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Introduction: Large language models are capable of summarizing research, 

supporting clinical reasoning, and engaging in coherent conversations. 

However, their inputs are limited to user-generated text, which reflects 

subjective reports, delayed responses, and consciously filtered impressions. 

Integrating physiological signals provides a clear additional value, as it allows 

language models to consider real-time indicators of autonomic state 

alongside linguistic input, thereby enabling more adaptive and context- 

sensitive interactions in learning, decision-making, and healthcare. Therefore, 

we present a streamlined architecture for routing real-time heart rate 

variability data from a wearable sensor directly into a generative AI environment.

Methods: Using a validated heart rate variability sensor, we decoded Bluetooth- 

transmitted R-R intervals via a custom Python script and derived core heart rate 

variability metrics (HR, RMSSD, SDNN, LF/HF ratio, pNN50) in real time. These 

values were published via REST and WebSocket endpoints through a FastAPI 

backend, making them continuously accessible to external applications— 

including OpenAI’s GPT models.

Results: A live data pipeline from autonomic input to conversational output. A 

language model that does not just talk back, but responds to real-time 

physiological shifts in natural language. In multiple proof-of-concept 

scenarios, ChatGPT accessed real-time HRV data, performed descriptive 

analyses, generated visualizations, and adapted its feedback in response to 

autonomic shifts induced by low and high cognitive load.

Discussion: This system represents an early prototype of bioadaptive AI, in 

which physiological signals are incorporated as part of the model’s input 

context.
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1 Introduction

Large language models (LLMs) like ChatGPT have rapidly 

moved from research labs into everyday environments (1). 

Within just a few years, they have entered classrooms (2, 3), 

clinics (4–6), and offices,—drafting feedback (7), generating 

clinical reasoning (8, 9), and supporting learners across 

disciplines (10–12). In education, LLMs assist learners in 

organizing complex material, generating explanations, and 

practicing problem-solving across a range of subjects (13). 

In medicine, they assist in synthesizing differential diagnoses or 

simplifying documentation (14). Their use is no longer 

experimental—it’s infrastructural.

As language models become more capable, they increasingly 

serve as interactive partners (15). People use systems like 

ChatGPT not only to generate content, but to structure 

thoughts, of7oad decisions, or seek reassurance. In many 

domains, LLMs now act as always-available conversational 

companions—7uent, responsive, and seemingly attentive (16). 

But despite this 7uid interaction, the data they process is almost 

entirely linguistic. Prompts, questions, and re7ections arrive as 

text—consciously composed, shaped by intention, and filtered 

through language. These inputs are inherently subjective: they 

re7ect what users choose to say, not necessarily what they 

experience. Whether someone is calm, anxious, unfocused, or 

overwhelmed—language alone offers, at best, an approximation.

A critical next step is to extend language model inputs beyond 

linguistic content to include physiological responses that 

accompany communication. Access to autonomic signals, such 

as shifts re7ecting tension, calm, or cognitive strain, would allow 

models to interpret user states more directly during 

interactionTo explore this possibility, we developed a real-time 

interface that streams physiological signals directly into a 

generative AI environment. Using a validated Heart Rate 

Variability (HRV) sensor (17), we captured R-R intervals—the 

time between successive heartbeats—as raw Bluetooth data. 

These were decoded via a custom Python pipeline and used to 

compute core HRV metrics in real time.

HRV refers to the natural 7uctuation in the time interval 

between heartbeats and serves as a proxy for autonomic nervous 

system (ANS) activity (18). Certain markers re7ect the balance 

between parasympathetic (“rest and digest”) and sympathetic 

(“fight or 7ight”) in7uences. For instance, RMSSD (root mean 

square of successive differences) and pNN50 (percentage of 

successive intervals differing by more than 50 ms) are widely 

accepted as indicators of parasympathetic activity—often 

interpreted as markers of calm, relaxation, or recovery (19). 

SDNN (standard deviation of NN intervals) represents overall 

variability in heart rate and re7ects the combined in7uence of 

both sympathetic and parasympathetic activity, serving as a 

global indicator of autonomic regulation. In contrast, reductions 

in overall variability or a dominance of low-frequency 

components (e.g., elevated LF/HF ratio) are associated with 

increased sympathetic drive and physiological stress (18). It is 

important to note, however, that the LF/HF ratio also contains 

parasympathetic contributions, and its interpretation as a direct 

marker of sympathetic activation remains controversial. Recent 

critiques have emphasized that LF/HF should be considered 

with caution and primarily reported for comparability, rather 

than as a definitive indicator of autonomic balance (20). HRV- 

based stress detection has proven valuable across domains, 

including medical settings (21) and educational environments 

where cognitive load and emotional regulation are critical (22–25).

