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Federated learning leverages data across institutions to improve clinical discovery while complying with data-sharing restrictions and protecting patient privacy. This paper provides a gentle introduction to this approach in bioinformatics, and is the first to review key applications in proteomics, genome-wide association studies (GWAS), single-cell and multi-omics studies in their legal as well as methodological and infrastructural challenges. As the evolution of biobanks in genetics and systems biology has proved, accessing more extensive and varied data pools leads to a faster and more robust exploration and translation of results. More widespread use of federated learning may have a similar impact in bioinformatics, allowing academic and clinical institutions to access many combinations of genotypic, phenotypic and environmental information that are undercovered or not included in existing biobanks.
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1 Introduction

Sharing personal information has been increasingly regulated in both the EU [with the GDPR and the AI act; (1, 2)] and the US [with HIPAA and the National AI Initiative Act; (3, 4)] to mitigate the personal and societal risks associated with their use, particularly in connection with machine learning and AI models (5). These regulations make multi-centre studies and similar endeavours more challenging, impacting biomedical and clinical research.

Federated learning [FL; (6, 7)] is a technical solution intended to reduce the impact of these restrictions. FL allows multiple parties to collaboratively train a global machine learning model using their respective data without sharing it themselves, and without any meaningful model performance degradation. Instead, parties only share model updates, making it impractical to reconstruct personal information when the appropriate secure computational measures are implemented (8).

This approach strengthens security by keeping sensitive information local, improves privacy by minimising data exposure even between the parties involved, and limits risk of data misuse by allowing each party to retain complete control over its data (9). If enough parties are involved, FL may access larger and more varied data pools than centralised biobanks can provide. This is particularly true if there are legal (or other) barriers to data centralisation, resulting in more accurate and robust models than those produced by any individual party.

FL has proven to be a valuable tool for biomedical research and is expected to gain further traction in the years to come. Its use has improved breast density classification models [accuracy up by 6%, generalisability up by 46%; (10)], COVID-19 outcome prediction at both 24h and 72h [up 16% and 38%; (11)] and rare tumour segmentation [up by 23%–33% and 15%; (12)] compared to single-party analyses. A consortium of ten pharmaceutical companies found that FL improved structure-activity relationship (QSAR) models for drug discovery [both up 12% (13)]. Early-stage applications building predictive models from electronic health records (14) have also confirmed no practical performance degradation compared to pooling data from all parties.

To achieve such results, a real-world implementation of FL must overcome several methodological, infrastructural and legal issues. However, biomedical FL literature reviews (15, 16, among others) are predominantly high-level and considered simulated rather than real-world implementations. Here, we will cover federated methods designed explicitly for bioinformatics and discuss the infrastructure they require, as well as how they meet legal requirements. While various legal frameworks may apply depending on jurisdiction, we place particular emphasis on the European General Data Protection Regulation (GDPR). This focus reflects not only our EU-based perspective but also the GDPR’s comprehensive scope, stringent requirements, and influence as a global benchmark for data protection in research and technology. In reviewing the literature, we selected papers that study practical analysis problems (as opposed to proposing methodologies in the abstract) for proteomics, genome-wide association studies (GWAS), and single-cell and multi-omics data. We also considered papers that discuss their feasibility, trade-offs, and performance compared to centralised analyses, and were published after 2016. We used Google Scholar to find and retrieve them.

To this end, we have structured the remainder of the paper as follows: We first review the fundamental concepts and design decisions of FL in Section 2, including different topologies (Section 2.1), hardware and software (Section 2.2), data layouts in different parties (Sections 2.3 and 2.4), security (Section 2.5) and privacy concerns (Section 2.6). In Section 3, we contrast and compare bioinformatics FL methods for proteomics and differential expression (Section 3.1), genome-wide association studies (GWAS; Section 3.2), single-cell RNA sequencing (Section 3.3), multiomics (Section 3.4) and medical imaging (Section 3.5) applications. We conclude the section with notable examples of ready-to-use software tools (Section 3.6). Section 4 provides examples of federated operations common in bioinformatics. Finally, we discuss the legal implications of using FL (Section 5) before summarising our perspective in Section 7.



