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Generative artificial intelligence (G-AI) has moved from proof-of-concept 

demonstrations to practical tools that augment radiology, dermatology, genetics, 

drug discovery, and electronic-health-record analysis. This mini-review 

synthesizes fifteen studies published between 2020 and 2025 that collectively 

illustrate three dominant trends: data augmentation for imbalanced or privacy- 

restricted datasets, automation of expert-intensive tasks such as radiology 

reporting, and generation of new biomedical knowledge ranging from molecular 

scaffolds to fairness insights. Image-centric work still dominates, with GANs, 

diffusion models, and Vision-Language Models expanding limited datasets and 

accelerating diagnosis. Yet narrative (EHR) and molecular design domains are 

rapidly catching up. Despite demonstrated accuracy gains, recurring challenges 

persist: synthetic samples may overlook rare pathologies, large multimodal 

systems can hallucinate clinical facts, and demographic biases can be amplified. 

Robust validation, interpretability techniques, and governance frameworks 

therefore, remain essential before G-AI can be safely embedded in routine care.
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Introduction

Healthcare has long grappled with the twin problems of data scarcity and data privacy. 

Curating large, balanced, and publicly shareable clinical datasets is expensive, logistically 

complex, and ethically sensitive. Recent advances in generative artificial intelligence (G- 

AI)—notably Generative Adversarial Networks (GANs), variational auto-encoders, 

diffusion models, and large Vision-Language Models (VLMs)—offer a potential remedy by 

synthesising realistic yet privacy-preserving data. Table 1 collates fifteen representative 

studies that demonstrate how these models are already reshaping diverse clinical tasks.
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TABLE 1 Summary of clinical generative AI applications.

Citation Dataset Method Used G. AI Application of used G. AI Purpose in healthcare Limitations of used G. AI

Bhatt et al. 

(2025) (13)

Medical images, patient records, 

patient medical histories

Data acquisition, Data preprocessing, 

Model training (GANs, VAEs, RNNs, 

DCGAN, DRL), Synthetic data-generation, 

Evaluation, Application development

Generative Adversarial 

Networks (GANs) 

Variational Autoencoders 

(VAEs) Recurrent Neural 

Networks (RNNs) Deep 

Reinforcement Learning 

(DRL)

Synthetic data generation to enhance 

medical datasets Improvement in disease 

diagnosis (e.g., breast cancer, vertebral 

fractures) Radiology imaging 

enhancement (x-ray, CT, MRI, PET 

imaging) Medical education (training 

simulations with generated scenarios) 

Drug discovery and personalized 

treatment plans

Augment limited real-world data 

to train better machine learning 

models Improve drug discovery 

and biomedical instrument design 

Enhance early diagnosis through 

realistic synthetic medical 

imaging Preserve patient privacy 

by generating synthetic data Assist 

medical education with risk-free 

virtual learning scenarios

Data quality and quantity: 

Healthcare datasets often have noise 

and missing values Lack of 

interpretability: Difficult to explain 

how the AI arrived at the results 

Ethical and regulatory concerns: 

Need for strong privacy protections 

Generalization issues: Risk of 

overfitting to training data and 

generating unrealistic results Bias 

and fairness: Biases in training data 

can produce unfair outcomes Safety 

and reliability: Inaccurate outputs 

can lead to dangerous clinical 

decisions

Ultsch et al. 

(2025) (4)

SIIM-ISIC Melanoma 

Classification Dataset, PH2 

Dataset

Fine-tuned a Stable Diffusion model to 

generate synthetic dermoscopic images for 

melanoma detection

Stable Diffusion model, 

which is a latent diffusion 

model (LDM)

Synthesize realistic dermoscopic images 

of melanoma benign skin lesions to 

augment training datasets for 

classification models

To address data scarcity and class 

imbalance in melanoma detection 

datasets improving the 

performance of AI models in skin 

cancer diagnosis

Synthetic images may not capture 

all real-world variations risk of 

overfitting synthetic features 

potentially limiting generalizability

Pawlicka 

et al. (2024) 

(3)

Colorectal polyp dataset StyleGAN2 to synthesize polyp images 

perform segmentation using a model 

trained on a mix of real and synthetic 

images

StyleGAN2 Generative 

Adversarial Network 

(GAN)

Synthesize realistic polyp images to 

augment the training dataset improve the 

performance of downstream polyp 

segmentation models

Address data scarcity in medical 

imaging by generating synthetic 

but realistic data enhance 

segmentation model performance, 

which is critical for early and 

accurate detection of colorectal 

cancer

Diversity of generated images may 

still not fully cover real-world 

variations in polyp appearances risk 

of distribution mismatch between 

synthetic and real images, which 

could potentially affect the 

generalization of the trained 

segmentation models

Aydin et al. 

