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Generalised machine learning
models outperform personalised
models for cognitive load
classification in real-life settings

Christoph Anders* ®, Ipsita Bhaduri ® and Bert Arnrich

Digital Health - Connected Healthcare, Hasso Plattner Institute, University of Potsdam, Potsdam,
Germany

Introduction: By issuing work-break reminders, for example, personal assistants
for cognitive load could be beneficial in maintaining health and life satisfaction in
society. Wearable sensors facilitate the necessary real-time collection of
physiological data. Still, publicly available real-life data sets obtained with
wearable sensors are scarce, especially considering multi-modal recordings.
Furthermore, data is usually recorded in either completely controlled or
uncontrolled environments, missing the opportunity to study participants
across optimal laboratory and realistic real-life settings.

Methods: This work collected data from ten university students during given
and self-chosen cognitive load tasks, resembling typical working
environments from over 40% of the OECD population, and investigated if
commercially available sensors suffice for building cognitive load assistants.
The study design accounted for a balanced distribution of eight working
hours per participant, split between controlled and uncontrolled environments.
Results: Across participants, no single feature correlated significantly with
cognitive load, but differences in smartwatch indices and biomarkers were
identified between low- and high-load scenarios. Generalised machine
learning models like Logistic Regression achieved F1 scores of up to 0.91,
0.77, and 0.54 for two, three, and five-class classification, respectively.
Discussion: The presented study design marks a step towards real-life mental
state assistants, and the anonymised dataset was made publicly available.

KEYWORDS

human-centered computing, wearable sensors, cognitive load experiments,
uncontrolled environment, wavelet decomposition, time-series classification,
machine learning, personal assistant

1 Introduction

Cognitive load (CL) was defined by (1) as “the difference between the capacities of the
information processing system that are required for task performance to satisfy performance
expectations and the capacity available at any given time”. Three additive aspects of CL have
since been distinguished in the field, namely germane (acquisition of knowledge), intrinsic
(task-specific), and extraneous (information design) load as outlined by (2). According to (3),
stress can be defined as arousal during an uncontrollable challenge leading to anxiety in an
individual. Stress and mental workload can be connected factors found to modulate each
other, as presented by (4), which can lead to cognitive overload and fatigue (5).

If high levels of CL and stress are prolonged and regularly exceed the individual’s
capacities, the individual can develop serious health consequences, ranging from fatigue
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over depression to cardiovascular diseases (6). One of the United
Nations’ sustainable development goals (SDG) is healthy lives and
well-being for all at all ages, according to the (7). Therefore,
modulators need to be found to accurately identify and intervene
in situations of prolonged cognitive overload and stress. The
recent surge in wearable devices, as surveyed and quantified by
(8), is likely to support this cause. An example of an existing
application is continuous heart monitoring through smartwatches.
As presented by (9), such applications can issue an alarm via the
wearable following a coronary event and subsequently suggest or
automatically call for medical care. While these applications
consider some immediately life-threatening conditions, events
occurring over longer periods remain underaddressed. Smartwatch
manufacturers present various (stress) indices to bridge this gap,
but the proprietary nature of their algorithms hinders an
evaluation of their accuracy in addressing challenges regarding
prolonged CL and stress.

Across populations, knowledge workers are especially at risk for
cognitive overload and prolonged (mild) stress levels. Setz et al. (10)
used wearable electrodermal activity (EDA) sensors to distinguish
CL from stress. Muaremi et al. (11) used smartphone activity,
questionnaires, and a chest belt to classify the stress levels of 35
participants over four months, without strict control over the
activities. ~ Work-interruption =~ management—based on CL
classification—was investigated by (12). Following a machine
learning challenge on CL classification of data from the Microsoft
Band 2, (13) found that the submitted answers struggled to
overcome intersubject variability. Wilson et al. (14) investigated an
eye-tracker and the Empatica E4 in classifying CL in a plane’s
cockpit, finding Photoplethysmogram (PPG) and EDA features to
be most indicative. Giorgi et al. (15) found a strong positive
correlation between data from wearable sensors—particularly the
Empatica E4 and Muse S—and gold-standard versions of the
underlying measurement technologies. Fine et al. (16) investigated
CL for pre-defined tasks across 21 participants and found
indicators of heart-rate variability to be correlated with CL.