2 Federated learning

FL is a collaborative approach to machine learning model training, where multiple institutions form a consortium to jointly train a shared model by exchanging model updates rather than individual patient data. Typically, FL involves data holders (called “clients”) sharing their local contributions with a server (6) as outlined in Figure 1. The server then creates and shares back a global model, inviting the data holders to update and resubmit their contributions. This process is iterative and involves several rounds of model update exchanges. Unlike traditional centralised computing, FL does not store patient data in a central location. Instead, patient data remain under the control of the respective data owners at their sites, enhancing privacy.


[image: Diagram depicting the six stages of a federated learning process. 1: Global model initialization with a server and three clients, server is active. 2: Initial global model sharing, active server sending data to all clients. 3: Local models training, clients active. 4: Local models sharing, clients send data back to inactive server. 5: Local models aggregation, server active, clients inactive. 6: Updated global model sharing, server active, sending data to all clients. Black circles indicate inactive parties, green circles indicate active parties, with arrows showing information flow.]
FIGURE 1
Overview of a typical federated learning (FL) workflow. (1) The central server initialises a global model. (2) The server shares the global model parameters with consortium parties, referred to as clients. (3) Each client initialises a local model from the global model parameters and updates it by training it on its local data. (4) Clients send their updated local model parameters back to the server. (5) The server aggregates local model parameters it collected to construct a new global model. (6) The server redistributes the updated global model parameters to clients to start the next training round. Steps (3)–(6) are repeated iteratively until a predefined stopping criterion is met. Active parties in each step are in green, and the arrows show the direction of information flow within the consortium.


FL has similarities with distributed computing, meta-analysis, and trusted research environments (TREs), but also has key differences, which we highlight below. Table 1 provides a comparative overview of these approaches.



TABLE 1 Methodological comparison of centralised learning, federated learning, distributed computing, meta-analysis, and trusted research environments.



	Aspect
	Centralised learning
	Federated learning
	Distributed computing
	Meta-analysis
	Trusted research environments (TRE)





	Primary goal
	Aggregate all individual data into one place and train or analyse centrally.
	Collaborative model training across parties without sharing individual data.
	Increase speed and scalability; job parallelisation.
	Combine evidence from completed studies.
	Provide secure, auditable access to sensitive data for research.



	Where individual data live
	Single central repository.
	Stay local at each device/institution.
	Centrally stored, sharded across nodes.
	Remain with original studies; not pooled.
	In a secure environment or under local (federated) control (only relevant data are transferred).



	How learning happens
	Training/analysis is run on pooled data in one environment.
	Participants compute local model updates and send them for secure aggregation in iterative rounds.
	Tasks are partitioned and executed in parallel; results are combined centrally.
	Study-level results are aggregated.
	Researchers run code/queries inside the TRE; outputs are checked before release.



	Participation
	All data contributors must share data with the central site beforehand.
	Multiple data holders, dynamic participation possible (devices can join/leave).
	Centrally managed workers/nodes with data partitions.
	Fixed set of completed/published studies.
	Approved users/projects with strict governance and access control.



	Data assumptions
	No inherent assumption; depends on chosen analysis method.
	Must handle non-IID data and uneven sample sizes.
	Often assumes roughly IID, evenly partitioned data.
	Models between-study heterogeneity (fixed/random effects).
	No inherent assumption; depends on chosen analysis method.



	What moves across parties
	Individual data sent to the central site.
	Model updates (gradients/weights), possibly in shares (SMPC), encrypted or differentially private.
	Data blocks and intermediate results.
	Study-level summary statistics.
	Code/queries go in; vetted results come out.



	Privacy posture
	Highest data exposure (requires trust in central data custodian).
	Designed to avoid individual data sharing; can support privacy-enhancing techniques.
	Not privacy-focused (single trust domain).
	Only summary results shared.
	Via technical or organisational controls.



	Output artefact
	Single trained model or analysis result from pooled data.
	Global or personalised model held by each participant.
	Finished job outputs.
	Summary results with uncertainty estimates.
	Analysis outputs are released after disclosure control.



