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Digital Twin (DT) technology has emerged as a transformative force in
healthcare, offering unprecedented opportunities for personalized medicine,
treatment optimization, and disease prevention. This comprehensive review
examines the current state of DTs in healthcare, analyzing their
implementation across different physiological levels—from cellular to whole-
body systems. We systematically review the latest developments,
methodologies, and applications while identifying challenges and
opportunities.  Our analysis encompasses technical frameworks for
cardiovascular, neurological, respiratory, metabolic, hepatic, oncological, and
cellular DTs, highlighting significant achievements such as population-scale
cardiac modeling (3,461 patient cohort), reduced atrial fibrillation recurrence
rates through patient-specific cardiac models, improved brain tumor
radiotherapy planning, advanced liver regeneration modeling with real-time
simulation capabilities, and enhanced glucose management in diabetes. We
detail the methodological foundations supporting different DT
implementations, including data acquisition strategies, physics-based
modeling approaches, statistical learning algorithms, neural network-based
control systems, and emerging artificial intelligence techniques. While
discussing implementation challenges related to data quality, computational
constraints, and validation requirements, we provide a forward-looking
perspective on future opportunities for enhanced personalization, expanded
application areas, and integration with emerging technologies. This review
offers a multidimensional assessment of healthcare DTs and outlines future
directions for their development and integration. This review demonstrates
that while healthcare DTs have achieved remarkable clinical successes—from
reducing cardiac arrhythmia recurrence rates by over 13% to enabling 97%
accuracy in neurodegenerative disease prediction, and achieving sub-
millisecond liver response predictions with high accuracy—their clinical
translation requires addressing challenges such as data integration,
computational scalability, digital equity, and validation frameworks.
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1 Introduction

Digital twin (DT), a concept first introduced by Grieves in
2002 as a “conceptual ideal” for product life cycle management,
defines the triad of (i) a physical system, (ii) its virtual
representation, and (iii) the bilateral information flow that links
the physical and the virtual counterparts together [1]. This
framework bridges the physical and digital realms, enabling the
analysis of past and present processes and facilitating future
predictions [2]. Initially developed for manufacturing and
aerospace industries [3], DT technology has rapidly evolved to
meet the critical demands of modern healthcare.

In clinical applications, DTs facilitate personalized medicine
by enabling the construction of patient-specific models [4].
These models integrate data from electronic health records
(EHR), imaging modalities, and Internet of Things (IoT) devices
to account for individual physiological and historical nuances
[5]. Such comprehensive models empower clinicians to tailor
treatment strategies for each patient, optimizing therapeutic
interventions and improving clinical outcomes [6]. Moreover, by
providing a virtual environment for simulation, DTs allow for
risk-free experimentation, where various treatment scenarios can
be tested and refined before actual clinical application. This not
only minimizes potential risks associated with trial-and-error
approaches but also contributes to significant cost reductions in
healthcare delivery.

The real-time monitoring capacity of DTs further enhances
their impact: by continuously updating the digital replicas with
new patient data, healthcare providers can anticipate and
respond to emerging health issues promptly, thereby reducing
the incidence of critical complications [7]. In the realm of
precision cardiology, for example, digital heart models have
been successfully employed to simulate interventions and guide
surgical planning, ultimately reducing procedure-related risks
and optimizing patient-specific treatment plans [8]. In addition,
DTs can predict the progression of diseases and recommend
preventive measures, thereby enabling timely interventions and
further enhancing patient outcomes[9]. Additionally, by
streamlining operational processes such as resource allocation
and predictive maintenance of medical devices, DTs directly
address the escalating healthcare costs and inefficiencies inherent
in traditional care delivery models [10].

1.1 Importance of digital twins in healthcare

DTs represent a paradigm shift in healthcare delivery and
medical research, offering virtual replicas of physical entities
that can be used for simulation, prediction, and optimization.
The importance of DTs in healthcare stems from several key
factors:

o Personalized medicine: DTs enable highly individualized
treatment approaches by creating patient-specific models that
account for unique physiological characteristics and medical
histories. These models integrate multi-omics data, clinical
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parameters, and lifestyle factors to create comprehensive
patient profiles that guide precision therapeutics and
interventions [4, 11, 12]. By capturing individual variability
in genes, environment, and lifestyle DTs facilitate the
realization of the P4 medicine paradigm;predictive,
preventive, personalized, and participatory healthcare [13].
Real-time monitoring: DT’s provide continuous monitoring
and analysis of patient health status, enabling early detection
of potential health issues and timely interventions. Advanced
DTs incorporate data from wearable sensors, implantable
devices, and ambient monitoring systems to create dynamic
models that evolve with the patient’s condition. This
continuous feedback loop allows for the detection of subtle
physiological ~ changes that might precede clinical
manifestations of disease by days or weeks, creating
opportunities for preemptive interventions [14-16].

Risk-free experimentation: DTs allow healthcare providers to
simulate different treatment scenarios without risking patient
safety, optimizing treatment plans before implementation
[17]. Clinicians can evaluate multiple therapeutic approaches,
drug dosages, and intervention timings on the digital replica
before applying them to the actual patient. This capability is
particularly ~ valuable in  complex cases involving
multimorbidity, where treatment interactions and compound
effects are difficult to predict. In surgical planning, DTs
enable surgeons to rehearse procedures on patient-specific
anatomical models, anticipate complications, and optimize
technical approaches, resulting in reduced operative times
and improved outcomes [18].

Cost reduction: By enabling virtual testing and optimization,
DTs can significantly reduce healthcare costs associated with
trial-and-error approaches in treatment. Economic analyses
suggest that implementation of DT technology could reduce
hospital readmission rates by up to 25% for certain chronic
conditions through improved treatment planning and patient
monitoring [19, 20]. Furthermore, DTs optimize resource
utilization by predicting patient flow, equipment needs, and
staffing thereby

inefficiencies. The long-term economic benefits extend to

requirements, reducing  operational
reduced disability costs, fewer complications, and shortened
hospital stays, collectively contributing to more sustainable
healthcare systems.

Enhanced decision support: DTs serve as sophisticated clinical
decision support systems that augment human expertise with
computational precision. By integrating machine learning
(ML) algorithms and causal inference models, DTs can
identify patterns and correlations in patient data that might
escape human observation. This capability transforms the
decision-making process from intuition-based to evidence-
driven, particularly in complex clinical scenarios where
multiple factors must be considered simultaneously [21, 22].
The transparent nature of well-designed DTs also allows
behind
recommendations, facilitating informed clinical judgment.

clinicians  to  understand the  reasoning

Longitudinal health management: DTs enable lifetime health
monitoring and management by maintaining a dynamic virtual
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representation of an individual’s health status across their
lifespan. This longitudinal perspective supports preventive
healthcare strategies by identifying risk trajectories and
intervention opportunities long before disease manifestation.
For chronic disease management, DTs provide a cohesive
framework that integrates episodic care events into a
continuous care model, enhancing treatment consistency and
long-term outcomes [23, 24].

1.2 Applications in healthcare

As shown in Figure 1, the applications of DTs in healthcare
span across various domains, as evidenced by the numerous
implementations throughout medical specialties:

o Cardiovascular applications: DTs have transformed cardiac
care through applications ranging from molecular-level drug
interaction studies to organ-level hemodynamic simulations.
For drug safety assessment, DTs can predict pro-arrhythmic
risks with remarkable concordance with clinical observations,
as demonstrated in studies evaluating hydroxychloroquine
and azithromycin [25]. Patient-specific cardiac DTs have

10.3389/fdgth.2025.1633539

shown clinical utility in guiding antiarrhythmic drug
selection, with studies demonstrating significantly lower
recurrence rates (40.9% vs. 54.1%) when treatment was
guided by virtual testing [26]. In hemodynamic monitoring,
the longitudinal hemodynamic mapping framework (LHMF)
has achieved unprecedented accuracy with error rates
between 0.0002%-0.004% for simulating hundreds of
heartbeats [27], while the Cardio Twin architecture provides
real-time electrocardiogram (ECG) monitoring with 85.77%
classification accuracy and 95.53% precision [28]. For surgical
applications, digital hearts have revolutionized procedures like
ventricular tachycardia ablation by incorporating tissue
characteristics into 3D models, achieving significant
reductions in ablation volumes while maintaining high
concordance with clinical outcomes [29].

Neurological applications: In neurology, DTs have enabled
unprecedented insights into disease progression and
treatment planning. Physics-based models integrating the
Fisher-Kolmogorov equation with anisotropic diffusion have
successfully simulated the spread of misfolded proteins across
the brain, capturing both spatial and temporal aspects of
neurodegenerative disease progression [30]. For multiple
sclerosis (MS), DTs have revealed that progressive brain

Neural System DT
e Brain and nervous
system modeling
and simulation
* Neurodegenerative
disease modeling

Respiratory System DT
e Lung modeling
and simulation
¢ Respiratory
monitoring

Cross-System DTs

e Surgical and
interventional systems

e Treatment optimization

e Medical education

e Healthcare
infrastructure

e Clinical operations

e Chronic condition
management

FIGURE 1

Digital twin models in this review. The illustration is created using BioRender.com.
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tissue loss begins on average 5-6 years before clinical symptom
onset [31]. Parkinson’s disease management has been enhanced
through DT-based Healthcare Systems achieving prediction
accuracy of 97.95% for earlier identification from remote

locations [32]. For brain tumors, hybrid approaches
combining Semi-Supervised Support Vector Machine (S3VM)
and improved AlexNet CNN have achieved feature

recognition accuracy of 92.52% with impressive segmentation
metrics [33], while personalized radiotherapy planning for
high-grade gliomas has demonstrated either increased tumor
control or significant reductions in radiation dose (16.7%)
while maintaining equivalent outcomes [34].

Respiratory system applications: DTs of the respiratory system
integrate multiple scales of analysis, from alveolar mechanics to
whole-organ function, enabling detailed simulation of lung
biomechanics in both health and disease states [35]. These
models facilitate personalized treatment strategies and
improved understanding of structure-function relationships.
For non-invasive monitoring, systems using ESP32 Wi-Fi
Channel State Information sensors have achieved 92.3%
accuracy in breathing rate estimation, while ML techniques
have demonstrated classification accuracies of 89.2% for
binary-class and 83.7% for multi-class respiratory pattern
recognition [36]. For lung cancer management, the DT-GPT
model forecasts clinical variables with high accuracy (R* of
0.98), while the Lung-DT framework employs YOLOvV8
neural networks to classify chest X-rays with exceptional
performance (96.8% accuracy, 92% precision) [37].

