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The electrocardiogram (ECG) is an important tool for exploring the structure and 

function of the heart due to its low cost, ease of use, efficiency, and non- 

invasive nature. With the rapid development of artificial intelligence (AI) in the 

medical field, ECG beat classification has emerged as a key area of research for 

performing accurate, automated, and interpretable cardiac analysis. According to 

the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria, 

we examined a total of 106 relevant articles published between 2014 and 2024. 

This study investigates ECG signal analysis to identify and categorize various beats 

with better accuracy and efficiency, by emphasizing and applying vital pre- 

processing techniques for denoising the raw data. Particular attention is given to 

the evolution from traditional feature-engineering methods toward advanced 

architectures with automated feature extraction and classification, such as 

convolutional neural networks, recurrent neural networks, and hybrid frameworks 

with attention mechanisms. In addition, this review article investigates the 

common challenges observed in the existing studies, including data imbalance, 

inter-patient variability, and the absence of unified evaluation metrics, which 

restrict fair comparison and clinical translation. To address these gaps, future 

research directions are proposed, focusing on the development of standardized 

multi-center datasets, cross-modal fusion of physiological signals, and 

interpretable AI models to facilitate real-world deployment in healthcare systems. 

This systematic review provides a structured overview of the current state and 

emerging trends in ECG beat classification, offering clear insights for researchers 

and clinicians to guide future advancements in intelligent cardiac diagnostics.

KEYWORDS

arrhythmia, classification, deep learning, electrocardiogram, feature extraction, 

machine learning

1 Introduction

The electrocardiogram (ECG) signal is a crucial non-invasive tool for diagnosing and 

monitoring cardiac disorders (1). Its quick and accurate results make it valuable in 

various clinical settings (1, 2), allowing healthcare providers to assess heart rate (HR), 

rhythm, and conduction mechanisms (2, 3). An ECG is commonly used to screen 

patients with risk factors such as hypertension, diabetes, or a family history of heart 

disease, as minor irregularities may signify a higher risk (4). It also reveals heart size, 

thickness, and blood supply, helping to detect conditions such as heart failure or 
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cardiomyopathy. In addition, an ECG is utilized during 

procedures or serious illnesses to monitor heart function and 

detect abnormal rhythms, allowing for prompt intervention (2). 

According to the World Health Organization (WHO), 

approximately 17.90 million deaths worldwide are caused by 

cardiovascular diseases (CVDs) each year (5). The most 

common CVDs (6) are arrhythmia, myocardial infarction (MI), 

congestive heart failure, rheumatic heart disease, 

cardiomyopathy, ischaemia, and heart stroke. ECGs play a vital 

role in diagnosing and monitoring CVDs. Therefore, a timely 

diagnosis and accurate ECG beat detection in cardiac patients 

are crucial. Identifying the morphological similarities among the 

many ECG beats from different classes is difficult when using 

the naked eye. Therefore, an automated diagnostic tool for ECG 

beat classification is required (7).

Figure 1 illustrates the primary ECG signal, composed of the 

following characteristic waves: the P-wave, QRS complex, 

T-wave, and U-wave (1). These characteristic waves are crucial 

for identifying the state of the heart’s functioning. As per the 

Physionet arrhythmia database, there are 17 different types of 

ECG beats. These categories cover a wide range of arrhythmias, 

aiding in the comprehensive analysis and classification of ECG 

beats (8). These 17 different types of ECG beats are further sub- 

categorized into five classes, i.e., non-ectopic beat, 

supraventricular ectopic beat (S), ventricular ectopic beat (V), 

fusion beat (F), and unknown beat (Q), as per the American 

Association for the Medical Instrumentation (AAMI) (8). 

Among these ECG beats, S and V are clinically crucial, as these 

are sources of sudden heart attacks (9).

1.1 Automated ECG beat classification

ECG recordings are classified into two types based on the 

recording duration, i.e., resting and ambulatory ECG (10). 

A resting ECG contains only 5 to 10 min of heart function data 

recording, whereas an ambulatory ECG records 24–48 h of 

information (11). Detecting abnormal episodes from this 

enormous quantity of data is very difficult. Therefore, effective 

automated diagnosis tools are required to detect important 

episodes in cardiac patients. Initially, we used template-based 

and rule-based techniques that are usually utilized to detect the 

type of ECG beat (12–17). Rule-based approaches rely on 

predefined rules and thresholds to classify ECG beats. These 

rules are often based on expert knowledge or heuristics. 

However, these rules may not be able to handle the wide range 

of variations and complexities observed in real-world ECG 

signals. As a result, rule-based approaches may struggle to adapt 

to different types of beats or handle new patterns that were not 

considered during rule creation (18). Developing accurate and 

comprehensive rules for ECG beat classification can be 

challenging. It requires a deep understanding of ECG signal 

characteristics and considerable domain expertise. Designing 

rules that cover all possible scenarios and variations is complex 

and time-consuming. Rule-based approaches are typically 

designed to classify beats based on specific features or patterns 

(19). They may struggle to generalize well to new or unseen data 

that do not conform to the predefined rules. The rule-based 

classifier can produce incorrect or inconsistent results if the 

ECG data deviates from the expected patterns. A set of 

templates representing different types of beats is required in 

template-based approaches (13). Choosing appropriate templates 

that accurately represent the various beat morphologies in ECG 

signals can be challenging. There is a need to consider inter- 

subject and intra-subject variability and variations due to 

different conditions and diseases (12). The classification in 

template-based approaches relies on comparing the input ECG 

beat with a set of templates to find the best match. However, 

template matching can be sensitive to noise, baseline wander 

(BW), and other artifacts present in the signal (20). These issues 

FIGURE 1 

Basic ECG signal and characteristic wave representation.
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can affect the accuracy of the match and lead to misclassification. 

Template-based approaches often struggle with scalability when 

dealing with large datasets or real-time applications (17). 

Comparing each beat with a set of templates can be 

computationally expensive, especially if the number of templates 

is high. The time complexity increases as the number of beats 

and templates grows, making it impractical for large-scale 

applications (21).

1.2 Machine and deep learning for ECG 
beat classification

Machine learning (ML) algorithms are becoming popular for 

effective classification of ECG beats (18, 19, 22–28). Hierarchical 

representations of the latest ECG beat classification techniques 

based on machine and deep learning (DL) techniques have been 

reported in the literature, as shown in Figure 2. Handcrafted 

features are required to detect the type of ECG beat when using 

machine learning techniques (22–24). Most handcrafted features 

are extracted based on time, frequency, and time-frequency 

domains (29, 30). Time-domain features alone are not sufficient 

for effective ECG beat classification; together with this, the 

frequency-domain features increase beat detection performance 

(11, 29). In addition, features based on time and frequency are 

more effective than individual features in the time and 

frequency domain (31). Handcrafted approaches rely on manual 

feature engineering, where domain knowledge is used to design 

and extract features from ECG signals. This process can be 

time-consuming, involving the design of algorithms and signal 

processing techniques to extract meaningful features (5). 

Handcrafted approaches require selecting relevant features that 

capture the discriminative information from the ECG signals. 

Identifying the most informative and robust features is non- 

trivial and often requires domain expertise (32). Choosing 

inappropriate features or excluding important ones can lead to 

suboptimal classifier performance. Handcrafted feature sets may 

not generalize well to new or unseen data that significantly 

differ from the training data. ECG signals vary considerably due 

to age, sex, underlying conditions, and noise (33). The 

classification accuracy may be compromised if the handcrafted 

features do not represent the new data. ECG beat classification 

involves capturing complex relationships and patterns within 

signals. Handcrafted approaches may struggle to capture these 

intricate relationships, as they typically rely on pre-defined 

algorithms and feature engineering techniques. These problems 

have motivated researchers to develop automatic feature 

extraction approaches.

Deep learning models can automatically learn relevant features 

directly from the raw ECG signals, eliminating the need for 

manual feature engineering. This feature learning process 

enables the model to capture intricate patterns and complex 

relationships that may be difficult to capture using handcrafted 

features (18, 19, 25–28). Deep learning models can learn 

hierarchical representations of ECG signals, allowing them to 

extract meaningful features at different levels of abstraction. The 

different deep learning architectures and their advantages in the 

extraction of meaningful features are presented in Table 1. Deep 

learning models are known for generalizing unseen data well. 

They can learn from large amounts of labeled ECG data and 

capture the underlying patterns that are characteristic of 

different beat types. Deep learning models can handle large- 

scale ECG datasets efficiently (20). Once trained, the models can 

process ECG beats quickly, making them suitable for real-time 

applications. In addition, deep learning models can be deployed 

on parallel computing architectures, such as graphical processing 

units (GPUs), to improve computational performance, enabling 

rapid and scalable ECG beat classification (9, 18). Deep learning 

models can be updated and fine-tuned with new data to 

improve performance and adapt to changes in ECG signals (25). 

This ability for continual learning allows the model to 

incorporate new knowledge and adjust its classification 

capabilities as new data become available. It enables the model 

to stay up-to-date with the emerging beat types or changes in 

the data distribution (28). Deep learning models can adapt and 

generalize well to new beat types and variations not encountered 

FIGURE 2 

Hierarchical representation of the state-of-the-art ECG beat classification techniques.
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during training. The models can discover and classify novel 

patterns and variations by learning from diverse examples. This 

adaptability makes deep learning models suitable for dynamic 

environments where ECG data may evolve.

The remainder of this article is organized as follows. Section 2

discusses the main objectives and methodology of the proposed 

study. Section 3 refers to the publicly available databases for 

experimentation on ECG beat classification. The background and 

significance of ECG beat classification are discussed in Section 4, 

with pre-processing, feature extraction techniques, and ECG beat 

classification algorithms, along with their performance, elaborated 

on in Sections 4.1–4.3. A general discussion of machine learning 

and deep learning for the detection of ECG beats is presented in 

Section 5. Finally, limitations, future directions, recommendations 

from the state-of-the-art review, and conclusions are presented in 

Sections 6, 8, and 9.

2 Systematic review protocol

The primary focus of this research was to thoroughly explore 

the extensive range of machine learning and deep learning 

methodologies employed in the context of ECG beat 

classification. Arrhythmia is a condition characterized by 

irregular heartbeats, either too fast or too slow, that disrupt the 

normal functioning of the heart (2). The heart has a natural 

pacemaker that sets the rhythm of the heartbeats. However, any 

disturbances in electrical impulses can result in arrhythmia. 

There are many cardiac arrhythmias, each with unique 

characteristics and potential complications. Early detection and 

treatment of arrhythmias can help prevent serious complications 

such as stroke or sudden cardiac arrest. Significant cardiac 

arrhythmias include (i) atrial fibrillation (AF), (ii) ventricular 

tachycardia (VT), (iii) sinus bradycardia (SB), (iv) atrial Dutter 

(AFT), (v) ventricular fibrillation (VF), and (vi) supraventricular 

tachycardia (SVT) (34). An irregularity in the upper chambers 

of the heart causes AF, which in turn causes blood clots, stroke, 

and heart failure (35). A fast heart rate that starts in the 

ventricles (the lower chambers of the heart) will produce VT 

beats. It can cause dizziness, chest pain, and fainting. If left 

untreated, it can also lead to sudden cardiac arrest. SB is a slow 

heart rate that originates in the sinoatrial node (SA). It can 

cause fatigue, dizziness, and fainting. AF is an irregular heart 

rhythm caused by electrical activity in the atrial chambers of the 

heart. The atrial rate is generally between 250 and 350 beats per 

minute and is quick and regular. Since the atrioventricular (AV) 

node slows down electrical impulses, the ventricles (the lower 

chambers of the heart) can also beat rapidly (34).

The study investigates ECG signal analysis to identify and 

categorize various ECG beats with better accuracy and efficiency. 

The investigation emphasizes vital pre-processing techniques for 

denoising the raw ECG data to achieve this objective. The 

removal of unwanted noise ensures that subsequent classification 

algorithms can work with high-quality input, ultimately leading 

to more robust and reliable results. These pre-processing steps 

are essential in enhancing the performance of the classification 

models reviewed in this study (21, 29, 36, 37). Furthermore, the 

review study in this work explores various feature extraction and 

selection techniques (11, 35, 36). These methods are 

fundamental in transforming the raw ECG signals into a set of 

discernible and informative features that the classification 

algorithms can effectively utilize. By studying and comparing 

the various feature extraction methods available in the literature, 

this study aimed to identify the most relevant and inDuential 

features in the classification of ECG beats, with the aim of 

optimizing the precision and efficiency of the classification 

TABLE 1 Hierarchy of different deep learning architectures for ECG beat classification.

Architecture Layers Advantages Disadvantages Remarks

Convolutional neural 

network (CNN)

Convolutional, pooling, 

fully connected layers

Excellent for spatial feature extraction; 

robust against noise with adequate 

preprocessing

Requires large labeled datasets; 

performance degrades on noisy data

Suitable for clean, structured 

ECG datasets

Recurrent neural network 

(RNN)

Recurrent layers (e.g., 

GRU, LSTM)

Captures sequential dependencies; 

handles temporal features effectively

Prone to vanishing gradient problems; 

slow training process

Useful for time-series analysis 

but requires gradient 

management

Long short-term memory 

(LSTM)

Input, forget, output gates Solves vanishing gradient problem; 

excellent for long-term dependencies

Computationally expensive; sensitive 

to hyperparameter tuning

Ideal for sequential tasks such 

as ECG signal interpretation

Bi-directional LSTM 

(BiLSTM)

Forward and backward 

LSTM layers

Captures past and future temporal 

features

High computational overhead; 

challenging for large datasets

Performs well in tasks requiring 

bidirectional dependencies

Hybrid CNN-LSTM Convolutional layers + 

LSTM layers

Combines spatial and temporal feature 

learning

High computational cost; pre- 

processing (e.g., QRS detection) 

required

Effective for complex ECG 

signal classification

Dense convolutional 

network (DenseNet)

Dense convolutional 

blocks, transition layers

Efficient feature reuse; excellent for 

structured data

High memory requirement due to 

dense connections

Ideal for datasets with detailed 

temporal-spatial patterns

Residual networks 

(ResNet)

Residual blocks with skip 

connections

Solves degradation problem; enables 

deeper networks

Requires careful tuning for small 

datasets

Useful for capturing subtle 

variations in ECG signals

Autoencoders Encoder–decoder 

architecture

Learns unsupervised representations; 

useful for anomaly detection

Limited interpretability; prone to 

over-fitting

Ideal for anomaly detection in 

ECG signals

Attention mechanism Attention layers on top of 

RNN or CNN

Focuses on critical parts of the ECG 

signal

Computationally expensive; complex 

to train

Effective for applications 

requiring interpretability

Transformer networks Multi-head attention, 

positional encoding

Handles long-range dependencies; 

scalable for large datasets

Requires large datasets and high 

computational resources

Promising for real-time, large- 

scale ECG classification

Jaya Prakash et al.                                                                                                                                                   10.3389/fdgth.2025.1649923 

Frontiers in Digital Health 04 frontiersin.org



process (19, 20, 33). This study also surveys and discusses the 

existing literature, critically assessing the performance of the 

different machine and deep learning techniques employed in 

ECG beat classification. By evaluating the strengths and 

weaknesses of these methods, the research aims to provide 

valuable information on the most promising approaches and 

their potential applications in real-world scenarios, such as 

arrhythmia detection and cardiac health monitoring (2). 

Moreover, this investigation seeks to contribute to the broader 

field of biomedical signal processing by presenting a 

comprehensive overview of the state-of-the-art techniques for 

ECG beat classification (18, 19, 25–27, 38–40). By consolidating 

and presenting this knowledge, researchers and practitioners can 

better understand the most effective methodologies available and 

further advance the field’s capabilities.

