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Introduction

Integrating multi-modal patient

data—such as genetic
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Integrating multi-modal patient data to support personalized medicine has
gained a lot of interest across different health domains over the past decade.
Addressing this challenge requires the development and implementation of an
informed, evidence-based Al-driven decision-support system continuously
maintained and updated to align with the latest clinical guidelines. A key
challenge to ensure its real-life adoption lies in translating the outcomes of
complex Al-driven data integration and modeling into a form easily understood
by the clinical audience. To ensure explainability, knowledge graphs have
emerged as data models integrating multi-omics data sources and representing
them as interconnected networks. Knowledge graphs offer a framework which
Al models can progressively refine, highlighting the most influential features
and relationships facilitating transparency of complex interactions and
interdependencies. In this perspective we present major components and
challenges upon developing a knowledge-based explainable Al system.
Additionally, we showcase a current effort undertaken by the Knowledge at the
Tips of your Fingers (KATY) consortium to develop the infrastructure for an
explainable system supporting best treatment decision for a renal cancer patient.
KEYWORDS

personalized cancer treatment, knowledge graphs, explainability, Al, foundation models,
clinical decision-making

integrate clinical data from electronic health records (EHR), to
suggest optimal treatments for non-metastatic breast cancer (6)
Similarly, a guideline-based decision support system developed

information, expression profiles, imagining and molecular data—
into a unified framework has gained a lot of interest in different
health domains over the past decade (1, 2). The recent increase in
computational power and algorithm performance boost, have
made it possible to feed AT models with extensive patient-specific
data, paving the way for the development of software solutions
that enable more personalized diagnoses and treatments (3, 4).
Crucial to achieving this vision is not only the development and
implementation of disease-focused, knowledge-based decision-
support system but also its continuous maintenance and regular
update to align with the latest clinical practice guidelines (5). Up
to now, several tools supporting the vision of precision medicine
have emerged.

IBM Watson for Oncology (WFO) was the first knowledge-
based system leveraging natural language processing (NLP)
supporting evidence-based treatment decisions categorized as
recommended, for consideration, or not recommended across
seven types of cancer. Alongside the NLP-driven WFO,
OncoDoc2 emerged as a decision-tree-based system designed to
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as part of the DESIREE European project aimed at creating
web-based services for managing primary breast cancer (7, 8).

In the field of medical image analysis including x-rays, CT
images, and MRI scans, deep learning techniques have
significantly enhanced tumor detection, localization, assessment of
muscle invasiveness and tumor grading. These advancements
facilitated the distinction between disease subtypes enabling more
effective treatment planning and better patient stratification (9-16).
As an example, a 3D deep radiomics pipeline has been
successfully used for analyzing CT scans of metastatic urothelial
cancer patients, demonstrating capability of differentiating between
disease, control and progression in response to immunotherapy (17).

While creating a straightforward decision support system is
technically feasible, a key challenge lies in translating the
outcomes of complex Al-driven big data integration and
modeling into a form easily understood by the clinical audience
and in parallel compliant with binding legal provisions. To
address this challenge, efforts are focused on integrating medical
knowledge, biological pathways, and clinical guidelines into
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knowledge-based models. Developing a knowledge graph (KG)
and incorporating it into AI model architecture, may provide
explainable visualizations of the AI model’s complex reasoning
enhancing Al-supported, knowledge-based diagnosis and
treatment recommendations within a specific biomedical
domain. In this perspective we present challenges upon
developing a knowledge-based explainable AI system and
describe a current effort undertaken by the KATY consortium
to develop the infrastructure for ready-to-use explainable

decision-support system that can be deployed in clinical reality.

