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Objectives: This narrative review evaluates the role of artificial intelligence (AI) in 

healthcare, summarizing its historical evolution, current applications across 

medical and surgical specialties, and implications for allied health professions 

and biomedical research.

Methods: We conducted a structured literature search in Ovid MEDLINE (2018– 

2025) using terms related to AI, machine learning, deep learning, large language 

models, generative AI, and healthcare applications. Priority was given to peer- 

reviewed articles providing novel insights, multidisciplinary perspectives, and 

coverage of underrepresented domains.

Key findings: AI is increasingly applied to diagnostics, surgical navigation, risk 

prediction, and personalized medicine. It also holds promise in allied health, 

drug discovery, genomics, and clinical trial optimization. However, adoption 
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remains limited by challenges including bias, interpretability, legal frameworks, 

and uneven global access.

Contributions: This review highlights underexplored areas such as generative AI 

and allied health professions, providing an integrated multidisciplinary perspective.

Conclusions: With careful regulation, clinician-led design, and global equity 

considerations, AI can augment healthcare delivery and research. Future work 

must focus on robust validation, responsible implementation, and expanding 

education in digital medicine.

KEYWORDS

artificial intelligence, machine learning, deep learning, large language models, 

generative AI, digital health, healthcare, surgery

1 Introduction

Artificial Intelligence (AI) has been a rapidly growing scientific 

field which effectively aims to create machine technology to 

perform tasks that normally require human intelligence. 

Artificial intelligence has risen in visibility due to its significant 

capability in performing tasks requiring normally human 

cognition, using deep learning models. The use of artificial 

intelligence has been noticed across different sectors from the 

creative arts to silence. The complex mergence with healthcare 

systems proves highly promising but it also comes with its own 

challenges, with the potential to improve patient outcomes while 

raising many ethical and regulatory challenges (1).

Healthcare is undergoing a transformational shift due to 

growing demands, healthcare costs and increasingly strained 

systems (2). Particularly after the recent Covid-19 pandemic 

which seemed to worsen existing health inequalities (3), there 

has never seemed a better opportunistic time to implement an 

emerging technology to augment clinical practice. From 

potential time and cost savings in drug discovery and medical 

diagnostics (4, 5), to revolutionary insights into genomic 

sequencing and disease susceptibility (5), AI has been recently 

emerging into all areas of healthcare from preventative medicine 

and public health to acute hospital medicine and surgery. Since 

the development of machine learning and deep learning, 

applications of AI in healthcare have expanded beyond an 

algorithm-based model of medicine to a more personalised 

approach (6).

Recently, improved AI systems have led to the potential of AI 

improving or even replacing current functions of doctors (7). 

There are, however, several barriers that restrict its universal 

adoption, including lack of transparency in AI algorithms, 

which goes against the medical ethos of clinical medicine relying 

on transparency in decision making with current use of 

evidence-based medicine in clinical practice.

The motivation for this review stems from the rapid pace of AI 

adoption in non-medical sectors compared to healthcare, despite 

healthcare being one of the areas with the greatest need for 

innovation. While prior reviews have addressed AI in specific 

domains such as radiology or surgery, few have comprehensively 

examined its cross-disciplinary impact, including underrepresented 

fields such as allied health professions and generative AI. This 

paper aims to provide a multidisciplinary synthesis of AI 

applications across medicine, surgery, allied health, and 

biomedical research. Furthermore, we also aimed to critically 

evaluate the limitations and regulatory challenges of 

implementation. And finally we aimed to propose future research 

directions that can guide safe, equitable, and responsible AI 

integration. The review is structured to first present the history 

and evolution of AI, followed by its clinical and research 

applications, limitations, and finally, directions for future 

integration into healthcare systems.

This paper aims to discuss the history of AI and its 

increasingly prominent role in clinical practice, particularly in 

recent history. It discusses the role of AI across various domains 

of healthcare including medical and surgical specialties, as well 

as health prevention and health promotion. This paper also 

addresses the current limitations to the use of AI in clinical 

practice and explores possible solutions. Furthermore, this 

review considers potential future applications and strategies for 

more streamlined implementation into wider healthcare systems.

