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The electrocardiogram (ECG) is an important tool for exploring the structure and
function of the heart due to its low cost, ease of use, efficiency, and non-
invasive nature. With the rapid development of artificial intelligence (Al) in the
medical field, ECG beat classification has emerged as a key area of research for
performing accurate, automated, and interpretable cardiac analysis. According to
the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria,
we examined a total of 106 relevant articles published between 2014 and 2024.
This study investigates ECG signal analysis to identify and categorize various beats
with better accuracy and efficiency, by emphasizing and applying vital pre-
processing techniques for denoising the raw data. Particular attention is given to
the evolution from traditional feature-engineering methods toward advanced
architectures with automated feature extraction and classification, such as
convolutional neural networks, recurrent neural networks, and hybrid frameworks
with attention mechanisms. In addition, this review article investigates the
common challenges observed in the existing studies, including data imbalance,
inter-patient variability, and the absence of unified evaluation metrics, which
restrict fair comparison and clinical translation. To address these gaps, future
research directions are proposed, focusing on the development of standardized
multi-center datasets, cross-modal fusion of physiological signals, and
interpretable Al models to facilitate real-world deployment in healthcare systems.
This systematic review provides a structured overview of the current state and
emerging trends in ECG beat classification, offering clear insights for researchers
and clinicians to guide future advancements in intelligent cardiac diagnostics.

KEYWORDS

arrhythmia, classification, deep learning, electrocardiogram, feature extraction,
machine learning

1 Introduction

The electrocardiogram (ECG) signal is a crucial non-invasive tool for diagnosing and
monitoring cardiac disorders (1). Its quick and accurate results make it valuable in
various clinical settings (1, 2), allowing healthcare providers to assess heart rate (HR),
rhythm, and conduction mechanisms (2, 3). An ECG is commonly used to screen
patients with risk factors such as hypertension, diabetes, or a family history of heart
disease, as minor irregularities may signify a higher risk (4). It also reveals heart size,
thickness, and blood supply, helping to detect conditions such as heart failure or
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cardiomyopathy. In addition, an ECG is utilized during
procedures or serious illnesses to monitor heart function and
detect abnormal rhythms, allowing for prompt intervention (2).
the World Health Organization (WHO),
approximately 17.90 million deaths worldwide are caused by
cardiovascular diseases (CVDs) each year (5). The most
common CVDs (6) are arrhythmia, myocardial infarction (MI),
heart
cardiomyopathy, ischaemia, and heart stroke. ECGs play a vital

According to

congestive failure,  rheumatic =~ heart  disease,
role in diagnosing and monitoring CVDs. Therefore, a timely
diagnosis and accurate ECG beat detection in cardiac patients
are crucial. Identifying the morphological similarities among the
many ECG beats from different classes is difficult when using
the naked eye. Therefore, an automated diagnostic tool for ECG
beat classification is required (7).

Figure 1 illustrates the primary ECG signal, composed of the
following characteristic waves: the P-wave, QRS complex,
T-wave, and U-wave (1). These characteristic waves are crucial
for identifying the state of the heart’s functioning. As per the
Physionet arrhythmia database, there are 17 different types of
ECG beats. These categories cover a wide range of arrhythmias,
aiding in the comprehensive analysis and classification of ECG
beats (8). These 17 different types of ECG beats are further sub-
beat,

supraventricular ectopic beat (S), ventricular ectopic beat (V),

categorized into five classes, i.e., non-ectopic

fusion beat (F), and unknown beat (Q), as per the American
(AAMI) (8).
Among these ECG beats, S and V are clinically crucial, as these

Association for the Medical Instrumentation

are sources of sudden heart attacks (9).

1.1 Automated ECG beat classification

ECG recordings are classified into two types based on the
recording duration, ie., resting and ambulatory ECG (10).

10.3389/fdgth.2025.1649923

A resting ECG contains only 5 to 10 min of heart function data
recording, whereas an ambulatory ECG records 24-48h of
information (11). Detecting abnormal episodes from this
enormous quantity of data is very difficult. Therefore, effective
automated diagnosis tools are required to detect important
episodes in cardiac patients. Initially, we used template-based
and rule-based techniques that are usually utilized to detect the
type of ECG beat (12-17). Rule-based approaches rely on
predefined rules and thresholds to classify ECG beats. These
rules are often based on expert knowledge or heuristics.
However, these rules may not be able to handle the wide range
of variations and complexities observed in real-world ECG
signals. As a result, rule-based approaches may struggle to adapt
to different types of beats or handle new patterns that were not
considered during rule creation (18). Developing accurate and
ECG beat classification can be
challenging. It requires a deep understanding of ECG signal

comprehensive rules for
characteristics and considerable domain expertise. Designing
rules that cover all possible scenarios and variations is complex
are typically
designed to classify beats based on specific features or patterns

and time-consuming. Rule-based approaches

(19). They may struggle to generalize well to new or unseen data
that do not conform to the predefined rules. The rule-based
classifier can produce incorrect or inconsistent results if the
ECG data deviates from the expected patterns. A set of
templates representing different types of beats is required in
template-based approaches (13). Choosing appropriate templates
that accurately represent the various beat morphologies in ECG
signals can be challenging. There is a need to consider inter-
subject and intra-subject variability and variations due to
different conditions and diseases (12). The classification in
template-based approaches relies on comparing the input ECG
beat with a set of templates to find the best match. However,
template matching can be sensitive to noise, baseline wander
(BW), and other artifacts present in the signal (20). These issues
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FIGURE 1
Basic ECG signal and characteristic wave representation.
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can affect the accuracy of the match and lead to misclassification.
Template-based approaches often struggle with scalability when
dealing with large datasets or real-time applications (17).
Comparing each beat with a set of templates can be
computationally expensive, especially if the number of templates
is high. The time complexity increases as the number of beats
and templates grows, making it impractical for large-scale
applications (21).

1.2 Machine and deep learning for ECG
beat classification

Machine learning (ML) algorithms are becoming popular for
effective classification of ECG beats (18, 19, 22-28). Hierarchical
representations of the latest ECG beat classification techniques
based on machine and deep learning (DL) techniques have been
reported in the literature, as shown in Figure 2. Handcrafted
features are required to detect the type of ECG beat when using
machine learning techniques (22-24). Most handcrafted features
are extracted based on time, frequency, and time-frequency
domains (29, 30). Time-domain features alone are not sufficient
for effective ECG beat classification; together with this, the
frequency-domain features increase beat detection performance
(11, 29). In addition, features based on time and frequency are
more effective than individual features in the time and
frequency domain (31). Handcrafted approaches rely on manual
feature engineering, where domain knowledge is used to design
and extract features from ECG signals. This process can be
time-consuming, involving the design of algorithms and signal
(5).

Handcrafted approaches require selecting relevant features that

processing techniques to extract meaningful features
capture the discriminative information from the ECG signals.
Identifying the most informative and robust features is non-
trivial and often requires domain expertise (32). Choosing
inappropriate features or excluding important ones can lead to
suboptimal classifier performance. Handcrafted feature sets may
not generalize well to new or unseen data that significantly

10.3389/fdgth.2025.1649923

differ from the training data. ECG signals vary considerably due
to age, sex, underlying conditions, and noise (33). The
classification accuracy may be compromised if the handcrafted
features do not represent the new data. ECG beat classification
involves capturing complex relationships and patterns within
signals. Handcrafted approaches may struggle to capture these
intricate relationships, as they typically rely on pre-defined
algorithms and feature engineering techniques. These problems
have motivated researchers to develop automatic feature
extraction approaches.

Deep learning models can automatically learn relevant features
directly from the raw ECG signals, eliminating the need for
manual feature engineering. This feature learning process
enables the model to capture intricate patterns and complex
relationships that may be difficult to capture using handcrafted
features (18, 19, 25-28). Deep learning models can learn
hierarchical representations of ECG signals, allowing them to
extract meaningful features at different levels of abstraction. The
different deep learning architectures and their advantages in the
extraction of meaningful features are presented in Table 1. Deep
learning models are known for generalizing unseen data well.
They can learn from large amounts of labeled ECG data and
capture the underlying patterns that are characteristic of
different beat types. Deep learning models can handle large-
scale ECG datasets efficiently (20). Once trained, the models can
process ECG beats quickly, making them suitable for real-time
applications. In addition, deep learning models can be deployed
on parallel computing architectures, such as graphical processing
units (GPUs), to improve computational performance, enabling
rapid and scalable ECG beat classification (9, 18). Deep learning
models can be updated and fine-tuned with new data to
improve performance and adapt to changes in ECG signals (25).
This ability for continual learning allows the model to
incorporate new knowledge and adjust its classification
capabilities as new data become available. It enables the model
to stay up-to-date with the emerging beat types or changes in
the data distribution (28). Deep learning models can adapt and

generalize well to new beat types and variations not encountered

Different machine and deep
learning approaches for ECG
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TABLE 1 Hierarchy of different deep learning architectures for ECG beat classification.

‘ Architecture Advantages Disadvantages

Convolutional neural
network (CNN)

Convolutional, pooling,
fully connected layers

preprocessing
Recurrent neural network | Recurrent layers (e.g.,
(RNN) GRU, LSTM)

Long short-term memory

(LSTM) excellent for long-term dependencies
Bi-directional LSTM Forward and backward Captures past and future temporal
(BiLSTM) LSTM layers features

Hybrid CNN-LSTM Convolutional layers +

LSTM layers learning
Dense convolutional Dense convolutional
network (DenseNet)
Residual networks
(ResNet)

Autoencoders

blocks, transition layers structured data

Residual blocks with skip
connections deeper networks
Encoder-decoder
architecture
Attention mechanism
RNN or CNN
Multi-head attention,
positional encoding

signal
Transformer networks
scalable for large datasets

during training. The models can discover and classify novel
patterns and variations by learning from diverse examples. This
adaptability makes deep learning models suitable for dynamic
environments where ECG data may evolve.

The remainder of this article is organized as follows. Section 2
discusses the main objectives and methodology of the proposed
study. Section 3 refers to the publicly available databases for
experimentation on ECG beat classification. The background and
significance of ECG beat classification are discussed in Section 4,
with pre-processing, feature extraction techniques, and ECG beat
classification algorithms, along with their performance, elaborated
on in Sections 4.1-4.3. A general discussion of machine learning
and deep learning for the detection of ECG beats is presented in
Section 5. Finally, limitations, future directions, recommendations
from the state-of-the-art review, and conclusions are presented in
Sections 6, 8, and 9.

2 Systematic review protocol

The primary focus of this research was to thoroughly explore
the extensive range of machine learning and deep learning
of ECG beat
classification. Arrhythmia is a condition characterized by

methodologies employed in the context
irregular heartbeats, either too fast or too slow, that disrupt the
normal functioning of the heart (2). The heart has a natural
pacemaker that sets the rhythm of the heartbeats. However, any
disturbances in electrical impulses can result in arrhythmia.
There are many cardiac arrhythmias, each with unique
characteristics and potential complications. Early detection and
treatment of arrhythmias can help prevent serious complications
such as stroke or sudden cardiac arrest. Significant cardiac

arrhythmias include (i) atrial fibrillation (AF), (ii) ventricular
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Excellent for spatial feature extraction;
robust against noise with adequate

Captures sequential dependencies;
handles temporal features effectively

Input, forget, output gates | Solves vanishing gradient problem;

Combines spatial and temporal feature

Efficient feature reuse; excellent for
Solves degradation problem; enables
Learns unsupervised representations;
useful for anomaly detection

Attention layers on top of | Focuses on critical parts of the ECG

Handles long-range dependencies;

Suitable for clean, structured
ECG datasets

Requires large labeled datasets;
performance degrades on noisy data

Prone to vanishing gradient problems; | Useful for time-series analysis

slow training process but requires gradient
management
Ideal for sequential tasks such

as ECG signal interpretation

Computationally expensive; sensitive
to hyperparameter tuning

High computational overhead; Performs well in tasks requiring
challenging for large datasets bidirectional dependencies
Effective for complex ECG

signal classification

High computational cost; pre-
processing (e.g., QRS detection)
required

Ideal for datasets with detailed
temporal-spatial patterns

High memory requirement due to

dense connections

Requires careful tuning for small Useful for capturing subtle
datasets variations in ECG signals
Ideal for anomaly detection in
ECG signals

Effective for applications

requiring interpretability

Limited interpretability; prone to
over-fitting

Computationally expensive; complex
to train

Requires large datasets and high Promising for real-time, large-

computational resources scale ECG classification

tachycardia (VT), (iii) sinus bradycardia (SB), (iv) atrial flutter
(AFT), (v) ventricular fibrillation (VF), and (vi) supraventricular
tachycardia (SVT) (34). An irregularity in the upper chambers
of the heart causes AF, which in turn causes blood clots, stroke,
and heart failure (35). A fast heart rate that starts in the
ventricles (the lower chambers of the heart) will produce VT
beats. It can cause dizziness, chest pain, and fainting. If left
untreated, it can also lead to sudden cardiac arrest. SB is a slow
heart rate that originates in the sinoatrial node (SA). It can
cause fatigue, dizziness, and fainting. AF is an irregular heart
rhythm caused by electrical activity in the atrial chambers of the
heart. The atrial rate is generally between 250 and 350 beats per
minute and is quick and regular. Since the atrioventricular (AV)
node slows down electrical impulses, the ventricles (the lower
chambers of the heart) can also beat rapidly (34).

The study investigates ECG signal analysis to identify and
categorize various ECG beats with better accuracy and efficiency.
The investigation emphasizes vital pre-processing techniques for
denoising the raw ECG data to achieve this objective. The
removal of unwanted noise ensures that subsequent classification
algorithms can work with high-quality input, ultimately leading
to more robust and reliable results. These pre-processing steps
are essential in enhancing the performance of the classification
models reviewed in this study (21, 29, 36, 37). Furthermore, the
review study in this work explores various feature extraction and
techniques (11, 35, 36). These
fundamental in transforming the raw ECG signals into a set of

selection methods are

discernible and informative features that the classification
algorithms can effectively utilize. By studying and comparing
the various feature extraction methods available in the literature,
this study aimed to identify the most relevant and influential
features in the classification of ECG beats, with the aim of
optimizing the precision and efficiency of the classification
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process (19, 20, 33). This study also surveys and discusses the
existing literature, critically assessing the performance of the
different machine and deep learning techniques employed in
ECG beat classification. By evaluating the strengths and
weaknesses of these methods, the research aims to provide
valuable information on the most promising approaches and
their potential applications in real-world scenarios, such as
arrhythmia detection and cardiac health monitoring (2).
Moreover, this investigation seeks to contribute to the broader
field
comprehensive overview of the state-of-the-art techniques for
ECG beat classification (18, 19, 25-27, 38-40). By consolidating
and presenting this knowledge, researchers and practitioners can

of biomedical signal processing by presenting a

better understand the most effective methodologies available and
further advance the field’s capabilities.