	Typical examples
	Central data warehouse, pooled data in a multi-centre study.
	Cross-hospital FL; edge device FL.
	Spark, Hadoop, Ray, HPC clusters.
	Cochrane-style meta-analyses.
	UK Biobank RAP, Federated EGA.



	Legal responsibilities
	The central data controller has the responsibility for legal compliance and security.
	Data controllers retain responsibility for legal compliance and security; data processors have contractual responsibilities linked to that.
	Depends on data origin: same as centralised learning for single-centre studies, or as federated learning when data comes from multiple centres.
	Data controllers retain responsibility; data processors must ensure original data use agreements permit meta-analysis.
	The operator is responsible for TRE security and governance. Data controllers retain legal responsibility for sharing the data.



	Legal basis in addition to data subjects’ consent
	Only data subjects’ informed consent is needed.
	Data sharing agreements for pseudo-anonymised data.
	Data sharing agreement for individual data in case data from multiple centres are aggregated.
	No personal data involved if the data are sufficiently aggregated (anonymised); otherwise, same as federated learning.
	Access agreements between TREs and data controllers: permitted uses, audit, and security protocols. Data processors’ agreements with TRE.




	Consent from data subjects is assumed for data use.







Distributed computing (DC) (17) divides a computational task among multiple machines to enhance processing speed and efficiency. Typically, DC starts from a centrally managed data set spread across multiple machines, which is assumed to contain independent and identically distributed observations. Each machine is tasked to process a comparable quantity of data. In contrast, clients independently join FL with their locally held data, which may vary significantly in quantity and distribution. While sharing some techniques with FL, distributed computing aims for computational efficiency and lacks its privacy focus.

On the other hand, meta-analyses (18) aggregate results across previously completed studies using statistical methods to account for their variations, thus allowing researchers to synthesise findings without accessing personal data and preserve the privacy of individual data sets. Here, FL collaboratively trains a joint model using distributed data to iteratively update it while meta-analysis constructs it in a single step from the pre-existing results. Multiple studies on sequencing data have demonstrated that FL produces results closer to centralised analysis than from meta-analysis (19, 20).

TREs (21) provide access to data within a controlled, secure computing environment for conducting analyses, almost always disallowing data sharing. Some TREs have a centralised data location and governance; an example is the Research Analysis Platform (RAP), the TRE for the UK Biobank [UKB; (22)]. Others, such as FEGA (23), are decentralised. Each institution maintains its data locally; only the relevant data are securely transferred to the computing environment when the analysis is authorised. Unlike FL, the learning process is not distributed across the data holders. Thus, the trade-off between TREs and FL is between a centralised, trusted entity with extensive computational facilities that can place substantial restrictions on the analysis, and a consortium that requires all parties to apply governance guidelines and provide compute, but can scale both data access and privacy guarantees.


2.1 Topologies

The topology of the FL consortium is determined by the number of participating parties and their defined interactions. Some examples are illustrated in Figure 2. The most common is the centralised topology, where multiple data-holding parties (the clients) collaboratively train a shared machine learning model through a central server (the aggregator) that iteratively collects model updates from each client, updates the global model, and redistributes it back to the clients. Typically, clients do not communicate directly; they only communicate with the central server. In contrast, a decentralised topology (24) lacks a dedicated aggregation server. All consortium parties can potentially serve as model trainers and aggregators, interacting through peer-to-peer communication. Hybrid configurations include, for instance, using two servers: one server handles aggregation of noisy local models, while the other performs auxiliary tasks, such as noise aggregation (25). Clients can communicate with the servers, and servers can communicate with each other, but clients cannot communicate with each other.


[image: Diagram comparing three network topologies. The centralized topology shows a server connected to three clients. The decentralized topology depicts a triangle connection among three parties. The two-server centralized topology includes two servers, marked as aggregator and auxiliary, connecting to three clients. A legend indicates roles with colors: gray for data holder, red for aggregator, and blue for auxiliary role.]
FIGURE 2
Different FL topologies. In centralised topologies, the data holders are typically referred to as clients, reflecting their interaction with a central server. In decentralised topologies, where no central entity exists, the participants are often called parties.