In addition, this review examines underrepresented domains 

such as allied healthcare professions and Generative AI (GenAI). 

In contrast to the traditional focus on physician-led applications, 

this review explores the role of AI in physiotherapy, speech 

therapy, nutrition and mental health. We also aim to explore 

the role of large language models (LLMs) in automating and 

improving documentation, communication and decision 

making. This provides a realistic oversight on the possible future 

integration of AI in healthcare.

We conducted a literature search in Ovidmedline up to July 

2025. Search terms included combinations of “artificial 

intelligence,” “machine learning,” “deep learning,” “large 

language models,” “generative AI,” “digital health,” and 

“healthcare” alongside specialty-specific terms such as “surgery,” 

“radiology,” “mental health,” “allied health professions,” “ethics,” 

“regulation,” and “clinical applications.” Boolean operators 

(AND, OR) were used to refine results. Priority was given to 

peer-reviewed articles published between 2018 and 2025 that 

provided novel insights, multidisciplinary perspectives, and 

coverage of underrepresented domains such as allied healthcare 

and AI regulation.
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2 Understanding AI and its history

AI has significantly evolved since the first AI program was 

developed by Christopher Strachey in 1951. It was initially 

mainly an academic research topic and in the following two 

decades, there were great innovative advances in engineering 

such as electronic arms in assembly lines and the first simple 

robot able to follow basic instructions (6). Despite this 

progression, medicine was slow to adopt this technology 

during this period. There were however major advancements 

in medicine during this time which would help establish the 

foundations of AI in medicine in the future; these include the 

development of medical record systems and clinical 

informatics databases (8). The web-based search engine 

PubMed was created in this time by the National Library 

of Medicine and was a fundamental digital resource which 

facilitated the acceleration of biomedicine as we know 

it (8) (Figure 1).

The following decades saw a shift towards Machine Learning, 

which is a subfield of AI which focuses on pattern identification 

and analysis, aiming to improve machines with experience from 

data sets. Subsequently following this, Natural Language 

Processing, another AI subfield which involves computers 

extracting data from human language and based on that 

information making decisions was developed (9).

From the late 1990s and 2000s onwards, Machine Learning 

had progressed into Deep Learning, a system of multi-layer 

neural networks which enables machines to learn and make 

decisions on their own, acting similarly to the human brain (9). 

The 2000s started to see seminal advancements in AI. In 2007, 

the International Business Machines Corporation (IBM) 

developed Watson, a question-answering system that relied on a 

technology called DeepQA, which used Natural Language 

Processing to analyse data and generate answers (10). This 

system was easily maintainable and was more cost-effective.

Utilising information stored in electronic medical records as 

well as other available electronic resources, DeepQA technology 

opened the door and revolutionised new possibilities in clinical 

decision making backed by evidence-based medicine (11). This 

was exactly demonstrated by Bakkar et al. (12) who used this 

technology in amyotrophic lateral sclerosis (ALS) to identify 

RNA-binding proteins that were altered.

With previous limitations in computing power and funding, 

applications of AI such as this was non-existent before. 

However, in more recent times with enhancement of 

computational power, greater volume of data and further 

funding; there is a more optimistic view for the use of AI in 

medicine8.

From diagnostics to operational management of healthcare, 

these recent emergences have made stakeholders more invested 

in its use in clinical medicine and beyond. The general 

population has generally met this with great enthusiasm as it 

gives more patient autonomy by enabling the “4P” model of 

medicine (predictive, preventive, personalised and participatory) 

(13), in a way that was previously difficult to achieve.

This paper will now consider specific areas of medicine 

whereby AI has been utilised in an effective manner with better 

patient outcomes.

3 Current applications of artificial 
intelligence in modern clinical practice

3.1 AI in surgical specialities

Surgeons are often needing to make complex decisions under 

the constraints of time pressure and diagnostic uncertainty which 

can have a great effect on patient outcomes (Figure 2; Table 1).

