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Generative artificial intelligence (G-Al) has moved from proof-of-concept
demonstrations to practical tools that augment radiology, dermatology, genetics,
drug discovery, and electronic-health-record analysis. This mini-review
synthesizes fifteen studies published between 2020 and 2025 that collectively
illustrate three dominant trends: data augmentation for imbalanced or privacy-
restricted datasets, automation of expert-intensive tasks such as radiology
reporting, and generation of new biomedical knowledge ranging from molecular
scaffolds to fairness insights. Image-centric work still dominates, with GANs,
diffusion models, and Vision-Language Models expanding limited datasets and
accelerating diagnosis. Yet narrative (EHR) and molecular design domains are
rapidly catching up. Despite demonstrated accuracy gains, recurring challenges
persist: synthetic samples may overlook rare pathologies, large multimodal
systems can hallucinate clinical facts, and demographic biases can be amplified.
Robust validation, interpretability techniques, and governance frameworks
therefore, remain essential before G-Al can be safely embedded in routine care.

KEYWORDS
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Introduction

Healthcare has long grappled with the twin problems of data scarcity and data privacy.
Curating large, balanced, and publicly shareable clinical datasets is expensive, logistically
complex, and ethically sensitive. Recent advances in generative artificial intelligence (G-
AI)—notably Generative Adversarial Networks (GANs), variational auto-encoders,
diffusion models, and large Vision-Language Models (VLMs)—offer a potential remedy by
synthesising realistic yet privacy-preserving data. Table 1 collates fifteen representative
studies that demonstrate how these models are already reshaping diverse clinical tasks.
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TABLE 1 Summary of clinical generative Al applications.

Citation
Bhatt et al.
(2025) (13)

Medical images, patient records,
patient medical histories

Data acquisition, Data preprocessing,
Model training (GANs, VAEs, RNNs,
DCGAN, DRL), Synthetic data-generation,
Evaluation, Application development

Used G. Al
Generative Adversarial
Networks (GANs)
Variational Autoencoders
(VAEs) Recurrent Neural
Networks (RNNs) Deep
Reinforcement Learning
(DRL)

Application of used G. Al
Synthetic data generation to enhance
medical datasets Improvement in disease
diagnosis (e.g., breast cancer, vertebral
fractures) Radiology imaging
enhancement (x-ray, CT, MRI, PET
imaging) Medical education (training
simulations with generated scenarios)
Drug discovery and personalized
treatment plans

Purpose in healthcare

Augment limited real-world data
to train better machine learning
models Improve drug discovery
and biomedical instrument design
Enhance early diagnosis through
realistic synthetic medical
imaging Preserve patient privacy
by generating synthetic data Assist
medical education with risk-free
virtual learning scenarios

Limitations of used G. Al
Data quality and quantity:
Healthcare datasets often have noise
and missing values Lack of
interpretability: Difficult to explain
how the AI arrived at the results
Ethical and regulatory concerns:
Need for strong privacy protections
Generalization issues: Risk of
overfitting to training data and
generating unrealistic results Bias
and fairness: Biases in training data
can produce unfair outcomes Safety
and reliability: Inaccurate outputs
can lead to dangerous clinical

et al. (2024)
(3

perform segmentation using a model
trained on a mix of real and synthetic
images

Adversarial Network
(GAN)

augment the training dataset improve the
performance of downstream polyp
segmentation models

imaging by generating synthetic
but realistic data enhance
segmentation model performance,
which is critical for early and
accurate detection of colorectal
cancer

decisions
Ultsch et al. | SIIM-ISIC Melanoma Fine-tuned a Stable Diffusion model to Stable Diffusion model, Synthesize realistic dermoscopic images | To address data scarcity and class | Synthetic images may not capture
(2025) (4) Classification Dataset, PH2 generate synthetic dermoscopic images for | which is a latent diffusion | of melanoma benign skin lesions to imbalance in melanoma detection | all real-world variations risk of
Dataset melanoma detection model (LDM) augment training datasets for datasets improving the overfitting synthetic features
classification models performance of Al models in skin | potentially limiting generalizability
cancer diagnosis
Pawlicka Colorectal polyp dataset StyleGAN2 to synthesize polyp images StyleGAN2 Generative Synthesize realistic polyp images to Address data scarcity in medical | Diversity of generated images may