Gasparini et al. (17) investigated classifying CL during
movement-related (non-office) tasks, and found that task type
as well as CL level could be classified using PPG,
Electromyography (EMG), and Galvanic Skin Response (GSR)
data. It is important to note that, while similar modalities and
sensors can be used, CL and (mild) stress classification are
distinct from activity recognition. To exemplify, while the
movement patterns used to identify a walking activity, the CL
might be vastly different if the individual is relaxing or focused
on a phone call. Hence, the same activities can be combined
with arbitrary levels of CL.

Gonzalez Ramirez et al. (18) performed a scoping review of 40
studies on stress management and found most experiments were
conducted in controlled environments, underlining the need for
more real-life experiments. An example of such experiments is the
work of (19), which focused on classifying laboratory-task-induced
stress using physiological and video data. Liu et al. (20) used an
eye-tracker and the Empatica E4 to classify CL levels during
(21) utilised mobile
electroencephalogram (EEG) and showcased that discrete wavelet

cooking activities. Beiramvand et al
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transform (DWT) features could be used to distinguish mental
workload in an imbalanced three-class classification problem.
While (22) investigated CL in both controlled and uncontrolled
environments and published over 315h of wearable sensor data,
their work did not consider office tasks comparable across
participants. A systematic review of CL found few works on real-
life tasks, such as office or learning tasks (23), while practitioners
suggest a combination of CL concepts (24), and many data
the N-Back
contrasted with the operation of semi-autonomous vehicles (25).

collections use well-established tasks, such as

Despite recent advancements, multiple aspects of CL and
stress quantification with wearable sensors remain understudied:
(i) a mixed-control environment study design, (ii) utilisation of
real-life office tasks, and (iii) the investigation of feature
to be This

contributed to the field by addressing these challenges through a

importance remains explored further. work

novel study design presented in Figure 1.

2 Materials and methods

In line with previous research [e.g., (15, 22)], the wearable
sensors Muse S and Empatica E4 were utilised in this study to
investigate CL and (mild) stress levels in knowledge workers
(i.e., university students). A study design tackling the lack of
mixed-control environment study designs utilising real-life tasks
was defined.

Participants (n = 10; 23 to 51 years old, mean age of 30 years,
STD of 8 years; 5 female: 5 male) were invited to a first data
recording session, in a regular office room with whiteboards,
windows for natural light, and controlled temperature. The
room and hallway leading to it were monitored to ensure no
interruptions occurred while data was recorded. During this
session, the study design was explained, participants were shown
how to wear the sensors, and any open questions were answered
before the data recording started. While data was recorded,
participants were guided through computerised tasks and
questionnaires, implemented in Python 3.8 and using the
PsychoPy platform (v2022.2.1).

The tasks posed to participants were the Stroop Color and
Word Test (SCWT; four colors (red, blue, yellow, and green);
less than 1.5s to answer to stimuli), the N-back continuous
performance task (two-back; thirteen different colors (Blue,
Cyan, Hotpink, Red, Lightpink,
Lightsalmon, Lightseagreen, Lightskyblue, Maroon, Olive); less

Yellow, Burlywood, Green,

than two seconds per and two
tasks. As

summarizing tasks, six scientific publications (26-31) were

iteration), reading and

summarizing literature for the reading and
chosen as difficult texts, and six short-stories from famous
English writers [Edgar Allan Poe (“The Gift of the Magi”, “The
Masque of the Red Death”, “The Cask of Amontillado”, and “The
Black Cat”), Oscar Wilde (“The Devoted Friend”), and Charlotte
Bronté (“The Search After Happiness”)] were chosen as easy texts.

A ten-minute relaxation video (first ten minutes from
https://www.youtube.com/watch?v=mLwlGsRhNIU) was presented

at the beginning of the computerised experiment to ensure that all
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FIGURE 1
Schematic overview of the study design and data analysis pipeline. Participants enrolled in the experiment were provided with the wearable sensors
Empatica E4 and Muse S. Each participant recorded data for four hours in a controlled laboratory environment and four hours in self-chosen
environments. Screenshot of scientific publication reproduced from: “Effect of Yeast Fermentation of Green Coffee Beans on Antioxidant Activity
and Consumer Acceptability” by Han Sub Kwak, Yoonhwa Jeong and Misook Kim, licensed under CC BY 4.0. Image of St. Paul's Cathedral
reproduced with permission from: https://www.spotthedifference.com/.

participants started the experiment calmly. Before the relaxation
video and after the last task was completed, the participants
performed a one-minute eye-closing session. In between tasks,
the participants answered the questionnaires pairwise NASA
Task Load Index (NASA-TLX) and Likert-Scales for Mental
Workload and Stress, to report on their subjective mental
workload level, experienced stress, etc., for the preceding task/
activity. In total, each experiment in the controlled environment
lasted approximately two hours.