(2024) (2)

Utilized Time-of-Flight Magnetic 

Resonance Angiography (TOF 

MRA) scans sourced from six 

open-source datasets

StyleGANv2 architecture to a 3D format 

specifically for generating synthetic TOF 

MRA volumes

3D version of 

StyleGANv2, which is a 

type of Generative 

Adversarial Network 

(GAN)

Enhance the training of deep learning 

models for multiclass semantic 

segmentation of CoW arteries improve 

the performance of segmentation tasks, 

which are critical for diagnosing and 

treating cerebrovascular diseases

To address the limitations of real 

patient data, such as scarcity, high 

costs, and regulatory challenges to 

provide a more diverse and 

representative dataset that can 

improve the performance of deep 

learning models in medical 

imaging

The synthetic data produced may 

have limited anatomical fidelity or 

downstream utility in specific tasks 

related to vessel characteristics

Khosravi 

et al. (2024) 

(9)

Pelvic radiographs from patients 

undergoing total hip arthroplasty

generative deep learning (DL) technology 

specifically using denoising diffusion 

probabilistic models

denoising diffusion 

probabilistic model

visualize and analyze race-based 

disparities within large imaging registries 

identify and characterize systematic 

differences in radiographs between 

African American and White patients

enhance understanding of 

underlying differences in medical 

imaging datasets identify biases in 

downstream tasks, ultimately 

fostering the development of 

fairer healthcare practices and 

improving patient care

reliance on self-reported race, 

which may not capture the full 

spectrum of patient diversity 

dataset’s demographic composition 

may limit the generalizability of the 

findings to other healthcare settings 

improvement in generating 

diagnostic-grade images and 

validating findings in independent 

datasets

(Continued) 
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TABLE 1 Continued

Citation Dataset Method Used G. AI Application of used G. AI Purpose in healthcare Limitations of used G. AI

Patel et al. 

(2024) (14)

Facial images with genetic 

conditions

DL image classifier HyperStyle, a GAN- 

inversion technique compatible with 

StyleGAN2

HyperStyle technique, 

which allowed for the 

alteration of facial 

expressions in the images 

while maintaining 

phenotypic accuracy

Enhance diagnostic accuracy in medical 

genetic understand how changed 

expressions could affect clinicians’ ability 

to diagnose genetic conditions quicker 

and more cost-effective diagnoses, 

especially in underserved communities

Diagnostic process for genetic 

conditions provide valuable 

insights that would assist 

clinicians in making more 

informed decisions

While generative AI can be 

beneficial, it is crucial to identify 

and mitigate confounding factors 

that may impact the results, 

particularly in clinical applications

Lang et al. 

(2024) (12)

Retinal fundus photographs 

external eye photographs chest 

radiographs

Training a classifier on the image dataset 

training a StyleGAN-based image 

generator called “StylEx,” automatically 

detecting and visualizing top visual 

attributes formulating hypotheses based on 

these attributes

StyleGAN architecture, 

specifically the StylEx 

model

Identify and visualize discrete medical 

imaging features that correlate with 

demographic information and systemic 

conditions uncover new insights that 

may not be readily identifiable by human 

experts, thereby enhancing the 

understanding of AI models in 

healthcare

Improve the explainability of AI 

models in medical imaging 

facilitate hypothesis generation 

and enhance the understanding of 

the underlying mechanisms that 

link visual changes to health 

outcomes

Not designed to infer causality real- 

world biases and socio-cultural 

factors could complicate the 

interpretation of results and 

necessitate careful consideration by 

interdisciplinary experts

Alkhalaf 

et al. (2024) 

(11)

Electronic health records (EHRs) 

related to malnutrition 

management

Llama 2 13B model with a zero-shot 

prompting technique Retrieval Augmented 

Generation (RAG)

Llama 2 an open-source 

model

Summarize clinical notes and extracting 

key information about malnutrition risk 

factors from EHRs generate structured 

summaries about clients’ nutritional 

status and identifying risk factors for 

malnutrition

Efficiently extract key clinical 

information from large volumes 

of EHR data improve 

understanding of malnutrition 

issues and facilitate the 

development of effective 

interventions in aged care settings

Model hallucination, where the AI 

generates plausible but unverified 

outputs

Pinaya et al. 