still not fully cover real-world
variations in polyp appearances risk
of distribution mismatch between
synthetic and real images, which
could potentially affect the
generalization of the trained
segmentation models

et al. (2024)
(€]

undergoing total hip arthroplasty

specifically using denoising diffusion
probabilistic models

probabilistic model

disparities within large imaging registries
identify and characterize systematic
differences in radiographs between
African American and White patients

underlying differences in medical
imaging datasets identify biases in
downstream tasks, ultimately
fostering the development of
fairer healthcare practices and
improving patient care

Aydin et al. | Utilized Time-of-Flight Magnetic | StyleGANv2 architecture to a 3D format | 3D version of Enhance the training of deep learning | To address the limitations of real | The synthetic data produced may
(2024) (2) Resonance Angiography (TOF specifically for generating synthetic TOF | StyleGANv2, which is a models for multiclass semantic patient data, such as scarcity, high | have limited anatomical fidelity or
MRA) scans sourced from six MRA volumes type of Generative segmentation of CoW arteries improve | costs, and regulatory challenges to | downstream utility in specific tasks
open-source datasets Adversarial Network the performance of segmentation tasks, | provide a more diverse and related to vessel characteristics
(GAN) which are critical for diagnosing and representative dataset that can
treating cerebrovascular diseases improve the performance of deep
learning models in medical
imaging
Khosravi Pelvic radiographs from patients | generative deep learning (DL) technology | denoising diffusion visualize and analyze race-based enhance understanding of reliance on self-reported race,

which may not capture the full
spectrum of patient diversity
dataset’s demographic composition
may limit the generalizability of the
findings to other healthcare settings
improvement in generating
diagnostic-grade images and
validating findings in independent

datasets

(Continued)
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TABLE 1 Continued

Citation

Patel et al.
(2024) (14)

Dataset

Facial images with genetic
conditions

Method

DL image classifier HyperStyle, a GAN-
inversion technique compatible with
StyleGAN2

Used G. Al

HyperStyle technique,
which allowed for the
alteration of facial
expressions in the images
while maintaining
phenotypic accuracy

Application of used G. Al

Enhance diagnostic accuracy in medical

genetic understand how changed
expressions could affect clinicians’ ability
to diagnose genetic conditions quicker
and more cost-effective diagnoses,
especially in underserved communities

Purpose in healthcare
Diagnostic process for genetic
conditions provide valuable
insights that would assist
clinicians in making more
informed decisions

Limitations of used G. Al
While generative AI can be

beneficial, it is crucial to identify
and mitigate confounding factors
that may impact the results,
particularly in clinical applications

Lang et al.
(2024) (12)

Retinal fundus photographs
external eye photographs chest
radiographs

Training a classifier on the image dataset
training a StyleGAN-based image
generator called “StylEx,” automatically
detecting and visualizing top visual
attributes formulating hypotheses based on
these attributes

StyleGAN architecture,
specifically the StylEx
model

Identify and visualize discrete medical
imaging features that correlate with
demographic information and systemic
conditions uncover new insights that
may not be readily identifiable by human
experts, thereby enhancing the
understanding of AI models in
healthcare

Improve the explainability of AL
models in medical imaging
facilitate hypothesis generation
and enhance the understanding of
the underlying mechanisms that
link visual changes to health
outcomes

Not designed to infer causality real-
world biases and socio-cultural
factors could complicate the
interpretation of results and
necessitate careful consideration by
interdisciplinary experts

Alkhalaf
et al. (2024)
(1)

Electronic health records (EHRs)
related to malnutrition
management

Llama 2 13B model with a zero-shot
prompting technique Retrieval Augmented
Generation (RAG)

Llama 2 an open-source
model

Summarize clinical notes and extracting
key information about malnutrition risk
factors from EHRs generate structured
summaries about clients’ nutritional
status and identifying risk factors for
malnutrition

Efficiently extract key clinical
information from large volumes
of EHR data improve
understanding of malnutrition
issues and facilitate the
development of effective
interventions in aged care settings

Model hallucination, where the AI
generates plausible but unverified
outputs

(2023) (10)

Pinaya et al.

