
EDITED BY  

Gokce Banu Laleci Erturkmen,  

Software Research and Development 

Consulting, Türkiye

REVIEWED BY  

Mark Shapiro,  

xCures Inc, United States

*CORRESPONDENCE  

Fabio Massimo Zanzotto  

fabio.massimo.zanzotto@uniroma2.it

†These authors have contributed equally to 

this work

‡These authors share senior authorship

RECEIVED 28 May 2025 

ACCEPTED 15 August 2025 

PUBLISHED 29 September 2025

CITATION 

Daghir-Wojtkowiak E, Alfaro J, 

Mastromattei M, Palkowski A, Stares M, Roca- 

Umbert A, Krajnc A, Leoni R, Boland A, 

Nourbaksh A, Kallor A, Ducki C, Venditti D, 

Montesano C, Cipriani C, Faria D, Pflieger D, 

Zago E, Bardet E, Serrano F, Jeanneret F, 

Alouges D, Yin L, Coquelet E, Bacquet A, 

Bonchi F, Maiorino F, Torino F, Bedran G, 

Long J-A, Balbi L, Guyon L, Bevilacqua L, 

Fiorelli M, Wagner M-C, Reyes M, Roselli M, 

Silva MC, Waleron M, Dovrolis N, Filhol- 

Cochet O, Um IH, Wolflein G, Eugénio P, 

Bazelle P, Golnas P, Thorpe P, Bove P, 

Borole P, Bernardini R, Kumar R, Cicconi R, 

Kaltenbrunner S, Gravina S, Brezar S, 

Symeonides S, McGinn S, Nunes S, Hupp T, 

Gordienko Y, Varvaras D, Stirenko S, 

Xumerle L, Mariani S, Bouzit A, Gazut S, 

Poth H, Souliotis K, Katifelis H, Verzoni E, 

Procopio G, Schoch S, Lupiáñez-Villanueva F, 

Türk S, Barud K, Koroliouk D, Caubet J, 

Moreno Y, Descotes J-L, Golna C, 

Guadalupi V, Garagnani P, Gazouli M, 

Deleuze J-F, Folkvord F, Forgó N, Harrison DJ, 

Axelson H, Stellato A, Mattei M, Rajan A, 

Laird A, Battail C, Pesquita C and Zanzotto FM 

(2025) Leveraging knowledge for explainable 

AI in personalized cancer treatment: 

challenges and future directions.  

Front. Digit. Health 7:1637195. 

doi: 10.3389/fdgth.2025.1637195

Leveraging knowledge for 
explainable AI in personalized 
cancer treatment: challenges and 
future directions