2.1 Search strategy: inclusion and exclusion
Criteria

We used the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) criteria to find studies pertinent to
the classification of ECG beats (41). Articles published up until
April 2024 utilizing the terms “Electrocardiogram,” “ECG beat

» o« » o«

Classification,” “Artificial Intelligence,” “Machine Learning,” and
“Deep Learning” in their respective Boolean combinations were
searched for in the PubMed, Institute of Electrical and Electronics
Engineers Association (IEEE), and Science Direct databases. The
authors excluded non-English publications, duplicate titles,
irrelevant works, review articles, pilot studies, non-accessible
articles, and articles published before 2014 (42). Thus, this study
consisted of 106 articles that focused on Al-based ECG beat
classification. Figure 3 shows the detailed search method, which
was compliant with the PRISMA criteria (42). In Figure 4, it can
be observed that the yearly article publication trend (2014-2024)
and yearly citation trend (2014-2024) for ECG beat classification
indicate a strong and growing research interest in this domain.
The publication trend shows a steady increase in the number of
articles, which peaked in recent years (2022-2024), highlighting
the expanding focus on deep learning, signal processing, and
patient-specific classification approaches. This growth suggests an
increasing number of researchers contributing to advancements in
ECG analysis. A peak in citations often follows high publication
periods, indicating that time is required for newer methods to be
widely cited. These trends emphasize the need for continued
innovation and the adoption of novel approaches to sustain
research in ECG beat classification.

To ensure the inclusion of high-quality and peer-reviewed
research, the study employed a quality-filtering criterion based on
the Scimago Journal Rank (SJR) and Journal Citation Reports
(JCR) quartile (Q) indexing systems. In this review, only articles
published in journals indexed in SJR or those with JCR quartile
rankings (Q1-Q4) were considered eligible for inclusion. Studies
published in journals not indexed in either SJR or JCR, or lacking
identifiable quality metrics, were classified as “Non-SJR/Q” and
consequently excluded. The SJR metric reflects the scientific
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FIGURE 3
Flow diagram for the systematic review of ECG beat classification,
following the PRISMA guidelines.

influence of scholarly journals by accounting for both the number
of citations received and the prestige of the citing journals, while
the JCR-Q system ranks journals from Q1 (highest impact) to Q4
(lowest) based on citation distributions. This quality screening
ensured that the included literature represented peer-reviewed,
credible, and widely recognized sources within the scientific
community. Furthermore, conference papers, pilot studies, non-
English articles, and inaccessible manuscripts were excluded to
maintain methodological rigor and focus on reproducible, peer-
reviewed work.

Figure 5 summarizes the most commonly reported
performance indicators, namely, accuracy, precision, recall, and
F-Score. It is acknowledged that these metrics can be misleading
under severe class imbalance. Accuracy, in particular, tends to
overestimate performance when normal beats dominate the
dataset. Although several reviewed studies reported more robust
Matthews

correlation coefficient (MCC) and area under the precision-recall

and threshold-independent metrics, such as the
curve (AUPRC), these measures were not consistently available

across all publications, preventing their inclusion in the
aggregated summary plots. To maintain comparability across the
106 reviewed works, we therefore only visualized the universally
reported metrics. Nevertheless, we recognize that MCC and
AUPRC provide a more balanced and informative assessment of
classifier performance, especially for minority arrhythmic classes
such as supraventricular ectopic beat (SVEBs) and ventricular
ectopic beat (VEB). This limitation highlights the need for future
ECG classification studies to adopt standardized, imbalance-aware
metrics to enable more equitable and clinically meaningful

performance comparisons. Initially, machine learning methods

frontiersin.org



Jaya Prakash et al. 10.3389/fdgth.2025.1649923

Yearly Article Publication Trend (2014-2024) Citation Trend from (2014-2024)
= 140 127 s 6000
[
& 120 » 5000 4882
S 100 S
t E 4000
% 80 [}
B ‘s 3000
< 60 5
S £ 2000
g 40 g
€ 20 & 1000
2
0 0
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Year Year
(a) (b)
FIGURE 4
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FIGURE 5
Manuscript details and performance ranges of different machine and deep learning techniques.

relied heavily on manual feature extraction, where domain experts  beat classification systems. This shift improved classification
would identify relevant characteristics of ECG signals, such as  performance and opened new possibilities for real-time and
QRS complexes, heart rate variability, and waveform shapes (29,  patient-specific ECG analysis.

33, 43-46). These handcrafted features were then fed into

classifiers, such as support vector machine (SVM), random forest

(RF), and k-nearest neighbors (kNN), which, despite their 3 Data sources

effectiveness, were often limited by the quality and completeness

of the extracted features. With the advent of deep learning, the In the literature, the majority of the studies have used three
process became more automated and data-driven, allowing different ECG databases to verify how effectively ECG beat
models such as CNNs and RNNs to learn directly from raw ECG  classification methods perform, namely, the Massachusetts
data (25-27). These networks captured complex temporal Institute of Technology—Beth Israel Hospital (MIT-BIH)
dependencies and subtle morphological variations without explicit ~ arrhythmia (8), St. Petersburg Institute of Cardiological
feature engineering, resulting in more robust and accurate ECG  Technics (INCART) (8), and MIT-BIH supraventricular
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arrhythmia (3) databases. A summary of these three databases is  algorithms is the 12-lead arrhythmia dataset from the
shown in Table 2. Table 3 presents a detailed breakdown of the  St. Petersburg INCART database. Arrhythmias, ischaemic heart
manuscripts that utilized various ECG beat classification  disease, myocardial infarction, and other cardiac diseases are
databases. It further highlights the use of the three prominent  represented in the seventy-five 15min ECG recordings from 25
databases—MIT-BIH Arrhythmia, INCART, and MIT-BIH patients (53). Two cardiologists have manually annotated each
supraventricular—across three major publishers: Elsevier, IEEE, recording with beat annotations in the database. The reference
and Springer. In addition, it includes lesser-known databases  annotation files have more than 175,000 beat annotations, which
such as the American Heart Association (AHA) and MIT-BIH  are useful for testing and developing ECG classification systems.
Long-Term ECG, which are used for specialized research in  Although the patient group is diverse in age, gender, and
arrhythmia detection. This table helps to identify trends in  disease, it may not represent all patient populations (53).
database usage for ECG classification in the scientific community. MIT-BIH Supraventricular Arrhythmia Database (3): This
MIT-BIH Arrhythmia Database (8): The MIT-BIH arrhythmia  dataset includes 78 two-lead ECG recordings, each lasting for
database includes both typical and abnormal cardiac rhythms. 30 min. The recordings were collected from 14 patients, 11 men
This database is widely considered the gold standard in heartbeat and three women, with different types of supraventricular
detection and classification. There are 48 ambulatory ECG  arrhythmias (3). These included normal, ventricular, fusion, and
recordings, each lasting 30 min and collected from 47 subjects (8).  unknown beats. The ECG signals were sampled at 128 Hz and
The first 23 recordings are connected to standard clinical  digitized with 11-bit resolution. Physicians and researchers have
recordings, whereas the rest feature potentially fatal cardiac  extensively utilized this database to develop and validate
arrhythmias. Each ECG signal is collected at 360 Hz in these data  algorithms to detect and classify various arrhythmias (3). It has
(8). There are two information streams in every recording, with  been used in several studies to compare the performance of
the first channel’s signal (MLII) being of higher quality than the  different algorithms, including machine learning and deep
second (V5). There are around 1,09,000 heartbeats in the learning algorithms (28).
collection, annotated with 16 distinct labels. Four records (102,
104, 107, and 217) are of inadequate quality out of 48 ECG
records (8). As a result, the classification efficiency is calculated
without including these files. The ECG signals in the MIT-BIH
Arrhythmia Database were recorded from different patients, and

3.1 Data imbalance issues in the above
databases

P fent, . h -
:i‘:ln c:;h:he iaﬂm;;:;{tle? tilleaumin;l]c tarailte‘r/lsltms can ‘:I’ry al(i);]e; Data imbalance is a significant challenge in ECG beat
« ° e © 1 chaleigiig fo develop @ generaize classification, particularly when using the MIT-BIH Arrhythmia
(8), St. Petersburg INCART (8, 47), and MIT-BIH

Supraventricular Arrhythmia (47) databases. These databases

classification system that can perform well on new patients (8).
St Petersburg INCART Arrhythmia Database (47): One

opular dataset for training and testing ECG classification
pop § § contain varied distributions of ECG beat types, often resulting

TABLE 2 Details of the databases utilized for ECG beat classification.

S.no Name of the Number of Sampling frequency ' Resolution Total number of ECG No. of
database subjects (in Hz) segments classes

1 MIT-BIH 47 360 11-bits 109,000 17
Arrhythmia (8)

2 St Petersburg 25 257 12-bits 175,840 15
INCART (8, 47)

3 MIT-BIH 14 128 11-bits 184,508 9
Supraventricular
Arrhythmia (3, 47)

TABLE 3 Estimated number of manuscripts using various ECG beat classification databases from different publishers.

Database Elsevier manuscripts IEEE manuscripts Springer manuscripts
MIT-BIH Arrhythmia Database(8) 22 18 19
INCART (8, 47) 5 7 7
MIT-BIH Supraventricular Database(47) 11 9 8
PTB diagnostic ECG (47) 2 3 9
European ST-T (47, 48) 4 3 5
LTAF (long-term AF) (47, 49) 5 6 3
Atrial Fibrillation Database (AFDB) (47, 50) 6 8 4
CPSC (China Physiological Signal Challenge) (51) 4 5 2
CINC (Computers in Cardiology Challenge) (47, 52) 3 4 7
Others 6 9 9
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in an overrepresentation of normal or common beats and an
underrepresentation of rare arrhythmias, which may degrade the
model performance and reduce generalizability. In the MIT-BIH
Arrhythmia database, N beats vastly outnumber abnormal
arrhythmias such as VEB or SVEB (8). As a result, classifiers
trained on this database often achieve high accuracy by
predominantly predicting the majority class (N beats), while
failing to correctly identify rarer arrhythmias. This class
imbalance can lead to a high false-negative rate for life-
threatening conditions such as ventricular tachycardia, as the
classifier may not learn sufficient patterns for these rare events.
Techniques, such as the oversampling of minority classes and
undersampling of the majority class, and applying synthetic data
generation methods, such as the synthetic minority

(SMOTE), can help mitigate this

imbalance (54). In addition, cost-sensitive learning, where

oversampling technique

higher penalties are assigned to misclassifying rare classes, can
also improve classification performance.

The INCART database, which includes recordings from 25
subjects with different types of arrhythmias, also suffers from
data imbalance (8, 47). The majority of the beats in this dataset
are NSR, while pathological beats such as ischaemic events are
underrepresented. Similar to the MIT-BIH Arrhythmia database,
this imbalance can bias classifiers towards predicting normal
beats. Addressing this issue is crucial for the real-world
application of ECG beat classifiers, as it ensures the model can
To address this
imbalance, data augmentation techniques, such as adding noise or

detect critical events such as ischaemia.
time-shifting the ECG signals of rare arrhythmias, can be used, as
well as balancing the dataset through stratified sampling (55). The
MIT-BIH Supraventricular Arrhythmia database also presents a
unique challenge due to its smaller dataset size and the imbalance
between normal and supraventricular arrhythmias (47). Given the
relatively low number of supraventricular beats compared to
normal beats, classifiers can become biased towards predicting
normal rhythms, further complicating the detection of less
frequent but clinically important supraventricular ectopic beats.
Bias in machine learning refers to systematic errors that cause
a model to make consistently incorrect predictions, often favoring
certain patterns while neglecting others (56). Bias can arise due to

TABLE 4 Bias issues and solutions in ECG classification.

10.3389/fdgth.2025.1649923

several factors, such as imbalanced training data, poor feature
selection, or overly simplistic model assumptions that fail to
capture the true complexity of the data (19). Bias in ECG beat
classification is a critical issue, often stemming from imbalanced
datasets where certain heartbeat types are overrepresented while
others are underrepresented. This imbalance can lead to
classifiers favoring the majority class, resulting in poor
sensitivity for minority classes, such as supraventricular and
fusion beats (57). One study demonstrated that standard
classification models trained on imbalanced datasets tend to
overfit the majority class while failing to recognize less frequent
arrhythmias effectively (58). This issue is exacerbated by linear
dependencies in ECG data, which further skew the model’s
(57).

Moreover, the impact of inter-patient variability, where models

learning process and introduce classification bias
perform well on seen patients but fail to generalize to unseen
cases, further contributes to biased ECG classification (59).
A detailed overview of certain issues due to bias is presented
in Table 4.

To address bias in ECG beat classification, several state-of-the-
art methods have been proposed (19, 58-60). One promising
approach is the use of a dynamic minority-biased batch
weighting loss function, which enhances the learning process for
minority classes while maintaining the model’s ability to classify
the majority classes accurately (59). In addition, feature fusion
neural networks, which integrate multiple ECG representations,
have been shown to improve classification fairness by extracting
diverse feature sets that reduce bias (59). Another strategy
involves differential beat accuracy (DBA), a metric that
optimizes classifier performance by adjusting the learning
process based on the statistical distribution of different beat
types, ensuring a more balanced classification (58). Ensemble-
based techniques, such as multiple-classifier architectures, have
also been effective in reducing bias by leveraging diverse model
outputs to correct misclassifications (60). Collectively, these
approaches contribute to improving the fairness and
generalization of ECG beat classification models, making them
more suitable for real-world clinical applications. In addition to
traditional methods for addressing imbalance, transfer learning

can be a beneficial approach in this case (55). A model pre-

Literawre s mpact ____  Sowton

(57) Imbalanced datasets Certain heartbeat types are overrepresented, leading to classifiers Dynamic minority-biased batch weighting loss function to
favoring majority classes and poor sensitivity for minority beats prioritize underrepresented classes

(58) Opverfitting to majority | Standard models fail to recognize less frequent arrhythmias Feature fusion neural networks to extract diverse feature sets
class effectively, resulting in classification errors and improve classification fairness

(57) Linear dependencies | Skews the model’s learning process and increases classification bias, | Differential beat accuracy (DBA) metric to optimize
in data making it harder to detect minority classes classifier learning based on data distribution

(59) Inter-patient Models perform well on seen patients but fail to generalize to new, | Ensemble-based classification techniques to improve
variability unseen cases, reducing real-world effectiveness generalization by leveraging diverse model outputs

(98) Cost-sensitive Traditional classifiers may misclassify minority beats due to non- Cost-sensitive classifiers that adjust decision thresholds
misclassification optimized decision boundaries, reducing clinical reliability based on the misclassification cost of minority classes

(175) Feature selection bias | Feature selection methods can introduce bias if not carefully Hybrid deep learning models combining rule-based and

designed, leading to suboptimal classification performance

(60) Limited training data

resulting in poor generalization to new datasets
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ECG classification models struggle with limited labeled data,

data-driven feature selection to minimize bias

Data augmentation techniques such as synthetic ECG
generation to enhance training dataset diversity
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trained on a larger, more balanced ECG dataset can be fine-tuned
using the smaller MIT-BIH Supraventricular database, allowing
the model to better generalize across beat types. In all these
cases, proper evaluation metrics should be used to assess the
classifier’s performance under imbalance conditions. Accuracy
alone may not be a reliable metric, as it can be misleading in
imbalanced datasets. Instead, metrics such as the Fl-score,
and AUPRC provide a
comprehensive understanding of model performance on both

sensitivity,  specificity, more
the majority and minority classes (61). By carefully considering
these strategies and metrics, researchers can better handle the
class imbalance problem in ECG beat classification, leading to

more robust and clinically useful models.