3.1.1 Plastic and reconstructive surgery
Artificial intelligence has demonstrated potential in 

preoperative planning, risk assessment, outcome prediction in 

surgical simulation. Nevertheless, when operating in the field of 

plastic surgery AI-assisted robots enable increased precision and 

technical capabilities especially in the field of microsurgery. AI’s 

image processing capabilities are used to objectively assess 

postoperative symmetry, volume, and aesthetic outcomes. 

Furthermore, AI-driven diagnostic systems are aiding in the 

early identification of complications such as Cap ischemia, often 

detecting issues sooner than traditional clinical methods (14).

FIGURE 1 

Timeline of major milestones in AI and healthcare.
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3.1.2 General surgery

The field of general surgery includes high risk operations 

where dexterity is vital. Artificial intelligence allows intra 

operative risk stratification and assistance by allowing real time 

identification of anatomical structures and offering surgeons 

guidance during various complex procedures reducing the 

potential error (15). A systematic review by Yagi et al. explored 

the role of real time instrument tracking on personalised 

surgical training enhancing the technical proficiency and clinical 

outcomes (16).

Preoperative decision-making has also been significantly 

improved through AI’s capacity to enhance existing risk 

prediction models. There are several established scoring systems 

such as APACHE III and POSSUM and they remain 

fundamental tools in assessing surgical morbidity and mortality. 

However it has been highlighted by many conditions in the field 

that those systems don’t take individualised risk into 

consideration (17, 18). Machine learning can refine these 

models, increasing their predictive power and allowing for more 

individualized risk assessment (19).

3.1.3 Gastrointestinal surgery
AI has delivered some of its most impactful innovations in 

gastrointestinal (GI) surgery, particularly in the realm of 

endoscopic imaging. Endoscopic ultrasound (EUS), a key 

modality for differentiating between pancreatic cancer and 

chronic pancreatitis, has seen its diagnostic precision 

substantially improved through AI-based models (20–22).

In lower GI endoscopy, AI-assisted colonoscopy has shown 

clear clinical benefit. Computer-aided detection (CADe) systems 

have improved the adenoma detection rate and facilitated the 

differentiation of benign vs. malignant lesions (23). 

A randomized controlled trial further confirmed a significant 

increase in adenoma detection with AI-guided colonoscopy 

compared to conventional methods (24). Similarly, AI tools 

applied to upper GI endoscopy have achieved 89% accuracy (90% 

sensitivity and 88% specificity) in identifying neoplastic Barrett’s 

esophagus, enhancing early detection and intervention (25).

3.1.4 Oncological surgery
In oncologic surgery, artificial intelligence has been able to 

predict outcomes in patients with cancers by incorporating 

multiple tumour related and patient related variables. The 

models had strong prediction of patient survival and was able to 

identify variable that had impact on outcomes. This was 

achieved by integrating clinical, imaging and history 

pathological data enabling a tailored treatment strategy making a 

substantial leap forward in the practise of precision oncology (20).

FIGURE 2 

Timeline of major milestones in AI and healthcare.

TABLE 1 Summary of AI applications in healxthcare.

Specialty Applications Benefits Challenges

General Surgery Intra-operative guidance, risk stratification Enhanced precision, reduced errors Training needs, regulatory concerns

Gastrointestinal Endoscopy Polyp detection, lesion classification Higher adenoma detection rates False positives, trust building

Oncology Predicting treatment response and survival Personalized treatment, improved outcomes Data diversity, model transparency

Radiology Automated image analysis, diagnosis support Faster diagnostics, reduced workload Over-reliance, bias, legal concerns

Cardiology Arrhythmia detection, risk calculators Early diagnosis, better screening False positives, device reliability

Neurology Seizure detection, motor symptom tracking Continuous monitoring, accurate tracking Privacy concerns, model reliability

Mental Health CBT tools, behavioral pattern analysis Early diagnosis, treatment stratification Overgeneralization, clinician trust

Pathology Digital histopathology, cancer detection Increased accuracy, faster turnaround Interpretability, validation standards

Allied Health Remote rehab, nutrition planning, speech therapy Improved care access, individualization Limited data, uneven access to tech

Administrative Tasks Scheduling, billing, report generation Operational efficiency, reduced burden Interoperability, data privacy
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3.1.5 Surgical education and skill assessment

AI is redefining surgical education across disciplines. Through 

computer vision, AI can track surgeon hand and instrument 

movements in real-time, offering performance metrics and 

feedback that are both objective and scalable. Such technology 

holds the potential to standardize training globally and raise the 

bar for surgical competency. Machine learning and its 

subcategories including supervised learning, unsupervised 

learning, reinforced learning, and deep learning as well as 

various sensors including optical, inertial, electromagnetic, 

ultrasonic and hybrid sensors offer unique strengths and it 

could be applied in various surgical training and patient care 

settings (16).