2.1 Search strategy: inclusion and exclusion 
criteria

We used the Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses (PRISMA) criteria to find studies pertinent to 

the classification of ECG beats (41). Articles published up until 

April 2024 utilizing the terms “Electrocardiogram,” “ECG beat 

Classification,” “Artificial Intelligence,” “Machine Learning,” and 

“Deep Learning” in their respective Boolean combinations were 

searched for in the PubMed, Institute of Electrical and Electronics 

Engineers Association (IEEE), and Science Direct databases. The 

authors excluded non-English publications, duplicate titles, 

irrelevant works, review articles, pilot studies, non-accessible 

articles, and articles published before 2014 (42). Thus, this study 

consisted of 106 articles that focused on AI-based ECG beat 

classification. Figure 3 shows the detailed search method, which 

was compliant with the PRISMA criteria (42). In Figure 4, it can 

be observed that the yearly article publication trend (2014–2024) 

and yearly citation trend (2014–2024) for ECG beat classification 

indicate a strong and growing research interest in this domain. 

The publication trend shows a steady increase in the number of 

articles, which peaked in recent years (2022–2024), highlighting 

the expanding focus on deep learning, signal processing, and 

patient-specific classification approaches. This growth suggests an 

increasing number of researchers contributing to advancements in 

ECG analysis. A peak in citations often follows high publication 

periods, indicating that time is required for newer methods to be 

widely cited. These trends emphasize the need for continued 

innovation and the adoption of novel approaches to sustain 

research in ECG beat classification.

To ensure the inclusion of high-quality and peer-reviewed 

research, the study employed a quality-filtering criterion based on 

the Scimago Journal Rank (SJR) and Journal Citation Reports 

(JCR) quartile (Q) indexing systems. In this review, only articles 

published in journals indexed in SJR or those with JCR quartile 

rankings (Q1–Q4) were considered eligible for inclusion. Studies 

published in journals not indexed in either SJR or JCR, or lacking 

identifiable quality metrics, were classified as “Non-SJR/Q” and 

consequently excluded. The SJR metric reDects the scientific 

inDuence of scholarly journals by accounting for both the number 

of citations received and the prestige of the citing journals, while 

the JCR-Q system ranks journals from Q1 (highest impact) to Q4 

(lowest) based on citation distributions. This quality screening 

ensured that the included literature represented peer-reviewed, 

credible, and widely recognized sources within the scientific 

community. Furthermore, conference papers, pilot studies, non- 

English articles, and inaccessible manuscripts were excluded to 

maintain methodological rigor and focus on reproducible, peer- 

reviewed work.

Figure 5 summarizes the most commonly reported 

performance indicators, namely, accuracy, precision, recall, and 

F-Score. It is acknowledged that these metrics can be misleading 

under severe class imbalance. Accuracy, in particular, tends to 

overestimate performance when normal beats dominate the 

dataset. Although several reviewed studies reported more robust 

and threshold-independent metrics, such as the Matthews 

correlation coefficient (MCC) and area under the precision-recall 

curve (AUPRC), these measures were not consistently available 

across all publications, preventing their inclusion in the 

aggregated summary plots. To maintain comparability across the 

106 reviewed works, we therefore only visualized the universally 

reported metrics. Nevertheless, we recognize that MCC and 

AUPRC provide a more balanced and informative assessment of 

classifier performance, especially for minority arrhythmic classes 

such as supraventricular ectopic beat (SVEBs) and ventricular 

ectopic beat (VEB). This limitation highlights the need for future 

ECG classification studies to adopt standardized, imbalance-aware 

metrics to enable more equitable and clinically meaningful 

performance comparisons. Initially, machine learning methods 

FIGURE 3 

Flow diagram for the systematic review of ECG beat classification, 

following the PRISMA guidelines.
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relied heavily on manual feature extraction, where domain experts 

would identify relevant characteristics of ECG signals, such as 

QRS complexes, heart rate variability, and waveform shapes (29, 

33, 43–46). These handcrafted features were then fed into 

classifiers, such as support vector machine (SVM), random forest 

(RF), and k-nearest neighbors (kNN), which, despite their 

effectiveness, were often limited by the quality and completeness 

of the extracted features. With the advent of deep learning, the 

process became more automated and data-driven, allowing 

models such as CNNs and RNNs to learn directly from raw ECG 

data (25–27). These networks captured complex temporal 

dependencies and subtle morphological variations without explicit 

feature engineering, resulting in more robust and accurate ECG 

beat classification systems. This shift improved classification 

performance and opened new possibilities for real-time and 

patient-specific ECG analysis.

3 Data sources

In the literature, the majority of the studies have used three 

different ECG databases to verify how effectively ECG beat 

classification methods perform, namely, the Massachusetts 

Institute of Technology—Beth Israel Hospital (MIT-BIH) 

arrhythmia (8), St. Petersburg Institute of Cardiological 

Technics (INCART) (8), and MIT-BIH supraventricular 

FIGURE 4 

(a) Article and (b) citation trends for ECG beat classification from 2014 to 2024.

FIGURE 5 

Manuscript details and performance ranges of different machine and deep learning techniques.
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arrhythmia (3) databases. A summary of these three databases is 

shown in Table 2. Table 3 presents a detailed breakdown of the 

manuscripts that utilized various ECG beat classification 

databases. It further highlights the use of the three prominent 

databases—MIT-BIH Arrhythmia, INCART, and MIT-BIH 

supraventricular—across three major publishers: Elsevier, IEEE, 

and Springer. In addition, it includes lesser-known databases 

such as the American Heart Association (AHA) and MIT-BIH 

Long-Term ECG, which are used for specialized research in 

arrhythmia detection. This table helps to identify trends in 

database usage for ECG classification in the scientific community.

MIT-BIH Arrhythmia Database (8): The MIT-BIH arrhythmia 

database includes both typical and abnormal cardiac rhythms. 

This database is widely considered the gold standard in heartbeat 

detection and classification. There are 48 ambulatory ECG 

recordings, each lasting 30 min and collected from 47 subjects (8). 

The first 23 recordings are connected to standard clinical 

recordings, whereas the rest feature potentially fatal cardiac 

arrhythmias. Each ECG signal is collected at 360 Hz in these data 

(8). There are two information streams in every recording, with 

the first channel’s signal (MLII) being of higher quality than the 

second (V5). There are around 1,09,000 heartbeats in the 

collection, annotated with 16 distinct labels. Four records (102, 

104, 107, and 217) are of inadequate quality out of 48 ECG 

records (8). As a result, the classification efficiency is calculated 

without including these files. The ECG signals in the MIT-BIH 

Arrhythmia Database were recorded from different patients, and 

even for the same patient, the signal characteristics can vary over 

time. This can make it challenging to develop a generalized 

classification system that can perform well on new patients (8).

St Petersburg INCART Arrhythmia Database (47): One 

popular dataset for training and testing ECG classification 

algorithms is the 12-lead arrhythmia dataset from the 

St. Petersburg INCART database. Arrhythmias, ischaemic heart 

disease, myocardial infarction, and other cardiac diseases are 

represented in the seventy-five 15 min ECG recordings from 25 

patients (53). Two cardiologists have manually annotated each 

recording with beat annotations in the database. The reference 

annotation files have more than 175,000 beat annotations, which 

are useful for testing and developing ECG classification systems. 

Although the patient group is diverse in age, gender, and 

disease, it may not represent all patient populations (53).

MIT-BIH Supraventricular Arrhythmia Database (3): This 

dataset includes 78 two-lead ECG recordings, each lasting for 

30 min. The recordings were collected from 14 patients, 11 men 

and three women, with different types of supraventricular 

arrhythmias (3). These included normal, ventricular, fusion, and 

unknown beats. The ECG signals were sampled at 128 Hz and 

digitized with 11-bit resolution. Physicians and researchers have 

extensively utilized this database to develop and validate 

algorithms to detect and classify various arrhythmias (3). It has 

been used in several studies to compare the performance of 

different algorithms, including machine learning and deep 

learning algorithms (28).

3.1 Data imbalance issues in the above 
databases

Data imbalance is a significant challenge in ECG beat 

classification, particularly when using the MIT-BIH Arrhythmia 

(8), St. Petersburg INCART (8, 47), and MIT-BIH 

Supraventricular Arrhythmia (47) databases. These databases 

contain varied distributions of ECG beat types, often resulting 

TABLE 2 Details of the databases utilized for ECG beat classification.

S.no Name of the 
database

Number of 
subjects

Sampling frequency 
(in Hz)

Resolution Total number of ECG 
segments

No. of 
classes

1 MIT-BIH 

Arrhythmia (8)

47 360 11-bits 109,000 17

2 St Petersburg 

INCART (8, 47)

25 257 12-bits 175,840 15

3 MIT-BIH 

Supraventricular 

Arrhythmia (3, 47)

14 128 11-bits 184,508 9

TABLE 3 Estimated number of manuscripts using various ECG beat classification databases from different publishers.

Database Elsevier manuscripts IEEE manuscripts Springer manuscripts

MIT-BIH Arrhythmia Database(8) 22 18 19

INCART (8, 47) 5 7 7

MIT-BIH Supraventricular Database(47) 11 9 8

PTB diagnostic ECG (47) 2 3 9

European ST-T (47, 48) 4 3 5

LTAF (long-term AF) (47, 49) 5 6 3

Atrial Fibrillation Database (AFDB) (47, 50) 6 8 4

CPSC (China Physiological Signal Challenge) (51) 4 5 2

CINC (Computers in Cardiology Challenge) (47, 52) 3 4 7

Others 6 9 9
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in an overrepresentation of normal or common beats and an 

underrepresentation of rare arrhythmias, which may degrade the 

model performance and reduce generalizability. In the MIT-BIH 

Arrhythmia database, N beats vastly outnumber abnormal 

arrhythmias such as VEB or SVEB (8). As a result, classifiers 

trained on this database often achieve high accuracy by 

predominantly predicting the majority class (N beats), while 

failing to correctly identify rarer arrhythmias. This class 

imbalance can lead to a high false-negative rate for life- 

threatening conditions such as ventricular tachycardia, as the 

classifier may not learn sufficient patterns for these rare events. 

Techniques, such as the oversampling of minority classes and 

undersampling of the majority class, and applying synthetic data 

generation methods, such as the synthetic minority 

oversampling technique (SMOTE), can help mitigate this 

imbalance (54). In addition, cost-sensitive learning, where 

higher penalties are assigned to misclassifying rare classes, can 

also improve classification performance.

The INCART database, which includes recordings from 25 

subjects with different types of arrhythmias, also suffers from 

data imbalance (8, 47). The majority of the beats in this dataset 

are NSR, while pathological beats such as ischaemic events are 

underrepresented. Similar to the MIT-BIH Arrhythmia database, 

this imbalance can bias classifiers towards predicting normal 

beats. Addressing this issue is crucial for the real-world 

application of ECG beat classifiers, as it ensures the model can 

detect critical events such as ischaemia. To address this 

imbalance, data augmentation techniques, such as adding noise or 

time-shifting the ECG signals of rare arrhythmias, can be used, as 

well as balancing the dataset through stratified sampling (55). The 

MIT-BIH Supraventricular Arrhythmia database also presents a 

unique challenge due to its smaller dataset size and the imbalance 

between normal and supraventricular arrhythmias (47). Given the 

relatively low number of supraventricular beats compared to 

normal beats, classifiers can become biased towards predicting 

normal rhythms, further complicating the detection of less 

frequent but clinically important supraventricular ectopic beats.

Bias in machine learning refers to systematic errors that cause 

a model to make consistently incorrect predictions, often favoring 

certain patterns while neglecting others (56). Bias can arise due to 

several factors, such as imbalanced training data, poor feature 

selection, or overly simplistic model assumptions that fail to 

capture the true complexity of the data (19). Bias in ECG beat 

classification is a critical issue, often stemming from imbalanced 

datasets where certain heartbeat types are overrepresented while 

others are underrepresented. This imbalance can lead to 

classifiers favoring the majority class, resulting in poor 

sensitivity for minority classes, such as supraventricular and 

fusion beats (57). One study demonstrated that standard 

classification models trained on imbalanced datasets tend to 

overfit the majority class while failing to recognize less frequent 

arrhythmias effectively (58). This issue is exacerbated by linear 

dependencies in ECG data, which further skew the model’s 

learning process and introduce classification bias (57). 

Moreover, the impact of inter-patient variability, where models 

perform well on seen patients but fail to generalize to unseen 

cases, further contributes to biased ECG classification (59). 

A detailed overview of certain issues due to bias is presented 

in Table 4.

To address bias in ECG beat classification, several state-of-the- 

art methods have been proposed (19, 58–60). One promising 

approach is the use of a dynamic minority-biased batch 

weighting loss function, which enhances the learning process for 

minority classes while maintaining the model’s ability to classify 

the majority classes accurately (59). In addition, feature fusion 

neural networks, which integrate multiple ECG representations, 

have been shown to improve classification fairness by extracting 

diverse feature sets that reduce bias (59). Another strategy 

involves differential beat accuracy (DBA), a metric that 

optimizes classifier performance by adjusting the learning 

process based on the statistical distribution of different beat 

types, ensuring a more balanced classification (58). Ensemble- 

based techniques, such as multiple-classifier architectures, have 

also been effective in reducing bias by leveraging diverse model 

outputs to correct misclassifications (60). Collectively, these 

approaches contribute to improving the fairness and 

generalization of ECG beat classification models, making them 

more suitable for real-world clinical applications. In addition to 

traditional methods for addressing imbalance, transfer learning 

can be a beneficial approach in this case (55). A model pre- 

TABLE 4 Bias issues and solutions in ECG classification.

Literature Issue Impact Solution

(57) Imbalanced datasets Certain heartbeat types are overrepresented, leading to classifiers 

favoring majority classes and poor sensitivity for minority beats

Dynamic minority-biased batch weighting loss function to 

prioritize underrepresented classes

(58) Overfitting to majority 

class

Standard models fail to recognize less frequent arrhythmias 

effectively, resulting in classification errors

Feature fusion neural networks to extract diverse feature sets 

and improve classification fairness

(57) Linear dependencies 

in data

Skews the model’s learning process and increases classification bias, 

making it harder to detect minority classes

Differential beat accuracy (DBA) metric to optimize 

classifier learning based on data distribution

(59) Inter-patient 

variability

Models perform well on seen patients but fail to generalize to new, 

unseen cases, reducing real-world effectiveness

Ensemble-based classification techniques to improve 

generalization by leveraging diverse model outputs

(98) Cost-sensitive 

misclassification

Traditional classifiers may misclassify minority beats due to non- 

optimized decision boundaries, reducing clinical reliability

Cost-sensitive classifiers that adjust decision thresholds 

based on the misclassification cost of minority classes

(175) Feature selection bias Feature selection methods can introduce bias if not carefully 

designed, leading to suboptimal classification performance

Hybrid deep learning models combining rule-based and 

data-driven feature selection to minimize bias

(60) Limited training data ECG classification models struggle with limited labeled data, 

resulting in poor generalization to new datasets

Data augmentation techniques such as synthetic ECG 

generation to enhance training dataset diversity
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trained on a larger, more balanced ECG dataset can be fine-tuned 

using the smaller MIT-BIH Supraventricular database, allowing 

the model to better generalize across beat types. In all these 

cases, proper evaluation metrics should be used to assess the 

classifier’s performance under imbalance conditions. Accuracy 

alone may not be a reliable metric, as it can be misleading in 

imbalanced datasets. Instead, metrics such as the F1-score, 

sensitivity, specificity, and AUPRC provide a more 

comprehensive understanding of model performance on both 

the majority and minority classes (61). By carefully considering 

these strategies and metrics, researchers can better handle the 

class imbalance problem in ECG beat classification, leading to 

more robust and clinically useful models.