4 Overview of included studies

The ECG beat classification method is depicted as a block
diagram in Figure 6. The three primary stages of ECG beat
classification systems are pre-processing, feature extraction,
and classification. In automated machine learning (AutoML)
algorithms (11, 36, 62), feature extraction and classification are
often treated as separate stages. This means the algorithm
typically involves a dedicated process for extracting relevant
features from the raw data, followed by a classification module
that uses these features to make predictions. In contrast, deep
learning algorithms often integrate feature extraction and
classification into a single module. This is due to the
hierarchical structure of neural networks, particularly in CNNs
and other deep learning architectures, where the network
learns to extract features and classify data in an end-to-end
manner automatically (18, 19, 25-28). This integration is one
of the key strengths of deep learning, as it eliminates the need

10.3389/fdgth.2025.1649923

for manual feature engineering and allows the model to
optimize the feature extraction process as part of the overall
learning task.

4.1 Pre-processing

Pre-processing is the initial and critical stage in ECG beat
classification systems, aiming to enhance the quality of the raw ECG
signals (Table 5). This stage is essential to mitigate the impact of
noise and artifacts that can obscure the true physiological
information in the ECG data. Pre-processing technique details and
their categorization are illustrated in Figure 7. Common sources of
noise include baseline wander, powerline interference (PLI), and
muscle artifacts (MAs) (36). Techniques such as bandpass filtering,
wavelet transforms, and normalization are employed to remove or
reduce these interferences. In addition, this stage may involve the
segmentation of the ECG signal into individual beats, setting the
foundation for accurate feature extraction and classification in
subsequent phases. First, the raw ECG signal is filtered to eliminate
unwanted noise and artifacts in the preprocessing stage (35). The
next step is to separate the signal into individual heartbeats, often
identified by the R-peaks in the ECG. In the feature extraction
phase, data from each heartbeat are parsed for various features based
on its time domain, frequency domain, and morphology. Heartbeat
rhythms and shapes are characterized using these properties, which
can be utilized to identify certain arrhythmias. Classification
involves applying machine learning methods to the retrieved
attributes of individual heartbeats (90). The basic techniques for pre-
processing ECG signals can be summarized as follows: classical
filtering techniques, transform-based techniques, statistical and
adaptive techniques, modern machine learning approaches, and
advanced techniques.

Filtering
ECG R-Peak Extraction of the
PErliEee Detection |  Feature from feup Classifier =P|  Trained Model CELEER
+ the ECG Beats s
ECG Beat Feature Extraction Classification
Segmentation -
Training Pre-processing .
q E
> -
: ECG Beat Detection
ECG J : > Feature > Trained
Database IFTCH AR Extraction Model
Testing
ﬁ
FIGURE 6
Generalized block diagram of ECG beat classification.
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TABLE 5 ECG signal pre-processing methods: summary, advantages, and disadvantages.

Method ‘
Bandpass filtering (63-65)

Wavelet transform
(66-68)

Principal component
analysis (PCA) (69-71)

Adaptive filtering (72-74)

Empirical mode
decomposition (EMD)
(75-77)

Notch filtering (56, 78, 79)

Sparse representation
(80-82)

Non-local means (NLM)
filtering (76, 83, 84)

Deep learning-based
denoising (85-87)

Total variation denoising
(TVD) (88)

Empirical wavelet
transform (EWT) (89)

Generative adversarial
networks (GAN)-based
denoising (85, 86)

Convolutional neural
networks (CNN)-based
denoising (85, 86)
Recurrent neural
networks (RNN)-based
denoising (85, 87)

Summary
Utilizes high-pass (HP) and low-pass filters
(LPFs) to remove frequencies outside the heart’s
signal range (e.g., 0.5-150 Hz). Commonly
implemented using Butterworth or Chebyshev
filters.
Decomposes the ECG signal into different
frequency components using wavelet functions
such as Daubechies or Symlets.

Reduces dimensionality by extracting the
principal components, which retain the most
significant features of the ECG signal, while
discarding noise components.

Uses a reference noise signal (e.g., from a
secondary channel) and adapts the filter
coefficients to remove the correlated noise.
Common algorithms include LMS (least mean
squares).

Breaks down the ECG signal into intrinsic mode
functions (IMFs) to separate noise from the
underlying signal.

A narrow-band filter is used to eliminate specific
frequencies, typically used to remove powerline
interference (e.g., 50/60 Hz).

Represents the ECG signal as a sparse linear
combination of basis functions. Noise is filtered
out by removing components that do not
contribute significantly to the sparse
representation.

Averages similar ECG signal patches to reduce
random noise. The similarity between patches is
determined based on their intensity and spatial
distance.

Uses deep learning models such as autoencoders,
CNNs, or RNNs to learn noise patterns and
denoise ECG signals in a supervised or
unsupervised manner.

Reduces noise by minimizing total variation in the
signal, preserving edges (e.g., sharp ECG features).

A variant of the wavelet transform that adapts the
filter bank to the specific frequency bands of the
input signal.

Employs GANs where the generator learns to
denoise ECG signals while the discriminator
ensures that the denoised signal is close to the true
ECG.

CNNss are trained to identify and reduce noise in
ECG signals automatically.

Utilizes RNNS, particularly LSTMs, to handle
time-series ECG data and remove temporal noise.

4.1.1 Classical filtering techniques (63-65)

Low-pass, high-pass, bandpass, and band-stop filters are the
classical filtering techniques in ECG signal pre-processing.

Advantages

Effectively removes baseline wander and
high-frequency noise (e.g., muscle artifacts).

Can localize noise in both time and
frequency domains, making it ideal for
isolating noise such as baseline wander and
powerline interference.

Efficient in noise reduction and works well
for multi-channel ECG data

Can dynamically adjust to varying noise
conditions; effective in reducing powerline
interference and motion artifacts.

Adaptive method that works well with non-
linear and non-stationary signals, such as
ECG data.

Highly effective in removing powerline
interference without affecting the rest of the
signal.

Effective in removing various types of noise
while retaining signal morphology; adaptable
to low-SNR ECG data.

Highly effective in reducing random noise
while preserving the sharp features of ECG
signals.

Capable of removing complex noise patterns
while preserving ECG features; adaptable to
real-time applications.

Preserves sharp transitions such as R-peaks,
effectively removing low-level noise.

Automatically adapts to the signal’s
characteristics, providing better
decomposition for non-stationary signals
like ECG.

Can learn complex noise patterns and adapt
to various datasets; highly flexible.

Efficient in removing structured noise while
retaining ECG morphology; suitable for real-
time applications.

Effective in handling temporal dependencies
and preserving important features such as
R-peaks.

10.3389/fdgth.2025.1649923

Disadvantages

May distort the original ECG signal,
especially the QRS complex.

Computationally intensive; selecting the
appropriate wavelet function and level of
decomposition can be challenging.

Can lead to loss of important information if
principal components are not correctly
identified; assumes linearity

Requires a reference signal; may not perform
well if noise is highly non-stationary.

Can introduce mode mixing, where noise
and signal are not clearly separated; sensitive
to noise in the decomposition process.

Can distort the ECG signal around the notch
frequency; it does not address other noise
sources.

Requires careful selection of the dictionary;
computationally expensive for large datasets.

Computationally intensive, especially for
large datasets, can blur features if parameter
selection is improper.

Requires a large dataset for training;
computationally intensive and can overfit if
not properly regularized.

May lead to over-smoothing if the
regularization parameter is not properly
chosen.

Still computationally expensive and requires
careful parameter tuning.

Training GANs is computationally
expensive and requires careful balancing to
avoid mode collapse.

Requires a large amount of labeled training
data; computationally intensive.

Training is computationally expensive and
requires careful hyperparameter tuning to
avoid overfitting.

without affecting other aspects of the ECG signal. These

Bandpass filtering, which combines high-pass and low-pass

filters, effectively removes baseline wander and high-frequency
noise, preserving the heart’s signal within a specific frequency
range. Notch filtering targets particular frequencies, such as
50/60 Hz powerline interference, to eliminate sinusoidal noise
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methods are straightforward and widely used but can distort the
ECG signal, especially in complex cases.

4.1.2 Transform-based techniques (66-68)
Transform-based methods such as wavelet transform and

empirical mode decomposition (EMD) offer advanced noise

reduction by analyzing the ECG signal in different frequency
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Wavelet, EMD, EWT, Fourier,

Traditional Filtering Techniques

Hilbert-Huang, Stockwell, Q-

Transform etc. [53-55]

——b‘ Transform-based Approaches

Statistical Techniques

1.Principal Component Analysis
(PCA) [56-58]

Statistical and Adaptive
Techniques

2.Independent Component
Analysis (ICA) [68]
Adaptive Techniques

1.Adaptive Filtering [59-61]
2.Least Mean Squares (LMS)

Modern Machine Learning
Approaches

Adaptive Filtering [60]

ECG pre-processing techniques

—I—u{ CNN, RNN, GAN, etc. [74-76]

Sparse based Advanced
Techniques

Sparse based representation for
noise removal like Blind Source

L

FIGURE 7
Overall classification of ECG signal pre-processing techniques

Separation (BSS) [68-70]

components or intrinsic mode functions. Wavelet Transform is
particularly useful for isolating noise from baseline wander and
powerline interference by decomposing the signal into various
frequency bands. EMD, on the other hand, adapts to non-linear
and non-stationary signals by breaking the ECG signal into
intrinsic mode functions, which can be selectively processed to
These

intensive

reduce noise. methods, while powerful, can be

computationally and may require careful

parameter tuning.

4.1.3 Statistical and adaptive techniques (69-71)
Statistical methods such as PCA and adaptive filtering focus
on removing noise through statistical analysis and adaptive
adjustments. PCA by
extracting significant components from multi-channel ECG data.

reduces dimensionality and noise
Adaptive filtering, which uses reference noise signals to adjust
filter coefficients dynamically, effectively addresses varying noise
conditions, including powerline interference and motion
artifacts (MArs). These techniques effectively reduce noise but

may be limited in rapidly changing noise characteristics.

4.1.4 Deep learning-based technique (85-87)
Recent advancements in machine learning have introduced
sophisticated methods such as deep learning-based denoising,
CNN denoising, and RNN denoising. These approaches leverage
deep learning models to learn and remove complex noise
patterns while preserving essential features of the ECG signal.
For example, through adversarial training, GAN-based denoising
techniques are used to separate noise from the ECG signal,
enhancing adaptability to various noise types. CNN-based
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denoising uses convolutional layers to filter structured noise
effectively. At the RNN-based
particularly those employing LSTM networks, manage temporal

same time, techniques,
noise by capturing dependencies over time. Although these
modern methods offer superior performance and adaptability,
they require substantial computational resources and extensive

training data to achieve optimal results.

4.1.5 Advanced techniques (80-82)

Emerging methods such as sparse representation and transfer
learning-based denoising provide innovative solutions for ECG
signal pre-processing. Sparse representation filters out noise by
representing the signal as a sparse linear combination of basis
functions, which helps preserve signal morphology. Transfer
learning-based denoising, utilizing pre-trained models, reduces
the need for extensive data collection and training, making it
efficient for small datasets. In addition, blind source separation
(BSS) methods, such as independent component analysis (ICA),
separate the ECG signal from noise sources by exploiting
statistical independence, offering effective noise reduction in
multi-lead ECGs. These advanced techniques continue to push
the boundaries of ECG signal processing, addressing challenges
that traditional methods may struggle with.

In ECG signal processing, significant noise artefacts pose a
considerable the
interpretation of ECG signals. These extraneous disturbances

challenge to accurate  analysis and
can stem from various sources, including muscular activity,
electromagnetic interference, electrode impedance, and baseline
drift. Consequently, faithful extraction of relevant physiological

information from noisy ECG recordings becomes critical,
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demanding innovative signal processing techniques (29). ECG
recordings are generally mixed with different noises during
acquisition from cardiac patients. Pre-processing techniques are
crucial for the design of better classification systems. Identifying
different fiducial points in ECG signals, such as P-onset and off-
set, Q-onset and off-set, and T-onset and off-set, are difficult in
noisy environments (91). Hence, the filtering of ECG signals
without losing important information is a challenging task. The
primary noise sources in ECG signal acquisition include MAs,
caused by muscle contractions and tension, leading to irregular,
high-frequency oscillations that distort the cardiac signal (7);
electromagnetic interference (EMI) from electronic devices and
power lines, causing voltage fluctuations and noise spikes (7);
BW, gradual baseline shifts due to respiration or movement,
obscuring low-amplitude cardiac components (92); PLI, visible
as sinusoidal noise from electrical systems (9); MArs, high-
frequency noise resulting from patient movements such as
coughing or shifting positions (7); and electrode contact noise
(ECN), resulting from poor electrode-skin contact, leading to
signal distortion, especially during motion (2).

In addition, minor noise sources such as drift and offset, lead
misplacement, sweat, moisture, and external interference also
affect ECG morphology. Several researchers have developed
different digital signal processing techniques to remove noise
from the ECG signal (32, 38, 90, 93-96). In (93), an empirical
mode decomposition was developed to effectively eliminate
noise by using significant intrinsic mode functions of the ECG
signal. A deep score-based diffusion model for ECG BW and
noise removal and a multishot averaging strategy were
(96).
A denoising autoencoder (DAE) was designed to remove the
BW and PLI from the ECG signal in (95). A four-stage adaptive
noise canceller was designed to remove the noise artefacts from

developed to improve signal reconstructions in

the ECG signal in (94). In the dual stage, a different approach,
namely singular value decomposition (SVD), was developed to
improve the signal-to-noise ratio (SNR) of the ECG signal (38).
Authors have proposed a sequential Monte Carlo algorithm
combining the Wavelet transform to handle MA noise in the
ECG signals (21). Other authors have proposed an R-peak
detection and denoising algorithm using Shannon-energy and
Hilbert transform (97). In the literature, several techniques have
been developed to remove the noise from the ECG signals, even
though there are still many challenges in real-time ECG
acquisition. Some of the challenges are (i) patient movement
during data acquisition can introduce noise and distortion to
the ECG signal, making it difficult to extract the underlying
cardiac information accurately; (ii) distinguishing between
various types of noise and genuine cardiac signals is a critical
step in effective noise removal as developing accurate algorithms
for artifact identification is essential for preserving diagnostic
integrity; and (ili) noise removal techniques developed in
controlled laboratory settings may not always translate effectively
to diverse clinical environments. Adapting and validating these
techniques for real-world conditions are a challenge.