The incorporation of AI into surgical practice offers a 

transformative potential across all stages of the surgical process, 

from preoperative risk assessment to intra-operative guidance 

and postoperative outcomes. As the technology matures, its 

thoughtful integration into clinical workCows will be crucial. 

Continued research, rigorous clinical trials, and strong 

regulatory oversight are essential to maximize its benefits while 

ensuring safe and ethical application which is discussed further 

in this review.

3.2 AI in medical specialties

AI technologies have been integrated into numerous medical 

specialties, each benefiting from improved diagnostic accuracy, 

predictive modeling, and personalized treatment planning. The 

following section classifies current applications by physiological 

system or clinical domain.

3.2.1 Cardiovascular system

AI has been instrumental in cardiovascular diagnostics and 

risk prediction. Atrial fibrillation (AF) detection was among the 

earliest and most impactful applications. The REHEARSE-AF 

trial demonstrated that AF was more accurately detected using 

Kardia, an AI-enabled mobile ECG device, compared to routine 

care (26). Although wearable ECG devices have been critiqued 

for high false-positive rates (27), they remain valuable tools for 

large-scale screening. Additionally, AI applied to electronic 

health records (EHRs) has outperformed traditional risk 

calculators in predicting cardiovascular conditions such as acute 

coronary syndrome and heart failure (28).

3.2.2 Neurological system

In neurology, AI-powered wearable sensors have proven useful 

in monitoring and assessing motor symptoms associated with 

Parkinson’s disease, Huntington’s disease, and multiple sclerosis 

(29). These devices quantify gait abnormalities, tremors, and 

posture with high sensitivity, supporting both diagnosis and 

disease progression tracking. AI also shows promise in seizure 

monitoring for epilepsy. Continuous ambulatory systems 

powered by AI algorithms can detect seizure events more 

reliably than conventional methods (28).

3.2.3 Gastrointestinal system (endoscopy & 

imaging)
Artificial intelligence has significantly enhanced the diagnostic 

precision when it comes to diagnosing gastrointestinal 

pathologies. For example, the detection of colonic polyps I’m 

being able to distinguish whether they are benign and malignant 

using artificial intelligence has a higher accuracy compared to 

the normal clinician (23). A randomized controlled trial showed 

a substantial improvement in adenoma detection rates when 

using AI compared to standard colonoscopy (24). In upper 

gastrointestinal diagnostics, AI has been employed to distinguish 

neoplastic from non-dysplastic Barrett’s esophagus with an 

accuracy of 89% (90% sensitivity, 88% specificity) (25).

3.2.4 Oncology

Precision medicine is a clinical approach of choice, aiming to 

customise the treatment based on the genomic profile of the 

individual patient with tumour. Imagine that computational 

method that is able to predict the drug response based on the 

genomic profile of the target cells. I study by Huang et al. 

Revealed that artificial intelligence models were able to predict 

patient responses with more than 80% accuracy. The high 

positive predictive value suggests that a I could be used to 

identify promising second line treatment for options failing 

standard of care first line therapies (30, 31).

3.2.5 Mental health
In the mental health domain, it is important to identify 

organised treatment programmes an monitor the treatment that 

he rents and guidance from mental health specialists. AI-assisted 

platforms support early detection, risk stratification, and 

treatment planning. AI-enhanced online cognitive behavioral 

therapy (CBT) tools have shown clinical effectiveness in treating 

common mental health disorders (32). Furthermore, AI models 

can analyze behavioral patterns and linguistic cues to assist 

clinicians in diagnosing depression, anxiety, and schizophrenia (9).