We will focus on the standard centralised topology and its two-server variant here because, to our knowledge, no bioinformatics applications use decentralised topologies.



2.2 Hardware and software

Hardware, software and models should be chosen with knowledge of the data and inputs from domain and machine learning specialists to design an effective machine learning pipeline (26).

In terms of infrastructure, FL requires computational resources for each client and server. The optimal hardware configuration depends on the models to be trained; at a minimum, each client must be able to produce model updates from local data, and each server must be able to aggregate those updates and manage the consortium. Connection bandwidth is not necessarily critical: to date, client-server communications contain only a few megabytes of data, reaching 150MB only for large computer vision models, and can be made more compact through compression and model quantisation (27). On the other hand, latency may be a bottleneck if it limits the hardware utilisation.

As for software, several dedicated FL frameworks, many of which are comparatively analysed in (28), provide structured tools and environments for developing, deploying, and managing federated machine learning models. While some frameworks, such as Tensorflow Federated [TFF; (29)], specialise in particular models, others support a broader range of approaches. Notable open-source examples include PySyft (30) and Flower (31). Both are supported by active communities and integrate with PyTorch to train complex models. PySyft is a multi-language library focusing on advanced privacy-preserving techniques, including differential privacy and homomorphic encryption. Flower is an FL framework: its modular design and ease of customisation make it particularly useful for large-scale and multi-omics studies involving heterogeneous devices and clients. We will provide examples using these frameworks in Section 3 before discussing frameworks explicitly designed for bioinformatics in Section 3.6.

Other frameworks target healthcare and biomedical applications, but not bioinformatics specifically. For instance, OpenFL (32) is designed to facilitate FL on sensitive EHRs and medical imaging data; it supports different data partitioning schemes (Section 2.4) but struggles with heterogeneous cross-device FL (Section 2.3). NVIDIA Clara, which was used in Dayan et al. (11), has similar limitations.



2.3 Usage scenarios: cross-device and cross-silo

FL applications take different forms in different domains. Many small, low-powered clients, such as wearable medical devices from the Internet of Things, may produce the data needed to train the federated machine learning model. Such cross-device communications are often unreliable: passing lightweight model updates instead of individual data largely addresses connectivity issues and privacy risks.

FL may also involve a small number of parties, each possessing large amounts of sensitive data (33), stored within their “data silos”. This setting, often called the emphcross-silo scenario, is common in healthcare and bioinformatics. Here, the main priority is to minimise the privacy risks associated with data sharing and comply with regulations. Additionally, minimising large data transfers is also computationally advantageous when modelling large volumes of information, such as whole-genome sequences.

These two scenarios differ in how they handle model updates. In the cross-silo scenario, all (few) data holders in the consortium must participate in each update. In contrast, we can rely on a subset of (the many) data holders in the cross-device scenario because each holds a smaller share of the overall data. This article focuses on the cross-silo scenario, as nearly all bioinformatics applications fall within this framework.



2.4 Data partitioning and heterogeneity

Data may be partitioned along two axes: each party may record the same features for different samples or features describing the same samples (Figure 3). In the first scenario, known as horizontal FL, different parties may each possess genomic sequencing data from different individuals. In contrast, in vertical FL, one party may hold data from one omic type (say, genomic data), while another may have data from a different phenotype or omic type (say, proteomic data) for the same individuals. Horizontal FL is by far the most prevalent approach in bioinformatics.


[image: Two diagrams illustrate data partitioning methods. The left shows horizontal partitioning with rows r1-r4 for Client 1 and r5-r8 for Client 2. The right shows vertical partitioning with columns c1-c3 for Client 1 and c4-c6 for Client 2. Both diagrams depict colored squares representing data segments.]
FIGURE 3
Horizontal and vertical data partitioning in FL. In horizontal FL (left), clients hold data sets with the same features (c1–c3) but different subsets of samples (r1–r8). In vertical FL (right), clients hold data sets with different features (c1–c6) but the same set of samples (r1–r4).