To operationalize this concept, we built a technical pipeline 

that feeds live HRV metrics into an LLM-enabled environment 

—effectively allowing a language model to “sense” the 

physiological state of its user in real time. Our architecture 

combines a validated HRV sensor with custom Python scripts 

for Bluetooth decoding and HRV computation, a FastAPI 

backend for structured data routing, and both REST and 

WebSocket endpoints for 7exible access. In proof-of-concept 

tests, OpenAI’s GPT model responded to shifts in autonomic 

state by commenting on stress indicators, offering supportive 

feedback, and adapting its tone dynamically. The significance of 

this work lies in demonstrating that physiological data can be 

integrated into generative AI environments in real time. This 

proof-of-concept contributes to the emerging field of 

bioadaptive AI by showing how autonomic signals can augment 

linguistic input, thereby creating systems that are not only 

conversational but also physiologically responsive. By explicitly 

linking biosignals to language models, this study provides a 

technical foundation for future applications in education, mental 

health, robotics, and digital health.

2 Material and methods

To enable generative AI systems to respond to physiological 

signals in real time, we developed a modular pipeline that 

captures HRV data and delivers it as contextual input to a LLM. 

All proof-of-concept interactions were conducted using 

OpenAI’s GPT-4 model, accessed via the official API (OpenAI, 

San Francisco, CA, USA). The system is designed to stream 

autonomic markers continuously into a conversational AI 

interface, thereby enabling the model to generate responses 

informed not only by user language, but also by the user’s 

current physiological state. The architecture consists of four 

core modules: 

1. Signal acquisition using a wearable HRV sensor,

2. Real-time signal decoding and HRV computation via a custom 

Python pipeline, running on a Raspberry Pi,

3. Backend infrastructure that exposes computed HRV features 

through REST and WebSocket endpoints, and

4. Integration with a generative language model, such as 

OpenAI’s GPT, capable of interpreting and responding to 

biosignal-informed prompts.

This end-to-end system transforms raw RR interval data into 

interpretable autonomic markers (e.g., RMSSD, SDNN, LF/HF 

ratio), which are published to a FastAPI backend hosted via 

continuous deployment infrastructure. From there, external 
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consumer applications—including language models—can access 

the data in either real-time or on-demand mode (Figure 1).

HRV data were collected using the Polar H10 (Polar Electro 

Oy, Kempele, Finland) chest strap, a validated wearable sensor 

that records inter-beat intervals (IBIs) with high temporal 

resolution. The device supports dual-mode wireless transmission 

via both Bluetooth Low Energy (BLE, 2.4 GHz) and 5 kHz 

analog transmission, enabling reliable signal acquisition. For this 

study, the BLE mode was used exclusively. The sensor was 

paired with a custom acquisition pipeline implemented in 

Python 3.11, using the Bleak library (v0.20.2) to manage a 

persistent Bluetooth Low Energy (BLE) connection. The HRV 

sensor transmits hexadecimal-encoded R–R interval data packets 

at ∼1 Hz, which were decoded into millisecond-resolution 

timestamps within our acquisition script. Our implementation 

relied solely on real-time streaming, with data captured 

continuously during testing sessions.

Physiological plausibility limits were applied, retaining only 

R–R values within 300–2000ms. Second, the R–R series was 

denoised with a 3-sample median filter to suppress isolated 

spikes. Third, outliers were removed using an interquartile-range 

(IQR) criterion (Q1–1.5 × IQR to Q3 + 1.5 × IQR) applied to the 

filtered R–R values. Time-domain metrics (SDNN, RMSSD, 

pNN50) were computed only when at least 10 NN intervals 

were available after filtering. For frequency-domain analysis, R– 

R intervals were converted to uniformly sampled data by linear 

interpolation at 10 Hz and analyzed using Welch’s method 

(nperseg ≤256). LF (0.04–0.15 Hz) and HF (0.15–0.40 Hz) 

powers were integrated by trapezoidal rule; LF/HF was reported 

only when HF power exceeded 1 × 10−6 to avoid numerical 

instability. All metrics were derived on a rolling 60-s buffer to 

limit the impact of transient artifacts and missing data.

Following acquisition, the R–R interval data were processed in 

real time to compute core HRV metrics. These metrics serve as 

proxies for autonomic nervous system (ANS) activity and are 

well-established in both clinical and research contexts.