The pre-processing phase plays a pivotal role in ensuring that
the ECG signal fed to machine learning or deep learning models is
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free from artifacts and retains physiologically relevant
information. Raw ECG signals are typically contaminated by
several types of noise, including baseline wander, PLI, MArs,
and muscle (electromyogram) noise. Baseline wander, often
caused by respiration or electrode movement, leads to low-
frequency drift that can distort wave boundaries. Powerline
interference introduces sinusoidal noise at 50 or 60 Hz, while
MArs and muscle activity generate high-frequency components
overlapping with the QRS complex, thereby degrading the
diagnostic quality of the signal (38, 93). To mitigate these
artifacts, various denoising approaches have been adopted.
The Butterworth band-pass filter, commonly configured to
between 0.5 and 40 Hz, effectively removes baseline drift and
high-frequency disturbances while preserving critical cardiac
information. Adaptive filters, such as the least mean square
(LMS) (98) and recursive least squares (RLS) (48) algorithms,
dynamically adjust their parameters to cancel correlated
noise, especially powerline components and electrode movement
artifacts (90). In addition, wavelet-based filtering has gained
widespread use because it offers multi-resolution analysis.
The discrete wavelet transform (DWT) (62) decomposes the
ECG different allowing selective
thresholding to distorting QRS

morphology (4). Normalization techniques, such as Z-score

into frequency bands,

suppress noise without
normalization and min-max scaling, are also applied to

standardize ECG amplitude across subjects and devices,
ensuring consistent model convergence. Across the reviewed
literature, studies that employed multi-stage denoising pipelines
—typically combining wavelet filtering with adaptive or
Butterworth filtering—reported significant improvements in
R-peak detection and classification accuracy. Overall, wavelet—
adaptive hybrid pipelines consistently yielded superior signal
quality and classification performance compared with single-

stage filtering approaches (25, 57).

4.2 Feature extraction methods

Feature extraction techniques help to identify the different
patterns and characteristics of the ECG signal, which can then
be used to diagnose specific cardiac conditions. For example,
identify
abnormalities in the various segments of the acquired ECG

feature extraction techniques can be wused to
signal, which can be indicative of different cardiac disorders.

Therefore, accurate feature extraction and classification
techniques are crucial for effective diagnosis and treatment.
Section 4.2 reviews the existing techniques for feature extraction

and classification of ECG signals in the literature.

4.2.1 Handcrafted feature extraction

The performance of the classifier is dependent upon the
extracted features. Feature extraction techniques are crucial in
ECG signal processing and analysis, as they help identify
important signal characteristics, such as amplitude, frequency,
duration, and shape. Handcrafted feature extraction techniques
are mainly classified into the following three types: time-domain
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(33), frequency-domain (33), and time-frequency domain (11)
methods. These methods have shown promising results in
identifying essential features of ECG signals that are useful for
diagnosing different ECG beats.

4.2.2 Time-domain features

Time-domain features refer to the signal characteristics based
on the time each observation is measured. In other words, these
features describe how the signal changes over time. Time-
domain features include a signal’s mean, variance, and standard
deviation and measures of the signal’s shape, such as its
skewness and kurtosis. Some standard time domain features
utilized in ECG analysis are RR interval, P-wave duration, QRS
duration, QT interval, heart rate variability (HRV), PR interval,
and ST segment. Clinicians use these time-domain features to
diagnose and monitor a range of heart conditions, including
arrhythmias, heart failure, and myocardial infarction. They can
also be used in machine learning algorithms to develop
automated classification models for detecting different types of
ECG beats (4, 35, 91, 99-104). Time-domain features alone do
not allow the model to better interpret the ECG signal and they
provide limited information about the underlying physiological
processes, as these features do not capture the complex patterns
and dynamics of the ECG signal. These are sensitive to noise
and artifacts, which can affect the classification’s performance.
In addition, these are vulnerable to wvariations in signal
morphology, such as changes in heart rate, respiration, and
electrode placement. This can affect the accuracy and reliability
of classification results. Several limitations need to be considered
when developing a classification system. Combining time-
domain features with other features or techniques is often
necessary to improve classification performance (31).

4.2.3 Frequency-domain features

Frequency-domain features are a group of traits or
characteristics that characterize a signal’s frequency content. In
it

representations in both the time and frequency domains. In

signal  processing, is expected to work with signal
contrast to time-domain features, which characterize the signal

over a given time interval, frequency-domain features
characterize the signal’s spectral characteristics throughout a
range of frequencies. Some of the critical frequency-domain
features include spectral power density (105), spectral entropy
(106), spectral bandwidth (107), spectral flatness (108), and
spectral skewness (109). Frequency-domain features can be
extracted using various signal processing techniques such as the
Fourier transform (FT) (105, 110), wavelet transforms (36), and
spectrogram analysis (9). FT is a widely used technique for
analyzing the frequency-domain characteristics of signals. In
ECG analysis, the FT (110) can identify the frequency
components in the ECG signal characteristic waves, such as the
QRS complex, T wave, and P wave. The extracted features can
be used for various applications, such as arrhythmia detection,
heart rate variability analysis, and heart disease diagnosis.
features alone not effective in

Frequency-domain are

classification due to the following reasons: some important
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features of the signal, such as the shape and duration of the
QRS complex, may not be fully captured in the frequency
domain; in some cases, different features of the ECG signal may
have similar frequency components. This can make it difficult to
distinguish between these features based on frequency-domain
analysis alone. Frequency-domain analysis assumes that the
signal is stationary over time, meaning its statistical properties
do not change. However, ECG signals are often non-stationary,
with features that change over time. In such cases, time-
frequency analysis techniques may be more appropriate for ECG
signal interpretation (62).

4.2.4 Time-frequency domain features

Sections 4.2.2 and 4.2.3 individually covered the characteristics
of the time and frequency domains for ECG beat classification
systems. Classifying ECG beats accurately requires information
from both the time and frequency domains. These features help
capture the temporal and spectral characteristics of the ECG
signal, which are crucial for distinguishing between different
heartbeats. In ECG beat classification, time-domain features,
such as the RR interval, QRS duration, and QT interval, are
commonly used to extract information about the duration and
amplitude of various segments of the ECG signal. However,
these features do not provide information about the signal’s
spectral content, which can be important when identifying
specific types of heartbeats. In contrast, frequency-domain
features provide information about the frequency content of the
ECG signal. For example, the power spectrum of the ECG signal
can be wused to identify different frequency bands that
correspond to specific physiological phenomena, such as the
QRS complex, T wave, and P wave. In addition to time-domain
and frequency-domain features, time-frequency features, such as
wavelet transforms and spectrograms, are commonly used in
ECG beat classification. These
comprehensive representation of the ECG signal, capturing both

features provide a more
the temporal and spectral characteristics. The wavelet transform
(111) is another technique that can be used to analyze the
frequency domain characteristics of ECG signals. It provides a
more localized frequency analysis than the Fourier transform
and is useful in identifying transient features in the signal. DWT
(29) is a signal processing technique that decomposes a signal
into different frequency sub-bands. It is useful for identifying
different frequency components in the ECG signal. These
techniques can be used alone or in combination to extract
frequency domain features from ECG signals. A number of
transformation techniques can be utilized, i.e., dual-tree complex
wavelet transform (DTCWT) (11), and Stockwell transform (ST)
(29), to extract the time-frequency-based features from the pre-
processed data. The short-time Fourier transform (STFT) uses a
window function to analyze the signal in short-time intervals,
which can lead to spectral leakage and reduced resolution. The
resolution of the STFT is limited by the window size and the
sampling rate, making it difficult to simultaneously analyze
signals with high temporal and high-frequency content.
Interpreting STFT results can be challenging, especially when
analyzing complex signals with overlapping frequency content.
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The DTCWT requires careful selection of wavelet filters, which
can be challenging and subjective. The DTCWT also requires
significant computational power to process and analyze signals,
especially for high-resolution applications or long signals.
Finally, while the DTCWT offers improved shift-invariance
compared to other wavelet transforms, it is not completely shift-
invariant. This can cause issues in specific applications where
shift invariance is critical. The ST provides high time-frequency
resolution, allowing for a more accurate analysis of non-
stationary signals. In addition, the S-transform is shift-invariant,
meaning that it is not affected by signal translations or shifts in
time, and it produces a two-dimensional (2D) representation of
the signal in time-frequency space, which is easy to interpret
and analyze. The ST can handle non-uniformly sampled data,
making it suitable for applications where data are not uniformly
sampled. Therefore, the ST is better compared to the STFT (31)
and WT (11) for ECG beat classification (112).

4.2.5 Deep learning-based feature set

Handcrafted feature extraction is a traditional method of
extracting relevant features from raw ECG signals for ECG beat
classification. The handcrafted feature engineering process is
often time-consuming and requires significant effort and
resources, which can hinder the development of large-scale
systems (20). Another limitation is the potential for human bias.
The features are designed by human experts, who may have
inherent biases and subjective judgements. Finally, handcrafted
feature extraction may not be suitable for complex ECG signals.
The features are designed based on prior knowledge and
assumptions about the data, which may not always hold in
practice (18). This can result in features that are not
representative of the underlying data distribution, leading to
poor generalization and performance. Hence, automatic feature
extraction based on deep-learning techniques from the ECG
database has been introduced for ECG beat classification. Deep
learning-based feature extraction has become an increasingly
popular alternative to handcrafted feature extraction in recent
years (113). Unlike handcrafted features, deep learning-based
features are automatically learned from raw data, eliminating the
need for human expertise and domain knowledge. Deep
learning-based feature extraction involves training a neural
network to learn a hierarchy of features from raw data. The first
layers of the network learn simple, low-level features, such as
edges and corners, while deeper layers learn more complex and
abstract features. One of the main advantages of deep learning-
based feature extraction is its ability to learn features tailored to
the specific task. This contrasts with handcrafted features, which
are designed based on prior knowledge and assumptions about
the data (114). Once a deep neural network (DNN) has been
trained on a large dataset, the learned features can be reused for
other tasks or applied to new datasets. This can significantly
reduce the time and resources required for feature engineering
and model development.

Deep learning methods can be classified into several
categories based on their architecture, learning mechanisms,
and applications. Deep

learning methods are generally
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categorized into three types, discriminative,

representative, and generative models (99). Discriminative deep

namely,

learning methods are a class of deep learning algorithms
designed to learn a mapping between inputs and outputs
directly. Unlike generative models that learn the underlying
probability distribution of the data, discriminative models learn
to discriminate between different classes of data based on their
features. Some popular discriminative deep learning methods
include CNNs for classification, RNNs (25), and DNNs (9).
These methods have achieved state-of-the-art performance in
ECG beat classification. Discriminative deep learning methods
typically through
backpropagation. Backpropagation involves computing the

involve ~many parameters learned
gradient of a loss function for the model parameters and using
it to update the parameters to minimize the loss. One of the
advantages of discriminative deep learning methods is their
ability to learn complex decision boundaries between classes,
which can lead to high accuracy on classification tasks (26).
However, they are often data-hungry and require large
amounts of labeled training data to perform well.
Representative deep learning methods are essential for
advancing deep learning because they are the foundation for
developing new and innovative deep learning models. By
understanding the underlying principles of these methods and
the techniques used to optimize them, researchers can build
upon them to create even more powerful and effective deep
learning algorithms. Some examples of representative deep
learning methods include GANs (115), autoencoders (AEs)
(116), and deep belief networks (DBNs) (117). GANs are
generative models that generate new data samples from a given
input. They consist of two neural networks, a generator and a
discriminator, trained in a minimax game (115). GANs have
been successfully applied to tasks such as image generation, data
augmentation, and anomaly detection. AEs are unsupervised
deep learning models that are used for feature learning and
dimensionality reduction (116). They consist of an encoder and
a decoder network that learn to compress and reconstruct the
input data. Autoencoders have been successfully applied to tasks
and data
compression. DBNs are deep generative models with multiple

such as image denoising, anomaly detection,
restricted Boltzmann machines (RBM) layers (117).

Generative deep learning models are a class of artificial neural
networks (ANN) designed to generate new, synthetic data similar
to data from a training set (115). These models can learn complex
patterns and structures from the training data and then use that
knowledge to generate new examples similar to the original
data. Several generative deep learning models include variational
autoencoders (VAEs) (118), GANs (115), and autoregressive
models (AMs) (119). Discriminative models are designed to
learn the boundary between different classes of data, while
representative models aim to learn the underlying structure of
the data. In contrast, generative models learn to generate new
data similar to the training data. Overall, each of these three
types of deep learning models has its strengths and weaknesses,
and the choice of model depends on the specific task at hand

and the nature of the dataset being used.
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Feature extraction converts pre-processed ECG signals into
compact and discriminative representations that can effectively
describe cardiac morphology and rhythm. The extracted features
generally fall into five «categories, namely, time-domain,
morphological, frequency-domain, time-frequency, and non-
linear descriptors, each capturing different aspects of the ECG
(4). quantify

variations between successive heartbeats. Parameters such as the

waveform Time-domain features temporal
R-R interval, HRV indices [standard deviation of normal-to-
normal intervals (SDNN), root mean square of successive
differences (RMSSD), and percentage of successive normal-to-
normal (NN) intervals that differ by more than 50 milliseconds
(pNN50)], and mean or variance of beat-to-beat intervals reflect
autonomic regulation and rhythm irregularities. These measures
are computationally efficient and remain the foundation for
arrhythmia detection in wearable and real-time systems (23).
Morphological features describe the geometric and amplitude
characteristics of individual ECG waves. Metrics including QRS
width, P-R and Q-T intervals, R-peak amplitude, and area
the QRS

associated with ventricular and supraventricular ectopic activity.

under complex capture structural deformation
Derivative-based slopes and amplitude ratios between successive
waves further enhance discrimination among beat classes (1).
Frequency-domain features, derived using the fast Fourier
transform (FFT) (110) or power spectral density (PSD) (120),
provide information on periodic energy distribution within
specific frequency bands (0-40 Hz). However, because ECG
signals are non-stationary, time-frequency representations such
as the DWT (62), STFT (23), or wavelet packet transform
(WPT) (36) are preferred. These methods capture transient
spectral changes and localize abnormalities more accurately
than pure spectral analysis. Finally, non-linear descriptors such
as sample entropy, approximate entropy, and fractal dimension
quantify signal complexity and chaotic behavior, while PCA
(58) and ICA (121) are employed to reduce dimensionality and
highlight salient features. Across the reviewed studies, hybrid
feature sets combining wavelet coefficients with entropy-based
complexity measures consistently achieved over 97% accuracy
on the MIT-BIH Arrhythmia Database, underscoring the
advantage of multi-domain representation for robust ECG

beat classification.

4.3 Classification methods

In the ECG beat classification system, a classifier automatically
classifies different heartbeats based on their ECG waveform
features. Various machine and deep learning techniques have
been reported for identifying different types of heartbeats
(18-20, 30, 112, 114, 122-129).
extracted features from the ECG signal to distinguish between

These classifiers utilized
different types of heartbeats. The classifier's performance
depends on the quality of the ECG signal, the feature extraction
quality, and the choice of the classification algorithm. There are
three different types of classification algorithms, namely, (i)
unsupervised, (ii) semi-supervised, and (iii) supervised.
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4.3.1 Unsupervised
Machine learning can take the form of unsupervised learning,
in which the algorithm can learn patterns and relationships in data
without being explicitly supervised. In unsupervised learning, the
algorithm receives a set of input data but no labels to indicate the
desired results. The algorithm is trained to recognize patterns and
in the data with
(130). The hierarchical
clustering, and PCA methods are all examples of popular

connections and cluster items similar

characteristics k-means clustering,
unsupervised learning techniques (130). A machine learning
clustering algorithm groups related data elements. Clustering
partitions a dataset so that data points in the same cluster are
more similar than those in other clusters. Clustering methods
such as k-means, hierarchical, and density-based spatial are
popular. Using the mean of data points inside each cluster, k-
means clustering divides data into K clusters, iteratively
assigning data points to the nearest cluster centroid and
recalculating centroids until convergence. An algorithm in
hierarchical clustering arranges data points into a tree-like
structure of clusters, with each node representing a cluster. Each
data point is initially treated as its own cluster by the algorithm,
which then iteratively merges the two closest clusters together
until all data points belong to the same cluster. The algorithm
in density-based clustering organizes data into clusters according
to their density, with points closer together having a greater
density than those further away. To make a dataset more
manageable, dimensionality reduction is another common
unsupervised learning method. This can aid in making the data
simpler and, therefore, easier to analyze. The standard methods
include PCA and t-distributed stochastic neighbor embedding
(t-SNE). PCA is an algorithm that projects data into a lower-
dimensional space after determining the directions in the data
with the most variance. This results in fewer features that can be
used to represent the data. The t-SNE algorithm can reduce the
dimensions in a dataset without losing the information about
the relationships between the data points. This can be helpful
when visualizing data at a higher level in a lower dimension. In
(35), three independent, unsupervised techniques, namely, linear
discriminant analysis (LDA), PCA, and ICA, were utilized to
classify ECG beats, as per the AAMI standard. K-means
clustering was used for the classification of premature
ventricular contraction (PVC), normal (N), left bundle branch
block (LBBB), paced beats (P), and right bundle branch block
(RBBB) ECG beats in (131).