4 Overview of included studies

The ECG beat classification method is depicted as a block 

diagram in Figure 6. The three primary stages of ECG beat 

classification systems are pre-processing, feature extraction, 

and classification. In automated machine learning (AutoML) 

algorithms (11, 36, 62), feature extraction and classification are 

often treated as separate stages. This means the algorithm 

typically involves a dedicated process for extracting relevant 

features from the raw data, followed by a classification module 

that uses these features to make predictions. In contrast, deep 

learning algorithms often integrate feature extraction and 

classification into a single module. This is due to the 

hierarchical structure of neural networks, particularly in CNNs 

and other deep learning architectures, where the network 

learns to extract features and classify data in an end-to-end 

manner automatically (18, 19, 25–28). This integration is one 

of the key strengths of deep learning, as it eliminates the need 

for manual feature engineering and allows the model to 

optimize the feature extraction process as part of the overall 

learning task.

4.1 Pre-processing

Pre-processing is the initial and critical stage in ECG beat 

classification systems, aiming to enhance the quality of the raw ECG 

signals (Table 5). This stage is essential to mitigate the impact of 

noise and artifacts that can obscure the true physiological 

information in the ECG data. Pre-processing technique details and 

their categorization are illustrated in Figure 7. Common sources of 

noise include baseline wander, powerline interference (PLI), and 

muscle artifacts (MAs) (36). Techniques such as bandpass filtering, 

wavelet transforms, and normalization are employed to remove or 

reduce these interferences. In addition, this stage may involve the 

segmentation of the ECG signal into individual beats, setting the 

foundation for accurate feature extraction and classification in 

subsequent phases. First, the raw ECG signal is filtered to eliminate 

unwanted noise and artifacts in the preprocessing stage (35). The 

next step is to separate the signal into individual heartbeats, often 

identified by the R-peaks in the ECG. In the feature extraction 

phase, data from each heartbeat are parsed for various features based 

on its time domain, frequency domain, and morphology. Heartbeat 

rhythms and shapes are characterized using these properties, which 

can be utilized to identify certain arrhythmias. Classification 

involves applying machine learning methods to the retrieved 

attributes of individual heartbeats (90). The basic techniques for pre- 

processing ECG signals can be summarized as follows: classical 

filtering techniques, transform-based techniques, statistical and 

adaptive techniques, modern machine learning approaches, and 

advanced techniques.

FIGURE 6 

Generalized block diagram of ECG beat classification.
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4.1.1 Classical filtering techniques (63–65)

Low-pass, high-pass, bandpass, and band-stop filters are the 

classical filtering techniques in ECG signal pre-processing. 

Bandpass filtering, which combines high-pass and low-pass 

filters, effectively removes baseline wander and high-frequency 

noise, preserving the heart’s signal within a specific frequency 

range. Notch filtering targets particular frequencies, such as 

50/60 Hz powerline interference, to eliminate sinusoidal noise 

without affecting other aspects of the ECG signal. These 

methods are straightforward and widely used but can distort the 

ECG signal, especially in complex cases.

4.1.2 Transform-based techniques (66–68)

Transform-based methods such as wavelet transform and 

empirical mode decomposition (EMD) offer advanced noise 

reduction by analyzing the ECG signal in different frequency 

TABLE 5 ECG signal pre-processing methods: summary, advantages, and disadvantages.

Method Summary Advantages Disadvantages

Bandpass filtering (63–65) Utilizes high-pass (HP) and low-pass filters 

(LPFs) to remove frequencies outside the heart’s 

signal range (e.g., 0.5–150 Hz). Commonly 

implemented using Butterworth or Chebyshev 

filters.

Effectively removes baseline wander and 

high-frequency noise (e.g., muscle artifacts).

May distort the original ECG signal, 

especially the QRS complex.

Wavelet transform 

(66–68)

Decomposes the ECG signal into different 

frequency components using wavelet functions 

such as Daubechies or Symlets.

Can localize noise in both time and 

frequency domains, making it ideal for 

isolating noise such as baseline wander and 

powerline interference.

Computationally intensive; selecting the 

appropriate wavelet function and level of 

decomposition can be challenging.

Principal component 

analysis (PCA) (69–71)

Reduces dimensionality by extracting the 

principal components, which retain the most 

significant features of the ECG signal, while 

discarding noise components.

Efficient in noise reduction and works well 

for multi-channel ECG data

Can lead to loss of important information if 

principal components are not correctly 

identified; assumes linearity

Adaptive filtering (72–74) Uses a reference noise signal (e.g., from a 

secondary channel) and adapts the filter 

coefficients to remove the correlated noise. 

Common algorithms include LMS (least mean 

squares).

Can dynamically adjust to varying noise 

conditions; effective in reducing powerline 

interference and motion artifacts.

Requires a reference signal; may not perform 

well if noise is highly non-stationary.

Empirical mode 

decomposition (EMD) 

(75–77)

Breaks down the ECG signal into intrinsic mode 

functions (IMFs) to separate noise from the 

underlying signal.

Adaptive method that works well with non- 

linear and non-stationary signals, such as 

ECG data.

Can introduce mode mixing, where noise 

and signal are not clearly separated; sensitive 

to noise in the decomposition process.

Notch filtering (56, 78, 79) A narrow-band filter is used to eliminate specific 

frequencies, typically used to remove powerline 

interference (e.g., 50/60 Hz).

Highly effective in removing powerline 

interference without affecting the rest of the 

signal.

Can distort the ECG signal around the notch 

frequency; it does not address other noise 

sources.

Sparse representation 

(80–82)

Represents the ECG signal as a sparse linear 

combination of basis functions. Noise is filtered 

out by removing components that do not 

contribute significantly to the sparse 

representation.

Effective in removing various types of noise 

while retaining signal morphology; adaptable 

to low-SNR ECG data.

Requires careful selection of the dictionary; 

computationally expensive for large datasets.

Non-local means (NLM) 

filtering (76, 83, 84)

Averages similar ECG signal patches to reduce 

random noise. The similarity between patches is 

determined based on their intensity and spatial 

distance.

Highly effective in reducing random noise 

while preserving the sharp features of ECG 

signals.

Computationally intensive, especially for 

large datasets, can blur features if parameter 

selection is improper.

Deep learning-based 

denoising (85–87)

Uses deep learning models such as autoencoders, 

CNNs, or RNNs to learn noise patterns and 

denoise ECG signals in a supervised or 

unsupervised manner.

Capable of removing complex noise patterns 

while preserving ECG features; adaptable to 

real-time applications.

Requires a large dataset for training; 

computationally intensive and can overfit if 

not properly regularized.

Total variation denoising 

(TVD) (88)

Reduces noise by minimizing total variation in the 

signal, preserving edges (e.g., sharp ECG features).

Preserves sharp transitions such as R-peaks, 

effectively removing low-level noise.

May lead to over-smoothing if the 

regularization parameter is not properly 

chosen.

Empirical wavelet 

transform (EWT) (89)

A variant of the wavelet transform that adapts the 

filter bank to the specific frequency bands of the 

input signal.

Automatically adapts to the signal’s 

characteristics, providing better 

decomposition for non-stationary signals 

like ECG.

Still computationally expensive and requires 

careful parameter tuning.

Generative adversarial 

networks (GAN)-based 

denoising (85, 86)

Employs GANs where the generator learns to 

denoise ECG signals while the discriminator 

ensures that the denoised signal is close to the true 

ECG.

Can learn complex noise patterns and adapt 

to various datasets; highly Dexible.

Training GANs is computationally 

expensive and requires careful balancing to 

avoid mode collapse.

Convolutional neural 

networks (CNN)-based 

denoising (85, 86)

CNNs are trained to identify and reduce noise in 

ECG signals automatically.

Efficient in removing structured noise while 

retaining ECG morphology; suitable for real- 

time applications.

Requires a large amount of labeled training 

data; computationally intensive.

Recurrent neural 

networks (RNN)-based 

denoising (85, 87)

Utilizes RNNs, particularly LSTMs, to handle 

time-series ECG data and remove temporal noise.

Effective in handling temporal dependencies 

and preserving important features such as 

R-peaks.

Training is computationally expensive and 

requires careful hyperparameter tuning to 

avoid overfitting.
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components or intrinsic mode functions. Wavelet Transform is 

particularly useful for isolating noise from baseline wander and 

powerline interference by decomposing the signal into various 

frequency bands. EMD, on the other hand, adapts to non-linear 

and non-stationary signals by breaking the ECG signal into 

intrinsic mode functions, which can be selectively processed to 

reduce noise. These methods, while powerful, can be 

computationally intensive and may require careful 

parameter tuning.

4.1.3 Statistical and adaptive techniques (69–71)
Statistical methods such as PCA and adaptive filtering focus 

on removing noise through statistical analysis and adaptive 

adjustments. PCA reduces dimensionality and noise by 

extracting significant components from multi-channel ECG data. 

Adaptive filtering, which uses reference noise signals to adjust 

filter coefficients dynamically, effectively addresses varying noise 

conditions, including powerline interference and motion 

artifacts (MArs). These techniques effectively reduce noise but 

may be limited in rapidly changing noise characteristics.

4.1.4 Deep learning-based technique (85–87)
Recent advancements in machine learning have introduced 

sophisticated methods such as deep learning-based denoising, 

CNN denoising, and RNN denoising. These approaches leverage 

deep learning models to learn and remove complex noise 

patterns while preserving essential features of the ECG signal. 

For example, through adversarial training, GAN-based denoising 

techniques are used to separate noise from the ECG signal, 

enhancing adaptability to various noise types. CNN-based 

denoising uses convolutional layers to filter structured noise 

effectively. At the same time, RNN-based techniques, 

particularly those employing LSTM networks, manage temporal 

noise by capturing dependencies over time. Although these 

modern methods offer superior performance and adaptability, 

they require substantial computational resources and extensive 

training data to achieve optimal results.

4.1.5 Advanced techniques (80–82)

Emerging methods such as sparse representation and transfer 

learning-based denoising provide innovative solutions for ECG 

signal pre-processing. Sparse representation filters out noise by 

representing the signal as a sparse linear combination of basis 

functions, which helps preserve signal morphology. Transfer 

learning-based denoising, utilizing pre-trained models, reduces 

the need for extensive data collection and training, making it 

efficient for small datasets. In addition, blind source separation 

(BSS) methods, such as independent component analysis (ICA), 

separate the ECG signal from noise sources by exploiting 

statistical independence, offering effective noise reduction in 

multi-lead ECGs. These advanced techniques continue to push 

the boundaries of ECG signal processing, addressing challenges 

that traditional methods may struggle with.

In ECG signal processing, significant noise artefacts pose a 

considerable challenge to the accurate analysis and 

interpretation of ECG signals. These extraneous disturbances 

can stem from various sources, including muscular activity, 

electromagnetic interference, electrode impedance, and baseline 

drift. Consequently, faithful extraction of relevant physiological 

information from noisy ECG recordings becomes critical, 

FIGURE 7 

Overall classification of ECG signal pre-processing techniques.
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demanding innovative signal processing techniques (29). ECG 

recordings are generally mixed with different noises during 

acquisition from cardiac patients. Pre-processing techniques are 

crucial for the design of better classification systems. Identifying 

different fiducial points in ECG signals, such as P-onset and off- 

set, Q-onset and off-set, and T-onset and off-set, are difficult in 

noisy environments (91). Hence, the filtering of ECG signals 

without losing important information is a challenging task. The 

primary noise sources in ECG signal acquisition include MAs, 

caused by muscle contractions and tension, leading to irregular, 

high-frequency oscillations that distort the cardiac signal (7); 

electromagnetic interference (EMI) from electronic devices and 

power lines, causing voltage Ductuations and noise spikes (7); 

BW, gradual baseline shifts due to respiration or movement, 

obscuring low-amplitude cardiac components (92); PLI, visible 

as sinusoidal noise from electrical systems (9); MArs, high- 

frequency noise resulting from patient movements such as 

coughing or shifting positions (7); and electrode contact noise 

(ECN), resulting from poor electrode–skin contact, leading to 

signal distortion, especially during motion (2).

In addition, minor noise sources such as drift and offset, lead 

misplacement, sweat, moisture, and external interference also 

affect ECG morphology. Several researchers have developed 

different digital signal processing techniques to remove noise 

from the ECG signal (32, 38, 90, 93–96). In (93), an empirical 

mode decomposition was developed to effectively eliminate 

noise by using significant intrinsic mode functions of the ECG 

signal. A deep score-based diffusion model for ECG BW and 

noise removal and a multishot averaging strategy were 

developed to improve signal reconstructions in (96). 

A denoising autoencoder (DAE) was designed to remove the 

BW and PLI from the ECG signal in (95). A four-stage adaptive 

noise canceller was designed to remove the noise artefacts from 

the ECG signal in (94). In the dual stage, a different approach, 

namely singular value decomposition (SVD), was developed to 

improve the signal-to-noise ratio (SNR) of the ECG signal (38). 

Authors have proposed a sequential Monte Carlo algorithm 

combining the Wavelet transform to handle MA noise in the 

ECG signals (21). Other authors have proposed an R-peak 

detection and denoising algorithm using Shannon-energy and 

Hilbert transform (97). In the literature, several techniques have 

been developed to remove the noise from the ECG signals, even 

though there are still many challenges in real-time ECG 

acquisition. Some of the challenges are (i) patient movement 

during data acquisition can introduce noise and distortion to 

the ECG signal, making it difficult to extract the underlying 

cardiac information accurately; (ii) distinguishing between 

various types of noise and genuine cardiac signals is a critical 

step in effective noise removal as developing accurate algorithms 

for artifact identification is essential for preserving diagnostic 

integrity; and (iii) noise removal techniques developed in 

controlled laboratory settings may not always translate effectively 

to diverse clinical environments. Adapting and validating these 

techniques for real-world conditions are a challenge.

The pre-processing phase plays a pivotal role in ensuring that 

the ECG signal fed to machine learning or deep learning models is 

free from artifacts and retains physiologically relevant 

information. Raw ECG signals are typically contaminated by 

several types of noise, including baseline wander, PLI, MArs, 

and muscle (electromyogram) noise. Baseline wander, often 

caused by respiration or electrode movement, leads to low- 

frequency drift that can distort wave boundaries. Powerline 

interference introduces sinusoidal noise at 50 or 60 Hz, while 

MArs and muscle activity generate high-frequency components 

overlapping with the QRS complex, thereby degrading the 

diagnostic quality of the signal (38, 93). To mitigate these 

artifacts, various denoising approaches have been adopted. 

The Butterworth band-pass filter, commonly configured to 

between 0.5 and 40 Hz, effectively removes baseline drift and 

high-frequency disturbances while preserving critical cardiac 

information. Adaptive filters, such as the least mean square 

(LMS) (98) and recursive least squares (RLS) (48) algorithms, 

dynamically adjust their parameters to cancel correlated 

noise, especially powerline components and electrode movement 

artifacts (90). In addition, wavelet-based filtering has gained 

widespread use because it offers multi-resolution analysis. 

The discrete wavelet transform (DWT) (62) decomposes the 

ECG into different frequency bands, allowing selective 

thresholding to suppress noise without distorting QRS 

morphology (4). Normalization techniques, such as Z-score 

normalization and min–max scaling, are also applied to 

standardize ECG amplitude across subjects and devices, 

ensuring consistent model convergence. Across the reviewed 

literature, studies that employed multi-stage denoising pipelines 

—typically combining wavelet filtering with adaptive or 

Butterworth filtering—reported significant improvements in 

R-peak detection and classification accuracy. Overall, wavelet– 

adaptive hybrid pipelines consistently yielded superior signal 

quality and classification performance compared with single- 

stage filtering approaches (25, 57).