The HRV computation pipeline included the following time- 

domain and frequency-domain metrics: 

1. RMSSD (Root Mean Square of Successive Differences):

RMSSD quantifies short-term variations in heart rate (HR) and is 

primarily sensitive to parasympathetic (vagal) activity. It is 

calculated as:

RMSSD ¼ p
[(1 = (N � 1)) � S

n�1
i¼1 (RRiþ1 � RR1)2] 

where R–Ri represents the i-th R–R interval in milliseconds, and 

N is the total number of intervals. Higher RMSSD values are 

generally interpreted as indicative of a calm or relaxed 

physiological state.

SDNN re7ects overall HRV and captures both sympathetic 

and parasympathetic in7uences. It is computed using the 

standard deviation of all R–R intervals:

SDNN ¼ p
[(1 = (N � 1)) � S

n
i¼1 (RR1 � meanRR)2] 

where meanR–R is the average R–R interval over the analysis 

window. SDNN is particularly useful in assessing global 

autonomic regulation.

The pNN50 metric serves as another time-domain indicator of 

vagal tone and is calculated as the proportion of adjacent interval 

differences exceeding 50 ms:

pNN50 ¼ (Number of jRRiþ1 � RRij i 50 ms) = (N � 1)

� 100 

Derived via Fast Fourier Transform (FFT), the LF/HF ratio 

characterizes the balance between sympathetic and 

parasympathetic in7uences. LF was defined as 0.04–0.15 Hz, HF 

FIGURE 1 

The diagram illustrates a real-time pipeline for autonomic signal processing and cloud-based data access. R–R intervals are captured using a 

validated HRV chest strap and transmitted over Bluetooth to a local Python processing layer, which decodes the raw signals via the bleak library 

and computes HRV metrics (including HR, RMSSD, SDNN, LF/HF ratio, and pNN50) with NumPy and SciPy. These metrics are made available 

through REST API endpoints (/all,/latest,/data_by_time,/download_hrv_json) as well as optional WebSocket streaming, all implemented in a 

FastAPI backend. The backend is hosted on Render.com and automatically rebuilt and redeployed using a CI/CD workflow linked to GitHub. This 

infrastructure enables external clients—such as generative AI models (e.g., OpenAI’s GPT)—to retrieve physiological data in real time or 

retrospectively for adaptive feedback, interactive analysis, or stress-aware applications. Created using Eraser.
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as 0.15–0.40 Hz. The ratio is commonly interpreted as a marker of 

autonomic balance or stress load.

All computations were implemented in Python using NumPy 

and SciPy libraries, with time-domain metrics calculated over 

successive 60-second sliding windows. The processed values 

were published to the backend API in real time for downstream 

consumption by the LLM.

To enable real-time access to computed HRV metrics, we 

implemented a web-based backend infrastructure based on 

FastAPI, a modern, high-performance web framework for 

building APIs with Python. The backend was hosted via an 

external cloud provider (Render.com), allowing for continuous 

deployment and centralized management of the API service.

The HRV backend provides a set of REST API endpoints for 

structured data exchange: 

• A GET request to/all returns a list of all recorded datasets

• A GET request to/latest delivers the most recent dataset

• A GET request to/data_by_time with start and end parameters 

retrieves all entries within a specified time window

• A GET request to/download_hrv_json enables bulk download 

of all raw data in JSON format.

New data can be submitted via a POST request to/ 

receive_hrv_data, which adds an additional dataset to the server. 

Access to all endpoints is secured using token-based 

authentication; clients must provide a valid API key with each 

request to retrieve or submit HRV data. The system returns 

HRV metrics in JSON format, including HR, RMSSD, SDNN, 

LF/HF ratio, and pNN50. Data are updated every 5 s based on a 

rolling window of R–R intervals. The API backend is linked to a 

GitHub repository that hosts the source code. This connection 

enables automatic redeployment whenever changes are pushed 

to the main branch (continuous deployment), ensuring that 

updates are immediately re7ected in the live environment. This 

setup allows rapid iteration, reproducibility, and extensibility of 

the pipeline architecture.