Metabolic and endocrine applications: DTs for diabetes
management have demonstrated remarkable clinical utility.
The Exercise Decision Support System (exDSS) for type 1
diabetes (T1D) provides

during exercise, increasing time in target glucose range from

personalized recommendations
80.2% to 92.3% and reducing hypoglycemia incidents from
15.1% to 5.1% during aerobic activities [38]. For type 2
diabetes, ML,
multiomic data, and knowledge graphs have enhanced

comprehensive  frameworks combining
predictive accuracy for disease trajectories and treatment
responses [39]. Multi-scale DTs for adiposity-driven insulin
resistance successfully integrate mechanistic models of
glucose metabolism, body composition, and cellular insulin
signaling to predict responses to dietary and pharmacological
interventions [40]. Specialized pediatric models, such as sex-
specific, personalized metabolic whole-body models for
newborns and infants, demonstrate strong agreement with
World Health Organization (WHO) growth standards while
providing insights into early-life metabolism and disease
progression [41].

Oncology applications: DTs have revolutionized cancer care
across multiple dimensions. For prostate cancer, ML-based
systems have achieved 96.25% accuracy in biochemical
[42], Al-based DTs of

pathologists have demonstrated comparable performance to

recurrence  prediction while
human experts in detecting cancer and estimating tumor
volume [43]. In head and neck cancers, DT technology

employing deep Q-learning has improved survival rates by
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3.73% and rates by 0.75% for

oropharyngeal squamous cell carcinoma [44], while AI-

reduced dysphagia

directed frameworks measuring soft tissue shift during
surgery have enabled precise volume measurements with
applications in frozen section management and improved
surgical precision [45]. The PRIMAGE project for pediatric
oncology integrates imaging biomarkers, clinical data, and
artificial intelligence (AI), achieving high accuracy in tumor
segmentation (Dice similarity coefficient of 0.997) while
reducing radiologist workload by 93% [46]. At the tumor
DTs
immune surveillance have revealed critical

microenvironment level, investigating mechanical
stresses and
insights into tumor behavior, invasive phenotypes, and
potential immunotherapy strategies [47, 48].

Cellular and molecular applications: At the cellular level, DTs
have enabled unprecedented insights into metabolic regulation
and cellular behavior. Perturbation prediction models simulate
cellular responses to drugs, gene knockouts, or metabolic
changes, accelerating research in drug discovery by enabling
in silico experiments that significantly reduce costs and
resource requirements [49, 50]. Advanced approaches include
differential equation-based dynamic models like Bicycle [51]
and Cellbox [52] that capture gene-regulatory networks and
cellular interactions, as well as deep learning models like
scGPT [53] that treat gene expression profiles as “sentences”
and individual genes as “tokens” to predict genetic
perturbation responses. For drug development, DTs have
demonstrated higher accuracy (89%) than traditional animal
(75%) in

cardiotoxicity [54], while comprehensive frameworks address

models predicting cardiac  pro-arrhythmic
drug resistance in cancer treatment by incorporating both
irreversible and reversible resistance mechanisms [55].

Clinical operations and healthcare infrastructure: DTs have
transformed healthcare delivery systems and operational
efficiency. Standardized frameworks compliant with ISO/IEEE
11073 standards have integrated health devices for population
monitoring with classification accuracy up to 96.85% [56].
DT

operations incorporate specialized twins for medical necessity

Comprehensive ecosystems for oncology clinical
evaluation, care navigation, and clinical history visualization,
streamlining workflows and enhancing decision-making [57].
Early Warning Systems leveraging DT technology have
reduced code blue incidents by 60% through predictive

analytics and early intervention [58]. For clinical trials,

innovations like ClinicalGAN create patient DTs that
outperform state-of-the-art approaches by 3%-4% in
generation quality metrics and demonstrate 5%-10%

improvement in patient drop-off prediction [16], while
TWIN-GPT establishes cross-dataset associations despite
limited data availability, boosting clinical trial outcome
prediction beyond previous approaches [59].

Surgical and interventional applications: DT technology has
revolutionized surgical planning and execution across
specialties. Novel digital-twin-enabled Internet of Medical
Things (IoMT) systems for telemedical surgical simulation

integrate mixed reality, 5G cloud computing, and deep
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learning techniques, achieving 92%-93% predictive accuracy
for complex surgical scenarios [60]. For minimally invasive
DTs of
incorporate stochastic Model Predictive Control enhanced by

approaches, magnetic medical microrobots
ML, demonstrating high precision in navigating complex
biological environments for targeted drug delivery [61].
Patient-specific, three-dimensional mixed-reality anatomical
models derived from CT or MRI data enable surgeons to
interact with highly accurate representations of anatomy,
improving understanding of complex structures and spatial
relationships while offering superior visualization compared

to conventional methods [62].

Table 1 and Figure 1 provide a comprehensive overview of the
DT applications across different healthcare domains and organs
discussed in this review. The table highlights key findings and

performance metrics from studies in cardiovascular,
neurological, respiratory, metabolic, hepatic, oncological,
cellular, and cross-system applications, demonstrating the

breadth and depth of DT technology in modern healthcare.

1.3 Our contributions

This review makes several significant contributions to the field:

o Comprehensive analysis: We provide a thorough examination
of current DT implementations across different physiological
levels, including molecular, cellular, organ, and whole-body
systems. Our analysis systematically categorizes existing
approaches based on their scale, complexity, and integration
capabilities, offering a structured taxonomy that clarifies the
current landscape of healthcare DTs. We specifically address
how different DT implementations address the critical

of fidelity,

providing a

requirements interoperability, and clinical

relevance, multidimensional  assessment
framework that goes beyond simple categorization.

o Methodological framework: We present a structured analysis
of various methods used in building and implementing DTs,
including data acquisition strategies, modeling approaches,
validation techniques, and deployment architectures. Our
framework  delineates the mathematical foundations

supporting different DT implementations, from statistical

learning algorithms to mechanistic modeling approaches. We
provide detailed assessment of computational requirements,
data privacy solutions, and integration protocols that enable
effective DT healthcare
settings. This methodological analysis serves as both an
field and a

reference for experienced researchers seeking to optimize

implementation across diverse

educational resource for newcomers to the

their DT development approaches.

o Critical evaluation: We offer detailed analysis of the
advantages and limitations of reviewed approaches, providing
an objective assessment of current technological capabilities
against clinical requirements. Our evaluation incorporates
multiple perspectives, including technical feasibility, clinical
utility, implementation challenges, and ethical considerations,
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providing a balanced view of the current state of the art. We
highlight specific gaps between theoretical capabilities and
practical implementations, identifying key bottlenecks in
computational efficiency, data availability, model validation,
and clinical workflow integration that must be addressed to
advance the field. This critical analysis extends to regulatory
considerations and standardization needs that will influence
the trajectory of DT adoption in healthcare settings.

o Future directions: We present a detailed roadmap for future
research in DT applications for various diseases, identifying
specific technological advances needed to overcome current
limitations. Our forward-looking analysis outlines emerging
opportunities in multimodal data integration, explainable Al,
federated
interaction design that will shape next-generation DTs. We

learning architectures, and human-computer
propose concrete research priorities for different disease
domains, considering their unique modeling challenges and
clinical impact potential.  Additionally, we outline
interdisciplinary collaboration models that can accelerate
progress

computational science, medicine, engineering, and ethics. The

by leveraging complementary expertise across

roadmap also addresses scalability considerations for

transitioning promising research prototypes to widely

deployed clinical tools.

In light of these expanding applications and technological
advancements, this review synthesizes the current landscape of
DTs in healthcare while providing a structured framework for
understanding their development and implementation. We begin
by examining DT applications across major physiological
systems—cardiovascular, neural, respiratory, metabolic and
endocrine, hepatic, and cellular—followed by cross-system
implementations that address broader clinical needs. For each
domain, we analyze the technological approaches, clinical
outcomes, and remaining challenges. We then explore the
methodological foundations of healthcare DTs, including data
collection strategies, modeling approaches (physics-based,
statistical, and Al-driven), and system integration techniques. By
critically evaluating the strengths and limitations of current
identify  key

technological barriers that must be addressed. Finally, we

implementations, we research gaps and
present a forward-looking perspective on the evolution of
healthcare DTs, outlining promising research directions and
emerging applications that will shape the future of personalized,
predictive medicine. Through this comprehensive analysis, we
aim to provide researchers, clinicians, and technology developers
with a roadmap for advancing DT technology toward its full
potential as a transformative force in healthcare.

2 Cardiovascular system digital twins

DTs have

revolutionized our approach to cardiac care through various

Recent advancements in cardiovascular

sophisticated applications. These developments span from

molecular-level ~drug interaction studies to organ-level

hemodynamic simulations, demonstrating the versatility of DT
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TABLE 1 Summary of DT applications across healthcare domains.

Application

Key findings/contributions

References

area

improvement in patient drop-off prediction.