Following the data recording, participants were instructed on
how to perform recordings on their own, and the sensors and
chargers were handed out alongside a folder with questionnaires
and contact information of the study directors. During their
uncontrolled data recordings, participants were free to choose
the environment(s) in which they would feel most comfortable
and natural. There, participants had to follow the pre-defined
study protocol for self-chosen environments: eye-closing
baseline of one minute, questionnaires, relaxation task of ten
minutes, questionnaires, mental workload task (twenty minutes
reading and ten minutes summarising of a text), questionnaires,
and finally another eye-closing baseline of one minute.

The same questionnaires used in the laboratory recording
were used in the uncontrolled environment. As a relaxation
task, the spot-the-difference game was utilized (https://www.
A of

publications and short stories was chosen for the mental

spotthedifference.com/). random  subset scientific

workload tasks, ensuring no text was read twice. Once

participants had finished approximately four hours of data
in their O to 4

recordings self-chosen environment(s)
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recordings per participant, mean of 2.3 and STD of 1.1
recordings), another appointment for a second recording in the
controlled laboratory environment was made.

In the second recording in the controlled laboratory environment,
participants completed a second iteration of the same protocol
described for the first The study protocol
randomisation processes ensured that the scientific publications and

session. and
short stories were not repeated. Consequently, each scientific
publication and short story was read and summarised at most once
by the participant. In total, each participant recorded about eight
hours of data over the two controlled and n uncontrolled sessions.

Ethical clearance for the study was obtained from the institutional
review board under review number 02/2023. Inclusion criteria required
participants to be between 18 and 68 years old, fluent in English, and to
regularly perform performance-evaluated work. Potential participants
were excluded from participation if they were either retired or needed
to regularly take medication for any neurological disease (e.g.,
depression, brain damage, or similar). Additionally, pregnant
women, participants with hypertension, and participants who could
have been in a dependent relationship with the study directors were
excluded from participation.

From the Muse S, the data modalities electroencephalography
(EEG; sampled at 256 Hz from AF7, AF8, TP9, TP10, and
referenced at FpZ, according to the 10-20 system for electrode
50 Hz,
photoplethysmography (PPG; sampled at 64 Hz) were recorded.
The Empatica E4 recorded skin temperature at 4 Hz, PPG at 64
Hz, electrodermal activity at 4 Hz, and acceleration data at 32

placement), gyroscope sampled at as well as

Hz. Once the data was recorded, the questionnaires were
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digitised, and the respective labels were extracted for each activity
performed by the participants. The data collected was published in
anonymised form, publicly available without any restrictions from
https://doi.org/10.5281/zenodo.15681262.

Additionally, the Muse S and Empatica E4 data were
synchronised based on a shaking protocol. For the recordings in
the controlled environments, this data was synchronised with
the log data stored by the PsychoPy application. Based on
timestamps, the labels were aligned with the respective data.
Power line interference was filtered by notch-filtering the
recorded data at 50 Hz, but no further specific data cleaning or
artefact rejection was performed.

Subsequently, the time series data was split into windows of 60 s,
and hand-crafted features were extracted. For Muse S, the individual
EEG channels (AF7, AF8, TP9, TP10) were used, and various
projections were created: mean (across all channels), prefrontal
(mean across AF7 and AF8), temporal (mean across TP9 and
TP10) and asymmetry (right vs. left cerebral hemisphere). For
each of the projected channels, band power was extracted using
the Fast Fourier Transform for each of the channels Delta (6, < 4
Hz), Theta (6, 4 Hz to 8 Hz), Alpha («, 8 Hz to 12 Hz), Beta (83,
12 Hz to 30 Hz), and Gamma (7, 30 Hz to 45 Hz). Subsequently,
various indices were extracted, as reported in the literature. As
such, the Engagement Index (32), the Brain Beat (33) and the CLI
(34, 35) were extracted. In addition, inspired by related work (36),
discrete wavelet transform (DWT) was performed on the notch-
filtered as well as the mean data. For the DWT, the Python
package pywt (https://github.com/PyWavelets/pywt) was used with
the two mother wavelet functions “db2” and “haar”, and the
decomposition level was set to eight. Nine of the resulting
coefficients were used as features: cA8, ¢D8, cD7, cD6, cD5, cD4,

10.3389/fdgth.2025.1650085

¢D3, cD2, and cD1. For each of the coefficients, the features STD,
MEAN, MIN, MAX, Skewness, RelativeWaveletEnergy, Kurtosis,
and ZeroCrossing were extracted. Per participant, the features were
normalized using z-score normalization.