3.2.6 Radiology and medical imaging
Medical imaging is indispensable in providing diagnostic 

information but it is heavily dependent on clinical interpretation 

and is subject to an increasing resource challenges. Automated 

diagnosis from medical imaging, through artificial intelligence is 

the future. Many studies have revealed that deep learning models 

have matched and exceeded human diagnostic performance 

leading to considerable excitement amongst clinicians and 

scientists. Despite the promises, a 2019 meta-analysis revealed 

that 99% of these studies lacked rigorous methodology, limiting 

their clinical reliability (33). These findings underscore the critical 

need for high-quality clinical trials to validate AI applications in 

radiology before routine adoption.

3.2.7 Pathology

Artificial intelligence is being used in cancer diagnosis, 

providing faster, higher quality and accurate diagnosis. With the 

help of advanced artificial intelligence, algorithms on diagnostic 
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techniques are being used to assist, augment and empower the 

computational histopathology. Whole slide imaging scanners are 

now providing high resolution images for the entire glass slides, 

combining them with digital pathology tools integrating all 

aspects off pathology reporting including anatomical clinical and 

molecular pathology (34, 35).

3.2.8 AI applications in allied healthcare 

professions
It is indispensable to mention that artificial intelligence is 

increasingly being used by various allied health professionals 

including, physiotherapy, dieticians, speech and language 

therapist, and mental health providers. For instance, wearable AI 

devices are being utilized by physiotherapist to support remote 

rehabilitation and analysis of gait. Dieticians are also creating 

personalized nutrition plans based on individual genetics and 

lifestyle. Furthermore, speech and language therapists are using 

artificial intelligence to detect language impairment and to 

detect progress (36).

3.2.9 Generative AI and large language models 
(LLMs) in clinical practice

Generative artificial intelligence and large language models, 

including ChatGPT, Med-PaLM and BioGPT, are increasingly 

being utilised in healthcare systems. They are being used to 

summarise clinical notes, generate discharge summaries, 

transcribe dictations, and even assist in decision making. A recent 

study published by Danqing Hu et al. demonstrated the ability of 

large language models to interpret radiology scans and they were 

found to produce impressions with high completeness and 

correctness but fell short in conciseness and verisimilitude, 

indicating that the traditional physician cannot be replaced yet (37).

3.3 AI in biomedical research and 
innovation

With limited resources available, public health and population 

health strategies rely on prospective analytical data to aid in 

guiding health initiatives effectively. This could be potentially 

fundamental in using predictive analytics to successfully identify 

patients at higher risk of developing chronic health conditions 

such as endocrine disorders like type 2 diabetes or cardiac 

conditions like heart failure. AI technology can be used to 

develop effective algorithms to more precisely analyse data and 

develop a more robust predictive model; which can reduce costs 

and improve patient prognoses (9). With analysis of data such 

as a patient’s medical history and lifestyle factors, predictive 

models can assist in utilising targeted interventions to patients 

who are deemed at higher risk (38).

3.4 AI in biomedical research

Among the most transformative roles of artificial intelligence 

(AI) in healthcare is its application in biomedical research. As a 

driver of innovation, AI is streamlining and revolutionizing 

multiple stages of the research pipeline, from discovery through 

clinical translation.

3.4.1 Drug discovery and repurposing
A landmark example is DeepMind’s AlphaFold, which has 

significantly advanced protein structure prediction, an essential 

component in target identification for drug development (39). 

Artificial intelligence on the and the deep learning network has 

demonstrated ability to identify distinct antibacterial molecule 

structure allowing for the expansion of the antibiotics arsenal. 

Machine learning models are now employed to design new 

molecules, predict drug-target interactions, and assess toxicity 

and pharmacokinetics in silico, reducing the time and cost 

associated with early-stage drug discovery (40, 41).

3.4.2 Clinical trial optimization

AI contributes to the efficiency and success of clinical trials by 

supporting patient recruitment, through phenotype matching and 

stratification, Through predictive modelling. Variable devices and 

mobile apps have also been used to monitor adherence. The large 

language models also allow for the search of unstructured clinical 

data increasing the inclusivity and accuracy of the trial. Predictive 

modeling enables adaptive trial designs, allowing dynamic 

modifications based on interim data, which can increase trial 

efficiency and reduce operational costs (42).