Cardiovascular Drug safety assessment | DTs predict pro-arrhythmic risks with 89% accuracy, outperforming animal models (75%). Patient- [25, 26, 54, 63,
specific virtual drug testing reduced AF recurrence rates (40.9% vs 54.1%). 64]
Hemodynamic LHMF framework achieved error rates of 0.0002%-0.004% for simulating cardiac cycles. Cardio Twin [27, 28]
modeling architecture provided 85.77% classification accuracy with 95.53% precision.
Surgical applications DIFAT approach for VT ablation reduced volumes (1.87 cm® vs. 7.05 cm®) while maintaining 79% [29]
overlap with clinical targets.
Population studies Large-scale cardiac DTs (3,461 from UK Biobank) revealed sex-specific QRS differences explained by [65, 68]
anatomy. Sex-dependent drug classification achieved >89% accuracy for antiarrhythmic drugs.
Monitoring TwinCardio framework provides comprehensive cardiovascular monitoring through IoT integration with [66]
frameworks customized neural networks for disease classification.
Neurological Neurodegenerative Physics-based models simulate protein misfolding propagation. MS DTs revealed brain atrophy begins 5— [30-32, 69]
disease 6 years before symptoms. Parkinson’s DTHS achieved 97.95% prediction accuracy.
Brain tumor analysis Hybrid S3VM-AlexNet achieved 92.52% feature recognition accuracy. Personalized radiotherapy [33, 34]
planning reduced radiation dose by 16.7% while maintaining outcomes.
Early diagnosis DADD digital twin model achieved 88% accuracy in identifying CSF biomarker positivity and 87% [70]
accuracy in predicting clinical conversions using non-invasive EEG recordings.
Respiratory Lung modeling Multi-scale integration from alveolar to organ-level mechanics enabling detailed simulation of lung [35]
biomechanics.
Respiratory monitoring | ESP32 Wi-Fi sensors achieved 92.3% accuracy in breathing rate estimation. ML techniques demonstrated [36]
89.2% binary-class accuracy.
Metabolic & Diabetes management | exDSS increased time in target glucose range from 80.2% to 92.3% during exercise. Type 2 diabetes [38, 39, 71]
endocrine framework enhanced predictive accuracy through multiomic data integration.
Insulin resistance Multi-scale DTs integrated glucose metabolism, body composition, and cellular insulin signaling to [40]
predict intervention responses.
Pediatric metabolism | Sex-specific models for newborns and infants showed strong agreement with WHO growth standards. [41]
Hepatic Liver regeneration Mathematical mechanism-based model captured complex microarchitecture and cellular interactions [73]
during regeneration.
Real-time simulation | Thermodynamics-informed graph neural networks achieved liver response prediction in 1.65 ms with [74]
<0.15% position errors and <7% stress estimation errors.
Organ-on-chip DigiLoCS$ platform successfully predicted liver clearance for 32 drugs with superior performance [75]
compared to conventional models through comprehensive ODE-based modeling.
Oncology Prostate cancer ML-based system achieved 96.25% accuracy in biochemical recurrence prediction. Al-based DTs [42, 43]
performed comparably to human pathologists.
Lung cancer DT-GPT forecasted clinical variables with R? of 0.98. Lung-DT classified chest X-rays with 96.8% [37, 79]
accuracy and 92% precision.
Head & neck cancer Deep Q-learning improved survival rates by 3.73% and reduced dysphagia by 0.75% for OPSCC. AlI- [44, 45]
directed framework measured soft tissue shift during surgery.
Tumor DTs revealed insights into mechanical stresses, tumor behavior, and immune surveillance of [47, 48]
microenvironment micrometastases.
Radiation therapy Mechanistic multiscale prostate cancer model demonstrated sensitivity to key biological parameters for [78]
personalized radiation therapy optimization.
Specialized populations | Geriatric breast cancer tool achieved 0.81 AUC for prognostic clustering using AI and clinical-biological [81]
features.
Cellular & Perturbation prediction | Models like Bicycle and CellBox simulate cellular responses to drugs, gene knockouts, and metabolic [49-52, 107]
molecular changes, enabling in silico experiments.
Metabolic modeling Community-scale models for gut microbiome achieved strong correlations (r = 0.62-0.63) with clinical [82, 83]
health markers.
Molecular 3D partial differential equation models for normal and anomalous diffusion of extracellular vesicles [84-87]
communication achieved high accuracy in predicting biodistribution patterns and transport dynamics. DTs model
mitochondrial fission through biophysical interactions, identifying protein-binding interventions. Models
of endocytosis reveal how geometric instabilities drive vesicle formation.
Cross-system Surgical systems ToMT system for telemedical surgical simulation achieved 92%-93% predictive accuracy. DTs of magnetic [60, 61]
microrobots enhanced precision in complex environments.
Clinical operations Standardized frameworks achieved up to 96.85% classification accuracy. EWS reduced code blue [56-58]
incidents by 60%.
Clinical trials Clinical GAN outperformed state-of-the-art by 3%-4% in quality metrics and demonstrated 5%-10% [16, 95]

LLM integration

TWIN-GPT established cross-dataset associations for enhanced clinical trial predictions. ScFoundation
and scGPT achieved state-of-the-art performance in single-cell perturbation prediction. LLM-enabled
rare tumor DTs integrated 655 publications for personalized treatment plans.

[53, 59, 97, 98]
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technology in cardiology. The integration of high-performance
computing with biological modeling has enabled unprecedented
accuracy in predicting cardiac responses to various interventions.

2.1 Drug safety and arrhythmia assessment

Researchers developed a high-performance computational
framework for in-silico cardiac trials incorporating sex-specific
ion channel characteristics and phenotypic variability in 3D
heart models [25]. The framework assessed hydroxychloroquine
and azithromycin pro-arrhythmic risks, achieving 21.8% risk
prediction for hydroxychloroquine with remarkable clinical
The
simulations at cycle lengths of 600 ms and 400 ms, capturing

concordance. model incorporated electrophysiology
cardiotoxic responses within 24 h.

DT technology expanded this approach for cardiovascular
modeling and drug testing [63]. Hwang et al. demonstrated
virtual antiarrhythmic drug tests in atrial fibrillation patients
post-catheter ablation, showing lower recurrence rates (40.9% vs.
54.1%) with DT-guided therapy [26]. Virtual amiodarone testing
revealed AF recurrence rates of 20.8% in the effective group vs.
45.1% in the ineffective group (adjusted hazard ratio, 0.37
[0.14-0.98]) [64]. These studies demonstrate how patient-specific
DTs integrate cardiac imaging and electrophysiological data for
personalized arrhythmia management.

Advances in sex-specific drug classification have emerged
through comprehensive DT frameworks. Bai et al. developed an
Class 1III

antiarrhythmic drugs by integrating in vitro measurements, in

approach  for sex-specific identification of
silico models, and machine learning [65]. Simulating drug
effects on diverse cardiomyocyte populations (5,663 males and
6,184 females), they achieved high prediction accuracy (>89%)
using sex-dependent Support Vector Machine algorithms. The
study revealed gender differences attributed to lower IK1, INa,
and Ito currents in females, highlighting the importance of sex-

specific considerations in antiarrhythmic drug development.

2.2 Hemodynamic modeling and
monitoring

A significant breakthrough in hemodynamic modeling came
with the development of the LHMF ([27]. This framework
addresses three critical challenges: computational intractability of
explicit methods, boundary conditions reflecting varying activity
states, and accessibility of computing resources for clinical
translation. LHMF achieved unprecedented accuracy with error
rates between 0.0002%-0.004% when compared to explicit data
of 750 heartbeats. The introduction of LHMFC (clustering
approach) further optimized the framework by identifying
hemodynamically similar heartbeats, enabling the simulation of
4.5 million heartbeats while requiring only 1,160 representative
hemodynamic units. This advancement represents a significant
step toward creating comprehensive cardiovascular DTs capable

of long-term monitoring and prediction.
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The integration of edge computing with DT technology has
enabled
architecture [28] represents a significant advancement in this

real-time cardiac monitoring. The Cardio Twin
domain, achieving 85.77% accuracy in classifying ECG segments
with a precision of 95.53%. This system processes ECG signals
in approximately 4.8 ms, demonstrating its capability for real-
time analysis on edge devices. The framework’s success lies in
its ability to provide continuous monitoring while maintaining

data privacy and computational efficiency on edge devices.

2.3 Cardiovascular monitoring frameworks

The development of comprehensive monitoring frameworks
has advanced through the integration of IoT sensors with DT
technology. Iyer and Umadevi introduced the TwinCardio
framework, a novel reference architecture for DT-enabled smart
health monitoring specifically designed for cardiovascular
[66]. The

incorporates TwinNet, a customized neural network designed

disease detection and monitoring framework
for cardiovascular disease classification and prediction, enabling
continuous data acquisition, simulation, and evaluation while
This
approach facilitates integration between the patient’s physical

maintaining  security  protocols. human-in-the-loop
world and the medical virtual world, addressing the alarming
30% increase in heart attack cases among individuals aged 25-
44 between 2020 and 2023 through more precise and timely

healthcare delivery.

2.4 Heart failure and surgery

Novel approaches to treating heart failure with preserved
ejection fraction (HFpEF) have emerged through computational
[67]. The
relationship between left ventricular (LV) function and ascending

modeling research investigated the mechanical
aorta elasticity, demonstrating that releasing the LV apex from
pericardial confinement could significantly improve cardiac
function. The simulations revealed impressive improvements in
various cardiac parameters: longitudinal strain increased from
—4.8% to —8.2%, radial strain from 18.5% to 22.4%, and
circumferential strain from —14.2% to —16.5%, while reducing
average myofiber stress by 18%. These findings suggest promising
new therapeutic approaches for HFpEF treatment.

Personalized digital heart technologies have transformed
surgical planning, particularly in treating complex arrhythmias.
The digital-heart identification of fat-based ablation targeting
(DIFAT)

tachycardia (VT) ablation by incorporating infiltrating adipose

technology [29] has revolutionized ventricular
tissue distribution in 3D models. This technology achieved
significant reductions in ablation volumes (mean 1.87 cm® vs
7.05cm® in

concordance with

clinical procedures) while maintaining high
The

remarkable accuracy in predicting critical ablation sites, with

clinical outcomes. system showed

79% overlap between predicted targets and actual clinical
ablation locations.
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2.5 Population-scale cardiac digital twins

Large-scale population studies have leveraged DT technology to
uncover fundamental insights into cardiac electrophysiology and its
relationship with demographics and disease states. Qian et al.
constructed an unprecedented cohort of 3,461 cardiac DTs from
the UK Biobank plus 359 from an ischemic heart disease cohort
using cardiac magnetic resonance images and electrocardiograms
[68]. This population-scale approach revealed that sex-specific
differences in QRS duration were fully explained by myocardial
anatomy while myocardial conduction velocity remained similar
across sexes but changed with age and obesity, indicating
myocardial tissue remodeling. The study demonstrated that
longer QTc intervals in obese females were attributed to larger
delayed rectifier potassium conductance, providing mechanistic
insights into sex-specific cardiac electrophysiology that would be
impossible to obtain through traditional clinical studies alone.

3 Neural system digital twins

Significant advances have been made in understanding
neurodegenerative disease progression through physics-based
modeling. The integration of sophisticated imaging analysis with
DT technology has revolutionized our understanding of neural
system dynamics and pathologies, particularly in the context of
protein misfolding diseases.

3.1 Neurodegenerative disease modeling

The Fisher-Kolmogorov equation with anisotropic diffusion
successfully simulates misfolded protein spread across the brain in
Alzheimer’s, Parkinson’s, and ALS [30]. This model replicates
characteristic ~ progression patterns from histological and
biomarker data, supporting the prion-like hypothesis of protein
propagation. Recent DT advances include Cen et al’s approach
for estimating disease-specific brain atrophy onset in multiple
sclerosis, revealing progressive tissue loss begins 5-6 years before
[31]. DTs
neurological condition detection and management. Abirami and
Karthikeyan’s DT-based Healthcare System (DTHS) for
Parkinson’s disease achieved 97.95% and 91.48% prediction

neighbor

clinical ~symptoms demonstrate promise for

accuracy using optimized fuzzy-based k-nearest
classifiers [32]. Allen et al. developed a variational autoencoder-
based DT model for ischemic stroke patients, forecasting clinical
trajectories with simulated data virtually indistinguishable from
real patient data [69]. These advances provide capabilities for
personalized monitoring, earlier detection, and predictive modeling.