4.3.2 Semi-supervised

Semi-supervised learning is a machine learning paradigm that
falls between supervised and unsupervised learning. In the context
of ECG beat classification, semi-supervised learning can be used to
enhance the performance of the classification model by leveraging
a large amount of unlabeled data (132). Several methods can be
used for semi-supervised learning in ECG beat classification.
One approach is to use a combination of unsupervised and
supervised learning methods. In this approach, an unsupervised
learning algorithm is used to cluster the unlabeled data, and
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then a supervised learning algorithm is used to classify the labeled
data using the clusters as features. This can improve the accuracy
of the classification model, as the unsupervised learning algorithm
can identify underlying patterns in the data that may not be
apparent the
approach is to use a generative model, such as a GAN, to

to supervised learning algorithm. Another
generate synthetic labeled data from the unlabeled data. The
synthetic data can be used to augment the labeled data and
improve the accuracy of the classification model. In addition to
these approaches, there are also active learning methods to
select the most informative unlabeled samples for labeling (132).
This can be particularly useful in scenarios where labeling the
entire unlabeled dataset is not feasible due to time or resource
constraints. Overall, semi-supervised learning is promising for
ECG beat classification since it can use enormous amounts of
unlabeled data to enhance the classification model’s accuracy
(132). However, it is essential to thoroughly assess the model’s
efficacy and ensure it can withstand shifts in the input data. To
distinguish between SVEBs (also known as S beats) and VEBs
(also known as V beats), Zahi et al. (37) proposed a semi-
supervised iterative label update method. Semi-supervised
strategies for the categorization of paroxysmal atrial fibrillation

(PAF) using CNNs and LSTMs are reported in (133).

4.3.3 Supervised

Unsupervised and semi-supervised learning are not typically
the best approaches for ECG beat classification because they rely
on clustering or dimensionality reduction techniques, which
may not capture the complex and diverse patterns in ECG
signals (134). ECG signals can contain various beat types and
subtypes, each with distinct characteristics. Unsupervised and
difficulty
accurately identifying and separating these different beat classes.

semi-supervised learning techniques may have

Unsupervised and semi-supervised learning techniques are often
The
effectiveness of semi-supervised learning depends heavily on the

used when labeled data are limited or expensive.
quality of the unlabeled data. If the unlabeled data contain a lot
of noise or irrelevant information, it can decrease the model’s
performance. In addition, semi-supervised learning requires a
subset of the data to be labeled, which can be time-consuming
and expensive. Determining which data to label can also be
challenging to maximize the model’s performance. ECG beat
classification is a critical task that requires a high degree of
accuracy (134). Supervised learning approaches are better suited
to this task as they can be trained to optimize for accuracy and
can leverage a larger number of labeled data points. However, in
the case of ECG beat classification, a substantial amount of
labeled data is available, making supervised learning approaches
a more appropriate choice. The algorithm is trained in
supervised learning using a labeled dataset containing examples
of ECG signals and their corresponding beat types. The
algorithm aims to learn a function that maps the input ECG
signal to the correct beat type (134).

Some of the supervised machine learning classifiers are ANNs
(122), SVMs (135), Hidden Markov models (127) and self-
organizing maps (SOMs) (136). Hidden Markov models are
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used to detect cardiac arrhythmias, as reported in (4). DTCWT
is utilized to extract the morphological features and merge them
with the temporal features. Five different types of ECG
arrhythmias have been categorized using a multi-layer back
propagation (MLP-BP) neural network (137). Regarding neurons
in the deep layers, MLP-BP is extremely sensitive. Underfit
occurs in MLP when the number of neurons in the hidden layer
is low. Too many neurons in the hidden layer may cause the
fitting curve to oscillate erratically due to overfitting. The
network model will stop functioning if the weights are high.
Although DTCWT shows merit as a feature extraction strategy,
the method’s final classification performance suffers from the
limitations of the MLP-BP algorithm (9). To improve SVM’s
generalization capability in the identification of various ECG
beats, particle swarm optimization (PSO) is employed (138). In
(29), five distinct types of ECG beats were classified using an
algorithm based on bacteria foraging optimization (BFA) and
SVM. Using SVMs, Pawel et al. (122) proposed an ensemble
classifier for categorising arrhythmias. In this case, a genetic
algorithm was used to optimize the characteristics acquired by
Weich and the discrete Fourier transform (DFT). In (123),
various classifiers, including naive Bayes, linear and quadratic
discriminating functions, and J48 classifiers based on majority
voting, were used to categorize five distinct heartbeats according
to the AAMI standard. To extract information from an ECG
signal, (139) used a DWT in conjunction with a novel one-
dimensional hexadecimal local pattern (1D-HLP) approach and
then used a single nearest-neighborhood (INN) classifier to
categorize 17 different types of arrhythmias. The genetic
ensemble of classifiers optimized by sets (GECS) was used to
categorize 17 myocardial dysfunctions in (124). We estimate
power spectral density features to improve the quality of the
ECG signal. Feature extraction, the process of choosing and
extracting valuable features from the ECG signal for use in
machine learning methods, is performed manually. However,
the classifier’s precision may suffer if inappropriate features are
used. Knowing which features are the most important when
performing a classification task can be difficult. There have been
several proposals for classifying cardiac arrhythmias, but many
of the efforts that have been reported to date have at least one
of the following limitations: (i) accuracy was only good for a
few carefully chosen ECG recordings; (ii) feature extraction
methods were overly complicated; (iii) classifier performance
was suboptimal; (iv) fewer output classes; and (v) beat loss when
the ECG signal was filtered for noise.

The use of deep learning algorithms for ECG beat
classification has increased in recent years. CNNs (18), RNNs
(25), DBNs (117), AEs (116), and attention-based models are
only some of the deep-learning methods that can be applied to
the problem of ECG beat classification. Automatic feature
extraction is the main advantage of deep learning models. In
recent years, deep-learning models have modified their structure
in ECG beat classification to improve accuracy. During the
initial stages of ECG beat classification, the prevailing models
relied on handcrafted features, such as QRS duration, heart rate,
and T-wave amplitude. These models exhibited a restricted level
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of accuracy, prompting researchers to initiate investigations into
deep learning models. CNNs have achieved notable success in
classifying ECG beats due to their ability to directly extract
relevant attributes from the raw ECG signal, minimizing the
requirement for manually extracted features. In an initial study
by (127), a one-dimensional CNN (1D CNN) was introduced.
This CNN is capable of accurately identifying ECG beats
without the need for manually extracted features. However, this
research employed an FFT to preprocess the ECG beats. In (18),
a 1D-CNN was introduced to process raw ECG signals without
pre-processing. In (140), a parallel configuration of CNN is
described as an efficient method for classifying ECG beats.
Following the emergence of CNNs and RNNs, these models
were developed to process data sequences effectively. RNNs can
effectively capture the sequential dependencies and extended
patterns found in ECG data.

A deep neural LSTM including spectral features for ECG data
classification has been suggested by Grzegorz et al. (113). In (26),
different ECG beats were detected simultaneously using a
combination of a CNN and LSTM. In (141), four types of ECG
beats were classified using a dense convolutional network
(DenseNet) and bi-directional long short-term memory (Bi-
LSTM) architecture that combines the wavelet transform.
Furthermore, the research on ECG beat classification has also
included other combinations, such as CNN-LSTM (27), LSTM-
CNN (27), CNN-BiLSTM (142), and Bi-LSTM (25). DL
algorithms have the ability to acquire sophisticated attributes
and comprehend intricate patterns in ECG signals. ECG beat
classification is especially crucial when significant deviations in
beat morphology exist. Therefore, DL-based methods (142-148)
are outperforming previously published techniques such as
template matching, rule-based, and ML-based methods (12-17,
22-24). Most of the methods outlined in the current literature
have limitations, such as feature extraction that requires human
intervention, issues with class imbalance, requiring a large
amount of training data, and the need for powerful GPUs.

A proficient hybrid deep learning architecture is required for
and ECG beat
classification. 1D-CNNis are efficient but require more depth and

efficient automatic feature extraction
parameters to achieve higher accuracy. ResNet was designed to
address this problem, but overfitting may arise when the model’s
structure is very intricate, requiring high-performance hardware
ResNet

unsuccessful in capturing the long-term dependencies in a

and extended training duration. Furthermore, is
sequence. In the majority of the studies in the literature,
researchers convert one-dimensional ECG beats into grey-scale
images (39) or spectrograms (112) to improve performance.
However, this approach can be computationally expensive,
particularly when working with images rather than signals.
Thus, (Bi-GRU)

implemented to capture the long-term dependencies in an ECG

a Dbi-directional gated recurrent unit is
signal. Bi-GRU has the ability to process the input sequence in
both forward and backward directions. This enables the model
to effectively capture contextual information from past and
future inputs, making it highly valuable for tasks that involve
analyzing the relationships within the input ECG beat segment.
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Bi-GRU is more efficient in training and converges faster than
ResNet, particularly when working with smaller datasets (28). This
is due to its reduced parameter count. Although Bi-GRU may not
be able to extract complex features from input data like CNNs and
ResNet, it still has its strengths. Using a CNN, ResNet, or Bi-GRU
alone fails to improve ECG beat classification performance. To
address these problems, the utilization of dual-stream or multi-
stream (40) networks can be beneficial for achieving precise
classification of ECG beats. Utilizing dual or multi-stream deep
learning techniques to combine information from multiple
sources or modalities can greatly enhance the performance of
deep learning models (28). In dual-stream deep learning, the
model receives data from two sources, each representing a
distinct input or feature. In one stage in the model’s design,
these streams are usually combined to produce a forecast. Multi-
stream deep learning is quite similar but uses three or more
data streams. This approach may be particularly beneficial when
dealing with complex data that can be broken down into
numerous modalities. It is now common practice to employ
dual or multi-stream deep learning approaches to combine data
from many sources to enhance models’ predictive abilities (28).

An optimal fit in a machine learning or deep learning model is
considered good because it strikes a balance between underfitting
and overfitting, allowing the model to generalize well to unseen
data (144). Unlike underfitting, where the model is too simple
it
memorizes noise from the training data, an optimal fit ensures

to capture important patterns, or overfitting, where
that the model learns meaningful relationships without excessive
complexity (163). This results in better generalization, reduced
bias and variance, improved accuracy on both training and
validation datasets, and enhanced robustness across different
data distributions. By maintaining this balance, an optimally
fitted model provides reliable and stable predictions, making it
suitable for real-world applications where consistency and
adaptability are essential.

Traditional machine learning classifiers continue to play an
essential role in ECG beat classification owing to their
interpretability and computational efficiency. Among these,
SVMs and ensemble models,
gradient boosting, remain dominant, achieving accuracies of
98%-99% when combined with optimized DWT-PCA features.

Simpler methods, such as kNN, decision tree, and naive Bayes,

such as random forest and

provide lightweight alternatives for embedded or real-time
systems. Addressing class imbalance through SMOTE or cost-
sensitive learning further enhances reliability. Overall, ensemble-
based and kernel-optimized SVM frameworks deliver a strong
balance between accuracy, speed, and interpretability,
confirming that well-engineered ML systems remain competitive

with deep-learning models in ECG beat classification.

5 ECG beat classification using
advanced machine learning

We thoroughly analyzed several articles that use machine
learning, deep learning, and explainable AI (XAI) techniques to
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classify ECG beats. To address this, we have included a summary
note on Al-based methods for ECG diagnosis in Section 5.

5.1 Machine learning approaches

An overview of previous studies on the classification of ECG
beats through the application of machine learning techniques is
presented in Table 6. The table reviews various ECG beat
classification techniques wusing machine learning models,
highlighting their applications, databases, and performance
metrics. Techniques such as radial basis function neural
networks (RBFNNs), SVMs, and ensemble classifiers have been
applied in datasets such as MITDB, PTBDB, and INCART,
achieving accuracy rates from 84.60% to 99.99%. Each approach
has specific advantages, such as resilience to noise and improved
specificity, but also faces limitations, including increased system
complexity or computational demands. Notably, classifiers such
as SVM and RF consistently showed high performance, making
them suitable for real-world applications; however, challenges in
feature selection and model generalization were critical issues in
different studies. After extracting the features from the ECG
beats, artificial intelligence methods from machine learning can
be used to build models from these data to classify arrhythmia
heartbeats (43, 43-46). SVMs (126), ANNs (164), KNNs (24),
and LDAs (165) are some of the most popular machine learning
methods used for ECG beat classification. Despite noise and
outliers in the ECG data, SVM continues to produce effective
results because it finds the ideal hyperplane that maximizes the
margin between distinct classes. Basic artificial neural network
structures with fewer layers and parameters could improve
interpretability, making it easier for clinicians to comprehend
and have confidence in the model’s decisions when classifying
ECG beats. The KNN algorithm is beneficial due to its
simplicity and non-parametric nature, which makes it suited for
with
extremely non-linear decision boundaries (24). However, when

small-to-medium-sized  datasets and circumstances
the classes in the ECG data are well-separated, LDA emerges as
a linear classifier that strives to maximize the between-class
variation while minimizing the within-class variance (165).
Moreover, it is important to consider the dataset’s size, the
task’s difficulty level, and the available processing resources
before selecting an approach. Each algorithm has both
advantages and disadvantages.

ECG beat classification using machine learning classification
health

accuracy, and automation. Initially, these methods offered rapid

algorithms increases cardiac assessment efficiency,

and automated ECG data analysis, saving healthcare workers
time and effort. This may improve heart abnormality diagnosis
lead healthcare
expenditures. In addition, machine learning classifiers can

and treatment outcomes and to lower
efficiently process significant ECG data, making scalable and
cost-effective analysis possible in clinical settings. Furthermore,
these methods can understand intricate patterns and correlations
within ECG readings, which enables the detection of minor

anomalies that may not be evident to traditional human observers.
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ECG beat
classification have been associated with notable challenges and

However, machine learning algorithms for
limitations. These models depend on the quality and quantity of
training data, which may be noisy, artifact-filled, and variable
among populations. In addition, the sophisticated decision-
making processes of machine learning models in ECG analysis
difficult This
misinterpretability may limit the clinical acceptance of machine

may be for clinicians to understand.

learning-based diagnostic technologies.