Chestx-rayl4

Chest x-ray Pathology Synthesis (CXP-Syn)
an approach combining conditional
denoising diffusion probabilistic models
(DDPMs)

Denoising Diffusion
Probabilistic Model
(DDPM)

Synthesize realistic and diverse chest x-
ray images data augmentation to
improve downstream tasks like disease
classification

Augment limited datasets in
medical imaging improve
diagnostic model performance
assist radiologists and developers

May not capture extremely rare or
subtle pathologies risk of generating
unrealistic combinations of
abnormalities Potential biases in
the Chestx-ray14 dataset

Bordukova
et al. (2023)
®)

Patient-derived data includes
baseline measurements and prior
clinical trajectories

Machine learning (ML) techniques

Novel, realistic, and
complex data with desired
properties for developing
Digital Twins (DTs) in
drug discovery and clinical
trials

Create Digital Twins, which are digital
replicas of physical systems enhancing
the efficiency of drug discovery and
development

Increase the efficiency of drug
discovery and development
processes digitalizing processes
that are typically associated with
high economic, ethical, or social
burdens, ultimately advancing
precision medicine

Current state of Digital Twins in
drug discovery does not fully
exploit the potential of generative
Al

cancer

designed for generating
high-quality images

diagnostic capabilities in healthcare

learning models, which can lead
to improved diagnostic tools and
surgical guidance in clinical
practice

Huang et al. | Randomly sampled emergency Retrospective diagnostic study where an AI | Multimodal generative Create chest radiograph reports in the | Optimize emergency department | Challenge of objectively evaluating
(2023) (6) department encounters at a interpretation was generated for each chest | artificial intelligence emergency department (ED) setting care by providing near-instant the accuracy of free-text imaging
tertiary care institution radiograph methodologies interpretations of medical interpretations
imaging supports high case
volumes and aids in clinical
decision-making
La Salvia Synthetic hyperspectral medical | Deep Convolutional Generative DCGAN, which is a type | Skin cancer diagnosis provide a robust | Overcome the challenges posed by | Need for researchers to provide
et al. (2022) | images, specifically targeting Adversarial Network (DCGAN) of generative adversarial dataset that can be used to train deep small-sized datasets in healthcare | knowledge regarding the
(15) epidermal lesions related to skin network specifically learning classifiers, thereby enhancing facilitate the training of deep distribution of synthetic and

original data

(Continued)
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TABLE 1 Continued

Citation

Dataset

Used G. Al

Application of used G. Al

Purpose in healthcare

Limitations of used G. Al

(2025) (16)

academic articles (48B tokens)
15,731 medical textbooks (8.6B
tokens)—630k rare disease/
emergency EHRs 600k chest x-
rays (CXR) 24k CT scans QA
datasets (PubMedQA, MedQA,
MedMCQA) OpenAssistant
Conversations, CoT Collection

multimodal structured + unstructured data
Multimodal instruction fine-tuning
Evaluation via manual physician

grading + automated metrics (accuracy, F1,
precision, recall, ROUGE-L, BertScore)

Practitioner) — 32B
parameter generative
foundation model for
medicine

condition identification Clinical decision
support Radiology report generation
(CXR, CT) Multimodal data integration
(EHR + imaging + QA tasks)

across rare/emergent cases
Enhance physician performance
(esp. juniors) Generate reliable
imaging reports comparable to
radiologists Reduce harmful
outputs and bias risks

