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Generalised machine learning 
models outperform personalised 
models for cognitive load 
classification in real-life settings

Christoph Anders* , Ipsita Bhaduri and Bert Arnrich 

Digital Health - Connected Healthcare, Hasso Plattner Institute, University of Potsdam, Potsdam, 

Germany

Introduction: By issuing work-break reminders, for example, personal assistants 

for cognitive load could be beneficial in maintaining health and life satisfaction in 

society. Wearable sensors facilitate the necessary real-time collection of 

physiological data. Still, publicly available real-life data sets obtained with 

wearable sensors are scarce, especially considering multi-modal recordings. 

Furthermore, data is usually recorded in either completely controlled or 

uncontrolled environments, missing the opportunity to study participants 

across optimal laboratory and realistic real-life settings.

Methods: This work collected data from ten university students during given 

and self-chosen cognitive load tasks, resembling typical working 

environments from over 40% of the OECD population, and investigated if 

commercially available sensors suffice for building cognitive load assistants. 

The study design accounted for a balanced distribution of eight working 

hours per participant, split between controlled and uncontrolled environments.

Results: Across participants, no single feature correlated significantly with 

cognitive load, but differences in smartwatch indices and biomarkers were 

identified between low- and high-load scenarios. Generalised machine 

learning models like Logistic Regression achieved F1 scores of up to 0.91, 

0.77, and 0.54 for two, three, and five-class classification, respectively.

Discussion: The presented study design marks a step towards real-life mental 

state assistants, and the anonymised dataset was made publicly available.

KEYWORDS

human-centered computing, wearable sensors, cognitive load experiments, 

uncontrolled environment, wavelet decomposition, time-series classification, 
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1 Introduction

Cognitive load (CL) was defined by (1) as “the difference between the capacities of the 

information processing system that are required for task performance to satisfy performance 

expectations and the capacity available at any given time”. Three additive aspects of CL have 

since been distinguished in the field, namely germane (acquisition of knowledge), intrinsic 

(task-specific), and extraneous (information design) load as outlined by (2). According to (3), 

stress can be defined as arousal during an uncontrollable challenge leading to anxiety in an 

individual. Stress and mental workload can be connected factors found to modulate each 

other, as presented by (4), which can lead to cognitive overload and fatigue (5).

If high levels of CL and stress are prolonged and regularly exceed the individual’s 

capacities, the individual can develop serious health consequences, ranging from fatigue 
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over depression to cardiovascular diseases (6). One of the United 

Nations’ sustainable development goals (SDG) is healthy lives and 

well-being for all at all ages, according to the (7). Therefore, 

modulators need to be found to accurately identify and intervene 

in situations of prolonged cognitive overload and stress. The 

recent surge in wearable devices, as surveyed and quantified by 

(8), is likely to support this cause. An example of an existing 

application is continuous heart monitoring through smartwatches. 

As presented by (9), such applications can issue an alarm via the 

wearable following a coronary event and subsequently suggest or 

automatically call for medical care. While these applications 

consider some immediately life-threatening conditions, events 

occurring over longer periods remain underaddressed. Smartwatch 

manufacturers present various (stress) indices to bridge this gap, 

but the proprietary nature of their algorithms hinders an 

evaluation of their accuracy in addressing challenges regarding 

prolonged CL and stress.

Across populations, knowledge workers are especially at risk for 

cognitive overload and prolonged (mild) stress levels. Setz et al. (10) 

used wearable electrodermal activity (EDA) sensors to distinguish 

CL from stress. Muaremi et al. (11) used smartphone activity, 

questionnaires, and a chest belt to classify the stress levels of 35 

participants over four months, without strict control over the 

activities. Work-interruption management—based on CL 

classification—was investigated by (12). Following a machine 

learning challenge on CL classification of data from the Microsoft 

Band 2, (13) found that the submitted answers struggled to 

overcome intersubject variability. Wilson et al. (14) investigated an 

eye-tracker and the Empatica E4 in classifying CL in a plane’s 

cockpit, finding Photoplethysmogram (PPG) and EDA features to 

be most indicative. Giorgi et al. (15) found a strong positive 

correlation between data from wearable sensors—particularly the 

Empatica E4 and Muse S—and gold-standard versions of the 

underlying measurement technologies. Fine et al. (16) investigated 

CL for pre-defined tasks across 21 participants and found 

indicators of heart-rate variability to be correlated with CL.