Significant variations in sample size and feature distributions between data holders often exist. This heterogeneity allows FL to better capture the variability of the underlying population, resulting in transferable models that generalise well (34). Clearly, if data holders collect observations from distinct populations, any federated model trained from them must be correctly specified to capture population structure and avoid bias in inference and prediction. If the populations are known, we can train targeted population-specific models alongside the global one (35). Otherwise, we can use clustering to identify them from the available data (36). Accounting for variations in measurements, definitions and distributions to harmonise data across parties is also fundamental but is much more challenging because access to data is restricted, even more so than in meta-analysis (27).



2.5 Security and privacy

FL reduces some privacy and security risks by design by passing model updates between parties instead of centralising data in a single location. However, it does not eliminate them completely.

In terms of privacy, deep learning models are the most problematic in machine learning because of their ability to memorise training data. They leak individual observations during training [through model updates; (37)], after training [through their parameters; (38)] and during inference [membership attacks; (39, 40)]. More broadly, individual reidentification is an issue for genetic data (41) and all the models learned from them. For instance, (42) has demonstrated that it is possible to identify an individual from the linear model learned in an association study from just 25 genes. However, such works make unrealistic assumptions on the level of access to the models and the data (43): even basic infrastructure security measures and the distributed nature of the data will make such identification difficult under the best circumstances. The privacy-enhancing techniques discussed in Section 2.6 can make such efforts wholly impractical.

As for security, we must consider different threat models, understanding what information requires protection, their vulnerabilities, and how to mitigate or respond to threats. Internal and external threats to the consortium should be treated equally with security in depth design and implementation decisions that consider parties untrusted. Security threats, such as membership attacks and model inversion attacks (44), can originate equally from parties and external adversaries that seek to abuse the model inference capabilities to extract information about the data. On the other hand, adversarial attacks are more likely to originate from consortium parties that seek to introduce carefully crafted data or model updates into the training process to produce a global model with undesirable behaviour. Some examples are data poisoning (45), manipulation (46) and Byzantine attacks (47).

Encrypting communication channels, implementing strict authentication (to verify each party’s identity) and authorisation (to control which information and resources each party has access to or shares) schemes, and keeping comprehensive access logs for audit can secure any machine learning pipeline, including federated ones. Similarly, using an experiment tracking platform makes it possible to track data provenance, audit both the data and the training process and ensure the reproducibility of results (26). These measures must be complemented by federated models resistant to these threats at training and inference time, as thoroughly discussed in Yin et al. (48).



2.6 Privacy-enhancing techniques

Privacy-enhancing techniques improve the confidentiality of sensitive information during training. We summarise the most relevant below, illustrating them in Figure 4.


[image: Example text describing a privacy-preserving sum in federated learning with three techniques: homomorphic encryption, secure multiparty computation, and a two-server approach. Each method outlines steps for securely calculating the sum of values held by three clients.]
FIGURE 4
Example of privacy-preserving sum computation in FL using three different techniques. Note that although differential privacy is described in Section 2.6, it is not included in this example, as it would not be suitable for such a calculation.


Homomorphic encryption [HE; (49)] is a cryptographic technique that enables computations to be performed directly on encrypted data (ciphertexts) without requiring decryption. The outcome of operations on ciphertexts matches the result of performing the same operations on the corresponding non-encrypted values (plaintexts) when decrypted. HE can be either fully homomorphic (FHE), which allows for arbitrary computations, or partially homomorphic (PHE), which supports only a specific subset of mathematical operations. For instance, the Paillier PHE scheme (50) only supports additive operations on encrypted data. FHE requires considerable computational resources for encryption and decryption. PHE is less flexible but computationally more efficient, making it a common choice in practical applications.

Secure multiparty computation [SMPC; (51)] is a peer-to-peer protocol allowing multiple parties to compute a function over their data collaboratively, similarly to Figure 2 (centre). Each data holder divides their data into random shares and distributes them among all parties in the consortium, thus ensuring that no single party can access the complete data set. The shares are then combined during the computation process, often with the assistance of a server, to produce the correct result while preserving data privacy. SMPC ensures high security with exact results and keeps data private throughout the computation process. However, SMPC is computationally intensive and requires peer-to-peer communication, leading to high communication overhead. Its complexity also increases with the number of participants, limiting scalability.

