of the user’s psychophysiological state. Future iterations of
biomarker-to-LLM
multimodal signals such as electrodermal activity, respiration,

systems could benefit from integrating
EEG, or eye-tracking. These complementary inputs would
provide converging evidence on autonomic and cognitive states,
reduce interpretational ambiguity, and thereby enable more
robust and adaptive applications.Building on this foundation,
future research should focus on systematically validating the
reliability of the pipeline under extended recording periods and
across diverse participants, expanding the framework to
incorporate additional biosignals, and applying the system in
real-world contexts such as adaptive tutoring, digital mental
health interventions, and Al-based healthcare. By articulating
these next steps, our findings not only establish feasibility but

also provide a roadmap for subsequent research and application.
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