How knowledge-based models
interplay with Al model
Knowledge-based models integrate various multi-modal
biomedical data sources by developing ontologies, which are
structured frameworks for organizing information that define the
relationships between key concepts and categories within a
These establish a

vocabulary, hierarchy of terms, relationships and rules to describe

specific  domain. ontologies formalized
large volumes of heterogeneous biomedical data. Examples
include HPO (Human Phenotype Ontology) (18), UMLS (Unified
Medical Language System) (19), NCIT (National Cancer Institute
Thesaurus) (20) and OMIM (Online Mendelian Inheritance in
Men) (21) which serve as semantic “building blocks” for
biomedical knowledge models. These structered, hierarchical
ontologies and knowledge bases enable the development and
enrichment of the knowledge models by defining standardizing
terms, concepts, and relationships. They support transparent
mapping between patient data, phenotypes, genotypes, and
clinical concepts, facilitating tracability and interpretability.

Building on this foundation, knowledge graphs can represent
diverse data sources as networks of interconnected entities
(nodes) and relationships (edges) capable of capturing dynamic,
real-world interactions and associations (22, 23). When tailored
to a specific biomedical domain, KGs enhance data accessibility,
interoperability and integration, facilitating more efficient data
analysis and further interpretation.

A key challenge in building KGs is the scattered and inconsistent
nature of information across disease-specific domains. In the cancer
field, despite significant efforts made by consortia to develop
standardized datasets, information from various organizational
levels of datasets is dispersed across studies. Unstandardized data
repositories, evolving ontologies, and the need to continuously
adds huge

complexity to harmonization and integration of diverse data sources.

adapt to ever-changing clinical guidelines (24)

Building cohesive and functional KGs for cancer research faces
several challenges related to: (i) Scalability - developing KGs
requires manual labor and expensive expert input, making it
difficult to scale; (ii) Variation in Cancer Representation Across
Biomedical Data Repositories - cancer descriptions in medical
repositories often do not follow standardized naming conventions
or alignment with clinical guidelines, complicating large-scale data
harmonization which hinders its usability and interoperability;
and (iii) Ambiguity in Distinguishing Cancer Types - symptoms,
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causes, and manifestations of various cancers often overlap,
making precise categorization of subtypes challenging.

Despite those intricacies, we observe constant efforts in
building KGs from biomedical literature and clinical records.
The Human Diseases Network (HDN) and Human Symptoms-
Disease Network (HSDN) (25) have demonstrated the utility of
disease-centric KGs via exploring the intricate relationships
between clinical symptoms and diseases through molecular
interactions enabling exploration of disease taxonomy and
pathogenesis. The Scalable Precision Medicine Open Knowledge
Engine (SPOKE) (26) has linked various biomedical databases to
integrate individual patient data providing more personalized
and data-driven healthcare insights. More recently PrimeKG, has
offered a comprehensive and multi-modal view of diseases
incorporating disease-associated perturbations in the proteome,
biological processes, molecular pathways as well as anatomical
and phenotypic scales, environmental exposures, and a range of
approved and experimental drugs along with their therapeutic
actions (24). Unlike the broad disease- or drug-oriented KGs,
the Genetic and Rare Diseases Information Center (GARD) (27)
focuses exclusively on rare diseases, aiming to advance
understanding of unmet clinical needs and evidence-based
research. In addition, over a thousand biomedical ontologies are
emerging in BioPortal (28) - a comprehensive repository
covering various cancer fields such as breast, thyroid, and
prostate cancer. Despite their availability, leveraging these
ontologies effectively remains challenging. Many were developed
with a specific perspective and purpose in mind tailored to
specific research goals or projects, which may not align with
other use cases or compatibility with new applications.

In addition to existing disease-focused ontologies, there is a
growing interest in building stage- and grade-specific ontologies
aimed at deeper conceptualizations of a specific disease, however
this concept has not been explored much in biomedical
domains. In addition, transferring the knowledge embedded in
KGs for the identification and characterization of rare disease is
also of interest as nowadays, research in the rare diseases field is
oriented towards the collection and analysis of omics data in
case-study scenarios. Adoption of the KG could interconnect
between several studies, synthesizing state-of-the-art knowledge
and providing greater explainability of rare diseases not only to
clinicians and patients but also generally to the field.