Another approach to securing FL is using an aggregator and a compensator server in a centralised two-server topology [Figure 2, right; (25)]. Each client adds a noise pattern to their local data, sharing the former with the compensator (which aggregates all noise patterns) and the latter with the aggregator (which aggregates the noisy data and trains the model). The aggregator then obtains the overall noise pattern from the compensator and removes it from the aggregated noisy data, allowing for denoised model training. This two-server approach is efficient: it requires neither extensive computation in the clients nor peer-to-peer communication. However, it makes infrastructure more complex and requires trust in both servers not to collude to compromise the privacy of individual contributions.

Unlike the above methods, which are encryption-based methods ensuring data confidentiality during transmission or storage, differential privacy, another popular technique for data-protection in federated learning, is not an encryption system but rather a technique that focuses on privacy by ensuring that the output of data analysis does not leak sensitive information about the underlying dataset. Differential privacy [DP; (52)] achieves this through a mathematical framework designed to ensure analyses remain statistically consistent, regardless of whether any specific individual’s data is included or excluded. This property guarantees that sensitive information about individuals cannot be inferred from the results up to a preset “privacy budget” worth of operations. DP is typically implemented by introducing noise into the data (53, 54), weight clipping in the training process (55, 56) or predictions (57, 58) to obfuscate individual contributions. The amount of noise must be carefully calibrated to balance predictive accuracy and privacy within the analysis: too little noise undermines privacy, and too much reduces performance. This effect is more pronounced within specific subgroups underrepresented in the training set (59).




3 Federated learning in bioinformatics

Most FL literature focuses on general algorithms and is motivated by applications other than bioinformatics, such as digital twins for smart cities (60), smart industry (61) and open banking and finance (62). Even the clinical literature mainly focuses on different types of data and issues (11, 63). Here, we highlight and discuss notable examples of FL designed specifically for bioinformatics, summarised in Table 2. They are all in the early stages of development, so their reliability, reproducibility, and scalability are open questions. However, they hint at the potential of FL to perform better than meta-analysis and single-client analyses on real-world data, comparing favourably to centralised data analyses where data are pooled in a central location while addressing data sharing and use concerns (15, 20).



TABLE 2 Summary of key federated learning applications in bioinformatics.



	Field
	Application
	FL methods
	Data
	References





	Proteomics and differential gene expression
	Variance estimation, gene expression, cell type classification
	FedDEqMS, FedProt, HyFed with limma voom, DL with Flower and TFF
	Mass spectrometry, RNA-seq, 1–10 k individuals and 10–100 M biomarkers
	(20, 25, 67, 70)



	GWAS
	Association testing, scalable regression
	FedGLMM, federated GRM estimator, FedGMMAT, REGENIE with MPC/HE
	SNPs, genotype and phenotype data, 2.5–275 k individuals and 0.5–38 M SNPs
	(71–74)



	Single-cell RNA-seq
	Cell type classification
	scFed: ACTINN, SVM, XGBoost, GeneFormer
	scRNA-seq from 2–55 k cells and 1–2 k genes
	(76, 77)



	Multi-omics
	Prognosis (cancer), diagnostics (Parkinson’s)
	Vertical FL, adaptive neural networks, benchmarking with Flower
	Genomics, transcriptomics, proteomics, 100–1,200 individuals and 100–700 features
	(78, 79)



	Medical Imaging
	Classification, segmentation, semi-supervised training
	Federated labelling, harmonised feature learning
	MRI, x-rays, histology images, 5–71 k scans
	(80–85)



	Specialised tools
	FL software for bioinformatics workflows
	sfkit, FeatureCloud
	All the data above
	(19, 86–88)








3.1 Proteomics and differential gene expression

Proteomics studies the complex protein dynamics that govern cellular processes and their interplay with physiological and pathological states, such as cancer (64), to improve risk assessment, treatment selection and patient monitoring. Differential expression analyses focus specifically on comparing expression levels across different conditions, tissues, or cell types to identify genes with statistically significant differences (65).