For Empatica E4, various features were extracted from each
modality. The minimum, mean, and maximum values for the
time window were extracted from the skin temperature. The
minimum and maximum skin conductance response, the number
of skin conductance response peaks, and the minimum, mean,
and maximum level of skin conductance were extracted for each
time window from the electrodermal activity signal. The widely
used features of HRV_MeanNN, HRV_SDNN, HRV_RMSSD,
HRV_LF, HRV_HF, HRV_ratio_LF HF,
and maximum heart rate were extracted from the

and the minimum,
mean,
photoplethysmography signal. Processing of the Empatica E4
data was facilitated by NeuroKit2, presented by (37).

From the questionnaires, the mental workload labels were
utilized to form three types of classification problems: a two-class
classification into low and high mental workload; a three-class
classification into low, neither low nor high, and high mental
workload; as well as a five-class classification into very low, low,
neither low nor high, high, and very high mental workload. As
labels, the participant-given labels were extracted from the log files
of the PsychoPy experiments as well as from the digitized pen-and-
paper questionnaires answered by the participants. An exploratory
data analysis of selected features was performed, contrasting low
and high load, and the results are visualized in Figure 2.

Based on these mental workload labels, a Pearson correlation
analysis and a Spearman correlation analysis were performed to
investigate the relationship between the feature values and the
labels to analyze how much information a feature provides for

E4:

MUSE:

Max q

o @0 00 @
O 00 OO0

apo 000 O
O 00

Mid

H
H

Feature Value Normalized Per Participant

!

1 I

- Max

jawoo

F Mid

<

8
o

Feature Value Normalized Per Participant

|

——

F Min

FIGURE 2

\N\I C\l I W) ‘ g\l \N\I g\l \q\l g\l W) I C\] ' W) ‘ g\l W) I C\l I
R\ “";:99°:;|\5"’° “\(,d‘“’ .—,c“\\:?\\r\‘ \\\‘X\“« w P&P\\- pﬁ“,‘\\*\ oMW oM e o W
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Heart Rate (HR) and Root Mean Square of Successive Differences (RMSSD) used to derive smartwatch stress states [according to (39)]; common
E4 features Skin Conductance Response (SCR) and the low Frequency-to-High Frequency (LF/HF) Ratio [according to (40)]; common Muse
features ASymmetry index across All channels (ASA), Engagement Index (El),
(32-35, 41)]. Differences can be seen between HR (Sl), LF/HF (E4), ASA and EI (Muse).
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mental workload classification, and between the features
themselves to analyze which features influence each other and
might be redundant. The results from the Spearman correlation
analysis were used for a feature selection process to investigate
the usage of a smaller subset of features, after it had been found
that DWT-features with the “haar” mother function consistently
provided the best correlation coefficients for binary, three-class,
and five-class classification.

The standard machine learning classifiers DecisionTreeClassifier

(DT), LogisticRegression (LR),  MLPClassifier =~ (MLP),
KNeighborsClassifier (KNN), and LinearSVC (SVM) available in
the scikit-learn package (38), were wused for time-series

classification. In addition to the previously described z-score
normalisation, features were min-max normalised. All models
were evaluated using leave-one-participant-out cross-validation
with both classification accuracy and weighted F1 score as
evaluation metrics. The source code for the data processing and
the machine learning models was made publicly available via
GitHub at https://github.com/HPI-CH/mw_office_2025.

The criteria gini and entropy were used with the splitters best and
random and a max_depth increasing in 5-point steps from 5 to 305
for the DT classifier. Various combinations of the solvers lbfgs,
liblinear, sag, and saga were used with the penalty values 11, 12,
and None for the LR classifier. For the MLP classifier, the
activation function was chosen to be either logistic, tanh, or relu,
and the hidden layer size was set to 3, 10, 30, or 50. A leaf size
ranging from 1 to 50, a number of neighbors ranging from 1 to 30,
and a p-value of either 1 or 2 was used for the KNN classifier.
The penalties 11 and 12 were used in combination with the C
values of 0.001, 0.01, 0.1, 1, 10, 100, and 1,000 for the SVM classifier.

