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Wearable devices have gained significant popularity in recent years, as they

provide valuable insights into behavioral patterns and enable unobtrusive

continuous monitoring. This work explores how daily lifestyle choices and

physiological factors contribute to coping capacities and aims at designing

burnout prevention systems. Key variables examined include sleep stage

proportions and nocturnal stress levels, as both play a crucial role in recovery

and resilience. Longitudinal data from a 1-week study incorporating wearable-

derived features and contextual information are analyzed using a mixed-

effects model, accounting for both overall trends and individual differences.

A Bayesian inference approach is exploited to quantify uncertainty in estimated

effects, providing their probabilistic interpretation and ensuring robustness

despite the low sample size. Findings indicate that alcohol consumption

negatively affects rapid-eye-movement sleep, increases awake time, and

elevates nocturnal stress. Excessive daily stress reduces deep sleep, while an

increase in daily active hours promote it. These results align with the existing

literature, demonstrating the potential of consumer-grade wearables to

monitor clinically relevant relationships and guide interventions for stress

reduction and burnout prevention.
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1 Introduction

The World Health Organization (WHO) defines burnout as a syndrome resulting

from chronic workplace stress that has not been successfully managed (1). A recent US

employee well-being survey (1,200 employers and 2,001 employees) found that over

59% of American workers experience moderate levels of burnout (2). Furthermore,

among those affected, 86% reported additional mental health issues in the previous 12

months, including anxiety, depression, and sleep disturbances (2). According to recent

statistics, burnout syndrome is even more prevalent among health workers, a situation
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that was exacerbated by the global COVID-19 pandemic, which

further increased its already high prevalence (3, 4).

Burnout carries substantial economic implications, including

an estimated $4.6 billion in annual US healthcare expenditures

attributed to its effects, such as increased physician turnover and

reduced clinical work hours (5). Given that burnout continues to

affect a growing workforce and contributes to rising economic

losses, early risk identification and effective prevention strategies

are increasingly needed. Burnout is typically assessed using

validated psychometric clinical scales that evaluate workspace

well-being and work-related stress, such as the Maslach Burnout

Inventory (MBI) (6) or the Shirom-Melamed Burnout Measure

(SMBM) (7, 8). While these tools remain essential, recent

research has started to incorporate multimodal data to capture

burnout risk more dynamically. For example, ecological

momentary assessment has been used to monitor real-time affect

and fatigue in workplace settings (9), while wearable-based

physiological measures, including heart rate variability (HRV)

and sleep stage tracking, have been explored as objective markers

of chronic stress and burnout (10, 11). Several authors compared

wearable-based data to those provided by medical-grade devices.

For example, Kainec et al. (12) reported that consumer-grade

sleep tracking devices are a cost-effective and accurate solution

for sleep measurement. Other researchers have also identified

Garmin smartwatches as accurate and sensitive in detecting steps

(13) and monitoring sleep (14). Furthermore, several studies have

evaluated the accuracy of photoplethysmography (PPG) sensors;

for example, some have focused on for telemonitoring (15) and

others on comparisons to electrocardiograms (16). A meta-

analysis (17) concluded that PPG-based wearable devices show

acceptable validity for heart-rate measurements. It is worth

noting that while these devices are not yet fully comparable to

medical-grade devices for detecting sleep stages (14, 18, 19), the

insights they provide into individual-level trajectories can provide

unprecedented opportunities in long-term remote monitoring

(20). This highlights the high priority of understanding and

implementing preventive strategies through interventions that

target both individual behaviors and broader structural factors at

the population level (21).