Leveraging knowledge graphs can streamline the learning
process of AI models enhancing their explainability and
transparency. Consequently, this interplay between both
components significantly boosts interpretability (29) as KGs
offers a framework that AI models can progressively refine.
Through iterative learning, neural network architectures which
naturally form graph-like structures (as entities encoded within
these networks are interrelated), refine ontologies and highlight
the most influential features and relationships. In consequence,
the refined KG incorporates new information while eliminating
inconsistencies, redundancies and duplicates. This refinement
process facilitates improved detection of patterns, correlations
and identification of broader categories or clusters within the
data that have not been immediately apparent.
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The interplay between the KG and the AI model would
definitely support more robust Al-driven insights and decision-
making, and is especially important for developing explainable
recommendation systems which should ideally be responsive
and adaptive to real-time changes.

Enhancing explainability and
interpretability of Al models

When dealing with unstructured multi-modal data, black-box
models with more free parameters are preferred for capturing
complex relationships in labeling, clustering, and pattern
recognition tasks. While these models enhance the overall
understanding of a system and its outputs, they do not
inherently provide explanations that human experts can
understand and comprehend (30, 31). Ensuring explainability
and interpretability remains one of the biggest challenges in
deploying Al-based models in real-world applications. Different
models of explainability such as text-based, visual, and feature
relevance explanations, are possible and should be adjusted to
domain-specific research (30, 32, 33).

Recent work by Anthropic [https://transformer-circuits.pub/
that
neuron-level interpretability in large language models is becoming

2024/scaling-monosemanticity/index.html]  demonstrated
achievable through advanced scaling techniques. Their approach
identifying
consistently

aims to enhance model transparency by

that
represent specific, human-interpretable concepts—enabling a form

monosemantic  units—individual neurons
of parameter-level understanding previously inaccessible in deep
neural networks. While this aspect is significant for foundational
Al safety and transparency, its direct applicability to clinical
settings remains limited. In the context of medical Al, the
primary focus should shift away from internal model mechanisms
and instead emphasize whether the system demonstrates clinically
reliable, safe, and interpretable behavior at the input-output level.
Consequently, traditional validation frameworks such as
sensitivity, specificity, and outcome-based performance metrics
seem to align more closely with established clinical paradigms
and are more trusted by healthcare professionals. Anthropic’s
findings suggest that medical AI systems should prioritize
behavior-centric evaluations which is more practical and trusted
forms of interpretability in healthcare applications.

To date, one study has utilized the knowledge graph fed with
multi-source clinical data including basic clinical data, disease
history, medical test results, and other Diabetic Macular Edema-
related factors to predict this disease (34). In the field of
precision radiotherapy, Niraula et al. developed a clinical
decision-support system leveraging knowledge-based Al-assisted
decision-making in response-adaptive radiotherapy (ARCIDS).
The system was designed to adjust optimal daily dosage of
radiation being the first web-based software with GUI dedicated
to assist knowledge-based response-adaptive radiotherapy with
multi-omics data improving the outcomes in dynamic treatment
regime (35). Lately, the xXDECIDE system has been developed

and tested on various types of cancer as a tool to support
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clinical decision making effectively closing the learning loop
through continuous, multi-source feedback integration. Central
to this approach is the incorporation of expert-derived treatment
recommendations from virtual tumor boards, which are used to
iteratively train and refine the Al-based model (xCORE). In
addition to expert input, the system incorporates real-world
clinical data, such as treatment decisions made by patients and
physicians, longitudinal clinical outcomes such as tumor
response, adverse events, biomarker trajectories, and survival.
The outcome data provide a foundation for retrospective
performance evaluation and model recalibration. Furthermore,
the xDECIDE platform leverages aggregated real-world evidence
from the XCELSIOR registry (“Xperience Clinical Evidence Led
System for Investigating Outcomes in Real-World Oncology”) to
refine its knowledge base and decision-making heuristics. This
closed-loop framework links what was recommended, what was
implemented, and how patients responded to dynamically
update treatment rationales and recommendations as new data
is available. This idea of closing the learning loop not only has
the potential of enhancing the relevance and accuracy of
Al-driven

explainability, and clinical trust (36).