Emilia Daghir-Wojtkowiak
1†
, Javier Alfaro

1†‡
,  

Michele Mastromattei
2
, Aleksander Palkowski

1
, Mark Stares

3
,  

Ana Roca-Umbert
4
, Andraz Krajnc

5
, Riccardo Leoni

6
,  

Anne Boland
7
, Aria Nourbaksh

2
, Ashwin Kallor

1
, Camille Ducki

8
,  

Davide Venditti
2
, Carla Montesano

2
, Chiara Cipriani

2
,  

Daniel Faria
9
, Delphine Pflieger

10
, Elisa Zago

11
, Etienne Bardet

10
,  

Filipa Serrano
9
, Florian Jeanneret

10
, Damien Alouges

10
,  

Liangwei Yin
10

, Elodine Coquelet
10

, Apolline Bacquet
10

,  

Francesco Bonchi
12

, Francesco Maiorino
2
, Francesco Torino

2
,  

Georges Bedran
1
, Jean-Alexandre Long

8
, Laura Balbi

9
,  

Laurent Guyon
10

, Liana Bevilacqua
13

, Manuel Fiorelli
2
,  

Marie-Catherine Wagner
14

, Mario Reyes
12

, Mario Roselli
2
,  

Marta Contreiras Silva
9
, Michal Waleron

1
, Nikolas Dovrolis

15
,  

Odile Filhol-Cochet
10

, In Hwa Um
16

, Georg Wolflein
16

,  

Patrícia Eugénio
9
, Pauline Bazelle

10
, Pavlos Golnas

17
,  

Peter Thorpe
5
, Pierluigi Bove

2
, Piyush Borole

18
,  

Roberta Bernardini
2
, Rohit Kumar

12
, Rosella Cicconi

2
,  

Saskia Kaltenbrunner
14

, Saverio Gravina
6
, Simona Brezar

5
,  

Stefan Symeonides
3
, Steven McGinn

7
, Susana Nunes

9
,  

Ted Hupp
19

, Yuri Gordienko
20

, Dimitrios Varvaras
17
,  

Sergii Stirenko
20

, Luciano Xumerle
11
, Stefania Mariani

11
,  

Assilah Bouzit
8
, Stéphane Gazut

9
, Heiko Poth

21
,  

Kyriakos Souliotis
17
, Hector Katifelis

15
, Elena Verzoni

13
,  

Giuseppe Procopio
13

, Sarah Schoch
22

,  

Francisco Lupiáñez-Villanueva
4,23

, Sandra Türk
21

,  

Katarzyna Barud
14

, Dimitri Koroliouk
20‡

, Juan Caubet
12‡

,  

Yamir Moreno
24‡

, Jean-Luc Descotes
8‡

, Christina Golna
17‡

,  

Valentina Guadalupi
13‡

, Paolo Garagnani
11‡

, Maria Gazouli
15‡

,  

Jean-François Deleuze
7‡
, Frans Folkvord

4,25‡
, Nikolaus Forgó

14‡
,  

David J. Harrison
16‡

, Håkan Axelson
22‡

, Armando Stellato
2‡

,  

Maurizio Mattei
2‡

, Ajitha Rajan
18‡

, Alexander Laird
3‡

,  

Christophe Battail
10‡

, Catia Pesquita
9‡ 

and  

Fabio Massimo Zanzotto
2* 

1International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland, 2University of 

Rome “Tor Vergata”, Rome, Italy, 3Urology Department, Western General Hospital, NHS Lothian, 

Edinburgh, United Kingdom, 4PredictBy Research and Consulting SLU, Barcelona, Spain, 5Caretronic 

d.o.o. Kranj, Slovenia, 6DSTECH S.r.l., Rome, Italy, 7CEA, Centre National de Recherche en Génomique 

Humaine, Université Paris-Saclay, Evry, France, 8Centre Hospitalier Universitaire de Grenoble (CHU), 

COPYRIGHT 

© 2025 Daghir-Wojtkowiak, Alfaro, 

Mastromattei, Palkowski, Stares, Roca- 

Umbert, Krajnc, Leoni, Boland, Nourbaksh, 

Kallor, Ducki, Venditti, Montesano, Cipriani, 

Faria, Pflieger, Zago, Bardet, Serrano, 

Jeanneret, Alouges, Yin, Coquelet, Bacquet, 

Bonchi, Maiorino, Torino, Bedran, Long, Balbi, 

Guyon, Bevilacqua, Fiorelli, Wagner, Reyes, 

Roselli, Silva, Waleron, Dovrolis, Filhol-

TYPE Perspective 
PUBLISHED 29 September 2025 
DOI 10.3389/fdgth.2025.1637195

Frontiers in Digital Health 01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fdgth.2025.1637195&domain=pdf&date_stamp=2020-03-12
mailto:fabio.massimo.zanzotto@uniroma2.it
https://doi.org/10.3389/fdgth.2025.1637195
https://www.frontiersin.org/articles/10.3389/fdgth.2025.1637195/full
https://www.frontiersin.org/articles/10.3389/fdgth.2025.1637195/full
https://www.frontiersin.org/articles/10.3389/fdgth.2025.1637195/full
https://www.frontiersin.org/articles/10.3389/fdgth.2025.1637195/full
https://loop.frontiersin.org/people/2010493/overview
http://orcid.org/0000-0002-7301-3596
https://loop.frontiersin.org/people/656611/overview
https://www.frontiersin.org/journals/digital-health
https://doi.org/10.3389/fdgth.2025.1637195


Grenoble, France, 9LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 10IRIG, 

Laboratoire Biosciences et Bioingénierie Pour la Santé, UA2 INSERM-CEA-UGA, Université Grenoble 

Alpes, Grenoble, France, 11Personal Genomics Srl, Verona, Italy, 12Eurecat, Centre Tecnològic de 