Gasparini et al. (17) investigated classifying CL during 

movement-related (non-office) tasks, and found that task type 

as well as CL level could be classified using PPG, 

Electromyography (EMG), and Galvanic Skin Response (GSR) 

data. It is important to note that, while similar modalities and 

sensors can be used, CL and (mild) stress classification are 

distinct from activity recognition. To exemplify, while the 

movement patterns used to identify a walking activity, the CL 

might be vastly different if the individual is relaxing or focused 

on a phone call. Hence, the same activities can be combined 

with arbitrary levels of CL.

González Ramírez et al. (18) performed a scoping review of 40 

studies on stress management and found most experiments were 

conducted in controlled environments, underlining the need for 

more real-life experiments. An example of such experiments is the 

work of (19), which focused on classifying laboratory-task-induced 

stress using physiological and video data. Liu et al. (20) used an 

eye-tracker and the Empatica E4 to classify CL levels during 

cooking activities. Beiramvand et al. (21) utilised mobile 

electroencephalogram (EEG) and showcased that discrete wavelet 

transform (DWT) features could be used to distinguish mental 

workload in an imbalanced three-class classification problem. 

While (22) investigated CL in both controlled and uncontrolled 

environments and published over 315 h of wearable sensor data, 

their work did not consider office tasks comparable across 

participants. A systematic review of CL found few works on real- 

life tasks, such as office or learning tasks (23), while practitioners 

suggest a combination of CL concepts (24), and many data 

collections use well-established tasks, such as the N-Back 

contrasted with the operation of semi-autonomous vehicles (25).

Despite recent advancements, multiple aspects of CL and 

stress quantification with wearable sensors remain understudied: 

(i) a mixed-control environment study design, (ii) utilisation of 

real-life office tasks, and (iii) the investigation of feature 

importance remains to be explored further. This work 

contributed to the field by addressing these challenges through a 

novel study design presented in Figure 1.

2 Materials and methods

In line with previous research [e.g., (15, 22)], the wearable 

sensors Muse S and Empatica E4 were utilised in this study to 

investigate CL and (mild) stress levels in knowledge workers 

(i.e., university students). A study design tackling the lack of 

mixed-control environment study designs utilising real-life tasks 

was defined.

Participants (n ¼ 10; 23 to 51 years old, mean age of 30 years, 

STD of 8 years; 5 female: 5 male) were invited to a first data 

recording session, in a regular office room with whiteboards, 

windows for natural light, and controlled temperature. The 

room and hallway leading to it were monitored to ensure no 

interruptions occurred while data was recorded. During this 

session, the study design was explained, participants were shown 

how to wear the sensors, and any open questions were answered 

before the data recording started. While data was recorded, 

participants were guided through computerised tasks and 

questionnaires, implemented in Python 3.8 and using the 

PsychoPy platform (v2022.2.1).

The tasks posed to participants were the Stroop Color and 

Word Test (SCWT; four colors (red, blue, yellow, and green); 

less than 1.5 s to answer to stimuli), the N-back continuous 

performance task (two-back; thirteen different colors (Blue, 

Yellow, Burlywood, Green, Cyan, Hotpink, Red, Lightpink, 

Lightsalmon, Lightseagreen, Lightskyblue, Maroon, Olive); less 

than two seconds per iteration), and two reading and 

summarizing tasks. As literature for the reading and 

summarizing tasks, six scientific publications (26–31) were 

chosen as difficult texts, and six short-stories from famous 

English writers [Edgar Allan Poe (“The Gift of the Magi”, “The 

Masque of the Red Death”, “The Cask of Amontillado”, and “The 

Black Cat”), Oscar Wilde (“The Devoted Friend”), and Charlotte 

Brontë (“The Search After Happiness”)] were chosen as easy texts.

A ten-minute relaxation video (first ten minutes from 

https://www.youtube.com/watch?v=mLwlGsRhNIU) was presented 

at the beginning of the computerised experiment to ensure that all 
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participants started the experiment calmly. Before the relaxation 

video and after the last task was completed, the participants 

performed a one-minute eye-closing session. In between tasks, 

the participants answered the questionnaires pairwise NASA 

Task Load Index (NASA-TLX) and Likert-Scales for Mental 

Workload and Stress, to report on their subjective mental 

workload level, experienced stress, etc., for the preceding task/ 

activity. In total, each experiment in the controlled environment 

lasted approximately two hours.