guidance but also strengthens transparency,

Despite these efforts, a systematic analysis of how explanations
should be structured within disease-specific domains remains
lacking. For Al-assisted diagnostic and treatment recommendation
tools, explanations must be clear, comprehensive and conceptually
coherent. Only then can these models provide transparency and
interpretability essential for building trust within the medical
community and establishing domain-expert interpretation and
inference that align with current medical knowledge. Due to data
sparsity, we need to leverage knowledge from publicly available
omics data repositories and build knowledgeable databases within
the context of specific diseases. Only by this we can advance
knowledge-driven model development and promote explainable AI
in healthcare (37-39).

To the best of our knowledge, there is no study which has
utilized a knowledge graph-based explainable AI pipeline that
data:

diagnosis

integrates foundation models of omics genomics,

transcriptomics, proteomics, to enhance and/or
treatment decision-making within the sparse data context in a
specific biomedical domain. This effort has been undertaken by
the Knowledge at the Tips of your Fingers (KATY) consortium
funded in the H2020-EU.3.1. - SOCIETAL CHALLENGES -
Health, demographic change and well-being programme under a
call “AI for Genomics and Personalized Medicine” aims at
implementing  Al-assisted

strategies for enhancing the

contribution of -omics studies in personalized medicine.

Effort of the KATY consortium towards
developing explainable Al system

The KATY project develops a non-linear expert system
capable of utilizing incomplete multi-modal omics information
to predict the optimal treatment scheme in patients with
metastatic clear cell renal cell carcinoma (ccRCC).
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ccRCC accounts for 75% of total RCC incidence which increases
worldwide and accounts for 2% of cancer diagnoses, affecting
approximately 10/100,000 in the United States and Western
Europe (40). Current treatment choice is largely driven by clinical
trial inclusion criteria and guideline recommendations from the
European Association of Urology (41), European Society of
Medical Oncology (42) and American Society of Clinical
(43) with
combination immune checkpoint inhibitors (ICI) and tyrosine
kinase inhibitors (TKI) therapy, or dual ICI for intermediate or
poor risk disease. Despite these recommendations and the

Oncology recommending first line treatment

resultant improved survival benefit, still the response to treatment
varies from individual to individual, complete response remains
relatively rare, some patients develop significant adverse reactions
to treatment and most patients eventually progress requiring a
change in treatment (44).

Therefore, the greatest challenge is not only to gather more
molecular or clinical information, but rather to better use and
process the information that has already been gathered and is
publicly available through the incorporation of pre-existing or
newly developed foundation models. Despite a progress in Al-
assisted noninvasive characterization of kidney tumors using CT
imaging, better characterization of grading system (45), existence
of clinical, pathological markers as well as genomic or
transcriptomic signatures reported, potentially useful to guide
treatment selection and predict response to systemic therapy,
choosing the most optimal therapy with best treatment response
at a patient-specific level is currently the biggest unmet need (46).

This is where the KATY project steps in developing a system
which
programmed allowing for prediction without predefined rules

is interactively trained rather than being strictly

and providing explainability to end users. The Al-assisted KATY
Platform is built around the (i) KATY Holistic Neural Network

10.3389/fdgth.2025.1637195

(KATYHoONN) black-box model and the (ii) Distributed

Knowledge Graph offering post-hoc explainability.

Datasets and ontologies

To build the knowledge graph for the KATYHoNN model we
utilize two type of datasets:

(i) data from clinical trials evaluating the efficiency of targeted
therapies, immunotherapies and combination of both,
(ii) publicly-available omics datasets for ccRCC patients.

We divided these dense and multi-modal datasets into “main” and
“support” datasets. The “main dataset” makes use of (i) data from
clinical trials and associated ontologies to address the question on
the treatment effectiveness measured for each antitumor drug and
estimate response-to-treatment metrics [i.e., tumor shrinkage,
overall response rate (ORR), progression-free survival (PFS), and
overall survival (OS)].