Catalunya, Barcelona, Spain, 13Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy, 
14Department of Innovation and Digitalisation in Law, University of Vienna, Vienna, Austria, 15Laboratory 

of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece, 16School of 

Medicine, University of St Andrews, St Andrews, United Kingdom, 17Health Policy Institute (HPI), Maroussi, 

Greece, 18School of Informatics, University of Edinburgh, Edinburgh, United Kingdom, 19Institute of 

Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom, 20National Technical 

University of Ukraine Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine, 21EURICE, Heinrich-Hertz- 

Allee 1, St. Ingbert, Germany, 22Division of Translational Cancer Research, Department of Laboratory 

Medicine, Lund University, Lund, Sweden, 23Open University of Catalonia, Barcelona, Spain, 24Institute for 

Biocomputation and Physics of Complex Systems and Department of Theoretical Physics, University of 

Zaragoza, Zaragoza, Spain, 25Department of Communication and Cognition, Tilburg School of 

Humanities and Digital Sciences, Tilburg, Netherlands

Integrating multi-modal patient data to support personalized medicine has 

gained a lot of interest across different health domains over the past decade. 

Addressing this challenge requires the development and implementation of an 

informed, evidence-based AI-driven decision-support system continuously 

maintained and updated to align with the latest clinical guidelines. A key 

challenge to ensure its real-life adoption lies in translating the outcomes of 

complex AI-driven data integration and modeling into a form easily understood 

by the clinical audience. To ensure explainability, knowledge graphs have 

emerged as data models integrating multi-omics data sources and representing 

them as interconnected networks. Knowledge graphs offer a framework which 

AI models can progressively refine, highlighting the most influential features 

and relationships facilitating transparency of complex interactions and 

interdependencies. In this perspective we present major components and 

challenges upon developing a knowledge-based explainable AI system. 

Additionally, we showcase a current effort undertaken by the Knowledge at the 

Tips of your Fingers (KATY) consortium to develop the infrastructure for an 

explainable system supporting best treatment decision for a renal cancer patient.

KEYWORDS

personalized cancer treatment, knowledge graphs, explainability, AI, foundation models, 

clinical decision-making

Introduction

Integrating multi-modal patient data—such as genetic 

information, expression profiles, imagining and molecular data— 

into a unified framework has gained a lot of interest in different 

health domains over the past decade (1, 2). The recent increase in 

computational power and algorithm performance boost, have 

made it possible to feed AI models with extensive patient-specific 

data, paving the way for the development of software solutions 

that enable more personalized diagnoses and treatments (3, 4). 

Crucial to achieving this vision is not only the development and 

implementation of disease-focused, knowledge-based decision- 

support system but also its continuous maintenance and regular 

update to align with the latest clinical practice guidelines (5). Up 

to now, several tools supporting the vision of precision medicine 

have emerged.

IBM Watson for Oncology (WFO) was the first knowledge- 

based system leveraging natural language processing (NLP) 

supporting evidence-based treatment decisions categorized as 

recommended, for consideration, or not recommended across 

seven types of cancer. Alongside the NLP-driven WFO, 

OncoDoc2 emerged as a decision-tree-based system designed to 

integrate clinical data from electronic health records (EHR), to 

suggest optimal treatments for non-metastatic breast cancer (6) 

Similarly, a guideline-based decision support system developed 

as part of the DESIREE European project aimed at creating 

web-based services for managing primary breast cancer (7, 8).

In the field of medical image analysis including x-rays, CT 

images, and MRI scans, deep learning techniques have 

significantly enhanced tumor detection, localization, assessment of 

muscle invasiveness and tumor grading. These advancements 

facilitated the distinction between disease subtypes enabling more 

effective treatment planning and better patient stratification (9–16). 

As an example, a 3D deep radiomics pipeline has been 

successfully used for analyzing CT scans of metastatic urothelial 

cancer patients, demonstrating capability of differentiating between 

disease, control and progression in response to immunotherapy (17).