Breakthrough developments in early-stage neurodegenerative
disease detection have emerged through integrating non-invasive
recordings with DT technology. Amato et al. introduced the
Digital Alzheimer’s Disease Diagnosis (DADD) model, deriving
personalized AD biomarkers from electroencephalographic
recordings [70]. In 124 participants with varying cognitive
decline, digital biomarkers improved classification accuracy by
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7% over standard EEG biomarkers, identified CSF biomarker-
positive patients with 88% accuracy (vs. 58% for standard EEG),
and predicted cognitive decline conversions with 87% accuracy.
This approach is valuable for preclinical patients excluded from
invasive procedures, potentially revolutionizing early-stage AD
diagnosis through digital twins with non-invasive recordings.

3.2 Brain tumor analysis

Advanced imaging analysis has been revolutionized through
the integration of DT technology with sophisticated ML
approaches [33]. The combination of S3VM and improved
AlexNet CNN achieved a feature recognition accuracy of
92.52%, with impressive segmentation metrics including a
Jaccard coefficient of 79.55% and positive predictive value of
90.43%. This hybrid approach
challenges of processing large volumes of unlabeled brain

effectively addresses the

imaging data while maintaining high computational efficiency.
The system demonstrated superior performance in both binary-
class and multi-class classification tasks,
traditional ML methods by at least 2.76%.

Recent advances have expanded DT applications to treatment

outperforming

optimization for high-grade gliomas. Chaudhuri et al. developed a
data-driven predictive DT methodology for optimal risk-aware
clinical decision-making in radiotherapy [34]. Their approach
integrates mechanistic modeling with Bayesian calibration to
assimilate patient-specific magnetic resonance imaging data,
creating personalized DTs that account for uncertainties in tumor
biology.

By solving multi-objective, risk-based optimization

problems, the framework generates patient-specific optimal

radiotherapy regimens that balance the competing clinical
objectives of maximizing tumor control while minimizing toxicity.
In their in silico cohort of 100 virtual patients, personalized
treatments achieved either a median increase in tumor time to
progression of approximately six days using the same total
radiation dose as standard-of-care, or a significant median
reduction in radiation dose by 16.7% (10 Gy) while maintaining
equivalent tumor control. This framework demonstrates how DTs
can enable anticipatory personalized treatment strategies that adapt
to the heterogeneous response patterns observed in high-grade
gliomas, potentially improving outcomes for patients who respond
poorly to standardized approaches.

4 Respiratory system digital twins
4.1 Lung modeling

Computational lung modeling has emerged as a sophisticated
tool for understanding respiratory mechanics and disease
progression [35]. These models integrate multiple scales of
analysis, from alveolar mechanics to whole-organ function,
incorporating compartmental models, discrete micromechanical
models, and continuum representations. The approach enables
detailed simulation of lung biomechanics in both health and
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disease states, facilitating personalized treatment strategies and
improved understanding of structure-function relationships. The
models have demonstrated particular success in simulating
various aspects of lung function, including airway resistance,
alveolar deformation, and ventilation heterogeneity.

4.2 Respiratory monitoring

Recent innovations in respiratory monitoring have introduced
novel statistical approaches for data enhancement [36]. Using
ESP32 wi-fi channel state information sensors for unobtrusive
monitoring, researchers achieved 92.3% accuracy in breathing
The
particularly bagged
demonstrated impressive classification accuracies of 89.2% for

rate estimation. implementation of sophisticated ML

techniques, trees ensemble algorithm,
binary-class and 83.7% for multi-class respiratory pattern
recognition. This approach represents a significant advancement
in non-invasive

respiratory monitoring, combining high

accuracy with practical applicability.

5 Metabolic and endocrine system
digital twins

5.1 Diabetes management

Advanced DT technology has been developed for TID
management through complementary approaches. The Exercise
Decision Support System (exDSS) [38] provides personalized
recommendations for glucose management during exercise,
demonstrating significant improvements in maintaining target
glucose ranges (increasing from 80.2% to 92.3% during aerobic
exercise). The system showed particular effectiveness in reducing
hypoglycemia incidents from 15.1% to 5.1% during aerobic
activities. Additionally, statistical virtual patient populations [71]
have been created to evaluate artificial pancreas control

algorithms, incorporating both single-hormone and dual-
hormone models validated against clinical data from T1D
patients. These models demonstrated robust performance across
diverse patient characteristics and treatment scenarios.

A comprehensive framework for Type 2 Diabetes DTs [39]
combines ML, multiomic data, and knowledge graphs to
improve  predictive accuracy and disease mechanism
interpretation. The system leverages the Arivale dataset and
SPOKE knowledge engine to enable personalized predictions of
disease trajectories and treatment responses. The integration of
proteomic and metabolomic data significantly enhanced the
model’s predictive capabilities, particularly for key clinical

markers like HbAlc and eGFR.

5.2 Insulin resistance

A multi-scale DT for adiposity-driven insulin resistance [40]
integrates mechanistic models of glucose metabolism, body
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composition, and cellular insulin signaling. This comprehensive
framework successfully simulates and predicts responses to
dietary and pharmacological interventions, providing insights
into the progression of insulin resistance and supporting
personalized treatment strategies. The model effectively captures
both short-term responses to meals and long-term adaptations
to dietary changes.

5.3 Metabolic response

Advanced DT technology has been developed to predict
metabolic responses to various dietary compositions and fasting
schedules [72]. The system employs a mechanistic, multi-scale
model encompassing both intracellular processes and organ-
organ crosstalk, particularly focusing on liver function and
protein metabolism. This model enables personalized predictions
based on individual demographics and metabolic history,
demonstrating strong validation against experimental data for
both fed and fasted states.

5.4 Pediatric metabolism

Sex-specific, personalized metabolic whole-body models
(WBMs) have been developed for newborns and infants [41].
These “infant-WBMSs” integrate organ-specific growth, energy
demands, and metabolic processes to provide insights into
infant development and predict biomarkers for inherited
metabolic diseases. The models demonstrate strong agreement
with WHO growth standards and enable the simulation of
dietary interventions, offering a valuable tool for understanding

early-life metabolism and disease progression.

6 Hepatic system digital twins

Recent advances in hepatic DT technology have encompassed
both
simulations, representing significant progress in understanding

regeneration modeling and predictive organ-on-chip

liver function and drug metabolism.

6.1 Liver regeneration modeling

Liver regeneration modeling has seen significant advancement
[73]. The
mathematical mechanism-based model provides unprecedented

through the development of sophisticated DTs

insight into tissue microarchitecture and cellular interactions
during regeneration. This approach enables the testing of
various hypotheses about cell-cell interactions, quantifying
regeneration dynamics through multiple parameters including
dead cell area size, hepatocyte density, and spatial-temporal
profiles of different cell types. The model successfully captures
the complex interplay between various cell types, including
Kupffer cells and hepatic stellate cells, in the regenerative
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process. Its ability to identify gaps in mechanistic relationships has

proven valuable for guiding experimental design and

understanding complex biological processes.

6.2 Real-time hepatic tissue simulation

Cutting-edge developments in real-time liver simulation have

emerged through thermodynamics-informed graph neural
networks. Tesan et al. presented a novel hybrid model that
integrates the geometric bias of graph neural networks with
physical constraints derived from metriplectic structure
implementation [74]. This approach enables simulation of
hepatic tissue with dissipative properties while maintaining
remarkable generalization capability for previously unseen
anatomies. The model predicts human liver responses to
traction and compression loads in as little as 1.65 ms in optimal
configurations, achieving relative position errors below 0.15%
and stress tensor estimations with relative errors under 7%. The
integration of thermodynamic principles ensures that the
network satisfies physical laws during inference, making this
approach particularly relevant for precision medicine and haptic

rendering applications.

6.3 Organ-on-chip digital twins

Revolutionary advances in predictive organ-on-chip simulations
have been achieved through the DigiLoCS platform. Aravindakshan
et al. developed a comprehensive digital twin model of liver-on-chip
systems that closely mimics human liver clearance functionality [75].
Using compartmental physiological models based on ordinary
differential equations, the system estimates pharmacokinetic
parameters related to on-chip liver clearance for drug development
applications. The approach successfully predicted in vitro liver
clearance for 32 drugs and demonstrated superior performance
compared to conventional models in predicting intrinsic liver
clearance. By establishing connections between hardware chip
structure and advanced biological mapping, DigiLoCS enables
differentiation between active biological processes (metabolism)
(permeability  and

compound-specific

and passive  processes partitioning),

incorporating  detailed characteristics and
hardware-specific data. This represents the largest cross-organ-on-
chip platform investigation to date, systematically analyzing and
predicting human clearance values to reduce time, cost, and

patient burden in drug development.

7 Cancer and tumor digital twins
7.1 Cancer-specific models

Recent advances in cancer-specific DTs have demonstrated
significant progress in predicting treatment responses and

optimizing therapeutic strategies. [76] developed a systems-based
DT approach for characterizing dose-response relationships in
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non-Hodgkin  lymphoma, using  quantitative  systems
pharmacology (QSP) to generate individualized virtual patients.
This approach enabled the simulation of patient responses to
varying dosing regimens, accounting for biological variability
and competitive binding effects. In the domain of multi-organ
DTs, significant progress has been made in cancer progression
monitoring [77]. The implementation of natural language
processing for analyzing structured radiology reports has
enabled sophisticated tracking of metastatic disease across
multiple organs, showing superior performance in detecting and
monitoring cancer progression, particularly in the lungs, liver,
and adrenal glands. The integration of consecutive report
analysis has significantly improved detection accuracy, with
models showing enhanced predictive power for identifying

progression patterns across different organ systems.

7.2 Prostate cancer

The development of DTs for prostate cancer has focused on
two main areas: prediction and pathology. An ML-based DT
system was developed for predicting prostate cancer progression
[42], achieving 96.25% accuracy in biochemical recurrence
The
demonstrated particularly high performance when using all
data,
improvement over traditional methods. Complementing this

prediction using data from 404 patients. system

available  clinical showing approximately a 4%
work, a critical evaluation of AI as a DT of pathologists [43]
demonstrated comparable performance to human pathologists in
detecting prostate cancer and estimating tumor volume, though
noting challenges in grade discordance for prostatectomy
specimens. The study achieved significant improvements in
diagnosis efficiency while maintaining high accuracy levels
comparable to human experts.