The “support dataset” makes use of (ii) publicly-available
omics datasets and associated ontologies to predict features
which are not directly linked to response-to-therapy.

Both data types are integrated into a knowledge graph through
a network of ontologies, to offer comprehensive, interconnected
and explainable representation of treatment effectiveness and
influencing factors for a single patient (Figure 1).

KATY model

The KATY model consists of sub-networks that are trained
using data from clinical trials and omics data for ccRCC
patients and also more widely available -omics data, for example

Biomedical Ontology
Ontologies Matching
. . Semantic
Bllgn:edlgal D
atasets Annotation

FIGURE 1

Knowledge graph construction and design. The Knowledge Graph is built using techniques of Ontology Matching and Semantic Annotation over
renal cell carcinoma ontologies and KATY datasets stored in the data lake (the Knowledge Graph is stored in a GraphDB instance that supports
fast loading, querying and visualization of the graph) (1). Upon development, the Knowledge Graph can be used as a source of knowledge-
enriched features for the Al system (2). The outcomes of the Al-supported system can refine the Knowledge Graph (3). The data and outcomes
as represented in the Knowledge Graph can be used to support explanation generation (4). Querying and visualizing the Knowledge Graph is
supported by intelligent graphical user interfaces to present explanations to end-users.
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T-cell antigen landscapes published across over 2,300 published
samples. Sub-division of the KATYHoNN model into sub-
networks (trained either on specific omics dataset or on all
omics datasets together) makes the realization of the final model
easier and more precise, as each component is trained for a
specific task and can be easily handled in the event of errors or
changes. This training strategy mitigates the missing data
problem, where there may be sufficient data for a specific task
but insufficient data for all tasks combined.
insufficient data for model training, data from different cancer

In case of

types can be used to pre-train specific sub-networks which can
then be transferred to the ccRCC model. With this approach
referred to as transfer learning, the KATYHoNN model can
exploit future datasets enabling real-time training of the entire
model. In this way the KATYHoNN model is easily modifiable,
as at the same time, it is possible to add new components
within the KATYHoNN model and modify the existing ones by

10.3389/fdgth.2025.1637195

deleting or linking them. The results from the KATYHoNN
model deployed onto a dedicated KATY Platform and supported
with the knowledge graph will allow physicians to predict
survival/response to therapy when uploading patient’s test
results (Figure 2).

Legal compliance

The KATY project ensures that the development and usage of
the KATY Platform, as well as the use and re-use of the data
generated and collected in the KATY project, is conducted in
accordance with binding legal provisions. The project monitors
and addresses the requirements set forth in the EU legal acts
concerning (personal) data protection (especially with regard to
special categories of data, i.e, data concerning health and
genetic data), Al and data governance. Once the data protection

Tissue
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to therapy
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Knowledge
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(— ) —)
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FIGURE 2

General representation of the KATY holistic neural network model (KATYHoNN). The KATYHoNN model input leverages publicly-available datasets
for ccRCC patients and data from clinical trials evaluating the efficiency of therapies. The heart of the model is composed of individual sub-networks
for which the input is available omics data and clinical patient data. The sub-networks can be trained either on: (i) singular specific task (e.g., either
genomics or transcriptomics or proteomics or RNA-Seq data) via transfer learning (b), or (ii) all tasks together (patients data evaluating the efficiency
of therapies) via multi-task learning (a) to compile the general network. The result of a multi-task learning (a) is prediction of response-to-therapy,
while the results from transfer learning (b) is prediction of other features not directly related to treatment choice. The KATYHoNN model deployed on
a dedicated KATY Platform will allow a physician to upload a patient’s test results and gain the best treatment recommendation in parallel with KG-
driven explanation based on which features such a treatment was proposed and what the survival rate for that patient is.
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and privacy principles have been identified, technical solutions
such as data access management, encryption, cryptographic
components, pseudonymisation and, where achievable,
anonymisation of data, data minimisation, secure storage of data
and secure data transfer, have been included in the design of the
KATY Platform allowing for the European Union’s General
Data Protection Regulation (GDPR)-compliant processing of the
data and usage of the platform.