3 Results

In an initial proof-of-concept scenario, we successfully 

demonstrated that a generative language model can retrieve and 

process HRV data in real time through a live API connection to 

a wearable HRV sensor. Upon receiving a natural language 

prompt querying the current physiological state, the model was 

successfully able to access the most recent R–R intervals and 

output a complete set of HRV parameters, including HR, 

SDNN, RMSSD, pNN50, and LF/HF. Following continuous R–R 

data acquisition, the model was further prompted to compute 

and display descriptive statistics for each HRV marker. This 

computation—including mean, standard deviation, minimum, 

and maximum—was conducted entirely within the language 

model in real time, demonstrating its capability to perform 

structured data summarization on physiological input without 

external statistical tools. The resulting output was returned in 

clean tabular format and served as the basis for subsequent 

visualization and interpretation. To further evaluate the model’s 

analytical capacity, the descriptive results were transformed into 

a visualization. The model generated multi-panel plots depicting 

temporal 7uctuations in HRV metrics, utilizing a professional 

scientific color scheme. These visualizations illustrated the 

dynamic nature of the autonomic signal over the sampled 

period and allowed for direct inspection of short-term 

variability. Further, we tested our system in a series of real-time 

interaction scenarios, including a cognitive arousal experiment 

in which the language model adapted its output based on HRV 

responses to low- and high-demand prompts. This example was 

not designed as a validated stress-induction paradigm. Instead, it 

was intended as a simple proof-of-concept demonstration, 

illustrating one possible prompting approach to show how the 

biomarker-to-LLM interface can differentiate autonomic 

responses to tasks of varying cognitive demand.

To initiate interaction with the generative AI model, we first 

prompted it to access our real-time HRV data via the connected 

API and extract standard HRV metrics from the most recent R– 

R intervals (see Supplementary Prompt S1). The requested 

parameters included HR, RMSSD, SDNN, pNN50, and the LF/ 

HF ratio. Subsequently, a second prompt instructed the model 

to perform a comprehensive descriptive statistical analysis based 

on the latest 200 R–R intervals (see Supplementary Prompt S2). 

The model computed a detailed set of statistical descriptors— 

minimum, maximum, mean, median, standard deviation, 

interquartile range (IQR), coefficient of variation (CV), 

skewness, kurtosis, and range—for each HRV parameter. The 

results were returned in a structured, publication-ready table 

and included a concise interpretation summarizing key 

distributional characteristics, such as central tendency, 

variability, and shape (Figures 2A,B).

To complement the tabular summary, we further prompted 

the model to generate a publication-ready figure visualizing the 

real-time HRV data (see Supplementary Prompt S3). The model 

was instructed to produce a two-part figure with a clean 

scientific aesthetic in dark mode. The upper panel displays a 

line plot of the most recent 200 R-R intervals over time (x-axis: 

beat number; y-axis: R–R interval in milliseconds), capturing the 

raw variability in beat-to-beat timing. The lower panel presents 

a bar plot summarizing the computed HRV markers in the 

following order: HR, SDNN, RMSSD, pNN50, and LF/HF ratio. 

Visual elements were rendered using the “Purples_d” color 

palette from seaborn, and the overall design adheres to modern 

scientific visualization standards—dark background, 

high-contrast labels, no grid lines, and consistent subplot 

styling (Figure 3).

In a final structured experiment, we implemented a cognitive 

arousal protocol designed to elicit varying levels of mental 

engagement. The generative AI model was instructed to ask the 

participant two sequential general knowledge questions: one 

representing a low-arousal condition (simple and 

undemanding), and another representing a high-arousal 

condition (difficult and thought-provoking). Immediately after 

each response was submitted, the model accessed the 

participant’s current HRV data via a live API connection and 
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extracted five autonomic markers: HR, SDNN, RMSSD, pNN50, 

and LF/HF. After both responses were recorded, the model 

generated a side-by-side visualization comparing autonomic 

responses across the two conditions. This included a bar chart 

displaying all five HRV markers, with consistent ordering (HR, 

SDNN, RMSSD, pNN50, LF/HF) and clear panel labels for 

“Low Arousal” and “High Arousal.” The figure was rendered 

using a modern scientific aesthetic with dark background, 

publication-ready typography, and Seaborn’s Purples_d color 

palette. This experiment demonstrated the model’s capacity to 

detect autonomic shifts in response to cognitively distinct 

prompts—supporting the notion that conversational AI can 

adapt its output based on real-time physiological context 

(Figure 4). All prompts used in the proof-of-concept 

experiments are available in the Supplementary Materials

(see Supplementary Prompts S1–S4).