3 Results

The correlations of the features with the mental workload
labels provided by the participants, as quantified with the
Spearman Correlation Coefficient, are low. The averaged
absolute correlation coefficients rarely exceed a value of 0.08.
This strongly suggests that the correlations observed for this
general population of ten participants are negligible. For the
individuals, however, different features reach low correlation
values above 0.2. A similarity across both Pearson correlation
analysis and Spearman correlation analysis could be observed:
Most of the DWT (db2) features (Kurtosis, ZeroCrossing, MIN,
MEAN, and MAX), and the DWT (haar) feature ZeroCrossing
are present across both sets of features across all electrode
(AF7, AF8, TP9, and TPI10) with the highest
correlation coefficients with the, by the participants self-
assigned, labels for CL, between 0.2 and 0.24.

Due to the large number of automatically extracted features
(n=754) using DWT (npwr—features = 720), and the insights
derived from both the exploratory data analysis and the

positions

correlation analysis presented in Figure 2 , the impact of feature

selection on time-series classification performance was
investigated for three sets of features (both sensors; Muse

S alone; Empatica E4 alone), as detailed in Table 1.
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The time-series classification performance of generalised
Machine Learning models obtained via Leave-One-Participant-
Out cross-validation (LOO-CV) is given in Figure 3. The
classification performance using all features is given with a
transparent background, and the performance of time-series
classification using the reduced feature sets is given with a grey
background colour. The models DT, LR, MLP, KNN, and SVM
show strongly varying classification performances dependent on
the classification difficulty. As can be seen across two, three, and
five-class classification, the impact of feature reduction on this
particular dataset is, however, mostly negligible. While in some
cases beneficial, the opposite also holds, and the overall average
minimum, mean, and maximum FI-scores of generalised LOO-
CV models are nearly identical across classification tasks. For
these generalised models, the minimum and maximum FI
scores achieved are 0.33 and 0.91, 0.18 and 0.77, and 0.14 and
0.54 for two, three, and five-class classifications, respectively.

Across the 900 best participant-independent models, most
used the following parameters: “criterion: gini, max_depth:5,

splitter:  random (DT)”; “penalty: 12, solver: Ibfgs (LR)™;

TABLE 1 For the extracted features, the “x” marks if the feature was
included in the reduced feature set, i.e., Both Modalities Set (20
features), Muse S Set (20 features), and Empatica E4 Set (18 features),
while the background color indicates from which modality the feature
was extracted.

Feature Both Empatica

E4 Set

Modalities
Set

Twelve DWT-features X

TemporalDeltaPower -
PrefrontalGammaPower -
TemporalThetaPower -
TemporalBetaPower -

TemporalGammaPower -

EngagementIndex -
AsymmetryIndexPrefrontal -
CLI

max-scr
HRV-SDNN
HRV-RMSSD
Max-Heart-Rate

oI T R B B R I
|

MoM M R
I
MMM M

max-skt

w
I
"

max-scl
HRV-MeanNN
HRV-ratio-LF-HF

Mo M|
I

min-scr
num-scr-peaks - -
min-scl - -
mean-scl - -
min-skt - -
mean-skt - -
HRV-LF - -
HRV-HF - -
Min-Heart-Rate - -

[T T R R B R R B B N R

Mean-Heart-Rate - -

The twelve DWT features encompassed mostly DWT detail coefficients cD1, ¢cD7, and c¢D8
(i.e., low- and high-frequency information), furthermore summarized by Kurtosis, Mean, and
ZeroCrossing, the specifics of which can be found in the source code made publicly available
at https://github.com/HPI-CH/mw_office_2025.
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Subject-Independent (Minimum, Mean, Maximum) LOO-CV Results (F1) of generalised models across participant-specific personalised labels. The
models which were trained with a reduced feature set selected after feature selection are marked with gray background colour. Average values
for (Minimum, Mean, Maximum) across models are given.