4.2 Feature extraction methods

Feature extraction techniques help to identify the different 

patterns and characteristics of the ECG signal, which can then 

be used to diagnose specific cardiac conditions. For example, 

feature extraction techniques can be used to identify 

abnormalities in the various segments of the acquired ECG 

signal, which can be indicative of different cardiac disorders. 

Therefore, accurate feature extraction and classification 

techniques are crucial for effective diagnosis and treatment. 

Section 4.2 reviews the existing techniques for feature extraction 

and classification of ECG signals in the literature.

4.2.1 Handcrafted feature extraction
The performance of the classifier is dependent upon the 

extracted features. Feature extraction techniques are crucial in 

ECG signal processing and analysis, as they help identify 

important signal characteristics, such as amplitude, frequency, 

duration, and shape. Handcrafted feature extraction techniques 

are mainly classified into the following three types: time-domain 
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(33), frequency-domain (33), and time-frequency domain (11) 

methods. These methods have shown promising results in 

identifying essential features of ECG signals that are useful for 

diagnosing different ECG beats.

4.2.2 Time-domain features

Time-domain features refer to the signal characteristics based 

on the time each observation is measured. In other words, these 

features describe how the signal changes over time. Time- 

domain features include a signal’s mean, variance, and standard 

deviation and measures of the signal’s shape, such as its 

skewness and kurtosis. Some standard time domain features 

utilized in ECG analysis are RR interval, P-wave duration, QRS 

duration, QT interval, heart rate variability (HRV), PR interval, 

and ST segment. Clinicians use these time-domain features to 

diagnose and monitor a range of heart conditions, including 

arrhythmias, heart failure, and myocardial infarction. They can 

also be used in machine learning algorithms to develop 

automated classification models for detecting different types of 

ECG beats (4, 35, 91, 99–104). Time-domain features alone do 

not allow the model to better interpret the ECG signal and they 

provide limited information about the underlying physiological 

processes, as these features do not capture the complex patterns 

and dynamics of the ECG signal. These are sensitive to noise 

and artifacts, which can affect the classification’s performance. 

In addition, these are vulnerable to variations in signal 

morphology, such as changes in heart rate, respiration, and 

electrode placement. This can affect the accuracy and reliability 

of classification results. Several limitations need to be considered 

when developing a classification system. Combining time- 

domain features with other features or techniques is often 

necessary to improve classification performance (31).

4.2.3 Frequency-domain features
Frequency-domain features are a group of traits or 

characteristics that characterize a signal’s frequency content. In 

signal processing, it is expected to work with signal 

representations in both the time and frequency domains. In 

contrast to time-domain features, which characterize the signal 

over a given time interval, frequency-domain features 

characterize the signal’s spectral characteristics throughout a 

range of frequencies. Some of the critical frequency-domain 

features include spectral power density (105), spectral entropy 

(106), spectral bandwidth (107), spectral Datness (108), and 

spectral skewness (109). Frequency-domain features can be 

extracted using various signal processing techniques such as the 

Fourier transform (FT) (105, 110), wavelet transforms (36), and 

spectrogram analysis (9). FT is a widely used technique for 

analyzing the frequency-domain characteristics of signals. In 

ECG analysis, the FT (110) can identify the frequency 

components in the ECG signal characteristic waves, such as the 

QRS complex, T wave, and P wave. The extracted features can 

be used for various applications, such as arrhythmia detection, 

heart rate variability analysis, and heart disease diagnosis. 

Frequency-domain features alone are not effective in 

classification due to the following reasons: some important 

features of the signal, such as the shape and duration of the 

QRS complex, may not be fully captured in the frequency 

domain; in some cases, different features of the ECG signal may 

have similar frequency components. This can make it difficult to 

distinguish between these features based on frequency-domain 

analysis alone. Frequency-domain analysis assumes that the 

signal is stationary over time, meaning its statistical properties 

do not change. However, ECG signals are often non-stationary, 

with features that change over time. In such cases, time- 

frequency analysis techniques may be more appropriate for ECG 

signal interpretation (62).

4.2.4 Time-frequency domain features
Sections 4.2.2 and 4.2.3 individually covered the characteristics 

of the time and frequency domains for ECG beat classification 

systems. Classifying ECG beats accurately requires information 

from both the time and frequency domains. These features help 

capture the temporal and spectral characteristics of the ECG 

signal, which are crucial for distinguishing between different 

heartbeats. In ECG beat classification, time-domain features, 

such as the RR interval, QRS duration, and QT interval, are 

commonly used to extract information about the duration and 

amplitude of various segments of the ECG signal. However, 

these features do not provide information about the signal’s 

spectral content, which can be important when identifying 

specific types of heartbeats. In contrast, frequency-domain 

features provide information about the frequency content of the 

ECG signal. For example, the power spectrum of the ECG signal 

can be used to identify different frequency bands that 

correspond to specific physiological phenomena, such as the 

QRS complex, T wave, and P wave. In addition to time-domain 

and frequency-domain features, time-frequency features, such as 

wavelet transforms and spectrograms, are commonly used in 

ECG beat classification. These features provide a more 

comprehensive representation of the ECG signal, capturing both 

the temporal and spectral characteristics. The wavelet transform 

(111) is another technique that can be used to analyze the 

frequency domain characteristics of ECG signals. It provides a 

more localized frequency analysis than the Fourier transform 

and is useful in identifying transient features in the signal. DWT 

(29) is a signal processing technique that decomposes a signal 

into different frequency sub-bands. It is useful for identifying 

different frequency components in the ECG signal. These 

techniques can be used alone or in combination to extract 

frequency domain features from ECG signals. A number of 

transformation techniques can be utilized, i.e., dual-tree complex 

wavelet transform (DTCWT) (11), and Stockwell transform (ST) 

(29), to extract the time-frequency-based features from the pre- 

processed data. The short-time Fourier transform (STFT) uses a 

window function to analyze the signal in short-time intervals, 

which can lead to spectral leakage and reduced resolution. The 

resolution of the STFT is limited by the window size and the 

sampling rate, making it difficult to simultaneously analyze 

signals with high temporal and high-frequency content. 

Interpreting STFT results can be challenging, especially when 

analyzing complex signals with overlapping frequency content. 
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The DTCWT requires careful selection of wavelet filters, which 

can be challenging and subjective. The DTCWT also requires 

significant computational power to process and analyze signals, 

especially for high-resolution applications or long signals. 

Finally, while the DTCWT offers improved shift-invariance 

compared to other wavelet transforms, it is not completely shift- 

invariant. This can cause issues in specific applications where 

shift invariance is critical. The ST provides high time-frequency 

resolution, allowing for a more accurate analysis of non- 

stationary signals. In addition, the S-transform is shift-invariant, 

meaning that it is not affected by signal translations or shifts in 

time, and it produces a two-dimensional (2D) representation of 

the signal in time-frequency space, which is easy to interpret 

and analyze. The ST can handle non-uniformly sampled data, 

making it suitable for applications where data are not uniformly 

sampled. Therefore, the ST is better compared to the STFT (31) 

and WT (11) for ECG beat classification (112).

4.2.5 Deep learning-based feature set
Handcrafted feature extraction is a traditional method of 

extracting relevant features from raw ECG signals for ECG beat 

classification. The handcrafted feature engineering process is 

often time-consuming and requires significant effort and 

resources, which can hinder the development of large-scale 

systems (20). Another limitation is the potential for human bias. 

The features are designed by human experts, who may have 

inherent biases and subjective judgements. Finally, handcrafted 

feature extraction may not be suitable for complex ECG signals. 

The features are designed based on prior knowledge and 

assumptions about the data, which may not always hold in 

practice (18). This can result in features that are not 

representative of the underlying data distribution, leading to 

poor generalization and performance. Hence, automatic feature 

extraction based on deep-learning techniques from the ECG 

database has been introduced for ECG beat classification. Deep 

learning-based feature extraction has become an increasingly 

popular alternative to handcrafted feature extraction in recent 

years (113). Unlike handcrafted features, deep learning-based 

features are automatically learned from raw data, eliminating the 

need for human expertise and domain knowledge. Deep 

learning-based feature extraction involves training a neural 

network to learn a hierarchy of features from raw data. The first 

layers of the network learn simple, low-level features, such as 

edges and corners, while deeper layers learn more complex and 

abstract features. One of the main advantages of deep learning- 

based feature extraction is its ability to learn features tailored to 

the specific task. This contrasts with handcrafted features, which 

are designed based on prior knowledge and assumptions about 

the data (114). Once a deep neural network (DNN) has been 

trained on a large dataset, the learned features can be reused for 

other tasks or applied to new datasets. This can significantly 

reduce the time and resources required for feature engineering 

and model development.

Deep learning methods can be classified into several 

categories based on their architecture, learning mechanisms, 

and applications. Deep learning methods are generally 

categorized into three types, namely, discriminative, 

representative, and generative models (99). Discriminative deep 

learning methods are a class of deep learning algorithms 

designed to learn a mapping between inputs and outputs 

directly. Unlike generative models that learn the underlying 

probability distribution of the data, discriminative models learn 

to discriminate between different classes of data based on their 

features. Some popular discriminative deep learning methods 

include CNNs for classification, RNNs (25), and DNNs (9). 

These methods have achieved state-of-the-art performance in 

ECG beat classification. Discriminative deep learning methods 

typically involve many parameters learned through 

backpropagation. Backpropagation involves computing the 

gradient of a loss function for the model parameters and using 

it to update the parameters to minimize the loss. One of the 

advantages of discriminative deep learning methods is their 

ability to learn complex decision boundaries between classes, 

which can lead to high accuracy on classification tasks (26). 

However, they are often data-hungry and require large 

amounts of labeled training data to perform well.

Representative deep learning methods are essential for 

advancing deep learning because they are the foundation for 

developing new and innovative deep learning models. By 

understanding the underlying principles of these methods and 

the techniques used to optimize them, researchers can build 

upon them to create even more powerful and effective deep 

learning algorithms. Some examples of representative deep 

learning methods include GANs (115), autoencoders (AEs) 

(116), and deep belief networks (DBNs) (117). GANs are 

generative models that generate new data samples from a given 

input. They consist of two neural networks, a generator and a 

discriminator, trained in a minimax game (115). GANs have 

been successfully applied to tasks such as image generation, data 

augmentation, and anomaly detection. AEs are unsupervised 

deep learning models that are used for feature learning and 

dimensionality reduction (116). They consist of an encoder and 

a decoder network that learn to compress and reconstruct the 

input data. Autoencoders have been successfully applied to tasks 

such as image denoising, anomaly detection, and data 

compression. DBNs are deep generative models with multiple 

restricted Boltzmann machines (RBM) layers (117).

Generative deep learning models are a class of artificial neural 

networks (ANN) designed to generate new, synthetic data similar 

to data from a training set (115). These models can learn complex 

patterns and structures from the training data and then use that 

knowledge to generate new examples similar to the original 

data. Several generative deep learning models include variational 

autoencoders (VAEs) (118), GANs (115), and autoregressive 

models (AMs) (119). Discriminative models are designed to 

learn the boundary between different classes of data, while 

representative models aim to learn the underlying structure of 

the data. In contrast, generative models learn to generate new 

data similar to the training data. Overall, each of these three 

types of deep learning models has its strengths and weaknesses, 

and the choice of model depends on the specific task at hand 

and the nature of the dataset being used.
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Feature extraction converts pre-processed ECG signals into 

compact and discriminative representations that can effectively 

describe cardiac morphology and rhythm. The extracted features 

generally fall into five categories, namely, time-domain, 

morphological, frequency-domain, time-frequency, and non- 

linear descriptors, each capturing different aspects of the ECG 

waveform (4). Time-domain features quantify temporal 

variations between successive heartbeats. Parameters such as the 

R–R interval, HRV indices [standard deviation of normal-to- 

normal intervals (SDNN), root mean square of successive 

differences (RMSSD), and percentage of successive normal-to- 

normal (NN) intervals that differ by more than 50 milliseconds 

(pNN50)], and mean or variance of beat-to-beat intervals reDect 

autonomic regulation and rhythm irregularities. These measures 

are computationally efficient and remain the foundation for 

arrhythmia detection in wearable and real-time systems (23). 

Morphological features describe the geometric and amplitude 

characteristics of individual ECG waves. Metrics including QRS 

width, P–R and Q–T intervals, R-peak amplitude, and area 

under the QRS complex capture structural deformation 

associated with ventricular and supraventricular ectopic activity. 

Derivative-based slopes and amplitude ratios between successive 

waves further enhance discrimination among beat classes (1).

Frequency-domain features, derived using the fast Fourier 

transform (FFT) (110) or power spectral density (PSD) (120), 

provide information on periodic energy distribution within 

specific frequency bands (0–40 Hz). However, because ECG 

signals are non-stationary, time-frequency representations such 

as the DWT (62), STFT (23), or wavelet packet transform 

(WPT) (36) are preferred. These methods capture transient 

spectral changes and localize abnormalities more accurately 

than pure spectral analysis. Finally, non-linear descriptors such 

as sample entropy, approximate entropy, and fractal dimension 

quantify signal complexity and chaotic behavior, while PCA 

(58) and ICA (121) are employed to reduce dimensionality and 

highlight salient features. Across the reviewed studies, hybrid 

feature sets combining wavelet coefficients with entropy-based 

complexity measures consistently achieved over 97% accuracy 

on the MIT-BIH Arrhythmia Database, underscoring the 

advantage of multi-domain representation for robust ECG 

beat classification.

4.3 Classification methods

In the ECG beat classification system, a classifier automatically 

classifies different heartbeats based on their ECG waveform 

features. Various machine and deep learning techniques have 

been reported for identifying different types of heartbeats 

(18–20, 30, 112, 114, 122–129). These classifiers utilized 

extracted features from the ECG signal to distinguish between 

different types of heartbeats. The classifier’s performance 

depends on the quality of the ECG signal, the feature extraction 

quality, and the choice of the classification algorithm. There are 

three different types of classification algorithms, namely, (i) 

unsupervised, (ii) semi-supervised, and (iii) supervised.

4.3.1 Unsupervised

Machine learning can take the form of unsupervised learning, 

in which the algorithm can learn patterns and relationships in data 

without being explicitly supervised. In unsupervised learning, the 

algorithm receives a set of input data but no labels to indicate the 

desired results. The algorithm is trained to recognize patterns and 

connections in the data and cluster items with similar 

characteristics (130). The k-means clustering, hierarchical 

clustering, and PCA methods are all examples of popular 

unsupervised learning techniques (130). A machine learning 

clustering algorithm groups related data elements. Clustering 

partitions a dataset so that data points in the same cluster are 

more similar than those in other clusters. Clustering methods 

such as k-means, hierarchical, and density-based spatial are 

popular. Using the mean of data points inside each cluster, k- 

means clustering divides data into K clusters, iteratively 

assigning data points to the nearest cluster centroid and 

recalculating centroids until convergence. An algorithm in 

hierarchical clustering arranges data points into a tree-like 

structure of clusters, with each node representing a cluster. Each 

data point is initially treated as its own cluster by the algorithm, 

which then iteratively merges the two closest clusters together 

until all data points belong to the same cluster. The algorithm 

in density-based clustering organizes data into clusters according 

to their density, with points closer together having a greater 

density than those further away. To make a dataset more 

manageable, dimensionality reduction is another common 

unsupervised learning method. This can aid in making the data 

simpler and, therefore, easier to analyze. The standard methods 

include PCA and t-distributed stochastic neighbor embedding 

(t-SNE). PCA is an algorithm that projects data into a lower- 

dimensional space after determining the directions in the data 

with the most variance. This results in fewer features that can be 

used to represent the data. The t-SNE algorithm can reduce the 

dimensions in a dataset without losing the information about 

the relationships between the data points. This can be helpful 

when visualizing data at a higher level in a lower dimension. In 

(35), three independent, unsupervised techniques, namely, linear 

discriminant analysis (LDA), PCA, and ICA, were utilized to 

classify ECG beats, as per the AAMI standard. K-means 

clustering was used for the classification of premature 

ventricular contraction (PVC), normal (N), left bundle branch 

block (LBBB), paced beats (P), and right bundle branch block 

(RBBB) ECG beats in (131).