(2023) (10)

Chestx-ray14 Chest x-ray Pathology Synthesis (CXP-Syn) 

an approach combining conditional 

denoising diffusion probabilistic models 

(DDPMs)

Denoising Diffusion 

Probabilistic Model 

(DDPM)

Synthesize realistic and diverse chest x- 

ray images data augmentation to 

improve downstream tasks like disease 

classification

Augment limited datasets in 

medical imaging improve 

diagnostic model performance 

assist radiologists and developers

May not capture extremely rare or 

subtle pathologies risk of generating 

unrealistic combinations of 

abnormalities Potential biases in 

the Chestx-ray14 dataset

Bordukova 

et al. (2023) 

(8)

Patient-derived data includes 

baseline measurements and prior 

clinical trajectories

Machine learning (ML) techniques Novel, realistic, and 

complex data with desired 

properties for developing 

Digital Twins (DTs) in 

drug discovery and clinical 

trials

Create Digital Twins, which are digital 

replicas of physical systems enhancing 

the efficiency of drug discovery and 

development

Increase the efficiency of drug 

discovery and development 

processes digitalizing processes 

that are typically associated with 

high economic, ethical, or social 

burdens, ultimately advancing 

precision medicine

Current state of Digital Twins in 

drug discovery does not fully 

exploit the potential of generative 

AI

Huang et al. 

(2023) (6)

Randomly sampled emergency 

department encounters at a 

tertiary care institution

Retrospective diagnostic study where an AI 

interpretation was generated for each chest 

radiograph

Multimodal generative 

artificial intelligence 

methodologies

Create chest radiograph reports in the 

emergency department (ED) setting

Optimize emergency department 

care by providing near-instant 

interpretations of medical 

imaging supports high case 

volumes and aids in clinical 

decision-making

Challenge of objectively evaluating 

the accuracy of free-text imaging 

interpretations

La Salvia 

et al. (2022) 

(15)

Synthetic hyperspectral medical 

images, specifically targeting 

epidermal lesions related to skin 

cancer

Deep Convolutional Generative 

Adversarial Network (DCGAN)

DCGAN, which is a type 

of generative adversarial 

network specifically 

designed for generating 

high-quality images

Skin cancer diagnosis provide a robust 

dataset that can be used to train deep 

learning classifiers, thereby enhancing 

diagnostic capabilities in healthcare

Overcome the challenges posed by 

small-sized datasets in healthcare 

facilitate the training of deep 

learning models, which can lead 

to improved diagnostic tools and 

surgical guidance in clinical 

practice

Need for researchers to provide 

knowledge regarding the 

distribution of synthetic and 

original data

(Continued) 
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TABLE 1 Continued

Citation Dataset Method Used G. AI Application of used G. AI Purpose in healthcare Limitations of used G. AI

Zeng et al. 

(2022) (7)

Does not specify a particular 

dataset

Hierarchical generative models and 

ProteinGAN, which incorporates a self- 

attention mechanism

Deep generative models Design small molecules and proteins 

with desired therapeutic properties for 

drug discovery and development

Accelerate drug discovery 

processes by generating novel 

compounds and therapeutic 

proteins

Often capture only shallow 

statistical correlations which leads 

to misleading decisions

Han et al. 

(2020) (1)

Annotated medical images 

collected for Computer-Aided 

Diagnosis (CAD) research

Generative Adversarial Networks (GANs) Pathology-aware 

Generative Adversarial 

Network (GAN)

Educate physicians who may not have 

extensive experience in interpreting 

complex medical images aiding 

healthcare professionals in making more 

informed decisions based on enhanced 

image data

Bridge the gap between AI and 

healthcare by providing clinically 

relevant tools that can improve 

diagnostic processes confirm the 

clinical relevance of the GAN- 

based image augmentation 

techniques

Need to confirm the clinical 

relevance of the generated images 

for diagnosis

Liu,F er al 

(2025) (16)

8M EHRs (14.8B tokens) 5.4M 

academic articles (48B tokens) 