Sleep, as one of the core lifestyle pillars, is deeply connected to

mental health and stress regulation. Consequently, interventions

and observational studies focusing on sleep are crucial for

understanding and mitigating burnout risk (22). Several studies

have reported that sleep issues can both contribute to or be

affected by burnout (23–25). A decline in sleep quality can be

considered an early marker of chronic stress and upcoming

burnout (26). In the presence of burnout, sleep becomes more

fragmented, with frequent awakenings reducing sleep efficiency

(27). This leads to an increase in non-restorative light (N1/N2)

sleep at the expense of deep sleep (N3), which is essential for

physical restoration, and rapid-eye-movement (REM) sleep,

which is crucial for cognitive restoration (28). Sleep disruptions

not only contribute to fatigue (29) but can also impair coping

capacity, while high-quality, consolidated sleep is associated with

greater resilience and improved emotional regulation. Given the

central role of sleep in mental health and burnout prevention, a

better understanding of the interplay between physiological

recovery processes, daily behaviors, and stress coping

mechanisms is essential.

Wearable devices and mobile applications for health

monitoring have become ubiquitous in everyday live and clinical

monitoring (30). Aggregated daily data from wearable sensors,

comprising multimodal signals such as heart rate (HR), HR

variability (HRV), activity, and sleep, can provide valuable

insights into personalized daily behavioral patterns (31). These

signals can serve as physiological proxies for perceived comfort

and affective states, offering promising opportunities for the

continuous and unobtrusive assessment of personal well-being

(32). To further enhance these physiological insights, the data

can be combined with implicit contextual information from

background phone information (e.g., location, calendar date,. . .)

and explicit context collected via questionnaires (e.g., alcohol

intake, working hours,. . .). Several recent studies have explored

the effects of daily lifestyle choices on sleep physiology. For

example, alcohol intake was shown to affect sleep quality using

random intercept models (33), while its impact on nocturnal

resting heart rate was assessed in a similar study (34). In

addition, Bustamante et al. (35) investigated the interaction

between perceived stress and actigraphy-derived sleep metrics in

students, comparing individual-level and time-derived features.

In this study, we aim to evaluate associations between lifestyle

behaviors and sleep-related physiological metrics by employing a

Bayesian mixed-effects model. This approach is ideal for

accounting for individual variability in longitudinal data collected

over consecutive days, as it can captures both general trends and

within-subject variations to quantify how lifestyle factors interact

with sleep and stress. Moreover, compared to the classical

frequentist approach, posterior distributions over the estimated

parameters can be explored, which is favorable especially in the

case of small sample sizes. While prior studies have used mixed

models for specific behavioral effects, our method offers a more

comprehensive view of physiological coping by integrating

subjective and objective daily-level predictors with sleep

macroarchitecture and autonomic stress responses.

In this study, we assess coping capacity through two key

physiological markers: (1) the balance of interdependent sleep

stage proportions, which represents sleep macroarchitecture, and

(2) nocturnal stress levels, which reflects autonomic nervous

system activation during sleep. By quantifying the impact of

lifestyle factors on these markers, we aim to enhance our

understanding of the physiological and behavioral determinants

of coping capacity. The findings can inform future studies

aiming to analyze causal lifestyle effects and guide the

development of resilience-building strategies, such as encouraging

behaviors that promote restorative sleep.

2 Materials and methods

In this section, we describe the collection of wearable-derived

and self-reported contextual data. In addition, we outline the

derivation of key sleep and stress markers and detail the
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statistical approach used to assess lifestyle impacts through

longitudinal data.

2.1 Study data

2.1.1 Participants and protocols

Data were collected over a 1-week period in August 2021 from

22 academic workers recruited by email from institutes at the

University of Applied Sciences and Arts of Southern Switzerland.

At the beginning of data collection, study participants completed

a digital onboarding questionnaire focused on sociodemographics

characteristics (age, sex, weight, career level) and health-related

factors (medication, smoking status). Along with the onboarding

questionnaire, the SMBM questionnaire was administered. For

the duration of the week, participants were asked to continuously

wear a Garmin Venu SQ smartwatch and complete brief daily

questionnaires: once in the morning after waking up and again

in the evening before going to sleep. Informed written consent

was obtained from all participants, and a “Clarification of

responsibility” from the cantonal ethics committees (swissethics)

revealed that no ethical approval was needed for this study (Req-

2021-00451). The study was conducted according to Helsinki

guidelines for ethical research (36). After data collection, all data

were stored securely on secure servers accessible only to

authorized researchers. Data were stored in a coded format, with

a random-generated code assigned to each participant.