Advanced mechanistic modeling approaches have enhanced
prostate  cancer treatment through comprehensive DT
frameworks. Stamatakos et al. developed a mechanistic multiscale
model of clinical prostate cancer response to external radiation
therapy as the core of a digital virtual twin [78]. This discrete
entity and discrete event simulation approach incorporates
patient-specific cancer biology in terms of radio resistance and
individual patient preferences. The model demonstrated particular
sensitivity to critical parameters including apoptosis rates of living
stem and progenitor cells, the fraction of dormant cells reentering
cell cycle, and the fraction of stem cells performing symmetric
division. Following technical verification and sensitivity analysis,
the model showed qualitative agreement with experimental and
clinical knowledge, establishing the foundation for clinical
validation and eventual certification for clinical translation as part

of the envisaged OncoSimulator system.

7.3 Lung cancer

DT technology has demonstrated remarkable advancements in
lung cancer management. The DT-GPT model integrates
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electronic health record data to forecast clinical variables for non-
small cell lung cancer patients with high accuracy (R? of 0.98) and
a 3.4% improvement in mean absolute error, effectively managing
missing data while enabling zero-shot forecasting capabilities [79].
this the Lung-DT
framework creates comprehensive digital representations of

Complementing trajectory modeling,
respiratory health by integrating IoT sensors with AI algorithms,
specifically employing the YOLOvV8 neural network to classify
chest X-rays into five distinct categories with exceptional
performance metrics (96.8% accuracy, 92% precision, 97% recall,
and 94% Fl-score)
monitoring through continuous data acquisition, automated

[37]. This framework enables real-time

objective assessments of chest X-rays, and comprehensive
correlation of multiple data streams, representing a significant
advancement in thoracic healthcare delivery with potential
benefits for early diagnosis, enhanced patient outcomes, reduced
healthcare costs, and optimized resource allocation.

7.4 Head and neck cancer

DT technology has been applied to optimize treatment
decisions for oropharyngeal squamous cell carcinoma (OPSCC)
[44]. The system employs deep Q-learning with a patient-
physician DT dyad, trained on data from 536 OPSCC patients,
improving survival rates by 3.73% and reducing dysphagia rates
by 0.75% while achieving an average prediction accuracy of 87%
for treatment outcomes. Recent innovations by Minnle et al.
have extended DT applications to surgical planning and
intraoperative guidance through an Al-directed framework that
measures soft tissue shift during head and neck surgery [45].
Using a pig head cadaver model with 104 soft tissue resections,
they created DTs of both
corresponding resection cavities using two different 3D scanners

removed tissue pieces and

(HoloLens 2 and ArtecEva), demonstrating the ability to

by
temperature changes, with resection cavities showing a volume

simulate and measure tissue deformation inducing
increase of 3.1uL or 9.09% upon heating. This approach
addresses the previously unsolved problem of soft tissue shift
detection during surgery, with potential applications in frozen
section management and improved surgical precision, while
validating that despite different point cloud densities between
scanning devices, both provided comparable volume estimates

suitable for clinical applications.

7.5 Pediatric oncology

The PRIMAGE project [46] introduces an innovative
approach to pediatric cancer diagnosis and prognosis. This
framework integrates imaging biomarkers, clinical data, and Al
specifically targeting neuroblastoma and diffuse intrinsic pontine
The achieved high
segmentation with a Dice similarity coefficient of 0.997,
The

framework’s success lies in its comprehensive approach to data

glioma. system accuracy in tumor

significantly reducing radiologist workload by 93%.
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integration and its ability to provide actionable insights for
clinical decision-making.

7.6 Cancer metabolic monitoring

Patient-specific DTs have been developed for monitoring
metabolic biomarkers in cancer patients [80]. Using Long Short-
Term Memory (LSTM) recurrent neural networks, these models
achieve relative errors below 10% for key biomarkers, enabling
both retrospective analysis and short-term forecasting of patient
health states. The system demonstrates successful transfer
learning capabilities, allowing efficient adaptation to new
patients while maintaining prediction accuracy. The framework’s
ability to track multiple metabolic indices simultaneously makes
it a valuable tool for comprehensive patient monitoring.

7.7 Tumor microenvironment

Understanding the mechanical and immunological aspects of
tumor development has emerged as a crucial area in DT
research. Loewke et al. [47] introduced a DT framework for
Cellular Capsule Technology that investigates how mechanical
stresses influence tumor growth and cellular dynamics, with
their multiphase poro-mechanical model revealing critical
insights into how capsule constraints affect tumor behavior and
while

invasive phenotypes successfully capturing complex

interactions between tumor cells, interstitial fluid, and the

extracellular ~ matrix. = Complementing  this  mechanical
perspective, Rocha et al. [48] developed a multiscale
mathematical model to study immune surveillance of

micrometastases in epithelial tissues, generating over 100,000
virtual patient trajectories that recapitulated diverse clinical
scenarios including uncontrolled growth, partial response, and
complete immune response to tumor growth. Their work on
cancer patient DTs (CPDTs) identified key parameters affecting
simulated immunosurveillance. It also highlighted significant
challenges in the field, including uncertainties in immune
responses, unreliable patient stratification, and unpredictable
personalized treatment outcomes. However, they demonstrated
that patient-specific models can suggest strategies to increase the
control of clinically undetectable micrometastases even without
complete parameter certainty.

7.8 Geriatric and rare cancer applications

DT technology has expanded to specialized oncological
populations. Heudel et al. developed a prognostic tool for
geriatric breast cancer patients using AI and clinical-biological
[81]. aged 70+ with
HER2-negative early-stage breast cancer, their machine learning
approach achieved AUC of 0.81,
traditional models.

features Analyzing 793 women

scores outperforming
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8 Cellular and molecular digital twins

Significant advances in metabolic modeling have emerged
through DT applications, particularly in understanding complex
biological systems and their interactions at the cellular level.
These developments have enabled unprecedented insights into
metabolic regulation and cellular behavior.

8.1 Metabolic modeling
Researchers developed microbial community-scale metabolic

short-chain fatty acid
production in the human gut, demonstrating strong correlations

models for predicting personalized
with clinical health markers and enabling the design of
personalized interventions [82]. The models achieved significant
predictive accuracy, with Pearson correlations of r = 0.62 for
butyrate and r = 0.63 for propionate production. At the genome
scale, [83] introduced a comprehensive method for modeling
metabolism and gene product expression, successfully integrating
with
processes. This approach provided a unified framework for

biochemical reactions transcription and  translation

understanding cellular physiology at multiple scales.

8.2 Drug development

DTs have significantly advanced our understanding of drug
Authors in [54]
demonstrated that human in silico drug trials achieve higher
(75%) in
predicting cardiac pro-arrhythmic cardiotoxicity. Recent work

responses and resistance mechanisms.

accuracy (89%) than traditional animal models
by [55] has addressed the challenge of drug resistance in cancer
treatment by developing a comprehensive framework that
both
mechanisms, demonstrating improved patient outcomes through

incorporates irreversible and reversible resistance

optimized treatment strategies.

8.3 Molecular communication

Advances in molecular communication and drug delivery have
been significantly propelled by innovative modeling approaches.
For example, Khoshfekr Rudsari et al. [84, 85] developed three-
dimensional partial differential equation models to characterize
both normal and anomalous diffusion of extracellular vesicles
(EVs) within the extracellular matrix. By incorporating matrix-
specific properties, these models accurately predicted EV
biodistribution patterns and transport dynamics, particularly
within cardiac tissue. Building on this foundation, recent DT-
based studies have progressed from organ- and tissue-level
simulations to modeling cellular and subcellular processes,
particularly those governing cell-cell and cell-microenvironment
that Notably,
Irajizad et al. [86] modeled mitochondrial fission by capturing

interactions modulate therapeutic response.
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the biophysical interactions between lipids and proteins,
enabling detailed insights into the division mechanisms of
mitochondria and identifying protein-binding interventions
capable of disrupting this process. Similarly, DT models of
endocytosis have elucidated how geometric instabilities emerging
during the cell cycle drive vesicle formation, and how these
instabilities can be regulated through targeted modulation of

protein interactions [87].

8.4 Genetic dynamics

The role of genetic dynamics in treatment optimization has
been explored through sophisticated modeling approaches.
Authors in [88] investigated how genetic dynamics and single-
cell heterogeneity impact personalized medicine strategies for
cancer. Their work demonstrated that accounting for tumor
evolution and genetic diversity can significantly improve
treatment outcomes, particularly in the context of drug

resistance development.

8.5 Perturbation prediction modeling

DTs of cells are virtual models designed to simulate the
behavior and function of biological cells. A key subset of these
DTs, commonly referred to as in silico prediction models,
focuses on predicting cellular responses, often measured by gene
expressions or protein expressions, to perturbations such as
drugs, gene knockouts, or metabolic changes [89, 90]. These
models play an important role in accelerating research in drug
discovery and development by enabling in silico experiments
[49], significantly reducing costs and saving valuable resources
typically required for in vitro experiments [50].

Figure 2 outlines the construction and purpose of a cell DT for
perturbation modeling. A large number of perturbations are
performed in vitro (in a wet lab) and cellular responses
measured (Figure 2a). These experiments are expensive to run,
requiring substantial time and financial resources. The in vitro
response data is used to construct a DT of the cell, also known
as an in silico model. A researcher may then use the DT to
predict cellular responses for some new perturbation, which has
not be tested in vitro (Figure 2b). The twin predicts a response
to this combination (Figure 2c), eliminating the need to run
further expensive in vitro experiments.

9 Cross-system applications
9.1 Surgical and interventional systems

A novel DT-enabled IoMT system [60] has been developed for
telemedical surgical simulation. The system integrates mixed
reality, 5G cloud computing, and robust auxiliary classifier
generative adversarial networks (rAC-GAN) to address complex
surgical scenarios, achieving 92%-93% predictive accuracy. The

frontiersin.org



Khoshfekr Rudsari et al.

10.3389/fdgth.2025.1633539

a) In Vitro Perturbation Data

b) New Perturbation

Drug 1
+
Drug 3

FIGURE 2

Digital Twin
construction

Digital Twin of Cell

Outline of digital twin of cells for perturbation prediction modeling. (a) In vitro drug perturbation data provide baseline response profiles. (b) A new
perturbation is introduced to the digital twin model. (c) The digital twin predicts the resulting profile response in silico.

c) Digital Twin Prediction
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framework demonstrated particular success in lung cancer cases
complicated by pulmonary embolism, utilizing advanced deep
learning techniques for real-time surgical simulation and
decision support.