5.2 Deep learning approach-based ECG
beat classification

A comprehensive literature review on ECG beat classification
using deep learning models is presented in Table 7. The review of
deep learning models for ECG beat classification revealed various
approaches, such as CNNs, LSTMs, and hybrid models, applied
to datasets such as MITDB, INCART, and SVDB. CNNs show
robust performance with accuracies up to 99.90%, while LSTM-
based methods excel in capturing temporal features, improving
sensitivity and specificity. The advantages of these models include
the automation of feature extraction and their potential for real-
time applications. However, remain, such

challenges as

computational intensity, model complexity, and limited
generalization across diverse datasets. Ensuring robustness in
noisy, real-world conditions and addressing resource-intensive
training remains critical for their wider clinical adoption. Deep
learning has become an essential tool in ECG beat classification,
with enormous significance in medical diagnostics and healthcare
(18, 26). A key advantage of deep learning over more
ECG beat

classification is its ability to automatically derive hierarchical

conventional machine learning approaches for
features from raw ECG data, eliminating the need for features to
be manually extracted (18, 26). In contrast, deep learning models,
specifically CNNs and RNNs, are exceptionally proficient at
automatically extracting complex features from raw ECG data,
which allows for the accurate classification of a wide range of
cardiac disorders and arrhythmias (18, 19).

DL algorithms can improve diagnostic ability by utilizing
extensive datasets, allowing them to generalize across various
cardiac diseases and adjust to differences in patient demographics
and recording settings (18, 26). Over the past few years, CNNs
have been utilized extensively in ECG diagnosis and attained
remarkable performance. CNNs are superior to other methods for
extracting spatial characteristics from input signals; this allows
them to detect local patterns that may indicate different cardiac
problems. In contrast, RNNs can understand the temporal
correlations between subsequent ECG samples since they specialize
in modeling sequential data (25-27). By utilizing the combined
advantages of convolutional neural networks and recurrent neural
networks, particularly in hybrid structures such as CNN-RNN,
ECG classification algorithms can attain exceptional performance
in terms of accuracy and robustness (26-28).

DL methods have various advantages over standard ECG beat
classification  algorithms, including

automatically learning
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TABLE 6 Review of the ECG beat classification techniques that use ML models.
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Study Application = Database ML Performance Advantages Disadvantages
approach (in %)
(149) Arrhythmia RBFNN Sen 94.54 Optimized classification performance | A minimal number of morphological
classification with minimal network size. features are extracted from ECG beat.
(150) ECG beat LDA Acc 84.60 Non-linear classification capabilities Generalization capability of the
classification and Acc 89.00 were improved. system needs to be improved.
MLPNN
(151) ECG beat SVM Acc 97.20 Resilient to noise and variability. Limited generalization capability.
classification
(152) ECG beat LR Acc 98.43 A high average specificity of 97.75% Implementing and fine-tuning
classification Spe 97.75 with minimal false positives. Reservoir Computing algorithms are
complex.
(153) AF MITDB SVM Acc 90.27 Suited for real-world applications. AF rhythm detection has a lower F1
classification F1 84.00 score.
(154) Abnormalities Ensemble Acc 90.25 Improves the classification system’s May require enormous
detection classifier performance. computational resources.
(155) ECG CNN with Acc 97.10 Improved performance with CNN and | Complex model requiring extensive
classification SVM Sen 96.50 SVM. tuning.
(156) Cardiac EEMD with Acc 93.40 Supports efficient automatic diagnosis | Advanced signal processing increases
arrhythmia KNN Sen 95.40 in clinical settings. computational demands.
detection F1 96.30
(157) ECG beat Decision tree Acc 98.62 Good accuracy for early heart disease | Noise and artifacts may affect
classification Gradient Acc 99.13 detection. performance.
boosting
(35) Five types of PCA, LDA, Acc 99.97 DWT offers energy compaction; choice | Not tested with 10-fold validation;
ECG beat classes ICA, DWT of dimensionality reduction depends | lacks generalization as tested only on
on data characteristics. MITDB.
9) Five RF classifier Acc 98.50 Higher accuracy with 10-fold DTCWT for feature extraction is
beat classification validation. hard to implement on hardware.
(29) ECG beat INCART SVM Sen 91.70 Improved classification performance, | System complexity increases with
classification and generalization capability of the various connected components.
model is verified.
(158) Arrhythmia MITDB KNN and SVM | Acc 94.50 Maintains high accuracy for 15 Higher computational cost due to
classification SVEB with PSO Acc 85.10 heartbeat classes. PSO optimization.
optimization
(159) Heart diseases MITSA RF Acc 97.98 Acceptable for large datasets. Performance may drop with poor
GDB Acc 96.95 feature selection.
(24) Myocardial NSR, PHR, KNN Acc 98.40 Effective with small datasets. Memory-intensive for large datasets.
infarction MIT-BIH sinus
& heart failure arrhythmia
(126) ECG anomaly Physionet Gaussian Acc 99.99 Handles high-dimensional spaces Computationally expensive with
detection long-term ECG | kernel-based effectively. large datasets.
SVM classifier
(160) Myocardial PTBD SVM Acc 95.30 Consistently better results. Computationally intensive model.
infarction Sen 94.60
Spe 96.00
(161) Myocardial PTB SVM, Sen 92.60 Automated MI diagnosis. Multiple-instance learning
infarction KNN, and RF Sen 92.30 complicates classification.
Sen 91.43
(92) ECG arrhythmia | SVEB SVM with Acc 98.06 Robust on imbalanced datasets. Preprocessing may limit
detection Kruskal-Wallis | MCC 91.51 generalizability.
Feature
selection
(162) Apnea detection | Private CHMM Sen 93.98 Works well with real-time data. Limited training data reduces
Spe 95.38 performance.

MLPNN, Multilayer Perceptron Neural Network; EEMD, Ensemble Empirical Mode Decomposition; CHMM, Coupled Hidden Markov

Representation Aggregation Network.

discriminative features from raw ECG data without manual
feature extraction (18). With this automated feature extraction
technique, DL models can better classify cardiac diseases by
detecting intricate patterns and tiny variations in the data.
Further, the temporal and sequential nature of ECG signals is
well-suited to DL methods, especially RNNs and CNNjs,
enabling them to detect the long-range relationships and
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Model; IraNet, Inter- and Intra-patient

temporal patterns in heartbeats (25). Furthermore, DL models
have also shown excellent generalization abilities, which means
they can adapt to different patient groups and recording

very real-world

situations, which is important  for
clinical applications.
In the field of ECG beat classification, deep learning

algorithms have some significant limitations and challenges.
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TABLE 7 Review of the studies on ECG beat classification using deep learning models.

10.3389/fdgth.2025.1649923

Study | Application Database DL Performance Advantages Disadvantages

approach (in %)

(127) ECG beat CNN Acc 97.40 DL replaces time-consuming, error- Training CNNs for each patient can be
classification Sen 60.31 prone manual feature extraction. computationally intensive, especially with

more patients.

(136) ECG heartbeat CNN Acc 94.30 Accurately classifies heartbeats in Training dataset quality significantly
classification (nine-layered) | Acc 84.07 noise-free ECGs, indicating ability to | impacts performance. A biased dataset can

(Noisy ECG) detect abnormal rhythms. hinder model generalization.

(137) ECG DCNN Spe 99.83 More efficient and accurate than Limited generalization to other datasets or
arrhythmia (seven-layered) | Acc 99.68 conventional methods. real-life clinical scenarios.
detection

(135) ECG arrhythmia 1D-CNN Acc 90.93 2D-CNN model classified five High computational resources and time
classification 2D-CNN Acc 99.00 arrhythmias accurately. needed for training, especially for 2D-

CNN.

(166) ECG heartbeat LSTM Sen 98.63 LSTM-AE learns features without LSTM networks are computationally
classification with AE Spe 99.66 manual extraction. expensive to train and deploy.

(129) ECG beat MITDB LSTM-based Acc 99.10 Patient-specific analysis achieved by Complex implementation hinders
classification RNN F1 95.00 training on 5 min segments. adoption, especially with limited resources.

(167) ECG arrhythmia Multiscale Acc 95.60 CNN with new multiscale blocks and | Complex model architecture and
classification convolution Sen 93.17 attention modules classify arrhythmia | preprocessing methods may need huge

and FCBA with high sensitivity and accuracy. computational resources. The method’s
(frequency Effectively resolves data imbalance performance may change with increasingly
convolutional using oversampling and noise diversified datasets.

block attention) augmentation.

(39) Normal Encoded deep | Acc 99.52 The morphological variations can be | Complex models with high computational

atrial fibrillation CNN F1 Score 95.64 captured more effectively using images | power (GPU-based systems) are required
with input ECG compared to one-dimensional signals. | to handle the large input image data.
beats
as image

(40) Beat BiLSTM and Acc 98.30 Ability to extract more in-depth As it is an ensemble learning model, it
classification random forest features from the ECG signal. requires more training and testing time.
as per AAMI with PCA
standard

(28) Beat Multi-stream Acc 99.93 Deep features are extracted from the | The reliance on multiple deep-learning
classification Bi-GRU input, which are very helpful to models can lead to high computational
as per AAMI network with accurately assess the type of beat. costs. Further research is needed to
standard random forest evaluate scalability for real-time

applications.

(141) ECG arrhythmia DenseNet with | Acc ~99.44 BiLSTM is integrated to enhance the | Bi-LSTM requires more computational
classification Bi-LSTM model’s capacity for extracting local power and needs to process input twice

features and capturing temporal due to the parallel deep learning
features of ECG signals. architecture.

(27) ECG arrhythmia CNN and Acc 99.32 The proposed model exhibits strong Requires QRS detection, introducing
classification LSTM generalization capabilities and could | additional computational overhead.

(six types) serve as a valuable tool for clinicians in | Imbalanced dataset challenges, particularly
diagnosing arrhythmia. with limited AFL class instances.

(10) Beat An explainable | Sen 99.00 Explainable AI enhances the accuracy | Deployment feasibility for real-time
classification deep and reliability of heartbeat monitoring must consider computational
as per AAMI transfer classification by making DL models resources, integration with clinical
standard learning more transparent and understandable | workflows, and regulatory standards.

approach for physicians.

(168) ECG arrhythmia | MITDB Customized Acc 97.31 Classifies numerous arrhythmias Real-world wearable data noise and
classification AFDB CNN Sen 96.50 accurately utilizing short ECG artifacts may affect performance. Single-

F1 98.30 segments, making them appropriate lead ECG may lower arrhythmia detection
for continuous monitoring using accuracy.
wearable devices.

(143) Detection of AFDB CNN and RNN | Acc 89.30 Extract high-level features from Analysis of the model’s performance on
atrial combination segments of RR intervals (RRIs) to noisy ECG segments revealed a higher
fibrillation classify them as either AF or NSR. number of false positives, as anticipated.

(169) ECG signal MITDB CLINet Acc 99.94 The architecture is lightweight, making | A lack of comprehensive preprocessing
Classification ICCAD (Conv+LSTM+ | Acc 99.90 it appropriate for deployment on may influence robustness in noisy real-

Involution) wearable devices, and it achieves very | world datasets.
high accuracy across multiple datasets.

(170) ECG beat MITDB DNN Acc 91.30 Enhanced system robustness and Stacking autoencoders and DNNG is
classification INCART Acc 92.40 generalizability. computationally expensive and resource-

SVDB Acc 90.61 intensive.
(Continued)
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TABLE 7 Continued

Study  Application Da DL
approach

(in %)

(171) Premature MITDB Hybrid BILSTM | Acc 97.20
ventricular INCART Sen 96.00
contraction

(172) ECG beat LUDB VGG16-based | Acc 99.90
classification CNN

(173) Abnormalities MITDB Hybrid DNN Acc 99.28
detection Real-time Acc 99.12

(170) ECG beat MITDB DNN Acc 91.30
classification INCART Acc 92.40

SVDB Acc 90.61

(174) Heartbeat SVEB IraNet Acc 95.48

classification (residual Sen 95.75

attention
with Bi-LSTM)

Overfitting is a significant challenge in ECG beat classification,
particularly in deep learning-based models, where the model
captures noise and irrelevant patterns from training data,
leading to poor generalization to new, unseen data. One of the
primary causes of overfitting in ECG classification is the use of
complex models with high-dimensional feature spaces, especially
when datasets are imbalanced. Studies have shown that utilizing
all 12 ECG leads
redundancy and unnecessary complexity, thereby reducing

in classification models can introduce
generalizability and increasing the risk of overfitting (176). In
addition, the presence of linear dependencies within ECG data
has been identified as a major issue that skews the learning
process towards the majority class, leading to biased model
predictions and lower accuracy in minority class detection (57).
This issue is particularly evident in patient-specific ECG
classification, where models tend to overfit to the training
patients, different
individuals (29). Moreover, deep learning models trained on

failing to generalize effectively across
high-dimensional spectro-temporal ECG features have been
found to suffer from overfitting due to their inability to leverage
beat-to-beat variations effectively (120).

To mitigate overfitting in ECG beat classification, researchers
have proposed various strategies. Feature selection and
dimensionality reduction techniques, such as selecting an
optimal subset of ECG leads instead of using all 12 leads, have
been found to enhance classification accuracy while maintaining
interpretability (176). Sample reduction techniques, such as QR
and SVD, have also been effective in eliminating redundant data
and addressing class imbalance, thereby reducing bias and
improving generalization (57). In addition, the use of ensemble
methods, such as multiple classifier architectures and hybrid
machine learning approaches, has shown promise in improving
(60, 175).

and L2

regularization, are widely used to constrain deep learning

classification  robustness and interpretability

Regularization  techniques, including dropout

models and prevent overfitting. Cost-sensitive learning
approaches, such as modifying the classification threshold based
on class imbalance, have also been shown to significantly

enhance ECG beat classification performance by reducing bias
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Advantages

Disadvantages

Achieves high performance in May be less effective in detecting rare

classifying premature ventricular arrhythmias or artifacts.

contractions.

Accurately classifies beats using time- | Impressive accuracy may indicate

frequency representation. overfitting, especially on smaller datasets.
High accuracy ensures reliable
abnormality detection for clinical

applications.

Heavily reliant on input data quality; noise
and artifacts can reduce accuracy.

Enhanced system robustness and Stacking autoencoders and DNNG is

generalizability. computationally expensive and resource-

intensive.

Competitive accuracy and sensitivity | Complex model may require extensive

across multiple classes. computational resources.

towards majority classes (98). Furthermore, data augmentation
strategies, such as adding noise, applying transformations, or
generating synthetic ECG beats using generative models, have
been successful in increasing the diversity of training data and
generalization  (120). these
approaches ensure the reliability and robustness of ECG beat

improving model Collectively,
classification models, making them more effective for real-world
medical applications.