4.3.2 Semi-supervised

Semi-supervised learning is a machine learning paradigm that 

falls between supervised and unsupervised learning. In the context 

of ECG beat classification, semi-supervised learning can be used to 

enhance the performance of the classification model by leveraging 

a large amount of unlabeled data (132). Several methods can be 

used for semi-supervised learning in ECG beat classification. 

One approach is to use a combination of unsupervised and 

supervised learning methods. In this approach, an unsupervised 

learning algorithm is used to cluster the unlabeled data, and 

Jaya Prakash et al.                                                                                                                                                   10.3389/fdgth.2025.1649923 

Frontiers in Digital Health 15 frontiersin.org



then a supervised learning algorithm is used to classify the labeled 

data using the clusters as features. This can improve the accuracy 

of the classification model, as the unsupervised learning algorithm 

can identify underlying patterns in the data that may not be 

apparent to the supervised learning algorithm. Another 

approach is to use a generative model, such as a GAN, to 

generate synthetic labeled data from the unlabeled data. The 

synthetic data can be used to augment the labeled data and 

improve the accuracy of the classification model. In addition to 

these approaches, there are also active learning methods to 

select the most informative unlabeled samples for labeling (132). 

This can be particularly useful in scenarios where labeling the 

entire unlabeled dataset is not feasible due to time or resource 

constraints. Overall, semi-supervised learning is promising for 

ECG beat classification since it can use enormous amounts of 

unlabeled data to enhance the classification model’s accuracy 

(132). However, it is essential to thoroughly assess the model’s 

efficacy and ensure it can withstand shifts in the input data. To 

distinguish between SVEBs (also known as S beats) and VEBs 

(also known as V beats), Zahi et al. (37) proposed a semi- 

supervised iterative label update method. Semi-supervised 

strategies for the categorization of paroxysmal atrial fibrillation 

(PAF) using CNNs and LSTMs are reported in (133).

4.3.3 Supervised

Unsupervised and semi-supervised learning are not typically 

the best approaches for ECG beat classification because they rely 

on clustering or dimensionality reduction techniques, which 

may not capture the complex and diverse patterns in ECG 

signals (134). ECG signals can contain various beat types and 

subtypes, each with distinct characteristics. Unsupervised and 

semi-supervised learning techniques may have difficulty 

accurately identifying and separating these different beat classes. 

Unsupervised and semi-supervised learning techniques are often 

used when labeled data are limited or expensive. The 

effectiveness of semi-supervised learning depends heavily on the 

quality of the unlabeled data. If the unlabeled data contain a lot 

of noise or irrelevant information, it can decrease the model’s 

performance. In addition, semi-supervised learning requires a 

subset of the data to be labeled, which can be time-consuming 

and expensive. Determining which data to label can also be 

challenging to maximize the model’s performance. ECG beat 

classification is a critical task that requires a high degree of 

accuracy (134). Supervised learning approaches are better suited 

to this task as they can be trained to optimize for accuracy and 

can leverage a larger number of labeled data points. However, in 

the case of ECG beat classification, a substantial amount of 

labeled data is available, making supervised learning approaches 

a more appropriate choice. The algorithm is trained in 

supervised learning using a labeled dataset containing examples 

of ECG signals and their corresponding beat types. The 

algorithm aims to learn a function that maps the input ECG 

signal to the correct beat type (134).

Some of the supervised machine learning classifiers are ANNs 

(122), SVMs (135), Hidden Markov models (127) and self- 

organizing maps (SOMs) (136). Hidden Markov models are 

used to detect cardiac arrhythmias, as reported in (4). DTCWT 

is utilized to extract the morphological features and merge them 

with the temporal features. Five different types of ECG 

arrhythmias have been categorized using a multi-layer back 

propagation (MLP-BP) neural network (137). Regarding neurons 

in the deep layers, MLP-BP is extremely sensitive. Underfit 

occurs in MLP when the number of neurons in the hidden layer 

is low. Too many neurons in the hidden layer may cause the 

fitting curve to oscillate erratically due to overfitting. The 

network model will stop functioning if the weights are high. 

Although DTCWT shows merit as a feature extraction strategy, 

the method’s final classification performance suffers from the 

limitations of the MLP-BP algorithm (9). To improve SVM’s 

generalization capability in the identification of various ECG 

beats, particle swarm optimization (PSO) is employed (138). In 

(29), five distinct types of ECG beats were classified using an 

algorithm based on bacteria foraging optimization (BFA) and 

SVM. Using SVMs, Pawel et al. (122) proposed an ensemble 

classifier for categorising arrhythmias. In this case, a genetic 

algorithm was used to optimize the characteristics acquired by 

Weich and the discrete Fourier transform (DFT). In (123), 

various classifiers, including naive Bayes, linear and quadratic 

discriminating functions, and J48 classifiers based on majority 

voting, were used to categorize five distinct heartbeats according 

to the AAMI standard. To extract information from an ECG 

signal, (139) used a DWT in conjunction with a novel one- 

dimensional hexadecimal local pattern (1D-HLP) approach and 

then used a single nearest-neighborhood (1NN) classifier to 

categorize 17 different types of arrhythmias. The genetic 

ensemble of classifiers optimized by sets (GECS) was used to 

categorize 17 myocardial dysfunctions in (124). We estimate 

power spectral density features to improve the quality of the 

ECG signal. Feature extraction, the process of choosing and 

extracting valuable features from the ECG signal for use in 

machine learning methods, is performed manually. However, 

the classifier’s precision may suffer if inappropriate features are 

used. Knowing which features are the most important when 

performing a classification task can be difficult. There have been 

several proposals for classifying cardiac arrhythmias, but many 

of the efforts that have been reported to date have at least one 

of the following limitations: (i) accuracy was only good for a 

few carefully chosen ECG recordings; (ii) feature extraction 

methods were overly complicated; (iii) classifier performance 

was suboptimal; (iv) fewer output classes; and (v) beat loss when 

the ECG signal was filtered for noise.

The use of deep learning algorithms for ECG beat 

classification has increased in recent years. CNNs (18), RNNs 

(25), DBNs (117), AEs (116), and attention-based models are 

only some of the deep-learning methods that can be applied to 

the problem of ECG beat classification. Automatic feature 

extraction is the main advantage of deep learning models. In 

recent years, deep-learning models have modified their structure 

in ECG beat classification to improve accuracy. During the 

initial stages of ECG beat classification, the prevailing models 

relied on handcrafted features, such as QRS duration, heart rate, 

and T-wave amplitude. These models exhibited a restricted level 
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of accuracy, prompting researchers to initiate investigations into 

deep learning models. CNNs have achieved notable success in 

classifying ECG beats due to their ability to directly extract 

relevant attributes from the raw ECG signal, minimizing the 

requirement for manually extracted features. In an initial study 

by (127), a one-dimensional CNN (1D CNN) was introduced. 

This CNN is capable of accurately identifying ECG beats 

without the need for manually extracted features. However, this 

research employed an FFT to preprocess the ECG beats. In (18), 

a 1D-CNN was introduced to process raw ECG signals without 

pre-processing. In (140), a parallel configuration of CNN is 

described as an efficient method for classifying ECG beats. 

Following the emergence of CNNs and RNNs, these models 

were developed to process data sequences effectively. RNNs can 

effectively capture the sequential dependencies and extended 

patterns found in ECG data.

A deep neural LSTM including spectral features for ECG data 

classification has been suggested by Grzegorz et al. (113). In (26), 

different ECG beats were detected simultaneously using a 

combination of a CNN and LSTM. In (141), four types of ECG 

beats were classified using a dense convolutional network 

(DenseNet) and bi-directional long short-term memory (Bi- 

LSTM) architecture that combines the wavelet transform. 

Furthermore, the research on ECG beat classification has also 

included other combinations, such as CNN-LSTM (27), LSTM- 

CNN (27), CNN-BiLSTM (142), and Bi-LSTM (25). DL 

algorithms have the ability to acquire sophisticated attributes 

and comprehend intricate patterns in ECG signals. ECG beat 

classification is especially crucial when significant deviations in 

beat morphology exist. Therefore, DL-based methods (142–148) 

are outperforming previously published techniques such as 

template matching, rule-based, and ML-based methods (12–17, 

22–24). Most of the methods outlined in the current literature 

have limitations, such as feature extraction that requires human 

intervention, issues with class imbalance, requiring a large 

amount of training data, and the need for powerful GPUs.

A proficient hybrid deep learning architecture is required for 

efficient automatic feature extraction and ECG beat 

classification. 1D-CNNs are efficient but require more depth and 

parameters to achieve higher accuracy. ResNet was designed to 

address this problem, but overfitting may arise when the model’s 

structure is very intricate, requiring high-performance hardware 

and extended training duration. Furthermore, ResNet is 

unsuccessful in capturing the long-term dependencies in a 

sequence. In the majority of the studies in the literature, 

researchers convert one-dimensional ECG beats into grey-scale 

images (39) or spectrograms (112) to improve performance. 

However, this approach can be computationally expensive, 

particularly when working with images rather than signals. 

Thus, a bi-directional gated recurrent unit (Bi-GRU) is 

implemented to capture the long-term dependencies in an ECG 

signal. Bi-GRU has the ability to process the input sequence in 

both forward and backward directions. This enables the model 

to effectively capture contextual information from past and 

future inputs, making it highly valuable for tasks that involve 

analyzing the relationships within the input ECG beat segment.

Bi-GRU is more efficient in training and converges faster than 

ResNet, particularly when working with smaller datasets (28). This 

is due to its reduced parameter count. Although Bi-GRU may not 

be able to extract complex features from input data like CNNs and 

ResNet, it still has its strengths. Using a CNN, ResNet, or Bi-GRU 

alone fails to improve ECG beat classification performance. To 

address these problems, the utilization of dual-stream or multi- 

stream (40) networks can be beneficial for achieving precise 

classification of ECG beats. Utilizing dual or multi-stream deep 

learning techniques to combine information from multiple 

sources or modalities can greatly enhance the performance of 

deep learning models (28). In dual-stream deep learning, the 

model receives data from two sources, each representing a 

distinct input or feature. In one stage in the model’s design, 

these streams are usually combined to produce a forecast. Multi- 

stream deep learning is quite similar but uses three or more 

data streams. This approach may be particularly beneficial when 

dealing with complex data that can be broken down into 

numerous modalities. It is now common practice to employ 

dual or multi-stream deep learning approaches to combine data 

from many sources to enhance models’ predictive abilities (28).

An optimal fit in a machine learning or deep learning model is 

considered good because it strikes a balance between underfitting 

and overfitting, allowing the model to generalize well to unseen 

data (144). Unlike underfitting, where the model is too simple 

to capture important patterns, or overfitting, where it 

memorizes noise from the training data, an optimal fit ensures 

that the model learns meaningful relationships without excessive 

complexity (163). This results in better generalization, reduced 

bias and variance, improved accuracy on both training and 

validation datasets, and enhanced robustness across different 

data distributions. By maintaining this balance, an optimally 

fitted model provides reliable and stable predictions, making it 

suitable for real-world applications where consistency and 

adaptability are essential.

Traditional machine learning classifiers continue to play an 

essential role in ECG beat classification owing to their 

interpretability and computational efficiency. Among these, 

SVMs and ensemble models, such as random forest and 

gradient boosting, remain dominant, achieving accuracies of 

98%–99% when combined with optimized DWT–PCA features. 

Simpler methods, such as kNN, decision tree, and naïve Bayes, 

provide lightweight alternatives for embedded or real-time 

systems. Addressing class imbalance through SMOTE or cost- 

sensitive learning further enhances reliability. Overall, ensemble- 

based and kernel-optimized SVM frameworks deliver a strong 

balance between accuracy, speed, and interpretability, 

confirming that well-engineered ML systems remain competitive 

with deep-learning models in ECG beat classification.

5 ECG beat classification using 
advanced machine learning

We thoroughly analyzed several articles that use machine 

learning, deep learning, and explainable AI (XAI) techniques to 
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classify ECG beats. To address this, we have included a summary 

note on AI-based methods for ECG diagnosis in Section 5.

5.1 Machine learning approaches

An overview of previous studies on the classification of ECG 

beats through the application of machine learning techniques is 

presented in Table 6. The table reviews various ECG beat 

classification techniques using machine learning models, 

highlighting their applications, databases, and performance 

metrics. Techniques such as radial basis function neural 

networks (RBFNNs), SVMs, and ensemble classifiers have been 

applied in datasets such as MITDB, PTBDB, and INCART, 

achieving accuracy rates from 84.60% to 99.99%. Each approach 

has specific advantages, such as resilience to noise and improved 

specificity, but also faces limitations, including increased system 

complexity or computational demands. Notably, classifiers such 

as SVM and RF consistently showed high performance, making 

them suitable for real-world applications; however, challenges in 

feature selection and model generalization were critical issues in 

different studies. After extracting the features from the ECG 

beats, artificial intelligence methods from machine learning can 

be used to build models from these data to classify arrhythmia 

heartbeats (43, 43–46). SVMs (126), ANNs (164), KNNs (24), 

and LDAs (165) are some of the most popular machine learning 

methods used for ECG beat classification. Despite noise and 

outliers in the ECG data, SVM continues to produce effective 

results because it finds the ideal hyperplane that maximizes the 

margin between distinct classes. Basic artificial neural network 

structures with fewer layers and parameters could improve 

interpretability, making it easier for clinicians to comprehend 

and have confidence in the model’s decisions when classifying 

ECG beats. The KNN algorithm is beneficial due to its 

simplicity and non-parametric nature, which makes it suited for 

small-to-medium-sized datasets and circumstances with 

extremely non-linear decision boundaries (24). However, when 

the classes in the ECG data are well-separated, LDA emerges as 

a linear classifier that strives to maximize the between-class 

variation while minimizing the within-class variance (165). 

Moreover, it is important to consider the dataset’s size, the 

task’s difficulty level, and the available processing resources 

before selecting an approach. Each algorithm has both 

advantages and disadvantages.

ECG beat classification using machine learning classification 

algorithms increases cardiac health assessment efficiency, 

accuracy, and automation. Initially, these methods offered rapid 

and automated ECG data analysis, saving healthcare workers 

time and effort. This may improve heart abnormality diagnosis 

and treatment outcomes and lead to lower healthcare 

expenditures. In addition, machine learning classifiers can 

efficiently process significant ECG data, making scalable and 

cost-effective analysis possible in clinical settings. Furthermore, 

these methods can understand intricate patterns and correlations 

within ECG readings, which enables the detection of minor 

anomalies that may not be evident to traditional human observers.

However, machine learning algorithms for ECG beat 

classification have been associated with notable challenges and 

limitations. These models depend on the quality and quantity of 

training data, which may be noisy, artifact-filled, and variable 

among populations. In addition, the sophisticated decision- 

making processes of machine learning models in ECG analysis 

may be difficult for clinicians to understand. This 

misinterpretability may limit the clinical acceptance of machine 

learning-based diagnostic technologies.