Following the data recording, participants were instructed on 

how to perform recordings on their own, and the sensors and 

chargers were handed out alongside a folder with questionnaires 

and contact information of the study directors. During their 

uncontrolled data recordings, participants were free to choose 

the environment(s) in which they would feel most comfortable 

and natural. There, participants had to follow the pre-defined 

study protocol for self-chosen environments: eye-closing 

baseline of one minute, questionnaires, relaxation task of ten 

minutes, questionnaires, mental workload task (twenty minutes 

reading and ten minutes summarising of a text), questionnaires, 

and finally another eye-closing baseline of one minute.

The same questionnaires used in the laboratory recording 

were used in the uncontrolled environment. As a relaxation 

task, the spot-the-difference game was utilized (https://www. 

spotthedifference.com/). A random subset of scientific 

publications and short stories was chosen for the mental 

workload tasks, ensuring no text was read twice. Once 

participants had finished approximately four hours of data 

recordings in their self-chosen environment(s) (0 to 4 

recordings per participant, mean of 2.3 and STD of 1.1 

recordings), another appointment for a second recording in the 

controlled laboratory environment was made.

In the second recording in the controlled laboratory environment, 

participants completed a second iteration of the same protocol 

described for the first session. The study protocol and 

randomisation processes ensured that the scientific publications and 

short stories were not repeated. Consequently, each scientific 

publication and short story was read and summarised at most once 

by the participant. In total, each participant recorded about eight 

hours of data over the two controlled and n uncontrolled sessions.

Ethical clearance for the study was obtained from the institutional 

review board under review number 02/2023. Inclusion criteria required 

participants to be between 18 and 68 years old, Ouent in English, and to 

regularly perform performance-evaluated work. Potential participants 

were excluded from participation if they were either retired or needed 

to regularly take medication for any neurological disease (e.g., 

depression, brain damage, or similar). Additionally, pregnant 

women, participants with hypertension, and participants who could 

have been in a dependent relationship with the study directors were 

excluded from participation.

From the Muse S, the data modalities electroencephalography 

(EEG; sampled at 256 Hz from AF7, AF8, TP9, TP10, and 

referenced at FpZ, according to the 10–20 system for electrode 

placement), gyroscope sampled at 50 Hz, as well as 

photoplethysmography (PPG; sampled at 64 Hz) were recorded. 

The Empatica E4 recorded skin temperature at 4 Hz, PPG at 64 

Hz, electrodermal activity at 4 Hz, and acceleration data at 32 

Hz. Once the data was recorded, the questionnaires were 

FIGURE 1 

Schematic overview of the study design and data analysis pipeline. Participants enrolled in the experiment were provided with the wearable sensors 

Empatica E4 and Muse S. Each participant recorded data for four hours in a controlled laboratory environment and four hours in self-chosen 

environments. Screenshot of scientific publication reproduced from: “Effect of Yeast Fermentation of Green Coffee Beans on Antioxidant Activity 

and Consumer Acceptability” by Han Sub Kwak, Yoonhwa Jeong and Misook Kim, licensed under CC BY 4.0. Image of St. Paul’s Cathedral 

reproduced with permission from: https://www.spotthedifference.com/.
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digitised, and the respective labels were extracted for each activity 

performed by the participants. The data collected was published in 

anonymised form, publicly available without any restrictions from 

https://doi.org/10.5281/zenodo.15681262.

Additionally, the Muse S and Empatica E4 data were 

synchronised based on a shaking protocol. For the recordings in 

the controlled environments, this data was synchronised with 

the log data stored by the PsychoPy application. Based on 

timestamps, the labels were aligned with the respective data. 

Power line interference was filtered by notch-filtering the 

recorded data at 50 Hz, but no further specific data cleaning or 

artefact rejection was performed.

Subsequently, the time series data was split into windows of 60 s, 

and hand-crafted features were extracted. For Muse S, the individual 

EEG channels (AF7, AF8, TP9, TP10) were used, and various 

projections were created: mean (across all channels), prefrontal 

(mean across AF7 and AF8), temporal (mean across TP9 and 

TP10) and asymmetry (right vs. left cerebral hemisphere). For 

each of the projected channels, band power was extracted using 

the Fast Fourier Transform for each of the channels Delta (d, , 4 

Hz), Theta (u, 4 Hz to 8 Hz), Alpha (a, 8 Hz to 12 Hz), Beta (b, 

12 Hz to 30 Hz), and Gamma (g, 30 Hz to 45 Hz). Subsequently, 

various indices were extracted, as reported in the literature. As 

such, the Engagement Index (32), the Brain Beat (33) and the CLI 

(34, 35) were extracted. In addition, inspired by related work (36), 

discrete wavelet transform (DWT) was performed on the notch- 

filtered as well as the mean data. For the DWT, the Python 

package pywt (https://github.com/PyWavelets/pywt) was used with 

the two mother wavelet functions “db2” and “haar”, and the 

decomposition level was set to eight. Nine of the resulting 

coefficients were used as features: cA8, cD8, cD7, cD6, cD5, cD4, 

cD3, cD2, and cD1. For each of the coefficients, the features STD, 

MEAN, MIN, MAX, Skewness, RelativeWaveletEnergy, Kurtosis, 

and ZeroCrossing were extracted. Per participant, the features were 

normalized using z-score normalization.