DT technology has been applied to magnetic medical
microrobots [61], incorporating stochastic model predictive
control enhanced by ML. The system demonstrates high precision
in navigating complex biological environments, with applications
in targeted drug delivery and minimally invasive surgeries. The
integration of Kalman filtering and advanced control strategies
enables robust performance even in noisy environments.

9.2 Treatment optimization

An in-silico model has been developed to analyze cytotoxic
drug administration to solid tumors [91]. This DT incorporates
multiple biological processes, including tumor growth, blood
vessel development, and drug transport mechanisms. The model
revealed significant insights into how drug binding affinity and
blood vessel permeability influence treatment efficacy, with
high-affinity drugs showing consistent effectiveness regardless of
administration timing.

DTs have been developed to optimize transdermal fentanyl
therapy for chronic pain management [92]. This individualized
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approach addresses patient variability in treatment response,
leading to a 16% decrease in pain intensity and a 23h
increase in median pain-free time over 72h periods. The
model successfully integrated pharmacokinetics with patient-
specific  physiological to enable

parameters precise

dosing strategies.

9.3 Medical education

A DT application for critical care education [93] has been
developed to simulate patient conditions and responses during
the crucial first six hours of critical illness. The system
demonstrates good usability with a median System Usability
Scale score of 70, providing a realistic platform for training
medical residents in complex clinical scenarios.

Patient-specific, three-dimensional mixed-reality anatomical
models [62] have been developed for surgical training and
intraoperative guidance. These models, derived from CT or MRI
data,
representations

enable surgeons to interact with highly accurate

of anatomy, improving understanding of
complex structures and spatial relationships. The technology
demonstrates significant advantages over traditional 3D-printed
models, particularly in terms of cost-effectiveness and flexibility.

The process requires 20-30h for model creation but offers
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superior visualization and manipulation capabilities compared to
conventional methods.

Mixed-reality anatomical models serve dual purposes in
surgical education and training, enabling preoperative rehearsal
and intraoperative guidance, while also facilitating remote
teaching and collaboration through mixed-reality interfaces. The
technology has shown particular value in complex surgical
planning and training scenarios.

9.4 Healthcare infrastructure

An ISO/IEEE 11073-standardized framework [56] has been
developed for health and well-being in smart cities. This system
integrates compliant and non-compliant health devices through
an X73 wrapper module, achieving classification accuracy up to
96.85% in activity tracking. The framework demonstrates
significant potential for improving population health monitoring
and management in urban environments.

Cloud-based design and additive manufacturing approaches
[94]. This DT
and production of
custom ankle-foot

have been developed for custom orthoses
the
devices,

application  streamlines design

personalized medical such as
orthoses, spinal braces, or wrist supports by integrating cloud
computing and 3D printing technologies. The system has shown
particular success in reducing production time and costs while

maintaining high accuracy in custom device creation.

9.5 Clinical trials digital twins

Recent innovations in DT technology are transforming
clinical trials through advanced modeling approaches that
address critical challenges in patient recruitment, retention,
Chandra
Clinical GAN, a generative adversarial network that creates

and outcome prediction. et al. introduced

patient DTs for clinical trial monitoring by enabling patient-
level personalized generation using meta-data for conditional
generation [16]. Validated on two Alzheimer’s clinical trial

Clinical GAN
approaches by 3%-4% across generation quality metrics and

datasets, outperformed state-of-the-art

demonstrated 5%-10% improvement in mean absolute
percentage error (MAPE) scores for patient drop-off
prediction, offering powerful capabilities for proactive

monitoring and improved retention.

These technological advancements align with broader
industry trends, as Moingeon et al. highlight how virtual
patients and DTs are increasingly being used to simulate in
silico the efficacy and safety of drug candidates and medical
devices [95]. Their work emphasizes the growing acceptance
of digital evidence by regulators and how predictive Al-based
models trial while

can support

accelerating drug and medical device development, pointing

confirmatory design

toward a future where computational models complement

traditional clinical trials to improve efficiency, reduce costs,
and enhance patient safety.
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9.6 Clinical operations and infrastructure

DT ecosystems for clinical operations have transformed
that
streamline workflows and enhance decision-making. These

healthcare delivery through integrated frameworks
systems incorporate specialized twins for medical necessity
evaluation, care navigation, and clinical history visualization,
demonstrating particular success in oncology where they
optimize treatment pathways and improve care coordination
[57]. Standardized frameworks compliant with ISO/IEEE 11073
standards have enabled comprehensive health monitoring by
integrating diverse health devices and data sources, achieving
classification accuracy up to 96.85% while ensuring robust data
collection and analysis cycles [56]. These implementations
provide essential infrastructure for systematic health monitoring
and clinical decision support.

Early Warning Systems leveraging DT technology have
significantly improved patient safety outcomes, achieving a 60%
reduction in code blue incidents through predictive analytics
that identify early signs of patient deterioration [58]. This
proactive approach has demonstrated substantial improvements
in response times and patient outcomes through timely
intervention strategies.

9.7 Chronic condition management

DT
management [96], utilizing AI techniques to enhance clinical

technology has been applied to chronic wound

decision support and predict healing trajectories. The system
employs generative adversarial networks for visual prediction,
achieving approximately 74% accuracy in tissue distribution
predictions. The framework demonstrates particular success in
providing personalized treatment recommendations based on
wound characteristics and healing patterns.

Advanced monitoring systems using DTs [80] enable tracking
and forecasting of patient-specific metabolic indices. These
systems achieve relative errors below 10% for key biomarkers
and demonstrate successful transfer learning capabilities. The
technology has shown significant potential in personalized
medicine applications, particularly in monitoring and managing

chronic metabolic conditions.

9.8 Large language model integration in
digital twins

The integration of Large Language Models (LLMs) into digital
twin architectures enables sophisticated cross-dataset associations
and knowledge synthesis from heterogeneous data sources. Wang
et al. developed TWIN-GPT, an LLM-based approach that
limited data
availability, generating personalized DTs that enhance clinical

establishes cross-dataset associations despite
trial outcome prediction while producing high-fidelity trial data

in data-scarce situations [59]. This capability addresses critical
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limitations in precision medicine where rare conditions often lack
sufficient training data, enabling transfer learning across diverse
clinical contexts to inform patient-specific predictions even
when direct observational data remain sparse.

At the cellular level, LLM applications have revolutionized
perturbation prediction and single-cell analysis. ScFoundation
features read-depth-aware pre-training for handling sparsity in
single-cell RNA sequencing data [97], while scGPT treats gene
expression profiles as “sentences” and genes as “tokens,”
achieving state-of-the-art performance in predicting genetic
perturbation responses and multi-omic integration [53]. For rare
malignancies, Lammert et al. developed LLM-enabled digital
twins for metastatic uterine carcinosarcoma by integrating
clinical data from 21 patients with 655 publications, identifying
treatment options missed by traditional analysis and facilitating
a shift from organ-based to biology-based tumor definitions [98].

10 Methods in building digital twins
10.1 Data collection and integration

DT development relies on diverse data sources including
sensor-based monitoring, medical imaging, and EHR, enhanced
by real-time data streaming for dynamic updates and predictive
capabilities. IoT devices enable early detection of potential
problems through continuous physiological monitoring [99].

Multiple sensor types collect real-time patient data: biometric
(heart
temperature), movement sensors track activity and gait patterns,

sensors measure vital signs rate, blood pressure,
electrophysiological sensors monitor electrical activity like
Electroencephalography (EEG) and electromyography (EMG),
and chemical sensors detect biomarkers such as glucose levels
[100]. Medical imaging scans including magnetic resonance
imaging (MRI), computed tomography (CT), and ultrasound
provide detailed anatomical information, requiring sophisticated
image processing algorithms, segmentation techniques, and ML
models for
models [101].

EHR integration presents both opportunities and challenges,

integration into patient-specific computational

providing valuable repositories of patient histories, laboratory
results, medication records, and clinical notes, while facing issues
of data heterogeneity, interoperability, and privacy concerns.
Standardized protocols such as Fast Healthcare Interoperability
Resources (FHIR) [102] and Health Level Seven (HL7) enable
data integration across healthcare systems [103]. Real-time data
streaming employs edge computing, cloud-based analytics, and
federated learning for rapid processing and synchronization, with
frameworks including Apache Kafka and Message Queuing
Telemetry Transport (MQTT) protocols enabling
handling of high-velocity medical data streams [104].
This integrated approach forms the foundation of healthcare DT

efficient

technology, with continued evolution in Al, data interoperability, and
secure data-sharing frameworks driving unprecedented precision in
personalized medicine and predictive healthcare.

Frontiers in Digital Health

15

10.3389/fdgth.2025.1633539

10.2 Perturbation datasets for perturbation
cell prediction modeling

Recently, researchers have generated datasets suitable for
training in silico prediction models. The LINCS platform [105]
provides 1,000 measured gene expression profiles for 71 cell
lines and over 25,000 perturbations, including small molecule
compounds, gene knockdowns or overexpressions, and biologics.
Approximately 10% of the possible 1.75 million perturbation
experiments were conducted, leaving significant room for
predictive models to estimate cellular responses for the vast
number of untested cell line-perturbation combinations.

[106]
perturbation dataset suitable for training predictive models. The

A 2023 Kaggle competition introduced another

dataset originates from a novel single-cell perturbation
experiment conducted on peripheral blood mononuclear cells
(PBMCs). It includes 18,211 gene expression profiles following
treatment with 144 compounds across six PBMC cell types. The
experiments were performed on PBMCs from three healthy
donors, allowing downstream analysis to discover population-
level biological findings.

Another valuable source of datasets is scPerturb [49], which
comprises a collection of 44 publicly available single-cell
perturbation-response  datasets with molecular readouts,
including transcriptomics, proteomics, and epigenomics. These
datasets provide researchers with the flexibility to develop and
train various in silico prediction models, contributing valuable

resources to advance this field.

10.3 Modeling approaches

10.3.1 Perturbation cell prediction models
10.3.1.1 Dynamic models

In silico prediction models using differential equations
capture biological system dynamics, particularly suitable for
(GRNs),
This
enhances mechanistic interpretability for analyzing feedback

modeling gene-regulatory networks metabolic

pathways, and time-dependent processes. approach
loops and regulatory interactions, incorporates nonlinearity
characteristic of biological systems, and enables predictive
studies through parameter adjustments.