While creating a straightforward decision support system is 

technically feasible, a key challenge lies in translating the 

outcomes of complex AI-driven big data integration and 

modeling into a form easily understood by the clinical audience 

and in parallel compliant with binding legal provisions. To 

address this challenge, efforts are focused on integrating medical 

knowledge, biological pathways, and clinical guidelines into 
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knowledge-based models. Developing a knowledge graph (KG) 

and incorporating it into AI model architecture, may provide 

explainable visualizations of the AI model’s complex reasoning 

enhancing AI-supported, knowledge-based diagnosis and 

treatment recommendations within a specific biomedical 

domain. In this perspective we present challenges upon 

developing a knowledge-based explainable AI system and 

describe a current effort undertaken by the KATY consortium 

to develop the infrastructure for ready-to-use explainable 

decision-support system that can be deployed in clinical reality.

How knowledge-based models 
interplay with AI model

Knowledge-based models integrate various multi-modal 

biomedical data sources by developing ontologies, which are 

structured frameworks for organizing information that define the 

relationships between key concepts and categories within a 

specific domain. These ontologies establish a formalized 

vocabulary, hierarchy of terms, relationships and rules to describe 

large volumes of heterogeneous biomedical data. Examples 

include HPO (Human Phenotype Ontology) (18), UMLS (Unified 

Medical Language System) (19), NCIT (National Cancer Institute 

Thesaurus) (20) and OMIM (Online Mendelian Inheritance in 

Men) (21) which serve as semantic “building blocks” for 

biomedical knowledge models. These structered, hierarchical 

ontologies and knowledge bases enable the development and 

enrichment of the knowledge models by defining standardizing 

terms, concepts, and relationships. They support transparent 

mapping between patient data, phenotypes, genotypes, and 

clinical concepts, facilitating tracability and interpretability.

Building on this foundation, knowledge graphs can represent 

diverse data sources as networks of interconnected entities 

(nodes) and relationships (edges) capable of capturing dynamic, 

real-world interactions and associations (22, 23). When tailored 

to a specific biomedical domain, KGs enhance data accessibility, 

interoperability and integration, facilitating more efficient data 

analysis and further interpretation.

A key challenge in building KGs is the scattered and inconsistent 

nature of information across disease-specific domains. In the cancer 

field, despite significant efforts made by consortia to develop 

standardized datasets, information from various organizational 

levels of datasets is dispersed across studies. Unstandardized data 

repositories, evolving ontologies, and the need to continuously 

adapt to ever-changing clinical guidelines (24) adds huge 

complexity to harmonization and integration of diverse data sources.

Building cohesive and functional KGs for cancer research faces 

several challenges related to: (i) Scalability - developing KGs 

requires manual labor and expensive expert input, making it 

difficult to scale; (ii) Variation in Cancer Representation Across 

Biomedical Data Repositories - cancer descriptions in medical 

repositories often do not follow standardized naming conventions 

or alignment with clinical guidelines, complicating large-scale data 

harmonization which hinders its usability and interoperability; 

and (iii) Ambiguity in Distinguishing Cancer Types - symptoms, 

causes, and manifestations of various cancers often overlap, 

making precise categorization of subtypes challenging.

Despite those intricacies, we observe constant efforts in 

building KGs from biomedical literature and clinical records. 

The Human Diseases Network (HDN) and Human Symptoms- 

Disease Network (HSDN) (25) have demonstrated the utility of 

disease-centric KGs via exploring the intricate relationships 

between clinical symptoms and diseases through molecular 

interactions enabling exploration of disease taxonomy and 

pathogenesis. The Scalable Precision Medicine Open Knowledge 

Engine (SPOKE) (26) has linked various biomedical databases to 

integrate individual patient data providing more personalized 

and data-driven healthcare insights. More recently PrimeKG, has 

offered a comprehensive and multi-modal view of diseases 

incorporating disease-associated perturbations in the proteome, 

biological processes, molecular pathways as well as anatomical 

and phenotypic scales, environmental exposures, and a range of 

approved and experimental drugs along with their therapeutic 

actions (24). Unlike the broad disease- or drug-oriented KGs, 

the Genetic and Rare Diseases Information Center (GARD) (27) 

focuses exclusively on rare diseases, aiming to advance 

understanding of unmet clinical needs and evidence-based 

research. In addition, over a thousand biomedical ontologies are 

emerging in BioPortal (28) - a comprehensive repository 

covering various cancer fields such as breast, thyroid, and 

prostate cancer. Despite their availability, leveraging these 

ontologies effectively remains challenging. Many were developed 

with a specific perspective and purpose in mind tailored to 

specific research goals or projects, which may not align with 

other use cases or compatibility with new applications.