Participants’ personal and sensitive information was stored

separately and was accessible only to the principal investigator of

the study (FF).

2.1.2 Wearable data
Physiological and activity data were accessed via the Garmin

Health API.1 The Garmin smartwatch exploits optical sensors to

measure blood volume pulse (BVP), from which heart rate (HR),

heart rate variability (HRV), and respiration rate are derived.

Moreover, Garmin’s proprietary algorithms (37) compute stress

levels and body battery (an energy metric) on a scale from 0 to

100, mostly based on HRV through a blackbox algorithm. If the

device is worn at night, sleep is recorded and automatically

detects sleep stages with a 1 min resolution. Garmin provides a

different terminology for sleep stages compared to the standard

nomenclature: deep sleep refers to the N3 stage, while light sleep

is composed of both N1 and N2 stages. Additional metrics

include step count, tracked sports activities, and 15-min epoch

summaries of sedentary, active, and highly active time.

2.1.3 Derived markers

The wearable data were summarized into longitudinal daily

features, describing individuals’ physiological characteristics of

sleep and stress.

Sleep variables captured sleep architecture as proportions of

time spent in different sleep stages (i.e., awake, light, deep,

REM). In addition, the total sleep duration was recorded, and

sleep–wake cycles were identified based on the first asleep and

final wake-up times.

Stress characteristics were based on Garmin-provided stress

levels, originally reported on a 0–100 scale. For each sleep–wake

cycle, summary statistics (mean, standard deviation, minimum,

maximum, and median) were calculated separately for awake and

asleep periods. Stress levels were further categorized into four

equidistant classes, as in the user interface of the associated

Garmin mobile application, and the proportion of time spent in

each category was computed for both sleep and wake periods.

2.1.4 Self-reported and contextual data
Because physiological data alone do not fully capture an

individual’s psychological state, subjective and contextual

information are essential. This study distinguishes between

implicit (derived) and explicit (self-reported) information.

Implicit data included weekday vs. weekend classification based

on wearable timestamps. Explicit context was gathered via self-

reported morning and evening questionnaires, where participants

rated their mood, stress, and energy on a 10-point Likert scale.

The evening questionnaire also recorded alcohol intake (none,

low, moderate, high), perceived morning and evening work

commute, workplace crowdedness, and total hours worked.

2.2 Study outcomes

Similar to Bechný et al. (38) and in collaboration with a clinical

professional, we defined two key physiological outcomes to assess

individual’s coping capacity markers, which are assumed to be

time-varying mediators of burnout, and we examined how they

are associated with behavioral patterns and lifestyle choices.

Specifically, by leveraging wearable and self-reported data, we

investigated how daily habits, daytime stress, and contextual

factors influence sleep and nocturnal stress profiles, which we

consider as two proxies for measuring coping capacity.

1. Sleep profile: We examined how different lifestyle factors

contribute to variations in deep and REM sleep proportions,

assuming these to be linked with physical and cognitive

regeneration, respectively. Moreover, high proportions of

awakenings during the night indicate lower sleep quality and

thus lower regeneration.

2. Nocturnal stress profile: Similarly, we quantified how lifestyle

factors relate to the proportion of time spent in individual

nocturnal stress levels. Higher proportions of high-stress

levels during the night indicate lower sleep quality and thus

lower regenerative and coping capability.

By modeling these outcomes, we evaluated which lifestyle factors

(e.g., alcohol intake, daily stress, and active hours) disrupt or

promote recovery and assessed their impact on nighttime stress

levels. These insights will contribute to the design of future1https://developer.garmin.com/gc-developer-program/health-api/
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personalized interventions aimed at enhancing sleep quality, stress

resilience, and burnout prevention.

2.3 Statistical methods

Both outcomes are compositional data, meaning that their

interdependent components sum up to 1; i.e., they are points on

a simplex (39). To appropriately model these D-dimensional

outcomes, we applied the additive log-ratio (ALR) transformation

(39), defined as follows:

alr(p) ¼ ln
p1

pD
, . . . , ln

pD�1

pD

� �

(1)

where pD serves as the baseline component, enabling log-ratio

comparisons of the original vector of proportions p. This

transformation reduces dimensionality by one and, thanks to the

logarithm, ensures a near-normal distribution, desirable for the

regression analysis.