Zeng et al. | Does not specify a particular Hierarchical generative models and Deep generative models Design small molecules and proteins Accelerate drug discovery Often capture only shallow
(2022) (7) dataset ProteinGAN, which incorporates a self- with desired therapeutic properties for | processes by generating novel statistical correlations which leads
attention mechanism drug discovery and development compounds and therapeutic to misleading decisions
proteins
Han et al. Annotated medical images Generative Adversarial Networks (GANs) | Pathology-aware Educate physicians who may not have | Bridge the gap between Al and | Need to confirm the clinical
(2020) (1) collected for Computer-Aided Generative Adversarial extensive experience in interpreting healthcare by providing clinically | relevance of the generated images
Diagnosis (CAD) research Network (GAN) complex medical images aiding relevant tools that can improve for diagnosis
healthcare professionals in making more | diagnostic processes confirm the
informed decisions based on enhanced | clinical relevance of the GAN-
image data based image augmentation
techniques
Liu,F er al 8M EHRs (14.8B tokens) 5.4M Base: Qwen-1.5 32B Pretraining on MetaGP (Meta General Rare disease diagnosis Emergency Improve diagnostic accuracy Model size smaller than GPT-4 may

limit retention of broad medical
knowledge Transparency/
interpretability challenges in
decision-making Ethical risks: over-
reliance, bias, fairness concerns
Heavy computational resource
demands (A100 GPUs)

“Limitations were reported as stated in the original studies where available; otherwise, we added interpretive remarks to highlight potential concerns (marked with t). This distinction helps clarify which insights stem directly from prior work vs. our critical

synthesist®.

e 18 peye

695£59T'5202 UIbpPI/6855 0T



Fahad et al.

Medical imaging remains the most prolific test-bed for G-AlL
Early work by Han et al. introduced “pathology-aware” GANs that
augment computer-aided-diagnosis (CAD) datasets and serve as
training material for novice radiologists (1). Subsequent studies
refined both fidelity and dimensionality of synthetic images.
Aydin et al. re-engineered StyleGANV2 to generate three-
dimensional Time-of-Flight MR angiography volumes, boosting
multiclass artery segmentation without additional patient scans
(2). Similar philosophies underpin Pawlicka et al’s colorectal-
polyp synthesis, where GAN-generated images alleviate class
imbalance and improve endoscopic segmentation accuracy (3).
Ultsch and Lotsch addressed melanoma detection by fine-tuning
a latent Stable Diffusion model, proving that diffusion-based
methods can rival GANs for dermoscopic realism (4).

The promise of G-Al is not limited to raw pixels. Phipps et al.
explored VLMs that translate chest x-ray features into free-text
radiology reports, potentially reducing radiologist workload
shifts  (5). their
framework also revealed a tendency to hallucinate clinical

during high-volume However, evaluation
findings—a stark reminder that factual grounding remains a
critical bottleneck. Complementary efforts by Huang et al. in
emergency-department workflows corroborate both the efficiency
gains and the evaluation challenges of text-generating models (6).

Beyond imaging, G-AI is venturing into molecular and
systemic domains. Zeng et al. leveraged ProteinGAN and
hierarchical generative models to design novel proteins and
small molecules, accelerating the pre-clinical discovery pipeline
(7). Bordukova et al. harnessed synthetic patient trajectories to
construct digital twins that can de-risk costly clinical trials (8).
At the intersection of fairness and analytics, Khosravi et al.
generated radiographs that isolate race-linked imaging features,
providing a sandbox for bias audits (9).

These successes nonetheless surface persistent limitations.
Synthetic data often fails to capture rare anatomical variants or
subtle disease phenotypes, risking model over-confidence in out-of-
distribution scenarios (4, 10). Bias in training corpora can be
magnified, as evidenced by demographic skew in pelvic-radiograph
synthesis (9). Large multimodal systems may produce credible but
incorrect statements, undermining clinical trust (5, 11). Interpretable
frameworks such as StylEx, which links StyleGAN latents to human-
readable attributes, are therefore gaining traction (12).

Regulatory and ethical considerations further complicate
deployment. Frictionless data-sharing enabled by G-AI must still
honor patient consent and institutional review protocols.
Meanwhile, explainability demands are intensifying; clinicians
and regulators alike now expect transparent reasoning pathways
before sanctioning Al-assisted decisions. Collectively, the studies
surveyed here illuminate both the transformative potential of
G-AI and the rigorous safeguards required for its responsible
translation to bedside practice.