For Empatica E4, various features were extracted from each 

modality. The minimum, mean, and maximum values for the 

time window were extracted from the skin temperature. The 

minimum and maximum skin conductance response, the number 

of skin conductance response peaks, and the minimum, mean, 

and maximum level of skin conductance were extracted for each 

time window from the electrodermal activity signal. The widely 

used features of HRV_MeanNN, HRV_SDNN, HRV_RMSSD, 

HRV_LF, HRV_HF, HRV_ratio_LF_HF, and the minimum, 

mean, and maximum heart rate were extracted from the 

photoplethysmography signal. Processing of the Empatica E4 

data was facilitated by NeuroKit2, presented by (37).

From the questionnaires, the mental workload labels were 

utilized to form three types of classification problems: a two-class 

classification into low and high mental workload; a three-class 

classification into low, neither low nor high, and high mental 

workload; as well as a five-class classification into very low, low, 

neither low nor high, high, and very high mental workload. As 

labels, the participant-given labels were extracted from the log files 

of the PsychoPy experiments as well as from the digitized pen-and- 

paper questionnaires answered by the participants. An exploratory 

data analysis of selected features was performed, contrasting low 

and high load, and the results are visualized in Figure 2.

Based on these mental workload labels, a Pearson correlation 

analysis and a Spearman correlation analysis were performed to 

investigate the relationship between the feature values and the 

labels to analyze how much information a feature provides for 

FIGURE 2 

Boxplot comparison of selected features for low (Lw) and high (Hg) cognitive load across participants. Common Smartwatch-Index (SI) features 

Heart Rate (HR) and Root Mean Square of Successive Differences (RMSSD) used to derive smartwatch stress states [according to (39)]; common 

E4 features Skin Conductance Response (SCR) and the low Frequency-to-High Frequency (LF/HF) Ratio [according to (40)]; common Muse 

features ASymmetry index across All channels (ASA), Engagement Index (EI), Brain Beat (BB), and Cognitive Load Index (CLI) [according to 

(32–35, 41)]. Differences can be seen between HR (SI), LF/HF (E4), ASA and EI (Muse).
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mental workload classification, and between the features 

themselves to analyze which features inOuence each other and 

might be redundant. The results from the Spearman correlation 

analysis were used for a feature selection process to investigate 

the usage of a smaller subset of features, after it had been found 

that DWT-features with the “haar” mother function consistently 

provided the best correlation coefficients for binary, three-class, 

and five-class classification.

The standard machine learning classifiers DecisionTreeClassifier 

(DT), LogisticRegression (LR), MLPClassifier (MLP), 

KNeighborsClassifier (KNN), and LinearSVC (SVM) available in 

the scikit-learn package (38), were used for time-series 

classification. In addition to the previously described z-score 

normalisation, features were min-max normalised. All models 

were evaluated using leave-one-participant-out cross-validation 

with both classification accuracy and weighted F1 score as 

evaluation metrics. The source code for the data processing and 

the machine learning models was made publicly available via 

GitHub at https://github.com/HPI-CH/mw_office_2025.

The criteria gini and entropy were used with the splitters best and 

random and a max_depth increasing in 5-point steps from 5 to 305 

for the DT classifier. Various combinations of the solvers lbfgs, 

liblinear, sag, and saga were used with the penalty values l1, l2, 

and None for the LR classifier. For the MLP classifier, the 

activation function was chosen to be either logistic, tanh, or relu, 

and the hidden layer size was set to 3, 10, 30, or 50. A leaf size 

ranging from 1 to 50, a number of neighbors ranging from 1 to 30, 

and a p-value of either 1 or 2 was used for the KNN classifier. 

The penalties l1 and l2 were used in combination with the C 

values of 0.001, 0.01, 0.1, 1, 10, 100, and 1,000 for the SVM classifier.