15,731 medical textbooks (8.6B 

tokens)—630k rare disease/ 

emergency EHRs 600k chest x- 

rays (CXR) 24k CT scans QA 

datasets (PubMedQA, MedQA, 

MedMCQA) OpenAssistant 

Conversations, CoT Collection

Base: Qwen-1.5 32B Pretraining on 

multimodal structured + unstructured data 

Multimodal instruction fine-tuning 

Evaluation via manual physician 

grading + automated metrics (accuracy, F1, 

precision, recall, ROUGE-L, BertScore)

MetaGP (Meta General 

Practitioner) — 32B 

parameter generative 

foundation model for 

medicine

Rare disease diagnosis Emergency 

condition identification Clinical decision 

support Radiology report generation 

(CXR, CT) Multimodal data integration 

(EHR + imaging + QA tasks)

Improve diagnostic accuracy 

across rare/emergent cases 

Enhance physician performance 

(esp. juniors) Generate reliable 

imaging reports comparable to 

radiologists Reduce harmful 

outputs and bias risks

Model size smaller than GPT-4 may 

limit retention of broad medical 

knowledge Transparency/ 

interpretability challenges in 

decision-making Ethical risks: over- 

reliance, bias, fairness concerns 

Heavy computational resource 

demands (A100 GPUs)

aLimitations were reported as stated in the original studies where available; otherwise, we added interpretive remarks to highlight potential concerns (marked with †). This distinction helps clarify which insights stem directly from prior work vs. our critical 

synthesis†a.
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Medical imaging remains the most prolific test-bed for G-AI. 

Early work by Han et al. introduced “pathology-aware” GANs that 

augment computer-aided-diagnosis (CAD) datasets and serve as 

training material for novice radiologists (1). Subsequent studies 

refined both fidelity and dimensionality of synthetic images. 

Aydin et al. re-engineered StyleGANv2 to generate three- 

dimensional Time-of-Flight MR angiography volumes, boosting 

multiclass artery segmentation without additional patient scans 

(2). Similar philosophies underpin Pawlicka et al.’s colorectal- 

polyp synthesis, where GAN-generated images alleviate class 

imbalance and improve endoscopic segmentation accuracy (3). 

Ultsch and Lötsch addressed melanoma detection by fine-tuning 

a latent Stable Diffusion model, proving that diffusion-based 

methods can rival GANs for dermoscopic realism (4).

The promise of G-AI is not limited to raw pixels. Phipps et al. 

explored VLMs that translate chest x-ray features into free-text 

radiology reports, potentially reducing radiologist workload 

during high-volume shifts (5). However, their evaluation 

framework also revealed a tendency to hallucinate clinical 

findings—a stark reminder that factual grounding remains a 

critical bottleneck. Complementary efforts by Huang et al. in 

emergency-department workNows corroborate both the efficiency 

gains and the evaluation challenges of text-generating models (6).

Beyond imaging, G-AI is venturing into molecular and 

systemic domains. Zeng et al. leveraged ProteinGAN and 

hierarchical generative models to design novel proteins and 

small molecules, accelerating the pre-clinical discovery pipeline 

(7). Bordukova et al. harnessed synthetic patient trajectories to 

construct digital twins that can de-risk costly clinical trials (8). 

At the intersection of fairness and analytics, Khosravi et al. 

generated radiographs that isolate race-linked imaging features, 

providing a sandbox for bias audits (9).

These successes nonetheless surface persistent limitations. 

Synthetic data often fails to capture rare anatomical variants or 

subtle disease phenotypes, risking model over-confidence in out-of- 

distribution scenarios (4, 10). Bias in training corpora can be 

magnified, as evidenced by demographic skew in pelvic-radiograph 

synthesis (9). Large multimodal systems may produce credible but 

incorrect statements, undermining clinical trust (5, 11). Interpretable 

frameworks such as StylEx, which links StyleGAN latents to human- 

readable attributes, are therefore gaining traction (12).

Regulatory and ethical considerations further complicate 

deployment. Frictionless data-sharing enabled by G-AI must still 

honor patient consent and institutional review protocols. 

Meanwhile, explainability demands are intensifying; clinicians 

and regulators alike now expect transparent reasoning pathways 

before sanctioning AI-assisted decisions. Collectively, the studies 

surveyed here illuminate both the transformative potential of 

G-AI and the rigorous safeguards required for its responsible 

translation to bedside practice.