To model multidimensional longitudinal outcomes Y, we

employed a multiple multivariate mixed-effects model with

individual-specific random intercepts (40):

Y ¼ Xbþ Zuþ e (2)

where X and Z are design matrices, b and u represent fixed and

random regression coefficients, respectively, and Y consists of

(D� 1) ALR-transformed outcome components. While b

provides estimates of overall (population) effects, the random

intercepts account for repeated within-subject measurements and

thus correctly handle the repeated measurement data.

Regression parameters were estimated in a Bayesian manner

(41). The prior distributions for the model parameters were

specified using the normal distribution and utilizing conjugate

priors. Posterior inference was carried out using Markov chain

Monte Carlo (MCMC) sampling with five Markov chains, each

with 5,000 iterations (including warm-up, for which half of the

iterations were used), and random initialization. For sampling, a

No-U-Turn algorithm was used (42). This enabled the

computation of credibility intervals and the derivation of

the probabilities of direction (PoDs) (41), which quantify the

proportion of the posterior distribution sharing the same sign as

the (median) effect estimates, aiding interpretation of effects and

assessing the direction of their association (43). This analysis was

performed using the statistical software R (44) and the Stan

package for R (45), with default prior specifications.

3 Results

The proposed framework of multiple multivariate mixed-

effects models for longitudinal compositional outcomes from

Equations 1 and 2 was used to evaluate two research questions,

assessing the impact of daily lifestyle factors and physiological

values on sleep profile and noctural stress profile, respectively.

3.1 Data preparation

Data from six participants were excluded due to incomplete

sleep data collected during the 1-week study. Therefore, we used

data only from 16 participants (including 14 men and 2 women).

Age ranged from 24 to 44 years, with a mean (SD) of 34 (5.92).

SMBM scores ranged from 1.46 to 5.46, with a mean (SD) of 2.9

(1.14), out of a maximal score of 7 (where lower scores indicate

a lower risk of burnout). Given the sample size and the absence

of participants diagnosed with burnout, we could not properly

evaluate the relationship between SMBM and the two defined

coping capacity markers in a data-driven way.

Among the included participants, 11 completed all morning

and evening questionnaires, while the remaining had up to 3

missing answers. These missing data points were mean-imputed,

conditioning on individuals and weekend indicators.

To mitigate multicollinearity, a subset of relevant variables was

selected while accounting for highly correlated predictors. Given

the limited diversity in gender (only two women) and smoking

status (only two daily smokers), these variables were not

considered as predictors. Similarly, career level was omitted due

to its direct correlation with participants’ age (cor = 0.79). Self-

reported assessments conducted in the morning were also

excluded due to the considerable time gap between these

measures and night-related variables. Among the evening self-

reported assessments, subjective energy and stress levels were

retained as predictors, being timely close to the night-measured

outcomes. The amount of daily work hours was considered

among the predictors, providing context regarding participants’

workload. To examine the effect of (physical) activity time on

the outcomes, we incorporated the sum of active and highly

active hours as a single predictor, whereas daily steps were

removed due to their high correlation with activity time (cor =

0.82). In addition, due to a limited number of responses for high

alcohol intake, it was merged into the moderate category, while

low intake remained separate. These categories were then one-

hot encoded as distinct predictors to differentiate between

individual consumption levels. To enhance the interpretation of

the estimated effects, we centered age and average daily stress at

a value of 30, ensuring that the model’s intercept reflects the

expected values for individuals at this reference level.

3.2 Effects of lifestyle on sleep profile

To assess the associations between different lifestyle choices,

behaviors and daily stress with sleep, we first used the sleep

profile as an output for the regression model. To prevent zeros

in relative (ALR) comparisons, Laplace smoothing (l ¼ 0:01)

was applied. The ALR transformation from Equation 1 was

applied with the light sleep stage proportion as the baseline. This

yielded three ALR-transformed outcomes (for deep sleep, REM
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sleep, and wakefulness to light sleep), which were further modeled

by the proposed mixed-effects model with a random intercept, as

specified in Equation 2.