In addition to existing disease-focused ontologies, there is a 

growing interest in building stage- and grade-specific ontologies 

aimed at deeper conceptualizations of a specific disease, however 

this concept has not been explored much in biomedical 

domains. In addition, transferring the knowledge embedded in 

KGs for the identification and characterization of rare disease is 

also of interest as nowadays, research in the rare diseases field is 

oriented towards the collection and analysis of omics data in 

case-study scenarios. Adoption of the KG could interconnect 

between several studies, synthesizing state-of-the-art knowledge 

and providing greater explainability of rare diseases not only to 

clinicians and patients but also generally to the field.

Leveraging knowledge graphs can streamline the learning 

process of AI models enhancing their explainability and 

transparency. Consequently, this interplay between both 

components significantly boosts interpretability (29) as KGs 

offers a framework that AI models can progressively refine. 

Through iterative learning, neural network architectures which 

naturally form graph-like structures (as entities encoded within 

these networks are interrelated), refine ontologies and highlight 

the most inIuential features and relationships. In consequence, 

the refined KG incorporates new information while eliminating 

inconsistencies, redundancies and duplicates. This refinement 

process facilitates improved detection of patterns, correlations 

and identification of broader categories or clusters within the 

data that have not been immediately apparent.
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The interplay between the KG and the AI model would 

definitely support more robust AI-driven insights and decision- 

making, and is especially important for developing explainable 

recommendation systems which should ideally be responsive 

and adaptive to real-time changes.

Enhancing explainability and 
interpretability of AI models

When dealing with unstructured multi-modal data, black-box 

models with more free parameters are preferred for capturing 

complex relationships in labeling, clustering, and pattern 

recognition tasks. While these models enhance the overall 

understanding of a system and its outputs, they do not 

inherently provide explanations that human experts can 

understand and comprehend (30, 31). Ensuring explainability 

and interpretability remains one of the biggest challenges in 

deploying AI-based models in real-world applications. Different 

models of explainability such as text-based, visual, and feature 

relevance explanations, are possible and should be adjusted to 

domain-specific research (30, 32, 33).

Recent work by Anthropic [https://transformer-circuits.pub/ 

2024/scaling-monosemanticity/index.html] demonstrated that 

neuron-level interpretability in large language models is becoming 

achievable through advanced scaling techniques. Their approach 

aims to enhance model transparency by identifying 

monosemantic units—individual neurons that consistently 

represent specific, human-interpretable concepts—enabling a form 

of parameter-level understanding previously inaccessible in deep 

neural networks. While this aspect is significant for foundational 

AI safety and transparency, its direct applicability to clinical 

settings remains limited. In the context of medical AI, the 

primary focus should shift away from internal model mechanisms 

and instead emphasize whether the system demonstrates clinically 

reliable, safe, and interpretable behavior at the input–output level. 

Consequently, traditional validation frameworks such as 

sensitivity, specificity, and outcome-based performance metrics 

seem to align more closely with established clinical paradigms 

and are more trusted by healthcare professionals. Anthropic’s 

findings suggest that medical AI systems should prioritize 

behavior-centric evaluations which is more practical and trusted 

forms of interpretability in healthcare applications.

To date, one study has utilized the knowledge graph fed with 

multi-source clinical data including basic clinical data, disease 

history, medical test results, and other Diabetic Macular Edema- 

related factors to predict this disease (34). In the field of 

precision radiotherapy, Niraula et al. developed a clinical 

decision-support system leveraging knowledge-based AI-assisted 

decision-making in response-adaptive radiotherapy (ARCliDS). 

The system was designed to adjust optimal daily dosage of 

radiation being the first web-based software with GUI dedicated 

to assist knowledge-based response-adaptive radiotherapy with 

multi-omics data improving the outcomes in dynamic treatment 

regime (35). Lately, the xDECIDE system has been developed 

and tested on various types of cancer as a tool to support 

clinical decision making effectively closing the learning loop 

through continuous, multi-source feedback integration. Central 

to this approach is the incorporation of expert-derived treatment 

recommendations from virtual tumor boards, which are used to 

iteratively train and refine the AI-based model (xCORE). In 

addition to expert input, the system incorporates real-world 

clinical data, such as treatment decisions made by patients and 

physicians, longitudinal clinical outcomes such as tumor 

response, adverse events, biomarker trajectories, and survival. 