Methodology of literature selection

To identify relevant studies, we conducted a targeted search in
PubMed, IEEE Xplore, and Scopus databases covering January
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2020-May 2025. Keywords included “generative AI”, “synthetic
data”, “clinical practice”, and “healthcare”. From over 65 initial
hits, we prioritised peer-reviewed articles that explicitly applied
generative Al in clinical contexts. Fifteen representative studies
were chosen to illustrate diverse domains (imaging, text,
molecular design, and fairness). These were not intended as an
exhaustive list, but rather as exemplars highlighting the breadth
and key limitations of generative Al in healthcare.

Comparative analysis and discussion

Table 1 distills fifteen recent studies that deploy generative AI (G-
Al) across the clinical data spectrum, with medical imaging emerging
as the prime test-bed. More than two-thirds of the entries apply
GANs, diffusion models or Vision-Language Models (VLMs) to
synthesize, augment or interpret radiographs, MRI volumes and
dermoscopic, endoscopic or fundus photographs. These image-
centric efforts tackle three chronic bottlenecks highlighted in
Table 1: limited data volume, class imbalance and privacy
restrictions. For example, Ultsch & Lotsch fine-tune Stable
Diffusion to balance melanoma classes, while Aydin et al. extend
StyleGANvV2 to 3-D angiography volumes, boosting vascular-
segmentation accuracy without collecting new scans.

Beyond imaging, Table 1 shows G-AI penetrating narrative and
molecular domains. Alkhalaf et al. couple a retrieval-augmented
Llama-2 with zero-shot prompting to summarise malnutrition risk
factors from electronic health records, illustrating how foundation
models can tame unstructured clinical text. Zeng et al. harness
ProteinGAN to generate bespoke proteins, signalling a shift from
data augmentation to de-novo biomedical design. Meanwhile,
Pinaya and Bordukova exploit diffusion models to create synthetic
chest x-rays and digital-twin trajectories respectively, lowering the
cost and ethical burden of large-scale trials.

The table also exposes recurring limitations. Synthetic samples
often omit rare pathologies, risk distribution shifts (e.g., Pawlicka’s
colorectal polyps) or encode demographic biases (Khosravi’s race-
aware radiographs). VLMs hallucinate clinical facts, undermining
trust in auto-generated reports. Several authors therefore call for
stronger interpretability—Lang’s StylEx explicitly pairs StyleGAN
with attribute visualisation—and for rigorous external validation
before clinical rollout.

Collectively, the evidence in Table 1 suggests three near-term
pay-offs: (i) privacy-preserving data augmentation that accelerates
model development, (ii) automation of expert-intensive tasks such
as radiology reporting or phenotype annotation, and (iii)
exploratory insight generation that surfaces novel biomarkers or
inequities. Realising these benefits, however, hinges on closing
interpretability gaps, curbing bias propagation, and establishing
governance frameworks that keep pace with rapidly evolving
G-AI toolchains. To mitigate these concerns, safeguards such as
bias audits, explainability techniques, and transparent
provenance tracking of synthetic data should be incorporated
into deployment frameworks. Evaluation of generative models is
often benchmarked with metrics such as BLEU/ROUGE for text,

Fréchet Inception Distance (FID) or Inception Score for images,
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and perplexity for language models, which provide quantitative
grounding for reliability assessments.

Conclusion

Generative Al is already enriching clinical data pipelines, from
radiology suites to drug-discovery labs. The reviewed literature
confirms tangible gains in diagnostic accuracy, workflow efficiency,
and hypothesis generation, driven chiefly by image-focused GANS,
diffusion models, and emerging VLMs. Yet every advantage is
tempered by unresolved issues of bias, fidelity, and interpretability.
Rare pathologies remain under-represented, demographic
disparities can be inadvertently reinforced, and text generators are
prone to clinically dangerous hallucinations. Future work must
therefore pair technical innovation with stringent validation on
external cohorts, transparent reporting of synthetic-data
provenance, and user-friendly explanation interfaces. Only through
such multidisciplinary vigilance can G-AI move from promising
prototypes to trustworthy, equity-focused tools that genuinely
as text-to-3D

directions for

advance patient care. Emerging trends such
generation for surgical planning signal new
generative Al in clinical practice, while broader applications in
education and management remain outside the scope of this review.
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