Table 1 reports the posterior medians as the estimated effects

(EEs) and PoDs on the sleep stage proportions. To draw a

parallel to hypothesis testing in a Bayesian setting, we highlight

all PoD values > 0.75 (except for the intercept) in Table 1, as

these values correspond to the Bayes factor >3, which is

considered substantial evidence (46). This means that at least 3/4

of the posterior samples had the same sign (i.e., the direction of

the association) as the EE.

Consistent with clinical observations (47), the deep-to-light

ratio decreased (PoD = 0.85) with increasing age. Both low and

moderate alcohol consumption levels were associated with an

increase in deep sleep (PoD of 0.94–0.86). A similar positive

association (PoD = 0.92) was observed for active hours. This

suggests that, as highlighted in McCullar et al. (48), alcohol may

initially promote sleep by increasing the occurrence of deep

sleep. However, alcohol intake ultimately impairs REM sleep and

overall sleep quality (49). Physical activity was also found to

facilitate deeper restorative states and support physiological

recovery, in agreement with (50–52).

In our study, the observed REM increase with age (PoD =

0.76), which is rather uncommon in literature (47), may reflect

job seniority (cor = 0.79 with age), which is linked to higher

cognitive workload and hence REM pressure. In contrast to deep

sleep, even a low alcohol intake negatively impacts (PoD = 0.86)

REM sleep. The EE was almost three times greater for moderate

alcohol intake (�0.55 vs. �0.19 for moderate vs. low alcohol

intake, respectively), whose effect was found negative with high

credibility (PoD = 1). The influence of alcohol intake on the

REM-to-light sleep ratio is elaborated in detail in Figure 1. This

finding aligns with existing research indicating that alcohol

consumption alternates and disrupts REM sleep (53, 54). Further,

all other predictors (amount of daily work hours, subjective

evening stress, and average daily stress) were associated with

increased REM, although their effects were very small (0.02, 0.04,

0.01), with PoD values ranging from 0.79 to 0.81. As REM is

responsible for processing cognitive and emotional workload, this

might suggest an increased need for coping with these demands

in healthy individuals. It is important to note, however, that

chronic stress and increased workload may lead to decreased

REM, which negatively impacts memory consolidation and

emotional regulation (55). The awake-to-light sleep ratio was

positively (PoD = 0.83) influenced by subjective evening energy,

TABLE 1 Estimated median fixed effects on sleep stage proportions.

Coefficient ALR outcome

ln%Deep
%Light

ln %REM
%Light

ln%Awake
%Light

EE PoD EE PoD EE PoD

(Intercept) �1.97 1.00 �1.39 1.00 �4.44 1.00

Age-30 �0.03 0.85 0.02 0.76 0.00 0.62

Low alcohol intake 0.37 0.94 �0.19 0.86 0.04 0.61

Moderate alcohol intake 0.29 0.86 �0.55 1.00 �0.16 0.81

Hours worked 0.01 0.62 0.02 0.85 0.00 0.60

Subjective evening stress 0.00 0.50 0.04 0.79 �0.00 0.52

Subjective evening energy �0.02 0.60 �0.01 0.56 0.04 0.83

Active hours 0.12 0.92 0.03 0.66 0.00 0.52

Average daily stress-30 �0.03 1.00 0.01 0.81 �0.00 0.54

EE, estimated effect; PoD, probability of direction.

PoD > 0.75, corresponding to Bayes factor > 3 are highlighted in bold.