3.4.3 Genomics and precision medicine
AI, particularly deep learning, is central to the analysis of 

large-scale genomic data. It facilitates the identification of 

pathogenic variants, enables patient stratification based on 

molecular signatures, and informs personalized treatment 

strategies. These advances are pivotal in the development of 

precision medicine initiatives (43, 44).

3.4.4 Natural language processing in scientific 
literature

Natural language processing (NLP) tools allow AI systems to 

rapidly analyze and synthesize findings from vast repositories of 

scientific literature, by recognising and summarising key 

findings. These system can’t accelerate systematic reviews and 

meta-analysis enabling clinicians and non-clinicians to keep up 

to date with the literature. This enhances hypothesis generation, 

accelerates systematic reviews, and supports evidence-based 

clinical decision-making by providing real-time insights into 

emerging research trends (45).

3.4.5 Promoting equity in research
Recent efforts have focused on leveraging AI to reduce bias 

and improve inclusivity in biomedical research. AI tools are 

being developed to identify and correct demographic 

underrepresentation in clinical datasets, thereby improving the 

generalizability and equity of research findings across diverse 

populations. Machine learning models usually learn from 

historically collected data. Thus, data that has already 

experienced human biases in the past will be susceptible to 
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incorrect predictions or withholding of resources (46). This 

concludes us that machine learning systems should be used 

proactively to advance equity. This could be achieved by 

incorporating distributive justice to the model design 

and deployment.

4 Limitations of AI in healthcare

AI has demonstrated its ability to enhance medical practice 

across many different fields. Despite this, it has been met with 

certain resistance, particularly from healthcare professionals 

more so than from patients (28).

Firstly, one needs to consider a medico-legal framework in 

which AI applies. From an ethical viewpoint, there needs to be a 

degree of accountability, particularly for errors that are made. 

The current regulations in place already make it a difficult task 

to validate clear lines of responsibilities where a medical error 

has occurred (7), and it becomes even less clear with AI 

systems. This is certainly a key area that will need close 

collaboration with legal authorities, healthcare staff and other 

key stakeholders in healthcare in order to have more 

clarification than there currently is.

Healthcare staff should not just be closely involved in the 

development of further AI services in healthcare, they should 

lead it. This will ensure that any data generated from algorithms 

can be scrutinised and therefore allow for a fairer degree of 

responsibility (7). Further to this, allowing clinicians to be more 

involved in the testing of and design of AI applications can help 

build a sense of trust with the system in use. Clinicians 

historically adopt any new technology in healthcare slowly and 

rely on tried and trusted methods for clinical care (47), 

however, with more involvement early on, this could hopefully 

reduce the barriers in implementing a new system for clinicians 

to use in everyday care.

A different general argument of the rapid introduction of AI 

in healthcare is the general lack of training and education in the 

field of digital medicine (48). There is concern about there 

being a general unpreparedness for this shift due to the lack of 

education in this field. There is also fear of AI taking the place 

of clinicians and “taking over”; however, more recent opinion is 

that AI will be complementing and contributing to clinician 

ability and intelligence in the future (44–50).

Other challenges include reliance on institution-specific data, 

which may not translate well across healthcare systems; the risk 

of models losing accuracy over time as practice patterns change; 

difficulties linking AI with existing electronic records; and the 

potential to add rather than reduce workload if systems are 

poorly integrated. These issues highlight the need for careful 

validation before widespread use.

4.1 Potential for future

There has been a clear seismic shift toward digital medicine and 

AI technologies incorporated in healthcare, particularly in recent 

times. It seems a hugely opportunistic time to guide future 

systems to automate and overall improve healthcare delivery.

We expect artificial intelligence to support public health and 

analysing patient data and environmental factors predicting 

potential diseases. We also expect AI to have improved ability for 

analysis of medical images such as x-rays MRI’s and CT scans 

improving the sensitivity and specificity of for those tests. Other 

areas include personalised medicine where you receive treatment 

based on your genetic makeup. Artificial intelligence will also be 

applied in administrative tasks to streamline billing son 

appointment scheduling and answering patient queries (51). We 

will also be able to collect patient data through wearable devices 

and rely on telemedicine platforms for remote consultations.