Summing up, the KATY project develops the infrastructure for
a ready-to-use explainable decision-support system that complies

with all legal requirements (11).

Discussion

To realize the vision of an Al-empowered Personalized
Medicine in the clinical workflow, we need to tackle a challenge
of developing a multi-tiered Al-supported system capable of
handling complexity of multi-modal data simultaneously being
adaptable to new knowledge and constantly changing treatment
guidelines. To enhance maintainability and scalability of the
system, it should accommodate 3 tiers: the Data Tier, which
ensures secure storage and interoperability of diverse medical
data; the Application Tier, which processes data and generates
recommendations; and the Presentation Tier, which provides
user-friendly interfaces for clinicians and patients. The separation
between 3 tiers facilitates managing of the whole system, so that
changes in one tier do not necessarily affect the other tiers (47-49).

Over the next several years, we anticipate the establishment of
digital medicine centers that will invest in human resources,
assembling well-connected medical, IT, and research teams to
make these advancements a reality. Domain experts who are
constantly supported by physicians will evolve to accommodate
constantly evolving treatments, and build disease-oriented
knowledge models in a domain-specific field.

With real-time explainable treatment recommendations, the next
step would be to link post-treatment (follow-up) data of individual
patients with potential side effects and drug interactions,
personalized to their medical history and current medications. To
fully leverage Al-supported systems linked to knowledge-based
models, we must start collecting omics data for each patient within
the healthcare system while simultaneously training and motivating
doctors on how and why to use these systems in their daily
practice. In the future, those who incorporate AI-supported tools
into their routine will probably replace those who do not.
about  the

complexity and data sparsity in biomedical AI areas, like

Encouraging transparent communication
personalized cancer treatment, is essential for aligning funding
Valuable

clinical trial data and -omic data is hidden by numerous legal

institutions and stakeholders on feasible solutions.

agreements, creating a significant barrier to integrating and
making this data accessible for Al systems. In these clinical trial
contexts, patient health is prioritized over data volume, leading
to the use of simpler, transparent models developed to address
specific clinical questions. A modern approach may involve
leveraging foundation models—large, pre-trained AI models for
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specific data types that can be fine-tuned for various tasks—and
using them as black-box models with post-hoc explainability
rooted in visual representation and feature relevance.

Despite efforts to build Al-supported decision systems, a
systematic study of explanations for decisions within disease-
specific domains is still missing. The explanations offered by Al
decision-support systems must provide understandable and
conceptually coherent knowledge. Only then can AI models
provide transparent, human-interpretable explanations of Al-
assisted diagnosis and treatment recommendations, facilitating
their adoption in real clinical settings. Building on how the AI
model explains its predictions is important for gaining trust
from the medical community and establishing domain-expert
interpretation and inference grounded in current medical
findings. Addressing these gaps in explanation structure and
knowledge leveraging is essential for advancing knowledge-based
model development driving explainable AL

We believe that continuous interaction between physicians
and AI provided by the system’s architecture, along with
dynamically curated databases and ongoing feedback from
doctors, is essential for ensuring evidence-based, data-driven
and research-supported recommendations for specific disease
areas. However, we also recognize that without real-world
outcome data—such as predicted or observed survival curves for
patients across different treatment regimens—these systems are
unlikely to significantly impact clinical decision-making. This
challenge is particularly important in rare cancers, where data
scarcity limits the generation of robust comparative insights. In
this context, recent advances in reasoning-oriented large
language models, such as OpenATI’s 03 and o4 series, may offer
a promising direction. These models are capable of integrating
structured biomedical knowledge, disclosing their internal
auditable,
supported treatment rationales—potentially bridging the gap

reasoning processes, and producing evidence-

between algorithmic outputs and clinically actionable insight.
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