The outcome data provide a foundation for retrospective 

performance evaluation and model recalibration. Furthermore, 

the xDECIDE platform leverages aggregated real-world evidence 

from the XCELSIOR registry (“Xperience Clinical Evidence Led 

System for Investigating Outcomes in Real-World Oncology”) to 

refine its knowledge base and decision-making heuristics. This 

closed-loop framework links what was recommended, what was 

implemented, and how patients responded to dynamically 

update treatment rationales and recommendations as new data 

is available. This idea of closing the learning loop not only has 

the potential of enhancing the relevance and accuracy of 

AI-driven guidance but also strengthens transparency, 

explainability, and clinical trust (36).

Despite these efforts, a systematic analysis of how explanations 

should be structured within disease-specific domains remains 

lacking. For AI-assisted diagnostic and treatment recommendation 

tools, explanations must be clear, comprehensive and conceptually 

coherent. Only then can these models provide transparency and 

interpretability essential for building trust within the medical 

community and establishing domain-expert interpretation and 

inference that align with current medical knowledge. Due to data 

sparsity, we need to leverage knowledge from publicly available 

omics data repositories and build knowledgeable databases within 

the context of specific diseases. Only by this we can advance 

knowledge-driven model development and promote explainable AI 

in healthcare (37–39).

To the best of our knowledge, there is no study which has 

utilized a knowledge graph-based explainable AI pipeline that 

integrates foundation models of omics data: genomics, 

transcriptomics, proteomics, to enhance diagnosis and/or 

treatment decision-making within the sparse data context in a 

specific biomedical domain. This effort has been undertaken by 

the Knowledge at the Tips of your Fingers (KATY) consortium 

funded in the H2020-EU.3.1. - SOCIETAL CHALLENGES - 

Health, demographic change and well-being programme under a 

call “AI for Genomics and Personalized Medicine” aims at 

implementing AI-assisted strategies for enhancing the 

contribution of -omics studies in personalized medicine.

Effort of the KATY consortium towards 
developing explainable AI system

The KATY project develops a non-linear expert system 

capable of utilizing incomplete multi-modal omics information 

to predict the optimal treatment scheme in patients with 

metastatic clear cell renal cell carcinoma (ccRCC).
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ccRCC accounts for 75% of total RCC incidence which increases 

worldwide and accounts for 2% of cancer diagnoses, affecting 

approximately 10/100,000 in the United States and Western 

Europe (40). Current treatment choice is largely driven by clinical 

trial inclusion criteria and guideline recommendations from the 

European Association of Urology (41), European Society of 

Medical Oncology (42) and American Society of Clinical 

Oncology (43) recommending first line treatment with 

combination immune checkpoint inhibitors (ICI) and tyrosine 

kinase inhibitors (TKI) therapy, or dual ICI for intermediate or 

poor risk disease. Despite these recommendations and the 

resultant improved survival benefit, still the response to treatment 

varies from individual to individual, complete response remains 

relatively rare, some patients develop significant adverse reactions 

to treatment and most patients eventually progress requiring a 

change in treatment (44).

Therefore, the greatest challenge is not only to gather more 

molecular or clinical information, but rather to better use and 

process the information that has already been gathered and is 

publicly available through the incorporation of pre-existing or 

newly developed foundation models. Despite a progress in AI- 

assisted noninvasive characterization of kidney tumors using CT 

imaging, better characterization of grading system (45), existence 

of clinical, pathological markers as well as genomic or 

transcriptomic signatures reported, potentially useful to guide 

treatment selection and predict response to systemic therapy, 

choosing the most optimal therapy with best treatment response 

at a patient-specific level is currently the biggest unmet need (46).

This is where the KATY project steps in developing a system 

which is interactively trained rather than being strictly 

programmed allowing for prediction without predefined rules 

and providing explainability to end users. The AI-assisted KATY 

Platform is built around the (i) KATY Holistic Neural Network 

(KATYHoNN) black-box model and the (ii) Distributed 

Knowledge Graph offering post-hoc explainability.