3 Results

The correlations of the features with the mental workload 

labels provided by the participants, as quantified with the 

Spearman Correlation Coefficient, are low. The averaged 

absolute correlation coefficients rarely exceed a value of 0.08. 

This strongly suggests that the correlations observed for this 

general population of ten participants are negligible. For the 

individuals, however, different features reach low correlation 

values above 0.2. A similarity across both Pearson correlation 

analysis and Spearman correlation analysis could be observed: 

Most of the DWT (db2) features (Kurtosis, ZeroCrossing, MIN, 

MEAN, and MAX), and the DWT (haar) feature ZeroCrossing 

are present across both sets of features across all electrode 

positions (AF7, AF8, TP9, and TP10) with the highest 

correlation coefficients with the, by the participants self- 

assigned, labels for CL, between 0.2 and 0.24.

Due to the large number of automatically extracted features 

(n ¼ 754) using DWT (nDWT�features ¼ 720), and the insights 

derived from both the exploratory data analysis and the 

correlation analysis presented in Figure 2 , the impact of feature 

selection on time-series classification performance was 

investigated for three sets of features (both sensors; Muse 

S alone; Empatica E4 alone), as detailed in Table 1.

The time-series classification performance of generalised 

Machine Learning models obtained via Leave-One-Participant- 

Out cross-validation (LOO-CV) is given in Figure 3. The 

classification performance using all features is given with a 

transparent background, and the performance of time-series 

classification using the reduced feature sets is given with a grey 

background colour. The models DT, LR, MLP, KNN, and SVM 

show strongly varying classification performances dependent on 

the classification difficulty. As can be seen across two, three, and 

five-class classification, the impact of feature reduction on this 

particular dataset is, however, mostly negligible. While in some 

cases beneficial, the opposite also holds, and the overall average 

minimum, mean, and maximum F1-scores of generalised LOO- 

CV models are nearly identical across classification tasks. For 

these generalised models, the minimum and maximum F1 

scores achieved are 0.33 and 0.91, 0.18 and 0.77, and 0.14 and 

0.54 for two, three, and five-class classifications, respectively.

Across the 900 best participant-independent models, most 

used the following parameters: “criterion: gini, max_depth:5, 

splitter: random (DT)”; “penalty: l2, solver: lbfgs (LR)”; 

TABLE 1 For the extracted features, the “x” marks if the feature was 
included in the reduced feature set, i.e., Both Modalities Set (20 
features), Muse S Set (20 features), and Empatica E4 Set (18 features), 
while the background color indicates from which modality the feature 
was extracted.

Feature Both 
Modalities 

Set

Muse 
S Set

Empatica 
E4 Set

Twelve DWT-features x x –

TemporalDeltaPower – x –

PrefrontalGammaPower – x –

TemporalThetaPower – x –

TemporalBetaPower – x –

TemporalGammaPower – x –

EngagementIndex – x –

AsymmetryIndexPrefrontal – x –

CLI – x –

max-scr x – x

HRV-SDNN x – x

HRV-RMSSD x – x

Max-Heart-Rate x – x

max-skt x – x

max-scl x – x

HRV-MeanNN x – x

HRV-ratio-LF-HF x – x

min-scr – – x

num-scr-peaks – – x

min-scl – – x

mean-scl – – x

min-skt – – x

mean-skt – – x

HRV-LF – – x

HRV-HF – – x

Min-Heart-Rate – – x

Mean-Heart-Rate – – x

The twelve DWT features encompassed mostly DWT detail coefficients cD1, cD7, and cD8 

(i.e., low- and high-frequency information), furthermore summarized by Kurtosis, Mean, and 

ZeroCrossing, the specifics of which can be found in the source code made publicly available 

at https://github.com/HPI-CH/mw_office_2025.
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“activation: relu, hidden_layer_sizes: 30 (MLP)”; “leaf_size: 1, 

n_neighbors: 9, p: 1 (KNN)”; and “C: 0.01, penalty: l2 (SVM)”.

Across the literature, the observation can be made that 

similar wearable devices can be used for activity recognition as 

well as for CL classification, as exemplified for instance by (42) 

in their work on human activity recognition (HAR) of activities 

of daily living, who used the Empatica E4, a device used as well 

in this work. Hypothesising that context information could be 

beneficial for CL classification, the idea was investigated how 

CL classification might change if HAR were able to classify the 

works done in this experiment. Following through on this 

thought-experiment, personalised machine learning (ML) 

models were built using the previously stated reduced feature 

sets and the activity features Relaxation, Load, Summary, 

Reading, and Game, represented as additional one-hot encoded 

features. The personalised ML models were trained using five- 

fold cross-validation, and time-series classification results, 

reported as F1 score, are given in Figure 4. For personalised 

models, the minimum and maximum F1 scores achieved are 

0.38 and 0.92, 0.21 and 0.64, and 0.15 and 0.72 for two-, three- 

, and five-class classifications, respectively. For this data, the 

information added by activity features did not significantly 

change classification results.