5.2 Deep learning approach-based ECG 
beat classification

A comprehensive literature review on ECG beat classification 

using deep learning models is presented in Table 7. The review of 

deep learning models for ECG beat classification revealed various 

approaches, such as CNNs, LSTMs, and hybrid models, applied 

to datasets such as MITDB, INCART, and SVDB. CNNs show 

robust performance with accuracies up to 99.90%, while LSTM- 

based methods excel in capturing temporal features, improving 

sensitivity and specificity. The advantages of these models include 

the automation of feature extraction and their potential for real- 

time applications. However, challenges remain, such as 

computational intensity, model complexity, and limited 

generalization across diverse datasets. Ensuring robustness in 

noisy, real-world conditions and addressing resource-intensive 

training remains critical for their wider clinical adoption. Deep 

learning has become an essential tool in ECG beat classification, 

with enormous significance in medical diagnostics and healthcare 

(18, 26). A key advantage of deep learning over more 

conventional machine learning approaches for ECG beat 

classification is its ability to automatically derive hierarchical 

features from raw ECG data, eliminating the need for features to 

be manually extracted (18, 26). In contrast, deep learning models, 

specifically CNNs and RNNs, are exceptionally proficient at 

automatically extracting complex features from raw ECG data, 

which allows for the accurate classification of a wide range of 

cardiac disorders and arrhythmias (18, 19).

DL algorithms can improve diagnostic ability by utilizing 

extensive datasets, allowing them to generalize across various 

cardiac diseases and adjust to differences in patient demographics 

and recording settings (18, 26). Over the past few years, CNNs 

have been utilized extensively in ECG diagnosis and attained 

remarkable performance. CNNs are superior to other methods for 

extracting spatial characteristics from input signals; this allows 

them to detect local patterns that may indicate different cardiac 

problems. In contrast, RNNs can understand the temporal 

correlations between subsequent ECG samples since they specialize 

in modeling sequential data (25–27). By utilizing the combined 

advantages of convolutional neural networks and recurrent neural 

networks, particularly in hybrid structures such as CNN-RNN, 

ECG classification algorithms can attain exceptional performance 

in terms of accuracy and robustness (26–28).

DL methods have various advantages over standard ECG beat 

classification algorithms, including automatically learning 
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discriminative features from raw ECG data without manual 

feature extraction (18). With this automated feature extraction 

technique, DL models can better classify cardiac diseases by 

detecting intricate patterns and tiny variations in the data. 

Further, the temporal and sequential nature of ECG signals is 

well-suited to DL methods, especially RNNs and CNNs, 

enabling them to detect the long-range relationships and 

temporal patterns in heartbeats (25). Furthermore, DL models 

have also shown excellent generalization abilities, which means 

they can adapt to different patient groups and recording 

situations, which is very important for real-world 

clinical applications.

In the field of ECG beat classification, deep learning 

algorithms have some significant limitations and challenges. 

TABLE 6 Review of the ECG beat classification techniques that use ML models.

Study Application Database ML 
approach

Performance 
(in %)

Advantages Disadvantages

(149) Arrhythmia 

classification

RBFNN Sen 94.54 Optimized classification performance 

with minimal network size.

A minimal number of morphological 

features are extracted from ECG beat.

(150) ECG beat 

classification

LDA 

and 

MLPNN

Acc 84.60 

Acc 89.00

Non-linear classification capabilities 

were improved.

Generalization capability of the 

system needs to be improved.

(151) ECG beat 

classification

SVM Acc 97.20 Resilient to noise and variability. Limited generalization capability.

(152) ECG beat 

classification

LR Acc 98.43 

Spe 97.75

A high average specificity of 97.75% 

with minimal false positives.

Implementing and fine-tuning 

Reservoir Computing algorithms are 

complex.

(153) AF 

classification

MITDB SVM Acc 90.27 

F1 84.00

Suited for real-world applications. AF rhythm detection has a lower F1 

score.

(154) Abnormalities 

detection

Ensemble 

classifier

Acc 90.25 Improves the classification system’s 

performance.

May require enormous 

computational resources.

(155) ECG 

classification

CNN with 

SVM

Acc 97.10 

Sen 96.50

Improved performance with CNN and 

SVM.

Complex model requiring extensive 

tuning.

(156) Cardiac 

arrhythmia 

detection

EEMD with 

KNN

Acc 93.40 

Sen 95.40 

F1 96.30

Supports efficient automatic diagnosis 

in clinical settings.

Advanced signal processing increases 

computational demands.

(157) ECG beat 

classification

Decision tree 

Gradient 

boosting

Acc 98.62 

Acc 99.13

Good accuracy for early heart disease 

detection.

Noise and artifacts may affect 

performance.

(35) Five types of 

ECG beat classes

PCA, LDA, 

ICA, DWT

Acc 99.97 DWT offers energy compaction; choice 

of dimensionality reduction depends 

on data characteristics.

Not tested with 10-fold validation; 

lacks generalization as tested only on 

MITDB.

(9) Five 

beat classification

RF classifier Acc 98.50 Higher accuracy with 10-fold 

validation.

DTCWT for feature extraction is 

hard to implement on hardware.

(29) ECG beat 

classification

INCART SVM Sen 91.70 Improved classification performance, 

and generalization capability of the 

model is verified.

System complexity increases with 

various connected components.

(158) Arrhythmia 

classification

MITDB 

SVEB

KNN and SVM 

with PSO 

optimization

Acc 94.50 

Acc 85.10

Maintains high accuracy for 15 

heartbeat classes.

Higher computational cost due to 

PSO optimization.

(159) Heart diseases MITSA RF 

GDB

Acc 97.98 

Acc 96.95

Acceptable for large datasets. Performance may drop with poor 

feature selection.

(24) Myocardial 

infarction 

& heart failure

NSR, PHR, 

MIT-BIH sinus 

arrhythmia

KNN Acc 98.40 Effective with small datasets. Memory-intensive for large datasets.

(126) ECG anomaly 

detection

Physionet 

long-term ECG

Gaussian 

kernel-based 

SVM classifier

Acc 99.99 Handles high-dimensional spaces 

effectively.

Computationally expensive with 

large datasets.

(160) Myocardial 

infarction

PTBD SVM Acc 95.30 

Sen 94.60 

Spe 96.00

Consistently better results. Computationally intensive model.

(161) Myocardial 

infarction

PTB SVM, 

KNN, and RF

Sen 92.60 

Sen 92.30 

Sen 91.43

Automated MI diagnosis. Multiple-instance learning 

complicates classification.

(92) ECG arrhythmia 

detection

SVEB SVM with 

Kruskal-Wallis 

Feature 

selection

Acc 98.06 

MCC 91.51

Robust on imbalanced datasets. Preprocessing may limit 

generalizability.

(162) Apnea detection Private CHMM Sen 93.98 

Spe 95.38

Works well with real-time data. Limited training data reduces 

performance.

MLPNN, Multilayer Perceptron Neural Network; EEMD, Ensemble Empirical Mode Decomposition; CHMM, Coupled Hidden Markov Model; IraNet, Inter- and Intra-patient 

Representation Aggregation Network.
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TABLE 7 Review of the studies on ECG beat classification using deep learning models.

Study Application Database DL 
approach

Performance 
(in %)

Advantages Disadvantages

(127) ECG beat 

classification

CNN Acc 97.40 

Sen 60.31

DL replaces time-consuming, error- 

prone manual feature extraction.

Training CNNs for each patient can be 

computationally intensive, especially with 

more patients.

(136) ECG heartbeat 

classification

CNN 

(nine-layered)

Acc 94.30 

Acc 84.07 

(Noisy ECG)

Accurately classifies heartbeats in 

noise-free ECGs, indicating ability to 

detect abnormal rhythms.

Training dataset quality significantly 

impacts performance. A biased dataset can 

hinder model generalization.

(137) ECG 

arrhythmia 

detection

DCNN 

(seven-layered)

Spe 99.83 

Acc 99.68

More efficient and accurate than 

conventional methods.

Limited generalization to other datasets or 

real-life clinical scenarios.

(135) ECG arrhythmia 

classification

1D-CNN 

2D-CNN

Acc 90.93 

Acc 99.00

2D-CNN model classified five 

arrhythmias accurately.

High computational resources and time 

needed for training, especially for 2D- 

CNN.

(166) ECG heartbeat 

classification

LSTM 

with AE

Sen 98.63 

Spe 99.66

LSTM-AE learns features without 

manual extraction.

LSTM networks are computationally 

expensive to train and deploy.

(129) ECG beat 

classification

MITDB LSTM-based 

RNN

Acc 99.10 

F1 95.00

Patient-specific analysis achieved by 

training on 5 min segments.

Complex implementation hinders 

adoption, especially with limited resources.

(167) ECG arrhythmia 

classification

Multiscale 

convolution 

and FCBA 

(frequency 

convolutional 

block attention)

Acc 95.60 

Sen 93.17

CNN with new multiscale blocks and 

attention modules classify arrhythmia 

with high sensitivity and accuracy. 

Effectively resolves data imbalance 

using oversampling and noise 

augmentation.

Complex model architecture and 

preprocessing methods may need huge 

computational resources. The method’s 

performance may change with increasingly 

diversified datasets.

(39) Normal 

atrial fibrillation

Encoded deep 

CNN 

with input ECG 

beats 

as image

Acc 99.52 

F1 Score 95.64

The morphological variations can be 

captured more effectively using images 

compared to one-dimensional signals.

Complex models with high computational 

power (GPU-based systems) are required 

to handle the large input image data.

(40) Beat 

classification 

as per AAMI 

standard

BiLSTM and 

random forest 

with PCA

Acc 98.30 Ability to extract more in-depth 

features from the ECG signal.

As it is an ensemble learning model, it 

requires more training and testing time.

(28) Beat 

classification 

as per AAMI 

standard

Multi-stream 

Bi-GRU 

network with 

random forest

Acc 99.93 Deep features are extracted from the 

input, which are very helpful to 

accurately assess the type of beat.

The reliance on multiple deep-learning 

models can lead to high computational 

costs. Further research is needed to 

evaluate scalability for real-time 

applications.

(141) ECG arrhythmia 

classification

DenseNet with 

Bi-LSTM

Acc ≏99.44 BiLSTM is integrated to enhance the 

model’s capacity for extracting local 

features and capturing temporal 

features of ECG signals.

Bi-LSTM requires more computational 

power and needs to process input twice 

due to the parallel deep learning 

architecture.

(27) ECG arrhythmia 

classification 

(six types)

CNN and 

LSTM

Acc 99.32 The proposed model exhibits strong 

generalization capabilities and could 

serve as a valuable tool for clinicians in 

diagnosing arrhythmia.

Requires QRS detection, introducing 

additional computational overhead. 

Imbalanced dataset challenges, particularly 

with limited AFL class instances.

(10) Beat 

classification 

as per AAMI 

standard

An explainable 

deep 

transfer 

learning 

approach

Sen 99.00 Explainable AI enhances the accuracy 

and reliability of heartbeat 

classification by making DL models 

more transparent and understandable 

for physicians.

Deployment feasibility for real-time 

monitoring must consider computational 

resources, integration with clinical 

workDows, and regulatory standards.

(168) ECG arrhythmia 

classification

MITDB 

AFDB

Customized 

CNN

Acc 97.31 

Sen 96.50 

F1 98.30

Classifies numerous arrhythmias 

accurately utilizing short ECG 

segments, making them appropriate 

for continuous monitoring using 

wearable devices.

Real-world wearable data noise and 

artifacts may affect performance. Single- 

lead ECG may lower arrhythmia detection 

accuracy.

(143) Detection of 

atrial 

fibrillation

AFDB CNN and RNN 

combination

Acc 89.30 Extract high-level features from 

segments of RR intervals (RRIs) to 

classify them as either AF or NSR.

Analysis of the model’s performance on 

noisy ECG segments revealed a higher 

number of false positives, as anticipated.

(169) ECG signal 

Classification

MITDB 

ICCAD

CLINet 

(Conv+LSTM+ 

Involution)

Acc 99.94 

Acc 99.90

The architecture is lightweight, making 

it appropriate for deployment on 

wearable devices, and it achieves very 

high accuracy across multiple datasets.

A lack of comprehensive preprocessing 

may inDuence robustness in noisy real- 

world datasets.

(170) ECG beat 

classification

MITDB 

INCART 

SVDB

DNN Acc 91.30 

Acc 92.40 

Acc 90.61

Enhanced system robustness and 

generalizability.

Stacking autoencoders and DNNs is 

computationally expensive and resource- 

intensive.

(Continued) 
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Overfitting is a significant challenge in ECG beat classification, 

particularly in deep learning-based models, where the model 

captures noise and irrelevant patterns from training data, 

leading to poor generalization to new, unseen data. One of the 

primary causes of overfitting in ECG classification is the use of 

complex models with high-dimensional feature spaces, especially 

when datasets are imbalanced. Studies have shown that utilizing 

all 12 ECG leads in classification models can introduce 

redundancy and unnecessary complexity, thereby reducing 

generalizability and increasing the risk of overfitting (176). In 

addition, the presence of linear dependencies within ECG data 

has been identified as a major issue that skews the learning 

process towards the majority class, leading to biased model 

predictions and lower accuracy in minority class detection (57). 

This issue is particularly evident in patient-specific ECG 

classification, where models tend to overfit to the training 

patients, failing to generalize effectively across different 

individuals (29). Moreover, deep learning models trained on 

high-dimensional spectro-temporal ECG features have been 

found to suffer from overfitting due to their inability to leverage 

beat-to-beat variations effectively (120).

To mitigate overfitting in ECG beat classification, researchers 

have proposed various strategies. Feature selection and 

dimensionality reduction techniques, such as selecting an 

optimal subset of ECG leads instead of using all 12 leads, have 

been found to enhance classification accuracy while maintaining 

interpretability (176). Sample reduction techniques, such as QR 

and SVD, have also been effective in eliminating redundant data 

and addressing class imbalance, thereby reducing bias and 

improving generalization (57). In addition, the use of ensemble 

methods, such as multiple classifier architectures and hybrid 

machine learning approaches, has shown promise in improving 

classification robustness and interpretability (60, 175). 

Regularization techniques, including dropout and L2 

regularization, are widely used to constrain deep learning 

models and prevent overfitting. Cost-sensitive learning 

approaches, such as modifying the classification threshold based 

on class imbalance, have also been shown to significantly 

enhance ECG beat classification performance by reducing bias 

towards majority classes (98). Furthermore, data augmentation 

strategies, such as adding noise, applying transformations, or 

generating synthetic ECG beats using generative models, have 

been successful in increasing the diversity of training data and 

improving model generalization (120). Collectively, these 

approaches ensure the reliability and robustness of ECG beat 

classification models, making them more effective for real-world 

medical applications.

In addition to the overfitting, large annotated datasets are also 

necessary for effective deep neural network training, which is a 

significant challenge. Generating high-quality annotated ECG 

data, particularly for rare cardiac disorders, can be costly and 

time-consuming (9). Furthermore, DL models are 

computationally demanding and require enormous 

computational resources, particularly during the training and 

optimization phases. This may limit their scalability and 

practical implementation in contexts with limited resources, 

such as point-of-care settings. Despite these challenges, 

continuous research is endeavoring to overcome these 

constraints by creating interpretable DL architectures, data- 

efficient learning methods, and hardware optimizations (24). 

The ultimate goal is to maximize the benefits of DL for ECG 

beat classification and simultaneously reduce its 

potential drawbacks.

Deep learning has become the leading paradigm for ECG beat 

classification by automatically learning spatial-temporal features 

from raw signals. Among various models, CNN-LSTM hybrids 

and attention-enhanced networks consistently demonstrate 

superior performance, achieving accuracies of 98%–99% across 

multiple ECG databases. CNNs capture morphological patterns, 

while LSTM and GRU layers model temporal dependencies. 

Transformer-based models further improve interpretability and 

long-range context handling. Data augmentation with GANs 

and representation learning via autoencoders effectively address 

class imbalance and noise. In addition, transfer-learning and 

lightweight architectures, such as MobileNet, enable real-time 

deployment on wearable devices. Overall, hybrid and attention- 

driven frameworks represent the state of the art in robust, 

generalizable ECG beat classification systems.