Datasets and ontologies

To build the knowledge graph for the KATYHoNN model we 

utilize two type of datasets: 

(i) data from clinical trials evaluating the efficiency of targeted 

therapies, immunotherapies and combination of both,

(ii) publicly-available omics datasets for ccRCC patients.

We divided these dense and multi-modal datasets into “main” and 

“support” datasets. The “main dataset” makes use of (i) data from 

clinical trials and associated ontologies to address the question on 

the treatment effectiveness measured for each antitumor drug and 

estimate response-to-treatment metrics [i.e., tumor shrinkage, 

overall response rate (ORR), progression-free survival (PFS), and 

overall survival (OS)].

The “support dataset” makes use of (ii) publicly-available 

omics datasets and associated ontologies to predict features 

which are not directly linked to response-to-therapy.

Both data types are integrated into a knowledge graph through 

a network of ontologies, to offer comprehensive, interconnected 

and explainable representation of treatment effectiveness and 

inIuencing factors for a single patient (Figure 1).

KATY model

The KATY model consists of sub-networks that are trained 

using data from clinical trials and omics data for ccRCC 

patients and also more widely available -omics data, for example 

FIGURE 1 

Knowledge graph construction and design. The Knowledge Graph is built using techniques of Ontology Matching and Semantic Annotation over 

renal cell carcinoma ontologies and KATY datasets stored in the data lake (the Knowledge Graph is stored in a GraphDB instance that supports 

fast loading, querying and visualization of the graph) (1). Upon development, the Knowledge Graph can be used as a source of knowledge- 

enriched features for the AI system (2). The outcomes of the AI-supported system can refine the Knowledge Graph (3). The data and outcomes 

as represented in the Knowledge Graph can be used to support explanation generation (4). Querying and visualizing the Knowledge Graph is 

supported by intelligent graphical user interfaces to present explanations to end-users.
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T-cell antigen landscapes published across over 2,300 published 

samples. Sub-division of the KATYHoNN model into sub- 

networks (trained either on specific omics dataset or on all 

omics datasets together) makes the realization of the final model 

easier and more precise, as each component is trained for a 

specific task and can be easily handled in the event of errors or 

changes. This training strategy mitigates the missing data 

problem, where there may be sufficient data for a specific task 

but insufficient data for all tasks combined. In case of 

insufficient data for model training, data from different cancer 

types can be used to pre-train specific sub-networks which can 

then be transferred to the ccRCC model. With this approach 

referred to as transfer learning, the KATYHoNN model can 

exploit future datasets enabling real-time training of the entire 

model. In this way the KATYHoNN model is easily modifiable, 

as at the same time, it is possible to add new components 

within the KATYHoNN model and modify the existing ones by 

deleting or linking them. The results from the KATYHoNN 

model deployed onto a dedicated KATY Platform and supported 

with the knowledge graph will allow physicians to predict 

survival/response to therapy when uploading patient’s test 

results (Figure 2).

Legal compliance

The KATY project ensures that the development and usage of 

the KATY Platform, as well as the use and re-use of the data 

generated and collected in the KATY project, is conducted in 

accordance with binding legal provisions. The project monitors 

and addresses the requirements set forth in the EU legal acts 

concerning (personal) data protection (especially with regard to 

special categories of data, i.e., data concerning health and 

genetic data), AI and data governance. Once the data protection 

FIGURE 2 

General representation of the KATY holistic neural network model (KATYHoNN). The KATYHoNN model input leverages publicly-available datasets 

for ccRCC patients and data from clinical trials evaluating the efficiency of therapies. The heart of the model is composed of individual sub-networks 

for which the input is available omics data and clinical patient data. The sub-networks can be trained either on: (i) singular specific task (e.g., either 

genomics or transcriptomics or proteomics or RNA-Seq data) via transfer learning (b), or (ii) all tasks together (patients data evaluating the efficiency 

of therapies) via multi-task learning (a) to compile the general network. The result of a multi-task learning (a) is prediction of response-to-therapy, 

while the results from transfer learning (b) is prediction of other features not directly related to treatment choice. The KATYHoNN model deployed on 

a dedicated KATY Platform will allow a physician to upload a patient’s test results and gain the best treatment recommendation in parallel with KG- 

driven explanation based on which features such a treatment was proposed and what the survival rate for that patient is.
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and privacy principles have been identified, technical solutions 

such as data access management, encryption, cryptographic 

components, pseudonymisation and, where achievable, 

anonymisation of data, data minimisation, secure storage of data 

and secure data transfer, have been included in the design of the 

KATY Platform allowing for the European Union’s General 

Data Protection Regulation (GDPR)-compliant processing of the 

data and usage of the platform.