»,
>

“activation: relu, hidden_layer_sizes: 30 (MLP)”; “leaf size: I,
n_neighbors: 9, p: 1 (KNN)”; and “C: 0.01, penalty: 12 (SVM)”.
Across the literature, the observation can be made that
similar wearable devices can be used for activity recognition as
well as for CL classification, as exemplified for instance by (42)
in their work on human activity recognition (HAR) of activities
of daily living, who used the Empatica E4, a device used as well
in this work. Hypothesising that context information could be
beneficial for CL classification, the idea was investigated how
CL classification might change if HAR were able to classify the
works done in this experiment. Following through on this
(ML)
models were built using the previously stated reduced feature

thought-experiment, personalised machine learning
sets and the activity features Relaxation, Load, Summary,
Reading, and Game, represented as additional one-hot encoded
features. The personalised ML models were trained using five-
fold cross-validation, and time-series classification results,
reported as F1 score, are given in Figure 4. For personalised

models, the minimum and maximum F1 scores achieved are
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0.38 and 0.92, 0.21 and 0.64, and 0.15 and 0.72 for two-, three-
, and five-class classifications, respectively. For this data, the
information added by activity features did not significantly
change classification results.

4 Discussion

While Wavelet Transform is usually used to denoise an input
signal as performed by (43), some works also utilize Wavelet
Transform to extract meaningful features for subsequent time-
series classification [e.g., (44, 45)]. Inspired by this line of
investigation, this work utilized Discrete Wavelet Transform
(DWT) for feature extraction. In this work, the wavelet-based
features extracted from the EEG data were the most stable
characteristics in the investigated population. Furthermore,
supporting previous research that found the prefrontal cortex to
be heavily involved in the processing of mental workload and
stress (46, 47), the electrode locations AF7 and AF8 appear ~1.4
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are given.

times more often in the most-important features than TP9 and
TP10, which are electrode positions usually associated with the
encoding of memory and emotions (48).

Building on the underlying idea that context information is
important—and that the wearables Muse S and Empatica E4, or
the E4’s successor EmbracePlus, could be concealed to enable
unobtrusive, real-time CL monitoring—the hypothesis arose that
time series classification results might be even better when
combining the classification of CL and stress levels with
predictions of the type of office activity performed by the
individual. In the broader field of mental state classification,
(49) pushed conditionally automated driving applications using
physiological data by extracting reliable features, yet their work
was unable to classify the specific type of task, a necessary step
to include context information. However, as presented by (17),
it is possible to simultaneously classify the type of task and
mental state of a participant using devices similar to those used
in this work. If, in the future, a perfect classification of task type
would be possible using the same wearable sensors, this
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information could be used as context information in mental
state classification.

This hypothesis was tested in this work for binary, three-class,
and five-class classification with reduced feature sets, by passing a
numeric value representative of the task type to the ML model as a
The
generalised models changed to F1 scores (min, avg, max) of
[0.43, 0.72, 0.91], [0.24, 0.45, 0.74], and [0.18, 0.34, 0.56],
respectively, suggesting at best a minor performance increase

one-hot encoded feature. best classification results of

(detailed results not shown).

For personalised models, a similar negligible change in
classification performance was obtained. To summarise, in the
evaluation performed in this work, no significant added benefit
through additional information about task types could be
should
information could be incorporated differently, and if variability

observed. Future work investigate how context
in labels obtained from participants explains current results.
However, this work has two limitations due to the participant

and feature selection process applied. Firstly, with n =10, a
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selection bias might be present regarding the individuals who took
part in the study. Secondly, as the feature selection was not
performed on a separate part of the data, but rather built on the
insights derived from the statistical analysis using all the data,
the risk of overfitting is present in the reported results.

Also, future work should focus on combining research on
office-work  break interface design with mental state
classification, as investigated by (50). Consequently, tangible
interventions for office work well-being as reviewed by (51),
building on targeted and personalized mental workload and
stress classification models using physiological data from
wearables, would push the workforce of the 21st century closer
to the United Nations sustainable development goal (SGD) of
“healthy lives and well-being for all at all ages”.

This work presented a novel study paradigm enabling
researchers to investigate CL and stress in realistic settings with
values obtained in  controlled

ground-truth laboratory

environments. Feature importances were investigated, and
(assumed) smartwatch indices (SI) were compared with features
widely used in the literature. Differences between low and high CL
can be seen, especially between HR (SI), LF/HF (Empatica E4), ASA
and EI (Muse S). Despite at best low correlation coefficients between
extracted features and subjective CL labels, well-performing

generalised CL models can be built using standard ML models.
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