Bicycle [51] infers causal relationships in cyclic GRNs using
stochastic differential equations, predicting gene expression
through latent space modeling, intervention-specific parameters,
and steady-state dynamics. Cellbox [52] models cellular systems
with nonlinear ordinary differential equations, where parameters
represent interaction strength and direction between cellular
components, linking molecular to phenotypic changes and
generalizing to unseen perturbations. Cellbox was augmented
with adjoint sensitivity optimization [107], applying adjoint
methods for efficient parameter optimization with backward
optimization over full system trajectories using high-order ODE
solvers. Other works include a graph variational Bayesian causal
inference framework [108] and sc-OTGM [109], which predicts

frontiersin.org



Khoshfekr Rudsari et al.

cell responses by solving optimal mass transport on Gaussian
mixture manifolds.

10.3.1.2 Generative models

In silico prediction models leverage deep learning and LLM
approaches to model cellular behavior and predict perturbation
responses. While less biologically interpretable than dynamic
models, their complex network structures represent cellular
signaling pathways, offering alternative perspectives on
cell dynamics.

Lotfollahi et al. introduced variational autoencoder-based
models including Single-cell Generative Network (scGen) [110],
(trVAE) [111], and
Compositional Perturbation Autoencoder (CPA) [112]. These

models assume scRNA-seq data reside on low-dimensional

Transfer Variational = Autoencoder

manifolds, using VAEs to map high-dimensional expression data
into latent space for interpolating between cell states and
capturing perturbation-specific and cell type-specific patterns.
Graph Enhanced Gene Activation And Repression Simulator
(GEARS)
neural network (GNN) architecture using gene coexpression and

[113] integrates biological knowledge into graph

perturbation graphs. It predicts perturbed gene expression by

mapping gene embeddings and cross-gene effects to

transcriptional space.

10.3.1.3 Alternative modeling approaches

Some alternative models use novel approach to predict cellular
responses to perturbations but do not exactly model cells. SI-A
[50] is one of the examples that uses the synthetic intervention
framework to predict the target cellular responses by building a
synthetic version from the donor observations. The model
assumes a latent factor model and a linear causal DAG of latent
factors and gene interactions. Under these assumptions, the
model proves the consistency of the synthetic intervention
estimator, providing a robust framework for causal inference in
cellular perturbation experiments.

10.3.2 Physics-based modeling

Physics-based models describe biological systems using first
principle equations, simulating key biological factors and their
interactions to understand observed behaviors. These models
employ discrete methods (where components are unique entities
with defined and behavioral
continuum descriptions using spatial/spatiotemporal equations

states, locations, rules) or
(ordinary or partial differential equations) representing average
behaviors across regions or time.

Discrete methods represent individual amino acids for de novo
protein modeling, individual cells within tissues, organs within
individuals, or whole patients for infectious disease spread
modeling [114]. Continuum methods study fluid flow using
Navier-Stokes equations in cardiovascular systems [27] or Fick’s
law-based molecular diffusion within tissues. Discrete and
continuum components can be hybridized for more complete
biophysical system descriptions.

Physics-based models excel in applications with limited

experimental or clinical data, requiring only single-patient
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measurements.  They identify mechanisms

responsible for behaviors of interest and enable in silico study of

underlying
how biophysical factor changes affect system behavior.

10.3.2.1 Continuum models

Continuum models describe changes in quantities of interests,
as well as their feedback and interactions, using ordinary or partial
differential equations (usually functions of time or space and time,
respectively). These models are especially useful to study how
molecules move among multiple systems or organs in the body,
and they have been successfully applied to diverse problems,
such as hemodynamic flow [27], neurodegenerative diseases
(Section 4.2) [30], insulin resistance [40], and even cancer
treatment with checkpoint inhibitor immunotherapy based only
on clinically available data [115]. Table 2 presents common
equations used in continuum modeling approaches.

These examples used systems of ordinary differential
equations to study the rates at which molecules of interest enter
and leave connected systems across the body and interact with
other molecules based on system specific properties (such as
molecular flux, diffusion, consumption, or reaction rates) to
understand bidirectional interactions between system and
molecular properties and their roles in homeostasis or disease
development and progression. If the spatial distribution of
molecules is relevant to the problem being studied, partial
differential equations may be used, as shown in Table 2.
Examples of DT applications include molecular communication
via extracellular vesicles [84, 85].

The same methods are also commonly applied to systemic
drug delivery to calculate how much drug is delivered to the
target, limiting factors, and estimate the dosage required to
effect.
pharmacokinetic (PK; the process of drug absorption, delivery,

achieve a therapeutic These are referred to as

TABLE 2 Common equations in continuum models for biological systems.

| Mocel ype

Compartmental ODE model [154, 155] | dC;
P (154, 155) = kG = Y kiGi+ S~ DG
j j

e . 56. 157
Reaction-diffusion equation [156, 157] (sz — V- (DVC) + RG, 1)
Navier-Stokes equations [158, 159] P(%f‘" 5. VT/) - Ve }val_;-‘y-}‘
V-¥=0
Fick’s First law (diffusion) [160, 161] J=-DVC
Lotka-Volterra predator-prey model dx
[162] @« Py
dy
= _ P
ar Yy + oxy
Linear quadratic model [163] S=exp(—aD — BD?)

Ci represents the concentration of a molecule in compartment i, k;; represents the transfer
rate between compartments, S; represents sources, D; represents decay rates, D is the
diffusion coefficient, R(C) represents reaction terms, ¥ is the velocity field, p is pressure,
p is density, w is viscosity, }' represents external forces, and J is the diffusion flux. Note
that the reaction-diffusion equation simplifies to Fick’s Second Law of diffusion if
R(C, t) = 0. In the Lokta-Volterra predator-prey model, x and y are population densites
of prey and predator species over time, a and S are per-captia growth (birth) rates and
death rates due to predation in the prey population, and A and & are death rates and rate
of population increase facilitated by the prey population. The linear quadratic model
describes the portion of surviving cells (S) after radiation dose (D) as a function of fitted
parameters « and B that correspond to linear and quadratic response patterns.

frontiersin.org



Khoshfekr Rudsari et al.

(PD;
mechanisms of action and effects), and can be hybridized into
PK/PD models [116]. Table 3 presents examples of some of the
fundamental equations commonly used in these approaches.

elimination) or pharmacodynamic quantify  drug

These models, as seen in Table 3, have been especially fruitful
in studying cancer therapeutic delivery, including chemotherapy
[117], [118],
nanoparticle-encapsulated drug delivery [119], and they can

checkpoint  inhibitor ~immunotherapy and
even be hybridized with discrete agent-based methods [116] to
study how the drug affects tumors at the individual cell level.
Importantly, because these models quantify the mechanistic
links between the disease, the individual patient’s characteristics,
and simulated outcomes, they allow for simulation of a wide
range of potential treatment outcomes for DT-based treatment

optimization (see also Section 11.1.1).

10.3.2.2 Discrete models

Discrete models employ unique representations of entities to
be studied, which may range from individual people to
molecules or atoms. By imposing a set of rules and states on
each agent, models can study how these rules and associated
outcomes and interactions between agents at a discrete scale
sum to outcomes at population scales. Commonly, discrete
entities are referred to as agents, and these models are known as
agent-based models (ABMs). At the human scale, these are
often used to study transmission of infectious disease or effects
of health behaviors on populations [120]. Although these
examples are not necessarily physics based, many agent-based
models depend on physics. Table 4 presents the fundamental
equations used in discrete modeling approaches. However, these
models are often complex and highly customized to the
application of study; widely-applicable equations are less
common. Discrete models may be programmed according to
sets of discrete Boolean rules based on simple equations (e.g.,
logistics of Heaviside functions for binary decisions) or even
based on randomized outcomes, avoiding the need for
governing equations altogether.

For example, models using discrete representations of atoms
or small molecules are often employed to study molecular or
protein conformation based on force field variants obtained
from molecular dynamics simulations, such as AMBER [121] or
CHARMM [122], as illustrated in Table 4. By representing

covalent bonds as springs, including weak forces such as

TABLE 3 Pharmacokinetic/Pharmacodynamic (PK/PD) model equations.

| Mode type

Basic pharmacokinetic model [164, 165] dG,

37 = kaDabs — keCp = 3 _kiC

1
dD
abs _
ar ~kaDabs

Hill equation (pharmacodynamic) [166, 167] "

E = Emax 7

C" 4+ ECy,

Gy is the plasma concentration, Dabs is the amount of drug at the absorption site, k, is the
absorption rate constant, k. is the elimination rate constant, k; are rate constants for
distribution to various tissues, E is the effect, Emax is the maximum effect, C is the drug
concentration, ECs is the concentration producing 50% of the maximum effect, and # is
the Hill coefficient.

Frontiers in Digital Health

17

10.3389/fdgth.2025.1633539

TABLE 4 Common equations in discrete Models for biological systems.

| Moel ype

Molecular dynamics force Eiotal = Z K. (r — feq)z + Z Ky(6 — 9eq)2

field [168, 169] bonds angles
V,
+ ' Z 7"[1 + cos (ngp — )]
dihedrals
Ay By qig
A By 4
+;j r}jz 7§ + 47rsor,-j}
Cell-Cell interaction forces 1 1. 7"""adh)z_‘
[170, 171] Fy =keep{ 5 =3 |75 T kaah® 7 7
ij

In the force field equation, the first term represents bond stretching with force constant K,
and equilibrium distance req, the second term represents angle bending with force constant
Ky and equilibrium angle feq, the third term represents torsional rotation with barrier
height V,,, periodicity », and phase v, and the fourth term represents non-bonded
interactions (van der Waals and electrostatic) with parameters A;;, B; for van der Waals
interactions and charges g;, g;. In the cell-cell interaction equation, ﬁ,y is the force
between cells i and j, ry is their distance, krep and kadh are repulsion and adhesion
coefficients, ry is the equilibrium distance, and r, 4}, and o control the range of adhesion.

hydrogen bonds and van der Walls forces, and enforcing
penalties to prevent overlap of atoms within the simulations,
these simulations are able to generate and provide reliable
The strengths of these
approaches are now being combined with deep learning

protein conformation predictions.

methods such as AlphaFold2 [123] to further improve results.
Individual cells are also often represented as agents

which

commonly interact with each other based on physical rules

(sometimes referred to as cellular automata),
such as repulsion, adhesion, and deformation that are solved
based on physics-engine algorithms, as shown in the second
row of Table 4. Cell-scale ABMs have been applied to in silico
study of organogenesis, for example the mammary gland
[124], organ repair after damage (see Section 10.3.2.3) [73]
and tumorigenesis. Powerful open-source tools like PhysiCell
[125] are now enabling faster advancement in this technically
challenging field by supporting the development of complex
ABMs.Commonly, an ABM

combined with a continuum scale, allowing for chemical

cell-scale cells within are
signaling among cells and explicit feedback between cells and

their microenvironment.