There is also the consideration of the ethical implications of 

the wide incorporation of AI in healthcare. From a revenue 

perspective, it is one of the most promising markets of the 

modern day, with a market value reaching a thousand billion 

dollars in 2019 (28). A growing percentage of revenue comes 

from sales of medical devices, such as the ECG monitors. 

Governments and insurance companies are therefore striking 

deals with these companies. The ethical implications of medical 

monitoring are frequently discussed, with the potential for 

violation of privacy and the ongoing monitoring posing a risk to 

increase stigma against more disadvantaged patients or patients 

with more chronic illnesses (52). Data protection and ownership 

are clear concepts that should be strongly considered to mitigate 

these risks going forward.

Several different universities have created new medical 

curriculums to start addressing the need to educate future 

medical leaders about the challenges faced with AI systems (53). 

Both healthcare institutions and society as a whole could greatly 

benefit from these clinicians with a broader skillset to not only 

act as a safety tool for AI systems in clinical delivery but also to 

drive further future research in this field (28).

There is a massive potential for further cost-efficiency in 

healthcare with the use of AI. Although there are relatively 

limited cost-benefit reports currently for the use of AI in 

healthcare (54), there are specific examples where successful 

cost-effectiveness has been demonstrated.

Using AI for personalized medicine and developing predictive 

algorithms to forecast each patient’s response to medical or 

surgical treatment by evaluating their genetic and environmental 

factors can be an effective strategy for optimizing treatment 

outcomes (55).

AI can play a fundamental role in drug development and 

manufacturing; with dose optimisation and recognition of 

adverse drug reactions (56) which can enhance treatment 

outcomes and patient safety. By utilising AI algorithms, the 

process of optimizing medication dosages tailored to each 

individual will not only improve patient safety but improve on 

efficiency and cost saving targets for healthcare providers. The 

development of new drugs and their entry into the market have 

been accelerated by the use of AI (57).

Furthermore, one of the greatest potentials for AI use is in 

robotics, with different types of robots such as mobile 

autonomous and educational robots being used in healthcare 
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(7). The wider use of robotics can contribute to further cost- 

effectiveness. Surgical robots are becoming more in use, and as 

such, common minor surgical procedures may well be led by 

robotic systems in the future (58, 59).

Future directions include: (1) Explainable AI to improve trust; 

(2) Federated learning to protect privacy while training across 

institutions; (3) Wider integration with robotics; (4) AI tailored 

for low-resource settings; and (5) Green AI to reduce 

environmental impact. These avenues require international 

collaboration and robust policies.

4.2 Ensuring responsible AI: data integrity, 
privacy, and bias mitigation

The integration of AI into healthcare demands systems that 

are reliable, safe, and transparent, grounded in strong ethical 

principles and values. This requirement is a key reason why the 

adoption of AI in healthcare has lagged its technological 

advancements. As a high-stakes domain, healthcare involves 

sensitive and complex data, including electronic health records, 

medical imaging databases, wearable device outputs, and public 

health datasets, which necessitate careful handling and 

regulation (60).

Given that personal medical information is among the most 

private and legally protected forms of data, there are significant 

concerns regarding how it can be accessed, controlled, or used, 

particularly for training AI systems, until truly autonomous, 

self-training AI models are developed. A key requirement is the 

robust anonymisation of data, which involves removing all 

identifiable information, including personal details and patient 

record numbers.

In the European Union, such practices must comply with the 

General Data Protection Regulation (GDPR), which mandates 

transparency, informed consent, and a clear legal basis for 

processing this type of sensitive data (61).

Consent is not always required for AI training when using 

patients data under the GDPR however GDPR strictly applies if 

the data is not fully anonymised. According to the information 

Commission office it’s very important to differentiate between 

artificial intelligence development and deployment phase this is 

because they are distinct and separate purposes and they involve 

different laws for example if an AI system was developed for a 

general purpose task and then you deploy it in a different 

context as an example a facial recognition system that could be 

trained to recognise recognise faces and this can be applied in 

many places such as prevention of crimes authentication tagging 

friends in social media but each application requires a different 

law. Processing of personal data for the purposes of training of 

the artificial intelligence model may not directly affect the 

individuals but once the model is deployed it automatically 

makes decisions which have significant effects and so 

consequences as a result law also applies here.