In addition to the issues discussed in Section 2, FL in proteomics must overcome the challenge of integrating data from different platforms (66) while accounting for imbalanced samples and batch effects. Cai et al. (67) produced a federated implementation of DEqMS [FedProt; (68)] for variance estimation in mass spectrometry-based data that successfully identifies top differentially-abundant proteins in two real-world data sets using label-free quantification and tandem mass tags.

Zolotareva et al. (20) implemented a federated limma voom pipeline (69) on top of HyFed (25), which uses the aggregator-compensator two-server topology we described earlier. This approach was demonstrated on two extensive RNA-seq data sets, proving robust to heterogeneity across clients and batch effects. Hannemann et al. (70) trained a federated deep-learning model for cell type classification using both Flower and TFF and different architectures, with similar results.



3.2 Genome-wide association studies

Genome-wide association studies (GWAS) aim to identify genomic variants statistically associated with a qualitative (say, a case-control label) or quantitative trait (say, body mass index). These studies mainly use regression models, which can be largely trained using general-purpose federated regression implementations with minor modifications to address scalability and correct for population structure [see, for instance, (43)].

Li et al. (71) has developed the most complete adaptation of these models to federated GWAS in the literature: it provides linear and logistic regressions with fixed and random effects and accounts for population structure via a genomic relatedness matrix. Wang et al. (72) further provides a federated estimator for the genomic relatedness matrix. Finally, Li et al. (73) describes the federated association tests for the genomic variants associated with this model. All these steps incorporate HE to ensure privacy in the GWAS.

As an alternative, Cho et al. (74) built on REGENIE (75) to avoid using a genomic relatedness matrix and increase the scalability of GWAS while using MPC and HE to secure the data. Despite the overhead introduced by the encryption, this approach is efficient enough to work on a cohort of 401 k individuals from the UK Biobank and 90 million single-nucleotide polymorphisms (SNPs) in less than 5 h.



3.3 Single-cell RNA sequencing

Single-cell RNA sequencing (scRNA-seq) measures gene expression at the cellular level, rather than aggregating it at the tissue level as in bulk RNA sequencing, and identifies the distinct expression profiles of individual cell populations within tissues (89, 90).

Wang et al. (76) developed scFed, a unified FL framework integrating four algorithms for cell type classification from scRNA-seq data: the ACTINN neural network (91), explicitly designed for this task; a linear support vector machine; XGBoost based on Li et al. (77); and the GeneFormer transformer (92). They evaluated scFed on eight data sets evenly distributed among 2–20 clients, suggesting that the federated approach has a predictive accuracy comparable to that obtained by pooling the data and better than that in individual clients. However, the overhead during training increases with the number of clients, limiting the scalability to larger consortia. More recently, Bakhtiari et al. (93) introduced FedscGen, a federated implementation of scGen (94), a variational autoencoder-based method for batch effect correction. FedscGen employs secure SMPC for privacy-preserving aggregation and achieves results that closely match those obtained under centralised training.



3.4 Multi-omics

Proteomics, genomics, and transcriptomics capture different aspects of biological processes. Integrating large data sets from different omics offers deeper insights into their underlying mechanisms (95). Vertical FL allows multiple parties to combine various features of the same patients into multimodal omics data sets without exposing sensitive information (96). For instance, Wang et al. (78) trained a deep neural network with an adaptive optimisation module for cancer prognosis evaluation from multi-omics data. The neural network performs feature selection while the adaptive optimisation module prevents overfitting, a common issue in small high-dimensional samples (97). This method performs better than a single-omic analysis, but the improvement in predictive accuracy is strongly model-dependent. Another example is Danek et al. (79), who built a diagnostic model for Parkinson’s disease: they provided a reproducible setup for evaluating several multi-omics models trained on pre-processed, harmonised and artificially horizontally federated data using Flower. Their study identifies a general but not substantial reduction in FL performance compared to centrally trained models, which increases with the number of clients and is variably affected by client heterogeneity.



3.5 Medical imaging

Medical imaging studies the human body’s interior to diagnose abnormalities in its anatomy and physiology from digital images such as those obtained by radiography, magnetic resonance and ultrasound devices (98). It is the most common application of FL in the medical literature (16). As a result, protocols for image segmentation and diagnostic prediction are well documented. Notable case studies target breast cancer (10), melanomas (83), cardiovascular disease (84), COVID-19 (11, 85).