FIGURE 2 

(A) Output of the first prompt (see supplementary prompt 1) showing the extraction of five HRV parameters—HR, RMSSD, SDNN, pNN50, and LF/HF 

—based on the most recent 200 R–R intervals acquired through a live API connection to a wearable sensor. (B) Descriptive statistical analysis of the 

same data sample, performed and formatted entirely within the language model environment (see Supplementary Prompt 2). Metrics include 

minimum, maximum, mean, median, standard deviation (SD), interquartile range (IQR), coefficient of variation (CV), skewness, kurtosis, and range. 

The accompanying textual interpretation contextualizes the distribution and variability of HRV markers, indicating a normal autonomic profile 

with moderate variability and no pathological outliers.

FIGURE 3 

(A) Time series plot of the most recent 200 R–R intervals (x-axis: beat number; y-axis: R–R interval duration in milliseconds). The plot illustrates the 

temporal fluctuations in autonomic cardiac control. Corresponding summary bar plot displaying the calculated HRV markers: HR, SDNN, RMSSD, 

pNN50, and LF/HF.The figure was generated directly from the retrieved data using a predefined prompt (see Supplementary Prompt 3) and 

follows a publication-ready dark theme with Seaborn’s “Purples_d” palette.
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4 Discussion

While there is a growing body of work exploring the 

integration of biosignals with large language models, most of 

these studies are very recent and remain at the preprint stage. 

They primarily rely on of7ine or aggregated data processing, 

where physiological signals are analyzed post hoc and 

subsequently provided to an LLM. By contrast, the present study 

establishes a continuous real-time HRV-to-LLM interface, 

demonstrating the feasibility of live physiological adaptation in 

generative AI environments. By developing a real-time 

biomarker-to-language model interface, this study provides both 

a technical proof of concept and a foundational step toward 

physiologically adaptive AI systems—enabling language models 

to process not only what users say, but how their bodies 

respond. By coupling HRV metrics with a generative language 

model, we enabled a form of interaction that goes beyond 

purely linguistic input—allowing the model to access indicators 

of physiological state during live exchanges. Our approach 

successfully established a stable data pipeline that captured, 

processed, and transmitted HRV parameters (e.g., pNN50, 

RMSSD, SDNN, LF/HF ratio) from a wearable sensor into an 

LLM environment. In response, the model re7ected on these 

signals, interpreted them within the conversational context, and 

generated output aligned with the inferred autonomic state. 

Beyond passive feedback, it also performed time-synchronized 

statistical summaries, compiled HRV values into structured 

tables, created visualizations, and supported dynamic testing 

protocols—including real-time recording and visualization of 

autonomic shifts during experimentally induced cognitive load, 

where the model compared HRV responses following low- vs. 

high-demand test questions. It is important to note that this 

procedure was not intended as a validated stress-induction 

paradigm, but rather as an illustrative prompting example to 

demonstrate how the system can be applied in an educational 

research context.

As early as 1997, Rosalind Picard argued that truly intelligent 

machines must go beyond logic and language—they must be able 

to recognize, interpret, and respond to human emotions. In her 

work Affective Computing, she emphasized that natural interaction 

between humans and computers requires emotional awareness as 

a core component of machine intelligence (26). Since Picard’s 

foundational work, advances in LLMs and natural language 

processing technology have profoundly transformed the landscape 

of human–computer interaction and psychology (15)—enabling 

systems that not only understand and generate human-like 

language, but increasingly act as conversational partners capable of 

simulating empathy, re7ection, and support (15, 27). This 

evolution is further exemplified by AMIE (Articulate Medical 

Intelligence Explorer), a recently introduced diagnostic system 

published in Nature, which leverages a LLM to engage in clinically 

meaningful dialogue—demonstrating physician-level performance 

in diagnostic reasoning, history-taking, communication, and 

empathy within simulated patient consultations (28).

FIGURE 4 

Bar plot comparing five HRV parameters—heart rate (HR), standard deviation of NN intervals (SDNN), root mean square of successive differences 

(RMSSD), proportion of adjacent intervals differing by more than 50 ms (pNN50), and low-frequency to high-frequency ratio (LF/HF)—between a 

low cognitive load task (light purple) and a high cognitive load task (dark purple). HRV data were recorded immediately after each user response 

and retrieved in real time via API by the generative AI model. The figure illustrates a clear decrease in parasympathetic markers (RMSSD, pNN50) 

and an increase in HR under higher cognitive load, reflecting differential autonomic activation. Visualization rendered using a dark theme and 