TABLE 7 Continued

Study Application Database DL 
approach

Performance 
(in %)

Advantages Disadvantages

(171) Premature 

ventricular 

contraction

MITDB 

INCART

Hybrid BiLSTM Acc 97.20 

Sen 96.00

Achieves high performance in 

classifying premature ventricular 

contractions.

May be less effective in detecting rare 

arrhythmias or artifacts.

(172) ECG beat 

classification

LUDB VGG16-based 

CNN

Acc 99.90 Accurately classifies beats using time- 

frequency representation.

Impressive accuracy may indicate 

overfitting, especially on smaller datasets.

(173) Abnormalities 

detection

MITDB 

Real-time

Hybrid DNN Acc 99.28 

Acc 99.12

High accuracy ensures reliable 

abnormality detection for clinical 

applications.

Heavily reliant on input data quality; noise 

and artifacts can reduce accuracy.

(170) ECG beat 

classification

MITDB 

INCART 

SVDB

DNN Acc 91.30 

Acc 92.40 

Acc 90.61

Enhanced system robustness and 

generalizability.

Stacking autoencoders and DNNs is 

computationally expensive and resource- 

intensive.

(174) Heartbeat 

classification

SVEB IraNet 

(residual 

attention 

with Bi-LSTM)

Acc 95.48 

Sen 95.75

Competitive accuracy and sensitivity 

across multiple classes.

Complex model may require extensive 

computational resources.
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5.3 Explainable AI for ECG beat 
classification

ECG beat classification using XAI leverages advanced machine 

learning techniques to enhance transparency in automated 

diagnostic systems. Traditional classification methods often 

function as “black boxes,” making it difficult for clinicians to 

interpret or trust decisions, especially in critical applications 

such as arrhythmia detection. Explainable AI addresses this 

limitation by employing methods such as saliency maps, feature 

importance visualization, and decision boundary analysis. These 

approaches allow for better understanding and verification of 

the features contributing to a model’s predictions. Techniques 

such as layer-wise relevance propagation (LRP) and gradient- 

weighted class activation mapping (Grad-CAM) have been 

applied to visualize critical regions of ECG signals, helping 

practitioners align model decisions with medical insights (177, 

178). This not only improves diagnostic reliability but also aids 

in identifying potential errors in classification. Incorporating 

XAI into ECG beat classification aligns automated systems with 

real-world clinical requirements. Explainable methods enable the 

assessment of model predictions in handling class imbalances 

and morphological complexities in ECG datasets. Studies 

integrating XAI with neural networks, such as convolutional and 

recurrent architectures, have shown improved interpretability 

without compromising classification accuracy (58, 121). For 

instance, combining ICA with neural networks has 

demonstrated robust classification results with enhanced feature 

interpretability, achieving over 98% accuracy on benchmark 

datasets (98, 179). By bridging the gap between machine 

intelligence and clinician trust, explainable AI ensures that 

automated ECG diagnostic tools are not only effective but also 

transparent and clinically viable. A detailed comparison of the 

different features is summarized in Table 8.

XAI has emerged as a crucial frontier in ECG beat 

classification research, bridging the gap between high- 

performing deep-learning models and clinical interpretability. 

While deep neural networks, such as CNNs, LSTMs, and 

transformers, have demonstrated outstanding diagnostic 

accuracy, their “black-box” nature continues to limit real-world 

clinical trust and regulatory acceptance. Among the 106 

reviewed studies, approximately 14% (15 papers) explicitly 

incorporated XAI methods to interpret model predictions and 

visualize decision reasoning. Most of these studies applied 

saliency-based techniques, including Grad-CAM (180) and LRP 

(60), to highlight the waveform segments that contribute most 

strongly to the classification outcomes. Such visualization maps 

frequently revealed correspondence between algorithmic focus 

regions and clinically significant components of the ECG— 

particularly the QRS complex, P-wave, and ST–T segments— 

demonstrating the potential of XAI to validate model reasoning 

in physiological terms.

Beyond saliency methods, a smaller number of studies utilized 

attention mechanisms within hybrid CNN-LSTM architectures to 

provide interpretability by weighting critical temporal regions. 

Others employed the SHapley Additive exPlanations (SHAP) 

(181) and Local Interpretable Model-Agnostic Explanations 

(LIME) to quantify feature importance in models trained on 

handcrafted attributes. However, the overall adoption of such 

explainability frameworks remains limited. Approximately 86% 

of the analyzed deep-learning studies focused solely on 

predictive performance metrics—accuracy, precision, recall, or 

F1-score—without providing interpretive insight into model 

behavior or physiological relevance. This significant gap 

highlights that the ECG-AI community remains primarily 

performance-driven, with interpretability often treated as an 

auxiliary consideration rather than a core design principle. The 

limited integration of XAI tools underscores an urgent need for 

standardization in interpretability reporting. Future research 

should emphasize quantitative explainability benchmarks, such 

as region relevance overlap with annotated ECG segments, and 

clinician-in-the-loop validation to assess whether the model 

explanations align with expert reasoning. Integrating XAI at the 

design stage can enhance clinical transparency, regulatory 

TABLE 8 Comparison of XAI, traditional ML, and deep learning.

Feature XAI Traditional ML Deep learning

Transparency High transparency; models provide insights into 

decision-making processes.

Moderate transparency; some models (e.g., decision 

trees) are interpretable, others (e.g., SVM) are not.

Low transparency; often acts as a 

“black box.”

Accuracy Slight trade-off in accuracy due to constraints of 

explainability in some cases.

Moderate accuracy depending on the model and 

dataset.

High accuracy, especially in complex 

tasks.

Interpretability Clear reasoning behind predictions, improving 

trust and adoption.

Varies; interpretable in simple models (e.g., linear 

regression) but not in ensemble models.

Poor interpretability due to 

complexity.

Scalability Dependent on the complexity of explainable 

methods; may require additional computation.

Good scalability; lightweight and efficient. Highly scalable for large-scale data.

Application areas Suitable for trust-sensitive fields like healthcare 

and finance.

General-purpose applications like classification and 

regression.

Ideal for unstructured data such as 

images, text, and audio.

User trust Builds trust through interpretable results. Moderate; depends on model interpretability. Limited due to black-box nature.

Complexity of 

implementation

Higher due to integration of methods like SHAP, 

LIME, or Grad-CAM.

Moderate; simpler than XAI and DL. High; requires expertise in network 

architecture and optimization.

Regulatory compliance Aligned with regulations requiring transparency 

and accountability.

Limited compliance where explainability is required. Poor compliance due to lack of 

interpretability.

Performance on 

unstructured data

Performs well but may lag behind DL in raw 

accuracy.

Moderate; pre-processing required for unstructured 

data.

Excels with unstructured data such as 

images and signals.
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compliance, and physician confidence, ultimately enabling safer 

and more explainable deployment of AI-driven cardiac 

diagnostic systems.

6 Limitations, solutions, and future 
directions

Though this review provides a comprehensive overview of 

ECG beat classification systems, it is important to acknowledge 

several limitations inherent in the current ECG beat 

classification approaches.

6.1 Minor challenges

• As the traditional methods use handcrafted features, they are 

unable to provide reliable and adequate information from 

similar ECG beats due to the action of morphological 

patterns, which may lead to misclassification (11, 43–46).

• Deep learning models involve many computations, particularly 

those with large architectures such as CNNs or RNNs. High- 

end GPUs offer more powerful processors and parallel 

processing capabilities, enabling faster and more efficient 

execution of these computations than CPUs (central 

processing units) (20, 25, 28, 114).

• Deep learning algorithms require extensive training datasets to 

train the models (9, 19).

Solutions for minor challenges: Implementing deep learning 

models, such as CNNs and RNNs, that automatically learn 

relevant features from raw ECG data can significantly improve 

classification accuracy (127). These models capture complex 

patterns and morphological variations without relying on 

handcrafted features. To optimize neural network architectures 

for computational efficiency, techniques such as model pruning 

and quantization can be adopted, or lightweight models such as 

MobileNet can be utilized (182). Leveraging cloud-based GPU 

resources or distributed computing helps meet computational 

demands without compromising performance (183). Employing 

data augmentation techniques to artificially expand the training 

dataset by introducing variations, such as scaling, rotation, or 

adding noise to existing ECG signals, enhances the model’s 

robustness (184). In addition, one could use transfer learning 

from models pre-trained on large datasets or explore semi- 

supervised learning methods that can effectively use unlabeled 

data (185).

6.2 Major challenges

• ECG signals exhibit significant intra- and inter-patient 

variability in beat morphology due to differences in heart 

anatomy, electrode placement, noise, artifacts, and 

physiological factors. This variability makes it challenging for 

deep learning models to generalize across different 

individuals and accurately classify ECG beats (18, 20, 28, 116).

• Most of the pre-processing techniques in the literature depend 

on the signal sampling frequency. If the sampling frequency of 

the input signal varies, it is very difficult to achieve better 

classification accuracy (113, 114).

• Deep learning models generally require a large amount of labeled 

data to achieve high accuracy. Obtaining a large and accurately 

annotated ECG dataset for training deep learning models can 

be challenging, as ECG data collection and annotation are 

time-consuming and require expertise (10, 25, 136).

• ECG beat classification models trained on one dataset may not 

generalize well to unseen data from different sources. Ensuring 

the robustness and generalizability of deep learning models is a 

challenge in ECG beat classification (9, 18, 19).

• The performance of the classification algorithms is significantly 

degraded in the presence of similar morphological patterns 

with minor variations from different classes (9, 19, 26, 27).

Solutions for major challenges: Collecting a diverse dataset that 

represents different patient populations is crucial for training 

models that generalize well (186). Techniques such as domain 

adaptation can adjust the model to new patient data, and 

personalization strategies can fine-tune the model based on 

individual patient characteristics (187). Standardizing the 

sampling frequency by resampling all ECG signals to a common 

rate prior to processing ensures consistency (188). Developing 

pre-processing methods that are robust to sampling frequency 

variations or designing models that handle inputs with different 

sampling rates using adaptive algorithms can mitigate issues 

related to varied sampling frequencies (189). The use of semi- 

supervised learning and active learning approaches reduces the 

amount of labeled data required (190). Collaborating with 

medical institutions to share and pool annotated datasets 

expands the available training data (191). Exploring synthetic 

data generation methods, such as the use of generative 

adversarial networks to create realistic ECG signals, provides 

additional training resources (192). Training models on 

combined datasets from multiple sources improves 

generalization capabilities (163). Implementing cross-validation 

strategies across different datasets and using domain 

generalization techniques ensure that models are robust to 

variations in data distribution from different sources (193). 

Enhancing the model’s ability to detect subtle differences by 

incorporating attention mechanisms and multi-scale feature 

extraction techniques improves discrimination between classes 

with similar morphological patterns (194). Using ensemble 

methods that combine multiple models further enhances 

classification performance (195), and fine-tuning the model 

using specialized loss functions, such as focal loss, emphasizes 

hard-to-classify examples (196).

6.3 Synthesis of the proven solutions and 
best practices

From the 106 selected articles, we identified consistently 

successful practices for ECG beat classification, particularly 

regarding data imbalance, generalization, model design, and 
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evaluation (55). A key observation across numerous studies is that 

models trained and tested on the same patient cohort (intra- 

patient splits) tend to exhibit inDated performance, as they 

inadvertently learn subject-specific morphology (127). In 

contrast, inter-patient validation—where all beats from a given 

subject appear in only one data split—offers a more realistic 

assessment by ensuring generalization to unseen individuals. 

Therefore, inter-patient (or leave-one-subject-out) evaluation 

should be considered the primary reporting standard, with any 

intra-patient results clearly labeled as ablation or sensitivity 

analyses. The synthesis of reviewed literature highlights that 

rigorous data curation and proper dataset partitioning 

contribute significantly more to trustworthy and generalizable 

results than methodological novelty alone. These best practices 

address four major recurring challenges in ECG beat 

classification: data imbalance, architectural design, training and 

evaluation methodology, and reproducibility. Therefore, it is 

increasingly accepted that inter-patient evaluation should serve 

as the primary reporting protocol, with intra-patient results 

presented only as supplementary ablation tests. Equally 

important is the transparent documentation of any pre- 

processing, i.e., band-pass filtering (BPF) parameters, baseline- 

wander removal, R-peak detection methods, and beat 

segmentation window lengths, since small differences in these 

steps can significantly alter results (57). Explicitly reporting such 

settings is now recognized as best practice for reproducibility.

The most persistent problem identified across datasets such as 

MIT-BIH Arrhythmia (8), INCART (53), and MIT-BIH 

Supraventricular Arrhythmia (3) is the severe class imbalance 

between normal and abnormal beats. To mitigate this, studies 

have increasingly combined algorithmic and data-level solutions. 

Among the algorithmic solutions, loss-function re-weighting or 

dynamic minority-biased batch weighting consistently improved 

sensitivity to rare arrhythmias without harming majority class 

precision. These methods dynamically scale gradients according 

to class frequency, preventing the network from converging 

toward trivial majority predictions. Complementary strategies 

such as feature-fusion architectures, which integrate temporal, 

frequency-domain, and time-frequency representations, were 

also effective, as they expose the classifier to richer 

discriminative cues and mitigate bias towards dominant 

waveform shapes (197). A smaller but inDuential group of 

studies used DBA or F1-based early-stopping criteria instead of 

overall accuracy, thereby explicitly optimizing for balanced 

recognition across classes. Collectively, these practices 

demonstrate that metric-aware optimization is more faithful to 

clinical relevance than simple accuracy maximization. At the 

data level, the combination of ECG-specific augmentation and 

transfer learning emerged as another reliable route to improved 

minority-class recall. Augmentations such as controlled time- 

shifting, amplitude scaling, additive Gaussian noise, and mild 

temporal warping expand training diversity while preserving 

physiological plausibility. Overly aggressive distortions, such as 

heavy frequency modulation, were found to degrade 

performance by altering beat morphology. Consequently, 

augmentations that respect signal physiology are now favored. 

For smaller or domain-specific datasets, transfer learning—pre- 

training on a large balanced corpus and fine-tuning on the 

target data—consistently reduced overfitting and variance, 

especially for rare arrhythmias. Ensemble learning, though 

computationally heavier, repeatedly provided robustness against 

minority misclassifications by averaging the decisions of 

differently initialized or architected models (21). Together, these 

results establish a hierarchy of preferred imbalance-handling 

practices, namely, loss-level weighting, physiologically consistent 

augmentation, transfer learning, and lightweight ensembles, in 

order of practicality. Architectural trends in the literature show 

a clear evolution from manual feature engineering to end-to-end 

deep networks capable of automatically learning morphological 

and temporal patterns. Among these, 1D-CNNs remain the 

dominant backbone for local feature extraction because they 

effectively capture QRS-complex morphology and achieve high 

efficiency. When CNNs are extended with recurrent layers— 

especially LSTM or Bi-LSTM units—they gain temporal 

awareness, enabling them to exploit rhythm dependencies 

between consecutive beats. Hybrid CNN-LSTM architectures, 

sometimes referred to as hierarchical temporal models, 

consistently occupied the upper performance tier, with F-scores 

typically between 95% and 99% in benchmark datasets. These 

combinations proved particularly successful in distinguishing 

morphologically similar beats that differ primarily in timing 

rather than shape.

A further architectural enhancement repeatedly associated 

with improved interpretability and accuracy is the attention 

mechanism. Attention layers help the network emphasize 

diagnostically important regions of the ECG, such as the QRS 

onset and offset, while down-weighting redundant background 

segments. Across multiple studies, attention modules increased 

sensitivity to subtle morphological differences between 

ventricular and supraventricular ectopic beats, and they provided 

intuitive saliency maps that facilitate clinical interpretability. 