Machine learning applications that use medical imaging data typically face challenges, including incomplete or inaccurate labelling and the normalisation of images from different scanners and different protocols. Bdair et al. (80) explored a federated labelling scheme in which clients produced ground-truth labels for skin lesions in a privacy-preserving manner, improving classification accuracy. Yan et al. (81) also proposed an efficient scheme to use data sets mainly comprising unlabelled images, focusing on chest x-rays. Furthermore, Jiang et al. (82) apply FL to learn a harmonised feature set from heterogeneous medical images, improving both the classification and segmentation of histology and MRI scans.



3.6 Ready-to-use FL tools for bioinformatics

The need for user-friendly FL implementations of common bioinformatics workflows has driven the creation of secure collaborative analysis tools (87, 88, 99). Two notable examples are sfkit and FeatureCloud.

The sfkit framework (19) facilitates federated genomic analyses by implementing GWAS, principal component analysis (PCA), genetic relatedness and a modular architecture to complement them as needed. It provides a web interface featuring a project bulletin board, chat functions, study parameter configurations and results sharing. State-of-the-art cryptographic tools for privacy preservation based on SMPC and HE ensure data protection (100).

FeatureCloud (86) is an integrated solution that enables end users without programming experience to build custom workflows. It provides modules to run on the clients and servers in the consortium. Unlike sfkit, FeatureCloud allows users to publish applications in its app store, including regression models, random forests and neural networks. Developers must also document how privacy guarantees are implemented in their apps.




4 Practical insights on federation

This section offers practical insights to help readers interested in building a federated and secure analogue of an existing bioinformatics algorithm. We focus on horizontal FL with the centralised topology from Figure 2 (left). Consider K different clients, each possessing a local data set Xk, where k=1,…,K. Each data set contains nk samples, denoted as xijk, where i=1,…,nk represents the sample index, and j=1,…,P represents the P features for each sample. We denote a row (column) of the matrix Xk as xi*k (x*jk). This describes a distributed data set of N=∑k=1Knk observations:



X=[X1X2⋯XK].





The following sections assume that an FL consortium has been established, the necessary infrastructure is operational, and an appropriate FL framework has been selected and installed. It is also assumed that a secure aggregation protocol has been chosen, such as those described in Section 2.6 and Figure 4. The choice of a specific secure aggregation protocol may depend on several factors, including technology and infrastructure (e.g., the availability of a particular FL topology that drives the choice), as well as privacy risks and scalability concerns, as discussed in Section 2.6. In the following sections, we provide a general overview of sum-based mathematical operations built upon a secure aggregation protocol, as well as operations involving federated averaging [FedAvg; (6)].

Coding examples using Flower (31) are available in our GitHub repository (https://github.com/IDSIA/FL-Bioinformatics). We chose Flower because it has a shallow learning curve for new FL users and provides a good balance between simplicity and flexibility when implementing custom algorithms. Riedel et al. (28) also identified Flower as a promising framework because it has a large, active, and growing community of developers and scientists, as well as extensive tutorials and documentation. In our examples, secure summation is performed using the secure aggregation protocol SecAgg+ (101). This protocol combines encryption with SMPC, using a multiparty approach in which each client interacts with only a subset of the others. It is particularly suitable for several FL contexts, as it is robust to client dropout and highly scalable. In particular, a relevant aspect of the bioinformatics domain is that it scales linearly with the size of the vectors to be aggregated (102).


4.1 Sum-based computations

Let ak be real numbers stored by individual clients. We define the secure sum of these numbers, performed through the selected secure aggregation protocol, as ⊕k=1Kak. We can build on this simple, secure sum to construct a wide range of operations. However, note that as the complexity of operations increases, the amount of information revealed to the server may also increase. Sum-based operations include:


	•The overall sample size of the distributed data set as N=⊕i=1Knk from the local sample sizes nk.

	•The mean value of the jth feature, given N, asOPS/xhtml/Nav.xhtml
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