Seaborn’s Purples_d color palette (see Supplementary Prompt 4).
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While LLMs are trained on vast datasets and can process a 

wide range of input formats, their real-world use remains 

overwhelmingly text-based—users submit questions, prompts, or 

structured data such as tables for analysis. What our approach 

demonstrates is a shift toward real-time physiological data 

integration: enabling language models to receive and interpret 

continuous streams of biosignals during interaction. This opens 

up new application domains. In education, learning is closely 

linked to physiological state—with stress capable of enhancing 

or impairing cognitive performance (29). By adapting input 

dynamically based on autonomic markers, AI tutors could 

optimize timing, complexity, or feedback to the learner’s current 

condition, for example by offering calming prompts when 

overload is detected or by encouraging cognitive challenge when 

indicators of under-arousal are present. In telemedicine, 

physiological streaming could support continuous monitoring of 

vital parameters during remote consultations. In mental health 

and coaching, AI systems could modulate tone and content in 

response to signs of stress or dysregulation, for instance by 

providing biofeedback during stress-management training, 

adapting therapeutic dialogue in digital coaching, or supporting 

teletherapy with continuous monitoring. Looking ahead, 

continuous physiological monitoring could also play a role in 

AI-based healthcare, where biosignals are streamed in real time 

and interpreted by generative models to inform autonomous or 

semi-autonomous agents, such as assistive or care robots. By 

linking physiological feedback to adaptive AI behaviors, such 

systems could contribute to more responsive, personalized, and 

context-sensitive healthcare delivery.

Despite the successful implementation of a real-time 

biomarker-to-LLM interface, several limitations of the current 

prototype must be acknowledged. Technically, the integration 

with the OpenAI API remains fragile. Although ongoing 

improvements in API functionality occur rapidly, we observed 

that ChatGPT occasionally required repeated prompts to 

establish or maintain the expected connection, and in some 

cases, returned fabricated data instead of accessing live 

physiological input. During final testing (∼2 h of continuous 

recording), repeated prompts were required six times to re- 

establish API connection. Fabricated values were observed once, 

which was resolved after pipeline adjustments. Several backend 

iterations were necessary during development to achieve stable 

data 7ow, but after finalization the system ran continuously 

without further interruptions. Although these observations 

provide initial insight into reliability, systematic long-term 

quantification will be essential in future studies. From an ethical 

and legal perspective, the continuous processing of physiological 

signals raises important questions regarding data security, 

privacy, and informed consent—especially in clinical or 

educational contexts. To address ethical, security, and privacy 

concerns, future implementations of biomarker-to-LLM 

interfaces must integrate concrete safeguards. First, participants 

need to provide informed consent, with full transparency about 

what data are collected and how they are used. Data collection 

should follow the principle of minimization, capturing only the 

physiological signals strictly necessary for the intended purpose. 

Where possible, preprocessing should occur locally, so that data 

are filtered and anonymized before leaving the acquisition 

device. For data transmission, end-to-end encryption (e.g., TLS 

1.3) is required, combined with role-based access control to 

ensure that only authorized users can retrieve or process the 

data. To further protect individuals, physiological recordings 

should be anonymized or pseudonymized so that they cannot be 

linked back to identifiable persons. All data access and 

processing steps should be logged in audit trails to allow 

accountability. Users should also retain control over their data, 

including the ability to pause streaming, review stored values, or 

request deletion. Beyond technical safeguards, ethical oversight 

by institutional review boards or equivalent ethics committees 

will be essential prior to deployment. Finally, adherence to 

existing regulatory frameworks such as the General Data 

Protection Regulation (GDPR) in Europe or HIPAA in the 

United States must be guaranteed to ensure full compliance with 

established standards of data protection and medical privacy. 

These aspects must be addressed thoroughly before real- 

world implementation.

Finally, our current system relies on a single physiological 

input—HRV—which, while informative, provides only a partial 

view of the user’s psychophysiological state. Future iterations of 

biomarker-to-LLM systems could benefit from integrating 

multimodal signals such as electrodermal activity, respiration, 

EEG, or eye-tracking. These complementary inputs would 

provide converging evidence on autonomic and cognitive states, 

reduce interpretational ambiguity, and thereby enable more 

robust and adaptive applications.Building on this foundation, 

future research should focus on systematically validating the 

reliability of the pipeline under extended recording periods and 

across diverse participants, expanding the framework to 

incorporate additional biosignals, and applying the system in 

real-world contexts such as adaptive tutoring, digital mental 

health interventions, and AI-based healthcare. By articulating 

these next steps, our findings not only establish feasibility but 

also provide a roadmap for subsequent research and application.
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