Under the General Data Protection Regulation (GDPR), 

consent is not always required for training artificial intelligence 

(AI) models using patient data—provided the data is fully 

anonymised. However, GDPR applies strictly when data is not 

fully anonymised, as such data is still considered personal and 

subject to protection.

According to the UK Information Commissioner’s Office 

(ICO), it is crucial to distinguish between the development and 

deployment phases of AI. These phases represent distinct 

purposes and are governed by different legal considerations. For 

example, an AI system trained for a general task—such as facial 

recognition—may later be deployed in different contexts, 

including crime prevention, authentication, or social media 

tagging. Each of these applications involves separate legal 

frameworks and must be assessed independently for compliance.

Importantly, while the training phase of an AI model may not 

have a direct impact on individuals, its deployment phase often 

does. Once deployed, AI systems can automatically make 

decisions that have significant effects on individuals, such as 

determining eligibility for services or inCuencing legal outcomes. 

As a result, GDPR and other laws apply at the deployment 

stage, especially where automated decision-making or profiling 

is involved (62).

One critical yet underexplored aspect in the literature is 

algorithmic bias in artificial intelligence (AI). AI systems behave 

according to the data on which they are trained. If an AI is 

trained on datasets that reCect existing societal inequalities, it 

may perpetuate or even amplify those biases. For instance, an 

AI model trained predominantly on data from white male 

patients may produce inaccurate or unfair outcomes when 

applied to female or Black patients. Addressing this issue 

requires intentional diversification of training datasets, regular 

bias audits, and model adaptation when transferring AI systems 

across different populations or institutions. One approach is to 

fine-tune models using representative data from the new target 

population or allow the AI to train across multiple 

heterogeneous datasets. However, this raises concerns around 

data privacy, governance, and patient consent, especially when 

multiple health records are involved. Furthermore, many AI 

systems operate as “black boxes,” providing outputs without 

transparency regarding how decisions were made. This has led 

to growing interest in explainable AI (XAI), which aims to 

enhance model interpretability and ensure clinicians and 

patients can understand the rationale behind algorithmic 

decisions. XAI aims to bridges the gap between decision-making 

and the human interpretation of outputs (63).

The World Health Organization’s guidance represents the 

collaborative work of global experts in ethics and digital 

technology, offering a framework for the responsible use of 

artificial intelligence in public health. It supports governments 

in carrying out essential public health functions, including 

disease surveillance, while placing ethics, human rights, and 

equity at the core of AI system design, deployment, and 

implementation (64).

The EU artificial intelligence act classifies AI systems by risk 

and obligates transparency, assurance of quality and traceability, 

especially when AI is applied in high-risk settings such as in 

healthcare. The medical device regulation identified the risk of 

the utilization of AI by further requiring conformity assessments 
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and CE marking before utilization. In the United States, the 

confidentiality and breach protection, when applying AI systems, is 

governed by the Health Insurance Portability and Accountability. 

These frameworks are not there to stop the so called (progression 

in technology) but to ensure accountability (65–67).

5 Conclusion

This review evaluates the use of AI in healthcare, with 

emphasis on underrepresented fields. By incorporating 

Generative AI and allied health applications, we highlight its 

expanding role in an evolving healthcare landscape. As with any 

novel tool introduced into clinical practice, concerns remain 

regarding the limited initial evidence base. Despite multiple 

successes, resistance and lack of trust toward AI’s benefits 

persist. Yet, its rapid adoption in other sectors demonstrates the 

transformative potential of this technology, and its pace of 

advancement has been remarkable. In the post–COVID-19 era, 

where healthcare faces rising demands and constrained 

resources, this is an opportune moment to integrate AI to 

strengthen service delivery. While the narrative review approach 

introduces the possibility of selection bias and reduced 

reproducibility, the multidisciplinary expertise of the authors 

ensured a balanced and comprehensive synthesis.
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