FIGURE 1

Posterior distributions of effects of low and moderate alcohol intake on the three ALR-transformed sleep stages (deep, REM, awake to light sleep). The

highlighted vertical lines in the posterior probability distributions represent the medians, dark blue lines represent the 95% credibility intervals, and the

light blue highlighted areas correspond to the 89% credibility intervals. Values on the x-axis represent the magnitude.
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leading to decreased sleep efficiency. Conversely, moderate alcohol

intake had a negative impact (PoD = 0.81), suggesting that

moderate alcohol intake leads to fewer awakenings or that it leads

to a more pronounced increase in light sleep. Estimated sigmas,

quantifying individual-level variability in the random intercepts, in

modeling the three ALR-transformed outcomes (deep sleep, REM

sleep, and wakefulness to light sleep), were 0.88, 0.68, and 0.65,

respectively. Visual inspection of residual plots did not reveal any

violations of homoscedasticity or normality assumptions.

3.3 Effects of lifestyle on noctural stress
profile

Similarly, we further assessed the impact of different behaviors,

lifestyles, and daily stress on the nocturnal stress profile. Due to a

limited number of observations in the highest stress level (76–100)

during the night and to overcome numerical instability, we merged

the two higher categories, resulting in three stress level proportions:

low (0–25), medium (26–50), and high (51–100). The ALR-

transformation from Equation 1 was applied using the low-stress

category as the baseline. The model from Equation 2 was then

jointly estimated on both ALR-transformed components. The

posterior medians of the estimated effects (EEs) on the

proportions of nocturnal stress, along with the corresponding

PoDs, are reported in Table 2. PoD values > 0.75, corresponding

to the substantial evidence, are highlighted in bold.

Except for low alcohol intake, all effects with PoD > 0.75 shared

their direction in both medium-to-low and high-to-low ALR

comparisons. The low alcohol intake was associated with

increased (PoD = 0.81) medium stress and decreased (0.91) high

stress. On the other hand, moderate alcohol intake increased

both medium and high-stress proportions, as expected from

other literature studies (56), evidencing a negative impact of

alcohol consumption on nocturnal HRV during the immediate

night. The amount of daily work hours was also associated with

increased nocturnal stress levels (PoD of 0.93–0.86), which

reduced the overnight recovery. Subjective evening stress was

negatively associated (PoD of 0.98–0.92) with medium and high-

stress levels measured by the smartwatch. Despite being

counterintuitive, this may reflect a dissociation between perceived

emotional stress and physiological responses, as smartwatch

measurements rely on HRV, which may not always align with

emotional self-assessments (57). Subjective evening energy was

positively associated with medium stress levels (PoD = 0.86). In

addition, a substantial increase in daily active hours may reduce

heart rate variability (HRV), leading to elevated nocturnal stress.

Specifically, daily active hours were positively associated with

high nocturnal stress (PoD = 0.75), likely due to their impact on

decreasing HRV. Finally, both medium and high levels of

nocturnal stress were strongly and consistently associated with

average daily stress (PoD = 0.99–0.98), indicating that stress

experienced during the day is also mirrored during sleep.

Estimated sigmas for random intercepts, quantifying individual-

level variability, in modeling the two ALR-transformed outcomes

(medium, and high nocturnal stress to low nocturnal stress) were

2.64 and 2.29, respectively, due to zero-inflated amount of time

in the medium and high nocturnal stress. Visual analysis of

residual plots did not reveal any strong violations of

homoscedasticity assumption; however, further analysis is needed

to identify possible omitted predictors.

4 Discussion

This study exploits data collected through wearable devices to

examine sleep stage proportions and nocturnal stress as markers

of coping capacity in the context of burnout prevention. As

PPG-derived HRV parameters were found to be sufficient in

several clinical monitoring studies (58, 59), but not perfectly

accurate, we decided to evaluate daily-level aggregates, instead of

the signals themselves, as the wearable-derived behavioral

trajectories are informative on an individual level (20). In the

latest few years, researchers investigated the relationships between

physiological data collected using wearable devices and burnout.