4 Discussion

While Wavelet Transform is usually used to denoise an input 

signal as performed by (43), some works also utilize Wavelet 

Transform to extract meaningful features for subsequent time- 

series classification [e.g., (44, 45)]. Inspired by this line of 

investigation, this work utilized Discrete Wavelet Transform 

(DWT) for feature extraction. In this work, the wavelet-based 

features extracted from the EEG data were the most stable 

characteristics in the investigated population. Furthermore, 

supporting previous research that found the prefrontal cortex to 

be heavily involved in the processing of mental workload and 

stress (46, 47), the electrode locations AF7 and AF8 appear �1.4 

FIGURE 3 

Subject-Independent (Minimum, Mean, Maximum) LOO-CV Results (F1) of generalised models across participant-specific personalised labels. The 

models which were trained with a reduced feature set selected after feature selection are marked with gray background colour. Average values 

for (Minimum, Mean, Maximum) across models are given.
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times more often in the most-important features than TP9 and 

TP10, which are electrode positions usually associated with the 

encoding of memory and emotions (48).

Building on the underlying idea that context information is 

important—and that the wearables Muse S and Empatica E4, or 

the E4’s successor EmbracePlus, could be concealed to enable 

unobtrusive, real-time CL monitoring—the hypothesis arose that 

time series classification results might be even better when 

combining the classification of CL and stress levels with 

predictions of the type of office activity performed by the 

individual. In the broader field of mental state classification, 

(49) pushed conditionally automated driving applications using 

physiological data by extracting reliable features, yet their work 

was unable to classify the specific type of task, a necessary step 

to include context information. However, as presented by (17), 

it is possible to simultaneously classify the type of task and 

mental state of a participant using devices similar to those used 

in this work. If, in the future, a perfect classification of task type 

would be possible using the same wearable sensors, this 

information could be used as context information in mental 

state classification.

This hypothesis was tested in this work for binary, three-class, 

and five-class classification with reduced feature sets, by passing a 

numeric value representative of the task type to the ML model as a 

one-hot encoded feature. The best classification results of 

generalised models changed to F1 scores (min, avg, max) of 

[0.43, 0.72, 0.91], [0.24, 0.45, 0.74], and [0.18, 0.34, 0.56], 

respectively, suggesting at best a minor performance increase 

(detailed results not shown).

For personalised models, a similar negligible change in 

classification performance was obtained. To summarise, in the 

evaluation performed in this work, no significant added benefit 

through additional information about task types could be 

observed. Future work should investigate how context 

information could be incorporated differently, and if variability 

in labels obtained from participants explains current results.

However, this work has two limitations due to the participant 

and feature selection process applied. Firstly, with n ¼ 10, a 

FIGURE 4 

Averaged (Minimum, Mean, Maximum) Five-Fold CV Results (F1) across Participant-Specific Personalised Models. The models that received the 

cognitive load activity as features are marked with a grey background colour. Average values for (Minimum, Mean, Maximum) across models 

are given.
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selection bias might be present regarding the individuals who took 

part in the study. Secondly, as the feature selection was not 

performed on a separate part of the data, but rather built on the 

insights derived from the statistical analysis using all the data, 

the risk of overfitting is present in the reported results.

Also, future work should focus on combining research on 

office-work break interface design with mental state 

classification, as investigated by (50). Consequently, tangible 

interventions for office work well-being as reviewed by (51), 

building on targeted and personalized mental workload and 

stress classification models using physiological data from 

wearables, would push the workforce of the 21st century closer 

to the United Nations sustainable development goal (SGD) of 

“healthy lives and well-being for all at all ages”.

This work presented a novel study paradigm enabling 

researchers to investigate CL and stress in realistic settings with 

ground-truth values obtained in controlled laboratory 

environments. Feature importances were investigated, and 

(assumed) smartwatch indices (SI) were compared with features 

widely used in the literature. Differences between low and high CL 

can be seen, especially between HR (SI), LF/HF (Empatica E4), ASA 

and EI (Muse S). Despite at best low correlation coefficients between 

extracted features and subjective CL labels, well-performing 

generalised CL models can be built using standard ML models.
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