Summing up, the KATY project develops the infrastructure for 

a ready-to-use explainable decision-support system that complies 

with all legal requirements (11).

Discussion

To realize the vision of an AI-empowered Personalized 

Medicine in the clinical workIow, we need to tackle a challenge 

of developing a multi-tiered AI-supported system capable of 

handling complexity of multi-modal data simultaneously being 

adaptable to new knowledge and constantly changing treatment 

guidelines. To enhance maintainability and scalability of the 

system, it should accommodate 3 tiers: the Data Tier, which 

ensures secure storage and interoperability of diverse medical 

data; the Application Tier, which processes data and generates 

recommendations; and the Presentation Tier, which provides 

user-friendly interfaces for clinicians and patients. The separation 

between 3 tiers facilitates managing of the whole system, so that 

changes in one tier do not necessarily affect the other tiers (47–49).

Over the next several years, we anticipate the establishment of 

digital medicine centers that will invest in human resources, 

assembling well-connected medical, IT, and research teams to 

make these advancements a reality. Domain experts who are 

constantly supported by physicians will evolve to accommodate 

constantly evolving treatments, and build disease-oriented 

knowledge models in a domain-specific field.

With real-time explainable treatment recommendations, the next 

step would be to link post-treatment (follow-up) data of individual 

patients with potential side effects and drug interactions, 

personalized to their medical history and current medications. To 

fully leverage AI-supported systems linked to knowledge-based 

models, we must start collecting omics data for each patient within 

the healthcare system while simultaneously training and motivating 

doctors on how and why to use these systems in their daily 

practice. In the future, those who incorporate AI-supported tools 

into their routine will probably replace those who do not.

Encouraging transparent communication about the 

complexity and data sparsity in biomedical AI areas, like 

personalized cancer treatment, is essential for aligning funding 

institutions and stakeholders on feasible solutions. Valuable 

clinical trial data and -omic data is hidden by numerous legal 

agreements, creating a significant barrier to integrating and 

making this data accessible for AI systems. In these clinical trial 

contexts, patient health is prioritized over data volume, leading 

to the use of simpler, transparent models developed to address 

specific clinical questions. A modern approach may involve 

leveraging foundation models—large, pre-trained AI models for 

specific data types that can be fine-tuned for various tasks—and 

using them as black-box models with post-hoc explainability 

rooted in visual representation and feature relevance.

Despite efforts to build AI-supported decision systems, a 

systematic study of explanations for decisions within disease- 

specific domains is still missing. The explanations offered by AI 

decision-support systems must provide understandable and 

conceptually coherent knowledge. Only then can AI models 

provide transparent, human-interpretable explanations of AI- 

assisted diagnosis and treatment recommendations, facilitating 

their adoption in real clinical settings. Building on how the AI 

model explains its predictions is important for gaining trust 

from the medical community and establishing domain-expert 

interpretation and inference grounded in current medical 

findings. Addressing these gaps in explanation structure and 

knowledge leveraging is essential for advancing knowledge-based 

model development driving explainable AI.

We believe that continuous interaction between physicians 

and AI provided by the system’s architecture, along with 

dynamically curated databases and ongoing feedback from 

doctors, is essential for ensuring evidence-based, data-driven 

and research-supported recommendations for specific disease 

areas. However, we also recognize that without real-world 

outcome data—such as predicted or observed survival curves for 

patients across different treatment regimens—these systems are 

unlikely to significantly impact clinical decision-making. This 

challenge is particularly important in rare cancers, where data 

scarcity limits the generation of robust comparative insights. In 

this context, recent advances in reasoning-oriented large 

language models, such as OpenAI’s o3 and o4 series, may offer 

a promising direction. These models are capable of integrating 

structured biomedical knowledge, disclosing their internal 

reasoning processes, and producing auditable, evidence- 

supported treatment rationales—potentially bridging the gap 

between algorithmic outputs and clinically actionable insight.
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