Methodology of literature selection

To identify relevant studies, we conducted a targeted search in 

PubMed, IEEE Xplore, and Scopus databases covering January 

2020–May 2025. Keywords included “generative AI”, “synthetic 

data”, “clinical practice”, and “healthcare”. From over 65 initial 

hits, we prioritised peer-reviewed articles that explicitly applied 

generative AI in clinical contexts. Fifteen representative studies 

were chosen to illustrate diverse domains (imaging, text, 

molecular design, and fairness). These were not intended as an 

exhaustive list, but rather as exemplars highlighting the breadth 

and key limitations of generative AI in healthcare.

Comparative analysis and discussion

Table 1 distills fifteen recent studies that deploy generative AI (G- 

AI) across the clinical data spectrum, with medical imaging emerging 

as the prime test-bed. More than two-thirds of the entries apply 

GANs, diffusion models or Vision-Language Models (VLMs) to 

synthesize, augment or interpret radiographs, MRI volumes and 

dermoscopic, endoscopic or fundus photographs. These image- 

centric efforts tackle three chronic bottlenecks highlighted in 

Table 1: limited data volume, class imbalance and privacy 

restrictions. For example, Ultsch & Lötsch fine-tune Stable 

Diffusion to balance melanoma classes, while Aydin et al. extend 

StyleGANv2 to 3-D angiography volumes, boosting vascular- 

segmentation accuracy without collecting new scans.

Beyond imaging, Table 1 shows G-AI penetrating narrative and 

molecular domains. Alkhalaf et al. couple a retrieval-augmented 

Llama-2 with zero-shot prompting to summarise malnutrition risk 

factors from electronic health records, illustrating how foundation 

models can tame unstructured clinical text. Zeng et al. harness 

ProteinGAN to generate bespoke proteins, signalling a shift from 

data augmentation to de-novo biomedical design. Meanwhile, 

Pinaya and Bordukova exploit diffusion models to create synthetic 

chest x-rays and digital-twin trajectories respectively, lowering the 

cost and ethical burden of large-scale trials.

The table also exposes recurring limitations. Synthetic samples 

often omit rare pathologies, risk distribution shifts (e.g., Pawlicka’s 

colorectal polyps) or encode demographic biases (Khosravi’s race- 

aware radiographs). VLMs hallucinate clinical facts, undermining 

trust in auto-generated reports. Several authors therefore call for 

stronger interpretability—Lang’s StylEx explicitly pairs StyleGAN 

with attribute visualisation—and for rigorous external validation 

before clinical rollout.

Collectively, the evidence in Table 1 suggests three near-term 

pay-offs: (i) privacy-preserving data augmentation that accelerates 

model development, (ii) automation of expert-intensive tasks such 

as radiology reporting or phenotype annotation, and (iii) 

exploratory insight generation that surfaces novel biomarkers or 

inequities. Realising these benefits, however, hinges on closing 

interpretability gaps, curbing bias propagation, and establishing 

governance frameworks that keep pace with rapidly evolving 

G-AI toolchains. To mitigate these concerns, safeguards such as 

bias audits, explainability techniques, and transparent 

provenance tracking of synthetic data should be incorporated 

into deployment frameworks. Evaluation of generative models is 

often benchmarked with metrics such as BLEU/ROUGE for text, 

Fréchet Inception Distance (FID) or Inception Score for images, 

Fahad et al.                                                                                                                                                            10.3389/fdgth.2025.1653369 
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and perplexity for language models, which provide quantitative 

grounding for reliability assessments.

Conclusion

Generative AI is already enriching clinical data pipelines, from 

radiology suites to drug-discovery labs. The reviewed literature 

confirms tangible gains in diagnostic accuracy, workNow efficiency, 

and hypothesis generation, driven chieNy by image-focused GANs, 

diffusion models, and emerging VLMs. Yet every advantage is 

tempered by unresolved issues of bias, fidelity, and interpretability. 

Rare pathologies remain under-represented, demographic 

disparities can be inadvertently reinforced, and text generators are 

prone to clinically dangerous hallucinations. Future work must 

therefore pair technical innovation with stringent validation on 

external cohorts, transparent reporting of synthetic-data 

provenance, and user-friendly explanation interfaces. Only through 

such multidisciplinary vigilance can G-AI move from promising 

prototypes to trustworthy, equity-focused tools that genuinely 

advance patient care. Emerging trends such as text-to-3D 

generation for surgical planning signal new directions for 

generative AI in clinical practice, while broader applications in 

education and management remain outside the scope of this review.
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