Where data and computational resources permitted, 

transformer-style multi-head attention further improved long- 

range context modeling, capturing dependencies across entire 

cardiac cycles rather than single beats. In parallel, modern 

convolutional refinements such as residual connections, squeeze- 

and-excitation blocks, and frequency-channel attention 

enhanced optimization stability and feature discrimination. 

These structural elements have therefore become standard 

components of competitive ECG classifiers. Beyond architecture, 

the review reveals consensus on several training and evaluation 

practices that determine whether good models generalize in 

clinically realistic conditions. Regularization through dropout, 

weight decay, and batch normalization is nearly universal 

among successful deep networks, preventing overfitting to small 

patient subsets. Early stopping based on validation F1-score or 

AUPRC proved more reliable than using loss reduction alone, 

because it guards against bias towards majority classes. Many 

articles also emphasize aligning model capacity with hardware 

constraints. For example, for wearable or edge deployment, 

compact 1D-CNNs with attention heads offer an attractive 

trade-off between interpretability, accuracy, and latency. 
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Reporting inference time per beat or per signal window is 

increasingly viewed as essential, since real-time performance is 

critical for embedded medical systems.

6.4 Future directions

The proposed ECG beat classification techniques in the 

literature provide promising performance, but there is a need to 

develop such methods to overcome the limitations of the 

current techniques. In this section, we discuss some of the open 

possible extensions of the techniques proposed in this article. 

• Personalized, adaptive models for individualized ECG 

classification: One significant future direction is the 

development of personalized and adaptive models that tailor 

the ECG classification to the individual patient’s data. 

Traditional models often struggle with variability in ECG 

signals across different patients due to factors such as age, 

physiology, and comorbid conditions. By incorporating 

patient-specific data into the training process, models can 

adjust their parameters to better reDect individual cardiac 

patterns. Transfer learning and online learning can fine-tune 

models using a patient’s historical ECG data, leading to more 

accurate and reliable diagnoses (198, 199).

• Explainable and interpretable deep learning models: Deep 

learning models must be both explainable and interpretable 

for widespread clinical acceptance. Clinicians must 

understand the reasoning behind a model’s prediction to 

trust and effectively use it in decision-making. Future 

research should focus on integrating explainable AI 

techniques, highlighting which parts of the ECG signal 

contribute the most to a classification decision. Methods such 

as attention mechanisms, saliency maps, and layer-wise 

relevance propagation can provide insight into the inner 

workings of the model (181, 200). By transparentizing the 

decision process, we can bridge the gap between complex 

algorithms and clinical practice, ensuring that these tools 

support rather than hinder healthcare professionals.

• Efficient, real-time processing for wearable and mobile devices: 

As wearable technology and mobile health applications 

become more prevalent, there is a growing need for 

algorithms that can process ECG data efficiently and in 

real-time. Future developments should aim to optimize 

models to run on devices with limited computational 

resources without sacrificing accuracy. This can be achieved 

through model compression techniques, such as 

quantization and pruning, and the design of lightweight 

architectures specifically tailored for edge computing (182, 

201). Efficient algorithms enable continuous monitoring 

and prompt detection of cardiac anomalies, which is 

essential for timely medical responses and for improving 

patient care in everyday settings.

• Unlabeled ECG data with advanced learning techniques: A vast 

amount of ECG data remains unlabeled due to the time and 

expertise required for annotation. Unsupervised, semi- 

supervised, and self-supervised learning techniques offer ways 

to utilize this untapped resource. Future research should 

focus on developing models that can learn meaningful 

representations from unlabeled data, thereby reducing the 

dependence on large labeled datasets. Techniques such as 

autoencoders, contrastive learning, and generative adversarial 

networks can uncover underlying patterns in the data, which 

can then be fine-tuned with minimal labeled examples (202, 

203). Leveraging unlabeled data not only enhances model 

performance but also accelerates the development of robust 

ECG classification systems.

• Performance with federated learning: Patient privacy is of 

paramount concern in healthcare, limiting data sharing across 

institutions. Federated learning presents a solution by 

allowing models to be trained on decentralized data without 

transferring sensitive information. Future directions involve 

implementing federated learning frameworks for ECG 

analysis, enabling collaboration between hospitals and 

research centers while maintaining patient confidentiality 

(180, 197). This approach can lead to the creation of more 

generalized models trained on diverse datasets, improving 

accuracy and reliability across different populations. 

Addressing challenges such as communication efficiency and 

model convergence in federated settings will be essential for 

practical deployment.

• Multi-modal learning: Combining ECG data with other 

physiological signals or medical information through multi- 

modal learning can significantly improve diagnostic precision. 

Future work should explore integrating data from sources 

such as blood pressure monitors, oxygen saturation sensors, 

and patient medical histories. By providing a more 

comprehensive view of a patient’s health status, models can 

make more informed predictions about cardiac events (204, 

205). Multi-modal approaches can help identify complex 

conditions that may not be detectable through ECG analysis 

alone, leading to more holistic and effective patient care. 

Developing algorithms capable of processing and synthesizing 

information from multiple modalities will be a key area 

of focus.

7 Limitations of the review 
methodology

Despite the systematic and comprehensive approach adopted 

in this review paper, several methodological limitations must be 

acknowledged to ensure transparency and contextual accuracy 

in the interpretation of our findings. These limitations arise 

from the nature of systematic reviews themselves, the search 

and selection procedures, the heterogeneity of the included 

studies, and the diversity in experimental designs, databases, 

and performance metrics used in the studies on ECG beat 

classification. Recognizing these constraints provides a 

balanced understanding of the review outcomes and outlines 

potential directions for improving future systematic reviews in 

this field.
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7.1 Scope and search limitations

The review process followed the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) guidelines to 

ensure methodological rigor and reproducibility. Nevertheless, 

one inherent limitation stems from the restriction to peer- 

reviewed, English-language publications indexed in major 

databases such as PubMed, IEEE Xplore, ScienceDirect, and 

Springer. While this criterion ensured quality and accessibility, it 

potentially excluded significant research reported in non-English 

journals, regional repositories, theses, and conference 

proceedings not indexed in the selected databases. Excluding 

non-English studies may have introduced a language bias, 

especially given that ECG research is conducted globally, with 

active contributions from Asian, European, and South American 

institutions. Consequently, important innovations, particularly 

those published in national medical journals or non-indexed 

conference proceedings, may have been overlooked. This review 

paper provides a detailed analysis of machine learning and deep 

learning techniques for the classification of ECG beats, focusing 

on the advancements from 2014 to 2024, but it may have 

excluded earlier pioneering work that laid the groundwork for 

more advanced ECG analysis methods. A systematic approach 

was adopted to analyze the 106 studies, offering a 

comprehensive evaluation of methodologies and their 

applications in ECG classification. Another limitation relates to 

the deliberate exclusion of grey literature, including technical 

reports, dissertations, white papers, and non-peer-reviewed 

conference abstracts. While this approach enhanced the 

credibility of the included studies by ensuring they met peer- 

review standards, it may have resulted in the omission of 

innovative but unpublished work or early-stage algorithmic 

implementations. Grey literature often contains valuable 

methodological insights, comparative evaluations, or negative 

findings that are less likely to appear in journal publications due 

to publication bias.

A major methodological limitation of this review arises from 

the heterogeneity across the datasets used in the included 

studies. The three most frequently employed databases—MIT- 

BIH Arrhythmia (8), St. Petersburg INCART (53), and MIT- 

BIH Supraventricular Arrhythmia (3)—differ substantially in 

sampling frequency, signal resolution, lead configuration, and 

patient demographics. Consequently, performance metrics such 

as accuracy, sensitivity, and F1-score cannot be directly 

compared across studies, as the underlying data distributions 

vary considerably. For instance, the MIT-BIH Arrhythmia 

database contains 48 half-hour two-lead ECG recordings from 

47 subjects sampled at 360 Hz, whereas the INCART dataset 

(53) includes 75 recordings at 257 Hz from 25 patients with 

different arrhythmia profiles. These discrepancies introduced 

variability in the reported results, even when identical 

algorithms are used. Furthermore, some studies utilized patient- 

specific evaluation protocols (intra-patient validation), while 

others employed inter-patient cross-validation strategies. The 

choice between these validation schemes has a profound effect 

on reported accuracy. Models evaluated using intra-patient splits 

typically yield inDated performance metrics since the test data 

shares morphological characteristics with the training data. 

Conversely, inter-patient validation better represents real-world 

generalization but usually yields lower accuracy. The lack of 

standardized evaluation protocols across the studies makes it 

difficult to provide an entirely uniform assessment of 

algorithmic performance.

8 Recommendations from the critical 
review

Based on our comprehensive systematic review of 106 studies 

on the state-of-the-art machine and deep learning techniques for 

ECG beat classification, we propose the following 

recommendations to advance the field and address existing 

limitations. Addressing the prevalent issue of data imbalance, 

techniques such as SMOTE, GANs, and transfer learning should 

be employed to enhance model performance on 

underrepresented arrhythmia classes. Robust pre-processing 

pipelines using modern denoising methods, such as deep 

learning-based filtering and wavelet transforms, are crucial for 

mitigating noise artifacts such as baseline wander and motion 

interference. Hybrid and ensemble models that combine 

handcrafted and deep learning-based features can leverage 

domain knowledge while improving classification robustness. 

The adoption of transformer architectures and attention 

mechanisms can better capture long-term dependencies in ECG 

signals, while patient-specific and adaptive models, utilizing 

transfer learning and federated learning, can address inter- 

patient variability. To enhance real-world applicability, 

optimizing models for deployment on wearable and Internet of 

Things (IoT) devices, with a focus on lightweight architectures 

and edge computing, is essential. Furthermore, standardizing 

evaluation metrics and benchmarking datasets, fostering 

interdisciplinary collaborations, integrating multimodal data 

sources, and emphasizing ethical considerations such as data 

privacy and XAI will collectively ensure the development of 

clinically relevant and scalable ECG classification systems. These 

recommendations aim to address current challenges in ECG 

beat classification and pave the way for innovative, clinically 

relevant, and scalable solutions. By focusing on these areas, 

researchers and practitioners can enhance the diagnostic 

accuracy and real-world applicability of automated ECG 

analysis systems.

9 Conclusions

This systematic review highlights growing trends in deep 

learning for ECG classification, with CNN and hybrid models 

showing consistently high performance across benchmarks. 

Despite advancements, clinical translation is limited by bias, 

data imbalance, and lack of interpretability. While the field has 

witnessed significant progress, particularly with the adoption of 

deep learning methods such as CNNs and RNNs, challenges 
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remain. These include noise and artifacts in ECG signals, data 

imbalance, the need for extensive annotated datasets, 

computational resource constraints, and the lack of 

generalizability to unseen data. In addition, many traditional 

approaches rely on handcrafted features, which may not fully 

capture the complexity and variability of ECG signals. Deep 

learning models have demonstrated superior performance in 

ECG beat classification tasks, offering the ability to 

automatically learn features from raw data and effectively 

capture temporal and morphological patterns. However, the 

“black-box” nature of these models raises concerns about 

interpretability, which is critical for clinical applications. 

Addressing these limitations requires the development of 

explainable AI algorithms that provide transparent decision- 

making while maintaining the high accuracy of deep learning 

models. This review underscores the need for robust pre- 

processing pipelines, advanced data augmentation strategies, and 

the integration of multimodal data to improve classification 

performance. Furthermore, interdisciplinary collaboration 

between researchers, clinicians, and engineers is essential to 

ensure that the developed systems align with clinical needs. By 

addressing these challenges and embracing emerging techniques, 

such as transfer learning, explainable AI, and real-time 

processing on wearable devices, future research can pave the 

way for more accurate, interpretable, and scalable ECG beat 

classification systems that improve patient care and 

diagnostic efficiency.
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AF Atrial fibrillation
AFDB Atrial Fibrillation Database
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AI Artificial intelligence
AM Autoregressive model
ANOVA Analysis of variance
API Application programming interface
AUC Area under the curve
AUPRC Area under the Precision–Recall curve
AV Atrioventricular
BPF Band-pass filter
BN Batch normalization
BP Blood pressure
BSS Blind source separation
BW Baseline wander
BWF Baseline wander filter
CINC Computers in Cardiology Challenge
CI Confidence interval
CNN Convolutional neural network
CNN- 
LSTM 

Convolutional neural network combined with long 
short-term memory

CPU Central processing unit
CPSC China Physiological Signal Challenge
CSV Comma-separated values
CV Cross-validation
CVDs Cardiovascular diseases
CWT Continuous wavelet transform
DBA Differential beat accuracy
DBN Deep belief network
DNN Deep neural network
DL Deep learning
DOI Digital object identifier
DTCWT Dual-tree complex wavelet transform
DWT Discrete wavelet transform
ECG Electrocardiogram
ECN Electrode contact noise
EEG Electroencephalogram
EMD Empirical mode decomposition
EMG Electromyogram
EWT Empirical wavelet transform
FCN Fully convolutional network
FFT Fast Fourier transform
FN False negative
FP False positive
FPGA Field programmable gate array
GAN Generative adversarial network
GRU Gated recurrent unit
GPU Graphics processing unit
HMM Hidden Markov model
HPF High-pass filter
HR Heart rate
HRV Heart rate variability
ICA Independent component analysis
IMF Intrinsic mode function
INCART St. Petersburg Institute of Cardiological Technics 

Database

IoMT Internet of Medical Things
IoT Internet of Things
JCR Journal Citation Reports
kNN K-nearest neighbor
LMS Least mean squares
LOSO Leave-one-subject-out validation
LPF Low-pass filter
LR Learning rate
LSTM Long short-term memory
MA Muscle artifacts
MAr Motion artifact
MAE Mean absolute error
MFCC Mel-frequency cepstral coefficients
MIT-BIH Massachusetts Institute of Technology–Beth Israel 

Hospital Database
ML Machine learning
MLP-BP Multilayer perceptron-backpropagation
MSE Mean squared error
NSTEMI Non-ST-segment elevation myocardial infarction
NPV Negative predictive value
PAC Premature atrial contraction
PCA Principal component analysis
PLI Powerline interference
PPG Photoplethysmography
PPV Positive predictive value
PRISMA Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses
PTB Physikalisch-Technische Bundesanstalt Diagnostic 

ECG Database
PVC Premature ventricular contraction
PWA Pulse wave analysis
Q Quartile (Journal Citation Reports Ranking, Q1–Q4)
QOL Quality of life
QRS Q-wave, R-wave, and S-wave complex
RMS Root mean square
RMSE Root mean square error
RMSSD Root mean square of successive differences
RNN Recurrent neural network
ROC Receiver operating characteristic
RR R–R interval (interval between consecutive R-peaks)
SA Sinoatrial (node)
SAE Stacked autoencoder
SB Sinus bradycardia
SD Standard deviation
SDG Sustainable development goal
SDNN Standard deviation of normal-to-normal intervals
SJR Scimago Journal Rank
SJR/Q Scimago Journal Rank / Journal Citation Reports 

Quartile (Quality Index)
SMOTE Synthetic minority oversampling technique
SNR Signal-to-noise ratio
SOM Self-organizing map
SoC System on chip
Softmax Softmax activation function
SPE Specificity
ST Stockwell transform
STEMI ST-segment elevation myocardial infarction
STFT Short-time Fourier transform
SVEB Supraventricular ectopic beat
SVT Supraventricular tachycardia
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SVM Support vector machine
SWT Stationary wavelet transform
TL Transfer learning
TCN Temporal convolutional network
TN True negative
TP True positive
TQWT Tunable Q-factor wavelet transform

VAE Variational autoencoder
VEB Ventricular ectopic beat
VF Ventricular fibrillation
VT Ventricular tachycardia
WT Wavelet transform
ZCR Zero-crossing rate
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