The “BROWNIE” study (NCT05481138), involving more than

300 hospital nurses, aims at developing AI algorithms and

dynamic Bayesian Networks for burnout prevention through

continuous wearable data (60). In the “SMART-R” study, authors

explored the relationship between sleep and activity data in a

cohort of medical residents and found no significant differences

in sleep and activity data aggregated over 30 and 90 days

between individuals who exhibited burnout and those who did

not (61). Instead, in the “Intern Health Study,” the authors

found that physical activity and sleep behaviors are indicators of

stress resilience (62). Additional references on the use of

wearable technologies for burnout detection can be found in a

recent review (63). In this initial study, we applied a Bayesian

mixed-effects model to longitudinal data to assess individual

variability and the shared effects of behaviors and lifestyles on

interdependent compositional sleep and nocturnal stress profiles.

Despite a relatively small sample, the Bayesian approach

provided insights into estimating both the magnitude and

direction of effects. The results of this analysis showed that

increased daily stress correlated with higher nocturnal stress and

reduced deep sleep, while active hours promoted deeper, more

TABLE 2 Estimated median fixed effects on nocturnal stress proportions.

Coefficient ALR outcome

ln%Stress[26�50]

%Stress[0�25]
ln%Stress[51�100]

%Stress[0�25]

EE PoD EE PoD

(Intercept) �6.18 1.00 �9.06 1.00

Age-30 0.03 0.68 �0.00 0.51

Low alcohol intake 0.58 0.81 �0.80 0.91

Moderate alcohol intake 1.28 0.95 1.73 1.00

Worked hours 0.11 0.93 0.07 0.86

Subjective evening stress �0.37 0.98 �0.21 0.92

Subjective evening energy 0.19 0.86 0.15 0.56

Active hours 0.09 0.66 0.14 0.75

Average daily stress-30 0.06 0.99 0.05 0.98

EE, estimated effect; PoD, probability of direction.

PoD > 0.75, corresponding to Bayes factor > 3 are highlighted in bold.
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restorative sleep. Furthermore, alcohol negatively affected REM

sleep, particularly at moderate intake. These findings aligned with

existing literature and demonstrate the feasibility of wearables in

tracking clinically relevant relationships. All results should be

interpreted as preliminary, given the small sample size, short

measurement window, absence of participants diagnosed with

burnout in the study population, and limited diversity of the

study population. Rather than informing health policy, these

findings serve as a proof of concept for the feasibility of using

aggregated values derived from potentially noisy wearable signals.

Despite possible inaccuracies in the raw measurements, daily-

level aggregates—modeled while accounting for individual

variability through random intercepts—provided meaningful

insights into participants’ behavioral patterns, as the authors also

discussed in the previous work (64).

Based on a non-burnout population, the study provided insights

into the potential for long-term monitoring with commercial

wearables. It also provided insights for designing future studies and

systems for lifestyle adjustments and burnout prevention. The

observed interactions between alcohol, stress, and REM sleep

reinforced the role of restorative sleep in cognitive recovery and

highlighted the adverse effects of stress on sleep quality. In addition,

a mismatch between physiological (HRV-based) and emotional (self-

reported) stress highlighted the complexity of stress perception.

Identifying key physiological indicators linked to coping capability

could support the development of adaptive interventions. Our future

research will focus on expanding the participant pool in terms of size

and diversity, as the sample size in this study is a limitation, to

validate and generalize the findings. With greater sample sizes and

longer observation windows, the aim will be to also reconsider

adding more covariates and possibly incorporate non-linear functions

for enhancing personalized biomarker discovery and informing

systems aiming to improve sleep, resilience, and overall well-being.

The preliminary findings of this analysis contribute to the

growing body of research exploring how daily physiological and

behavioral data can be exploited for understanding of the

individual-level metrics on coping capacity and subsequent

informing of burnout prevention strategies. By exploring

associations between specific lifestyle factors, such as alcohol

intake, activity levels, and stress, that influence key markers of

coping capacity (i.e., nocturnal HRV and sleep stage proportions),

this study highlights that continuous monitoring through

wearables can support early identification of burnout-related

dysregulation. These insights can inform AI-enhanced solutions

for managing stress and promoting mental well-being through

targeted personalized adaptive interventions. Importantly, our

interpretable modeling approach complements recent work on AI

applications in mental health, which increasingly leverage

physiological and behavioral data to adaptively support users at risk.
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