In addition to the overfitting, large annotated datasets are also
necessary for effective deep neural network training, which is a
significant challenge. Generating high-quality annotated ECG
data, particularly for rare cardiac disorders, can be costly and
9). DL
demanding require

time-consuming Furthermore, models  are

computationally and enormous
computational resources, particularly during the training and
optimization phases. This may limit their scalability and
practical implementation in contexts with limited resources,
these

overcome

such as point-of-care settings. Despite challenges,

these
constraints by creating interpretable DL architectures, data-

continuous research is endeavoring to
efficient learning methods, and hardware optimizations (24).
The ultimate goal is to maximize the benefits of DL for ECG
beat

potential drawbacks.

classification ~ and  simultaneously = reduce its

Deep learning has become the leading paradigm for ECG beat
classification by automatically learning spatial-temporal features
from raw signals. Among various models, CNN-LSTM hybrids
and attention-enhanced networks consistently demonstrate
superior performance, achieving accuracies of 98%-99% across
multiple ECG databases. CNNs capture morphological patterns,
while LSTM and GRU layers model temporal dependencies.
Transformer-based models further improve interpretability and
long-range context handling. Data augmentation with GANs
and representation learning via autoencoders effectively address
class imbalance and noise. In addition, transfer-learning and
lightweight architectures, such as MobileNet, enable real-time
deployment on wearable devices. Overall, hybrid and attention-
driven frameworks represent the state of the art in robust,

generalizable ECG beat classification systems.
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5.3 Explainable Al for ECG beat
classification

ECG beat classification using XAI leverages advanced machine
learning techniques to enhance transparency in automated
diagnostic systems. Traditional classification methods often
function as “black boxes,” making it difficult for clinicians to
interpret or trust decisions, especially in critical applications
such as arrhythmia detection. Explainable AI addresses this
limitation by employing methods such as saliency maps, feature
importance visualization, and decision boundary analysis. These
approaches allow for better understanding and verification of
the features contributing to a model’s predictions. Techniques
such as layer-wise relevance propagation (LRP) and gradient-
weighted class activation mapping (Grad-CAM) have been
applied to visualize critical regions of ECG signals, helping
practitioners align model decisions with medical insights (177,
178). This not only improves diagnostic reliability but also aids
in identifying potential errors in classification. Incorporating
XAI into ECG beat classification aligns automated systems with
real-world clinical requirements. Explainable methods enable the
assessment of model predictions in handling class imbalances
and morphological complexities in ECG datasets. Studies
integrating XAI with neural networks, such as convolutional and
recurrent architectures, have shown improved interpretability
without compromising classification accuracy (58, 121). For
ICA with
demonstrated robust classification results with enhanced feature

instance, combining neural networks has
interpretability, achieving over 98% accuracy on benchmark
datasets (98, 179). By bridging the gap between machine
intelligence and clinician trust, explainable AI ensures that
automated ECG diagnostic tools are not only effective but also
transparent and clinically viable. A detailed comparison of the
different features is summarized in Table 8.

XAI has emerged as a crucial frontier in ECG beat
classification

research, bridging the gap between high-

performing deep-learning models and clinical interpretability.

TABLE 8 Comparison of XAl, traditional ML, and deep learning.

10.3389/fdgth.2025.1649923

While deep neural networks, such as CNNs, LSTMs, and

transformers, have demonstrated outstanding diagnostic
accuracy, their “black-box” nature continues to limit real-world
clinical trust and regulatory acceptance. Among the 106
reviewed studies, approximately 14% (15 papers) explicitly
incorporated XAI methods to interpret model predictions and
visualize decision reasoning. Most of these studies applied
saliency-based techniques, including Grad-CAM (180) and LRP
(60), to highlight the waveform segments that contribute most
strongly to the classification outcomes. Such visualization maps
frequently revealed correspondence between algorithmic focus
regions and clinically significant components of the ECG—
particularly the QRS complex, P-wave, and ST-T segments—
demonstrating the potential of XAI to validate model reasoning
in physiological terms.

Beyond saliency methods, a smaller number of studies utilized
attention mechanisms within hybrid CNN-LSTM architectures to
provide interpretability by weighting critical temporal regions.
Others employed the SHapley Additive exPlanations (SHAP)
(181) and Local Interpretable Model-Agnostic Explanations
(LIME) to quantify feature importance in models trained on
handcrafted attributes. However, the overall adoption of such
explainability frameworks remains limited. Approximately 86%
of the analyzed deep-learning studies focused solely on
predictive performance metrics—accuracy, precision, recall, or
Fl-score—without providing interpretive insight into model
This
highlights that the ECG-AI community remains primarily

behavior or physiological relevance. significant gap
performance-driven, with interpretability often treated as an
auxiliary consideration rather than a core design principle. The
limited integration of XAI tools underscores an urgent need for
standardization in interpretability reporting. Future research
should emphasize quantitative explainability benchmarks, such
as region relevance overlap with annotated ECG segments, and
clinician-in-the-loop validation to assess whether the model
explanations align with expert reasoning. Integrating XAI at the

design stage can enhance clinical transparency, regulatory

Traditional ML Deep learning

Transparency High transparency; models provide insights into | Moderate transparency; some models (e.g., decision Low transparency; often acts as a
decision-making processes. trees) are interpretable, others (e.g., SVM) are not. “black box.”

Accuracy Slight trade-off in accuracy due to constraints of | Moderate accuracy depending on the model and High accuracy, especially in complex
explainability in some cases. dataset. tasks.

Interpretability Clear reasoning behind predictions, improving | Varies; interpretable in simple models (e.g., linear Poor interpretability due to
trust and adoption. regression) but not in ensemble models. complexity.

Scalability Dependent on the complexity of explainable Good scalability; lightweight and efficient. Highly scalable for large-scale data.

methods; may require additional computation.
Application areas Suitable for trust-sensitive fields like healthcare
and finance.

User trust Builds trust through interpretable results.

Higher due to integration of methods like SHAP,
LIME, or Grad-CAM.

Aligned with regulations requiring transparency
and accountability.

Complexity of
implementation

Regulatory compliance

Performance on Performs well but may lag behind DL in raw

unstructured data accuracy. data.

Frontiers in Digital Health

General-purpose applications like classification and
regression.

Moderate; depends on model interpretability.
Moderate; simpler than XAI and DL.

Limited compliance where explainability is required.

Moderate; pre-processing required for unstructured

Ideal for unstructured data such as
images, text, and audio.

Limited due to black-box nature.
High; requires expertise in network
architecture and optimization.

Poor compliance due to lack of
interpretability.

Excels with unstructured data such as
images and signals.
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compliance, and physician confidence, ultimately enabling safer

and more explainable deployment of Al-driven cardiac

diagnostic systems.

6 Limitations, solutions, and future
directions

Though this review provides a comprehensive overview of
ECG beat classification systems, it is important to acknowledge
inherent in the current ECG beat

several limitations

classification approaches.

6.1 Minor challenges

o As the traditional methods use handcrafted features, they are
unable to provide reliable and adequate information from
similar ECG beats due to the action of morphological
patterns, which may lead to misclassification (11, 43-46).

o Deep learning models involve many computations, particularly
those with large architectures such as CNNs or RNNs. High-
end GPUs offer more powerful processors and parallel
processing capabilities, enabling faster and more efficient
execution of these computations than CPUs (central
processing units) (20, 25, 28, 114).

o Deep learning algorithms require extensive training datasets to

train the models (9, 19).

Solutions for minor challenges: Implementing deep learning
models, such as CNNs and RNNs, that automatically learn
relevant features from raw ECG data can significantly improve
classification accuracy (127). These models capture complex
patterns and morphological variations without relying on
handcrafted features. To optimize neural network architectures
for computational efficiency, techniques such as model pruning
and quantization can be adopted, or lightweight models such as
MobileNet can be utilized (182). Leveraging cloud-based GPU
resources or distributed computing helps meet computational
demands without compromising performance (183). Employing
data augmentation techniques to artificially expand the training
dataset by introducing variations, such as scaling, rotation, or
adding noise to existing ECG signals, enhances the model’s
robustness (184). In addition, one could use transfer learning
from models pre-trained on large datasets or explore semi-
supervised learning methods that can effectively use unlabeled
data (185).

6.2 Major challenges

o ECG signals exhibit significant intra- and inter-patient
variability in beat morphology due to differences in heart
anatomy, electrode placement, noise, artifacts, and

physiological factors. This variability makes it challenging for

deep learning models to generalize across different

individuals and accurately classify ECG beats (18, 20, 28, 116).
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o Most of the pre-processing techniques in the literature depend
on the signal sampling frequency. If the sampling frequency of
the input signal varies, it is very difficult to achieve better
classification accuracy (113, 114).

o Deep learning models generally require a large amount of labeled
data to achieve high accuracy. Obtaining a large and accurately
annotated ECG dataset for training deep learning models can
be challenging, as ECG data collection and annotation are
time-consuming and require expertise (10, 25, 136).

o ECG beat classification models trained on one dataset may not
generalize well to unseen data from different sources. Ensuring
the robustness and generalizability of deep learning models is a
challenge in ECG beat classification (9, 18, 19).

o The performance of the classification algorithms is significantly
degraded in the presence of similar morphological patterns
with minor variations from different classes (9, 19, 26, 27).

Solutions for major challenges: Collecting a diverse dataset that
represents different patient populations is crucial for training
models that generalize well (186). Techniques such as domain
adaptation can adjust the model to new patient data, and
personalization strategies can fine-tune the model based on
(187). Standardizing the
sampling frequency by resampling all ECG signals to a common

individual patient characteristics
rate prior to processing ensures consistency (188). Developing
pre-processing methods that are robust to sampling frequency
variations or designing models that handle inputs with different
sampling rates using adaptive algorithms can mitigate issues
related to varied sampling frequencies (189). The use of semi-
supervised learning and active learning approaches reduces the
amount of labeled data required (190). Collaborating with
medical institutions to share and pool annotated datasets
expands the available training data (191). Exploring synthetic
data generation methods, such as the use of generative
adversarial networks to create realistic ECG signals, provides
additional (192).

combined multiple

training resources Training models on

datasets  from sources  improves
generalization capabilities (163). Implementing cross-validation
strategies different

generalization techniques ensure that models are robust to

across datasets and wusing domain
variations in data distribution from different sources (193).
Enhancing the model’s ability to detect subtle differences by
incorporating attention mechanisms and multi-scale feature
extraction techniques improves discrimination between classes
with similar morphological patterns (194). Using ensemble
methods that combine multiple models further enhances
classification performance (195), and fine-tuning the model
using specialized loss functions, such as focal loss, emphasizes
hard-to-classify examples (196).

6.3 Synthesis of the proven solutions and
best practices

From the 106 selected articles, we identified consistently

successful practices for ECG beat classification, particularly
regarding data imbalance, generalization, model design, and
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evaluation (55). A key observation across numerous studies is that
models trained and tested on the same patient cohort (intra-
patient splits) tend to exhibit inflated performance, as they
inadvertently learn subject-specific morphology (127). In
contrast, inter-patient validation—where all beats from a given
subject appear in only one data split—offers a more realistic
assessment by ensuring generalization to unseen individuals.
Therefore, inter-patient (or leave-one-subject-out) evaluation
should be considered the primary reporting standard, with any
intra-patient results clearly labeled as ablation or sensitivity
analyses. The synthesis of reviewed literature highlights that
data dataset

contribute significantly more to trustworthy and generalizable

rigorous curation and proper partitioning
results than methodological novelty alone. These best practices
in ECG beat

classification: data imbalance, architectural design, training and

address four major recurring challenges
evaluation methodology, and reproducibility. Therefore, it is
increasingly accepted that inter-patient evaluation should serve
as the primary reporting protocol, with intra-patient results
presented only as supplementary ablation tests. Equally
important is the transparent documentation of any pre-
processing, i.e., band-pass filtering (BPF) parameters, baseline-
R-peak detection and Dbeat

segmentation window lengths, since small differences in these

wander removal, methods,
steps can significantly alter results (57). Explicitly reporting such
settings is now recognized as best practice for reproducibility.
The most persistent problem identified across datasets such as
MIT-BIH Arrhythmia (8), INCART (53), and MIT-BIH
Supraventricular Arrhythmia (3) is the severe class imbalance
between normal and abnormal beats. To mitigate this, studies
have increasingly combined algorithmic and data-level solutions.
Among the algorithmic solutions, loss-function re-weighting or
dynamic minority-biased batch weighting consistently improved
sensitivity to rare arrhythmias without harming majority class
precision. These methods dynamically scale gradients according
to class frequency, preventing the network from converging
toward trivial majority predictions. Complementary strategies
such as feature-fusion architectures, which integrate temporal,
frequency-domain, and time-frequency representations, were
they
and mitigate bias towards

also effective, as expose the classifier to richer

discriminative cues dominant
waveform shapes (197). A smaller but influential group of
studies used DBA or Fl-based early-stopping criteria instead of
overall accuracy, thereby explicitly optimizing for balanced
these

demonstrate that metric-aware optimization is more faithful to

recognition across classes. Collectively, practices
clinical relevance than simple accuracy maximization. At the
data level, the combination of ECG-specific augmentation and
transfer learning emerged as another reliable route to improved
minority-class recall. Augmentations such as controlled time-
shifting, amplitude scaling, additive Gaussian noise, and mild
temporal warping expand training diversity while preserving
physiological plausibility. Overly aggressive distortions, such as
heavy frequency modulation, were found to

degrade
performance by altering beat morphology. Consequently,

augmentations that respect signal physiology are now favored.
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For smaller or domain-specific datasets, transfer learning—pre-
training on a large balanced corpus and fine-tuning on the
target data—consistently reduced overfitting and variance,
especially for rare arrhythmias. Ensemble learning, though
computationally heavier, repeatedly provided robustness against
minority misclassifications by averaging the decisions of
differently initialized or architected models (21). Together, these
results establish a hierarchy of preferred imbalance-handling
practices, namely, loss-level weighting, physiologically consistent
augmentation, transfer learning, and lightweight ensembles, in
order of practicality. Architectural trends in the literature show
a clear evolution from manual feature engineering to end-to-end
deep networks capable of automatically learning morphological
and temporal patterns. Among these, 1D-CNNs remain the
dominant backbone for local feature extraction because they
effectively capture QRS-complex morphology and achieve high
efficiency. When CNNs are extended with recurrent layers—
Bi-LSTM units—they gain
awareness, enabling them to exploit rhythm dependencies
between consecutive beats. Hybrid CNN-LSTM architectures,
sometimes

especially LSTM or temporal

referred to as hierarchical temporal models,
consistently occupied the upper performance tier, with F-scores
typically between 95% and 99% in benchmark datasets. These
combinations proved particularly successful in distinguishing
morphologically similar beats that differ primarily in timing
rather than shape.

A further architectural enhancement repeatedly associated
with improved interpretability and accuracy is the attention
mechanism. Attention layers help the network emphasize
diagnostically important regions of the ECG, such as the QRS
onset and offset, while down-weighting redundant background
segments. Across multiple studies, attention modules increased
subtle

ventricular and supraventricular ectopic beats, and they provided

sensitivity  to morphological  differences  between
intuitive saliency maps that facilitate clinical interpretability.
Where data and

transformer-style multi-head attention further improved long-

computational  resources  permitted,
range context modeling, capturing dependencies across entire
cardiac cycles rather than single beats. In parallel, modern
convolutional refinements such as residual connections, squeeze-
blocks, and

enhanced optimization stability and feature discrimination.

and-excitation frequency-channel  attention
These structural elements have therefore become standard
components of competitive ECG classifiers. Beyond architecture,
the review reveals consensus on several training and evaluation
practices that determine whether good models generalize in
clinically realistic conditions. Regularization through dropout,
weight decay, and batch normalization is nearly universal
among successful deep networks, preventing overfitting to small
patient subsets. Early stopping based on validation Fl-score or
AUPRC proved more reliable than using loss reduction alone,
because it guards against bias towards majority classes. Many
articles also emphasize aligning model capacity with hardware
constraints. For example, for wearable or edge deployment,
compact 1D-CNNs with attention heads offer an attractive
trade-off between interpretability,

accuracy, and latency.
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Reporting inference time per beat or per signal window is
increasingly viewed as essential, since real-time performance is
critical for embedded medical systems.

6.4 Future directions

The proposed ECG beat classification techniques in the
literature provide promising performance, but there is a need to
develop such methods to overcome the limitations of the
current techniques. In this section, we discuss some of the open
possible extensions of the techniques proposed in this article.

o Personalized, adaptive models individualized ECG
One the

development of personalized and adaptive models that tailor

for
classification: significant future direction is
the ECG classification to the individual patient’s data.
Traditional models often struggle with variability in ECG
signals across different patients due to factors such as age,
physiology, By
patient-specific data into the training process, models can

and comorbid conditions. incorporating
adjust their parameters to better reflect individual cardiac
patterns. Transfer learning and online learning can fine-tune
models using a patient’s historical ECG data, leading to more
accurate and reliable diagnoses (198, 199).

o Explainable and interpretable deep learning models: Deep
learning models must be both explainable and interpretable
for widespread clinical acceptance. Clinicians must

understand the reasoning behind a model’s prediction to

trust and effectively use it in decision-making. Future

Al

techniques, highlighting which parts of the ECG signal

research should focus on integrating explainable
contribute the most to a classification decision. Methods such
as attention mechanisms, saliency maps, and layer-wise
relevance propagation can provide insight into the inner
workings of the model (181, 200). By transparentizing the
decision process, we can bridge the gap between complex
algorithms and clinical practice, ensuring that these tools
support rather than hinder healthcare professionals.

o Efficient, real-time processing for wearable and mobile devices:
As wearable technology and mobile health applications
become more prevalent, there is a growing need for
algorithms that can process ECG data efficiently and in
real-time. Future developments should aim to optimize
models to run on devices with limited computational
resources without sacrificing accuracy. This can be achieved
through model compression techniques, such as
quantization and pruning, and the design of lightweight
architectures specifically tailored for edge computing (182,
201). Efficient algorithms enable continuous monitoring
and prompt detection of cardiac anomalies, which is
essential for timely medical responses and for improving
patient care in everyday settings.

o Unlabeled ECG data with advanced learning techniques: A vast
amount of ECG data remains unlabeled due to the time and
expertise annotation. semi-

required for Unsupervised,
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supervised, and self-supervised learning techniques offer ways
to utilize this untapped resource. Future research should
focus on developing models that can learn meaningful
representations from unlabeled data, thereby reducing the
dependence on large labeled datasets. Techniques such as
autoencoders, contrastive learning, and generative adversarial
networks can uncover underlying patterns in the data, which
can then be fine-tuned with minimal labeled examples (202,
203). Leveraging unlabeled data not only enhances model
performance but also accelerates the development of robust
ECG classification systems.

o Performance with federated learning: Patient privacy is of
paramount concern in healthcare, limiting data sharing across
institutions. Federated learning presents a solution by

allowing models to be trained on decentralized data without

transferring sensitive information. Future directions involve

ECG

and

implementing federated learning frameworks for

analysis, enabling collaboration between hospitals
research centers while maintaining patient confidentiality
(180, 197). This approach can lead to the creation of more
generalized models trained on diverse datasets, improving
different

Addressing challenges such as communication efficiency and

accuracy and reliability across populations.
model convergence in federated settings will be essential for
practical deployment.

o Multi-modal learning: Combining ECG data with other
physiological signals or medical information through multi-
modal learning can significantly improve diagnostic precision.
Future work should explore integrating data from sources
such as blood pressure monitors, oxygen saturation sensors,
and patient medical histories. By providing a more

comprehensive view of a patient’s health status, models can

make more informed predictions about cardiac events (204,

205). Multi-modal approaches can help identify complex

conditions that may not be detectable through ECG analysis

alone, leading to more holistic and effective patient care.

Developing algorithms capable of processing and synthesizing

information from multiple modalities will be a key area

of focus.

7 Limitations of the review
methodology

Despite the systematic and comprehensive approach adopted
in this review paper, several methodological limitations must be
acknowledged to ensure transparency and contextual accuracy
in the interpretation of our findings. These limitations arise
from the nature of systematic reviews themselves, the search
and selection procedures, the heterogeneity of the included
studies, and the diversity in experimental designs, databases,
and performance metrics used in the studies on ECG beat
these
balanced understanding of the review outcomes and outlines

classification. Recognizing constraints provides a

potential directions for improving future systematic reviews in
this field.
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7.1 Scope and search limitations

The review process followed the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines to
ensure methodological rigor and reproducibility. Nevertheless,
one inherent limitation stems from the restriction to peer-
reviewed, English-language publications indexed in major
databases such as PubMed, IEEE Xplore, ScienceDirect, and
Springer. While this criterion ensured quality and accessibility, it
potentially excluded significant research reported in non-English
journals, regional repositories, theses, and conference
proceedings not indexed in the selected databases. Excluding
non-English studies may have introduced a language bias,
especially given that ECG research is conducted globally, with
active contributions from Asian, European, and South American
institutions. Consequently, important innovations, particularly
those published in national medical journals or non-indexed
conference proceedings, may have been overlooked. This review
paper provides a detailed analysis of machine learning and deep
learning techniques for the classification of ECG beats, focusing
on the advancements from 2014 to 2024, but it may have
excluded earlier pioneering work that laid the groundwork for
more advanced ECG analysis methods. A systematic approach
was adopted to analyze the 106 studies, offering a
their

applications in ECG classification. Another limitation relates to

comprehensive evaluation of methodologies and
the deliberate exclusion of grey literature, including technical
reports, dissertations, white papers, and non-peer-reviewed
While  this

credibility of the included studies by ensuring they met peer-

conference abstracts. approach enhanced the
review standards, it may have resulted in the omission of
innovative but unpublished work or early-stage algorithmic
implementations. Grey literature often contains valuable
methodological insights, comparative evaluations, or negative
findings that are less likely to appear in journal publications due
to publication bias.

A major methodological limitation of this review arises from
the heterogeneity across the datasets used in the included
studies. The three most frequently employed databases—MIT-
BIH Arrhythmia (8), St. Petersburg INCART (53), and MIT-
BIH Supraventricular Arrhythmia (3)—differ substantially in
sampling frequency, signal resolution, lead configuration, and
patient demographics. Consequently, performance metrics such
as accuracy, sensitivity, and Fl-score cannot be directly
compared across studies, as the underlying data distributions
vary considerably. For instance, the MIT-BIH Arrhythmia
database contains 48 half-hour two-lead ECG recordings from
47 subjects sampled at 360 Hz, whereas the INCART dataset
(53) includes 75 recordings at 257 Hz from 25 patients with
different arrhythmia profiles. These discrepancies introduced
variability in the reported results, even when identical
algorithms are used. Furthermore, some studies utilized patient-
specific evaluation protocols (intra-patient validation), while
others employed inter-patient cross-validation strategies. The
choice between these validation schemes has a profound effect

on reported accuracy. Models evaluated using intra-patient splits
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typically yield inflated performance metrics since the test data
shares morphological characteristics with the training data.
Conversely, inter-patient validation better represents real-world
generalization but usually yields lower accuracy. The lack of
standardized evaluation protocols across the studies makes it
difficult
algorithmic performance.

to provide an entirely uniform assessment of

8 Recommendations from the critical
review

Based on our comprehensive systematic review of 106 studies
on the state-of-the-art machine and deep learning techniques for
ECG  beat
recommendations to advance the field and address existing

classification, we propose the following
limitations. Addressing the prevalent issue of data imbalance,
techniques such as SMOTE, GANs, and transfer learning should
enhance  model

be employed to performance  on

underrepresented arrhythmia classes. Robust pre-processing
pipelines using modern denoising methods, such as deep
learning-based filtering and wavelet transforms, are crucial for
mitigating noise artifacts such as baseline wander and motion
interference. Hybrid and ensemble models that combine
handcrafted and deep learning-based features can leverage
domain knowledge while improving classification robustness.
The adoption of transformer architectures and attention
mechanisms can better capture long-term dependencies in ECG
signals, while patient-specific and adaptive models, utilizing
transfer learning and federated learning, can address inter-
patient variability. To enhance real-world applicability,
optimizing models for deployment on wearable and Internet of
Things (IoT) devices, with a focus on lightweight architectures
and edge computing, is essential. Furthermore, standardizing
evaluation metrics and benchmarking datasets, fostering
interdisciplinary collaborations, integrating multimodal data
sources, and emphasizing ethical considerations such as data
privacy and XAI will collectively ensure the development of
clinically relevant and scalable ECG classification systems. These
recommendations aim to address current challenges in ECG
beat classification and pave the way for innovative, clinically
relevant, and scalable solutions. By focusing on these areas,
can enhance the

researchers and practitioners diagnostic

accuracy and real-world applicability of automated ECG

analysis systems.

9 Conclusions

This systematic review highlights growing trends in deep
learning for ECG classification, with CNN and hybrid models
showing consistently high performance across benchmarks.
Despite advancements, clinical translation is limited by bias,
data imbalance, and lack of interpretability. While the field has
witnessed significant progress, particularly with the adoption of
deep learning methods such as CNNs and RNNs, challenges
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remain. These include noise and artifacts in ECG signals, data
annotated datasets,
lack of
generalizability to unseen data. In addition, many traditional

imbalance, the need for extensive

computational resource constraints, and the
approaches rely on handcrafted features, which may not fully
capture the complexity and variability of ECG signals. Deep
learning models have demonstrated superior performance in
ECG beat tasks,

automatically learn features from raw data and -effectively

classification offering the ability to
capture temporal and morphological patterns. However, the
“black-box”

interpretability, which is

nature of these models raises concerns about

critical for clinical applications.
Addressing these limitations requires the development of
explainable AI algorithms that provide transparent decision-
making while maintaining the high accuracy of deep learning
models. This review underscores the need for robust pre-
processing pipelines, advanced data augmentation strategies, and
the integration of multimodal data to improve classification
performance.  Furthermore, interdisciplinary  collaboration
between researchers, clinicians, and engineers is essential to
ensure that the developed systems align with clinical needs. By
addressing these challenges and embracing emerging techniques,
such as transfer learning, explainable AI, and real-time
processing on wearable devices, future research can pave the
way for more accurate, interpretable, and scalable ECG beat
classification ~ systems that care and

improve patient

diagnostic efficiency.
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Glossary

ACC Accuracy

AE Autoencoder

AF Atrial fibrillation

AFDB Atrial Fibrillation Database

AHA American Heart Association

Al Artificial intelligence

AM Autoregressive model

ANOVA  Analysis of variance

API Application programming interface
AUC Area under the curve

AUPRC Area under the Precision-Recall curve
AV Atrioventricular

BPF Band-pass filter

BN Batch normalization

BP Blood pressure

BSS Blind source separation

BW Baseline wander

BWF Baseline wander filter

CINC Computers in Cardiology Challenge
CI Confidence interval

CNN Convolutional neural network
CNN- Convolutional neural network combined with long
LSTM short-term memory

CPU Central processing unit

CPSC China Physiological Signal Challenge
Ccsv Comma-separated values

Cv Cross-validation

CVDs Cardiovascular diseases

CWT Continuous wavelet transform

DBA Differential beat accuracy

DBN Deep belief network

DNN Deep neural network

DL Deep learning

DOI Digital object identifier

DTCWT  Dual-tree complex wavelet transform
DWT Discrete wavelet transform

ECG Electrocardiogram

ECN Electrode contact noise

EEG Electroencephalogram

EMD Empirical mode decomposition
EMG Electromyogram

EWT Empirical wavelet transform

FCN Fully convolutional network

FFT Fast Fourier transform

FN False negative

FP False positive

FPGA Field programmable gate array
GAN Generative adversarial network
GRU Gated recurrent unit

GPU Graphics processing unit

HMM Hidden Markov model

HPF High-pass filter

HR Heart rate

HRV Heart rate variability

ICA Independent component analysis
IMF Intrinsic mode function

INCART  St. Petersburg Institute of Cardiological Technics

Database
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IoMT
IoT
JCR
kNN
LMS
LOSO
LPF
LR
LSTM
MA
MAr
MAE
MFCC
MIT-BIH

ML
MLP-BP
MSE
NSTEMI
NPV
PAC
PCA

PLI

PPG
PPV
PRISMA

PTB

PVC
PWA
Q
QOL
QRS
RMS
RMSE
RMSSD
RNN
ROC
RR

SA
SAE
SB

SD
SDG
SDNN
SJR
SJR/Q

SMOTE
SNR
SOM
SoC
Softmax
SPE

ST
STEMI
STFT
SVEB
SVT
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Internet of Medical Things

Internet of Things

Journal Citation Reports

K-nearest neighbor

Least mean squares

Leave-one-subject-out validation

Low-pass filter

Learning rate

Long short-term memory

Muscle artifacts

Motion artifact

Mean absolute error

Mel-frequency cepstral coefficients

Massachusetts Institute of Technology-Beth Israel
Hospital Database

Machine learning

Multilayer perceptron-backpropagation

Mean squared error

Non-ST-segment elevation myocardial infarction
Negative predictive value

Premature atrial contraction

Principal component analysis

Powerline interference

Photoplethysmography

Positive predictive value

Preferred Reporting Items for Systematic Reviews
and Meta-Analyses

Physikalisch-Technische Bundesanstalt Diagnostic
ECG Database

Premature ventricular contraction

Pulse wave analysis

Quartile (Journal Citation Reports Ranking, Q1-Q4)
Quality of life

Q-wave, R-wave, and S-wave complex

Root mean square

Root mean square error

Root mean square of successive differences
Recurrent neural network

Receiver operating characteristic

R-R interval (interval between consecutive R-peaks)
Sinoatrial (node)

Stacked autoencoder

Sinus bradycardia

Standard deviation

Sustainable development goal

Standard deviation of normal-to-normal intervals
Scimago Journal Rank

Scimago Journal Rank / Journal Citation Reports
Quartile (Quality Index)

Synthetic minority oversampling technique
Signal-to-noise ratio

Self-organizing map

System on chip

Softmax activation function

Specificity

Stockwell transform

ST-segment elevation myocardial infarction
Short-time Fourier transform

Supraventricular ectopic beat

Supraventricular tachycardia
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SVM Support vector machine

SWT Stationary wavelet transform

TL Transfer learning

TCN Temporal convolutional network
TN True negative

TP True positive

TQWT Tunable Q-factor wavelet transform
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VAE
VEB
VF
VT
WT
ZCR
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Variational autoencoder
Ventricular ectopic beat
Ventricular fibrillation
Ventricular tachycardia
Wavelet transform
Zero-crossing rate
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