10.3.2.3 Hybrid discrete-continuum models

Hybrid models leverage the strengths of discrete and
continuum models to generate more complete descriptions of
biological systems. For example, users may choose to describe
the cells within a tissue as discrete agents, while representing
small molecule (oxygen, glucose, drug, etc.) movement through
the tissue using continuum descriptions (e.g., Fick’s law)
the
computationally prohibitive or not advantageous to the problem

because complexity of modeling each molecule is
being studied. Table 5 presents examples of fundamental
equations used in hybrid modeling approaches. The methods
discussed in Sections 10.3.2.1, 10.3.2.2 can also be combined in
clever and often complex ways to generate hybrid models that
combine governing equations and Boolean decision making,
enabling simulations of highly diverse phenomena across

multiple scales.
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TABLE 5 Hybrid discrete-continuum model equations.

| Component _________Governing equaion

Molecular diffusion [172, 173] % — DViC_ Z Ui, O + SG, 1)
ot -
Cell t [174, 175 dx;, -
ell movement [ ] &5 E)
dt
Cell force balance [125, 171] dF

F; -
T;:ZFU+Fext
j

C is the concentration field of a signaling molecule, D is the diffusion coefficient, U;
represents uptake by cell i at position ¥;, S represents sources, ¥; is the velocity of cell i
which depends on the concentration field and forces, F, is the total force on cell i, ﬁg is
the force between cells i and j, and Fexq represents external forces acting on the cell.

Even so, the complexity and computational costs for
hybrid models, as represented in Table 5, commonly limits
them to DT descriptions or tissues or organs (i.e, subsystems)
within a patient. Examples include studying liver regeneration
after drug-induced damage (Section 8) [73], how endocrine
and paracrine signaling influence organ development on a
cellular level [124], and how phenotypic hierarchies and

hormonal signaling influence the development and
progression of hormone-dependent tumors such as breast
cancer [126]. This approach allows for complex,

multiscale study of detailed behaviors that are often not
observable in vivo or in vitro, revealing new insights into
disease behaviors, promising treatment strategies, and new
therapeutic targets.

11 Statistical and artificial intelligence
modeling

Statistical and AI modeling techniques have become
indispensable in constructing and
healthcare. These methods
patient-specific outcome forecasting, and support for medical

refining DTs within
enable predictive analytics,
decision-making across a wide spectrum of diseases and
organ systems. By leveraging large datasets—ranging from
EHRs and omics profiles to sensor signals—researchers can
develop sophisticated statistical and AI algorithms that mimic
biological and clinical processes in silico. This section
outlines the core statistical and Al-based modeling strategies
commonly used to build healthcare DTs, highlighting both

foundational and emerging methods.

11.1 Classical statistical approaches

Classical statistical models remain popular due to

their interpretability and ease of implementation. Although
few DT frameworks rely exclusively on traditional statistical
methods, they are frequently employed as baseline or
evaluation approaches to validate prediction using learned
feature representation against ground truth data, thereby
helping to benchmark the of

performance more

advanced modeling.
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11.1.1 Regression models

Traditional regression models remain integral in building
DTs, offering interpretable insights into the relationships
between predictive features and outcomes [25, 27, 39, 42].
Linear regression is used to relate predictors (e.g., demographics,
clinical markers) to a continuous response variable (e.g., blood
pressure, metabolic indices), and logistic regression is used for
modeling dichotomous outcomes (e.g., disease vs. no disease).
Generalized linear models can be used for modeling outcome
following other distributions such as Poisson or negative
(e.g.
admission in hospital operations).

binomial distribution modeling counts of hospital

11.1.2 Survival analysis models

Survival analysis, such as the Cox proportional hazards model,
estimates hazard functions for time-to-event data while handling
censored observations [127]. In DTs focused on oncology or
chronic diseases, survival analysis might be used to predict the
time until tumor recurrence or a major adverse cardiac event.
By continuously updating patient-specific factors (e.g., changes
in lab results, new symptoms), the DT refines risk estimates
over time.

11.2 Machine learning and deep learning

While classical statistical methods offer interpretability and a
well-established theoretical foundation, they often rely on linear
assumptions and manually selected features that may not fully
capture the complexities of large-scale healthcare data. In
contrast, ML [128] and DL [129] techniques excel at identifying
non-linear patterns, extracting high-dimensional representations,
and integrating a wider range of data sources(from clinical notes
and sensor readings to multi-omics profiles and imaging)
without requiring extensive feature engineering or predefined
functional forms [130].

11.2.1 Tree-based ensemble methods

Tree-based
Forests, Gradient Boosting Machines, and Extreme Gradient
(XGBoost), in DT
applications due to their robustness, interpretability, and

ensemble methods, such as Random

Boosting have gained prominence

strong predictive performance across diverse healthcare
datasets [69, 131-135].

Tree-based ensemble methods work by training multiple
decision trees and then combining the outputs to generate a
final prediction [136, 137]. In Random Forest, each tree is
built on a random subset of the training data and a random
subset of features, thereby capturing diverse patterns and
reducing overfitting [138]. Gradient Boosting methods, on the
other hand, build trees iteratively, with each tree focusing on
correcting the prediction errors of the previous one [139]. By
combining the results of several weak learners (individual
trees) into a single “ensemble,” these approaches often
individual decision trees.

outperform The final output,
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typically an average (for regression) or a majority vote (for
classification), reflects the aggregated knowledge of all the
trees. This design allows tree-based ensembles to handle

noisy, high-dimensional data and naturally rank the
importance of input features, making them highly valuable
for DT applications, where data integration and

interpretability are crucial.

11.2.2 Neural networks and control systems
Neural networks have become a central component in DT
applications thanks to their capacity for learning rich, non-
linear representations from high-dimensional healthcare data
[140-142].
complex patterns at different levels through multi-layer

Neural networks can automatically discover

architecture and back-propagation, leading to latent
representations that capture underlying physiological or
pathological states.

Different neural network architectures specialize in various
tasks in DT

Networks are highly effective for processing medical images and

systems. For example, Convolutional Neural
segmenting disease-relevant regions [143], while Recurrent Neural
Networks and transformers excel at modeling time-series data
(e.g., electrocardiograms or patient trajectories) [14, 144, 145].
While neural networks demonstrate remarkable predictive
power, they can be prone to overfitting and may require large-
data

augmentation, regularization, and model distillation can help

scale, well-annotated datasets. Techniques such as

address these limitations. In parallel, research

(e.g.,
constraints) directly into model architectures or training

emerging
integrates domain knowledge known physiological
objectives, yielding models that are both high-performing and
more interpretable.

Advanced control methodologies for medical DTs utilize
neural network-based approaches. Bottcher et al. developed
dynamics-informed neural-network controllers for agent-based
biomedical models [146], addressing challenges in multi-scale,
stochastic biological systems like immunity. Their methods
effectiveness

demonstrated with uncertainty quantification,

advancing  control  theory  application to  complex

biomedical systems.

11.2.3 Synthetic classification approach

TabPFEN (Tabular Prior-data Fitted Network) is a transformer-
based foundation model for tabular data across biomedicine,
economics, climate science, and materials research [147]. Unlike
traditional ML requiring dataset-specific training, TabPFN learns
prediction algorithms through meta-learning on millions of
synthetic tasks. It delivers high-accuracy predictions on new
datasets (up to 10,000 samples) in seconds via single forward
passes, outperforming gradient-boosted decision trees. Beyond
classification, TabPFN supports fine-tuning, data generation,
density estimation, and transferable embeddings, positioning it
as a transformative tool for accelerating scientific discovery
across disciplines.
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12 Discussion
12.1 Current limitations

The implementation of DTs in healthcare faces several critical
challenges that must be addressed to realize their full potential.
These limitations span technical, clinical, and regulatory domains.

12.1.1 Data quality and availability

The development of accurate healthcare DTs requires
data that is
fragmented across disparate systems [102, 103]. Patient-specific

comprehensive, high-quality patient often
models demand extensive longitudinal datasets encompassing
multiple physiological parameters, all of which remain difficult
to collect and integrate [99-101]. This challenge is particularly
pronounced for rare diseases and underrepresented populations,
limited data

generalizability. Furthermore, issues with data standardization,

where availability may compromise model
completeness, and interoperability continue to hinder seamless
integration of information from various sources, including

EHRs, imaging systems, and wearable sensors [102, 104].

12.1.2 Computational constraints

Many sophisticated DT implementations, particularly those
involving complex physiological systems or high-resolution
imaging, impose significant computational demands [25, 27].
Physics-based models employing detailed finite element analysis
or agent-based simulations often require specialized high-
performance computing infrastructure that may not be readily
available in clinical settings [35, 73]. The computational
intensity of maintaining updated DT models in real-time
presents a substantial barrier to widespread adoption,
particularly for resource-constrained healthcare environments
[28, 58]. These computational limitations often necessitate trade-
offs between model complexity, accuracy, and practical utility in

clinical workflows.

12.1.3 Implementation complexity

Integrating digital twins into existing clinical workflows
remains challenging due to technical, operational, and human
factors [57]. Healthcare systems frequently operate with legacy
that
sophisticated infrastructure required for DT implementations

technologies may not readily accommodate the
[56, 58]. The complexity of deployment extends beyond
technical considerations to include staff training, workflow
redesign, and establishing protocols for interpretation and action
based on DT insights [93]. This multifaceted implementation
challenge requires coordinated efforts across technical teams,
clinical staff, and healthcare administrators.

Provider adoption represents a particularly significant barrier
to health DT (HDT) implementation, as it may be hindered by
the inherent opacity of these sophisticated systems [148]. Amid
ongoing frustrations with existing technologies like EHR and
common concerns about bias in AI models, transparency and

education regarding HDTs become crucial for facilitating both
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provider and patient buy-in, potentially during the informed
consent process [148]. The economic framework for HDT
adoption adds another layer of complexity, as implementation
success is largely determined by payment considerations that
may require novel financing approaches beyond traditional fee-
for-service models, such as value-based payment schemes that
reward outcomes without

improved patient resulting in

overutilization [148].

12.1.4 Validation challenges

Establishing the validity and reliability of DT models in
healthcare presents unique difficulties given the stakes involved
in clinical decision-making [54, 63, 64]. Traditional validation
approaches often rely on historical data, which may not
adequately represent future patient populations or novel clinical
scenarios [31, 49]. Prospective validation studies are resource-
intensive and chronic

time-consuming, particularly for

conditions requiring long-term follow-up [40, 72]. Furthermore,

validating DTs against gold standard measures can be
problematic when such standards themselves have limitations or
when the DT aims to provide insights beyond what

conventional approaches can measure [33, 43]. The lack of
standardized validation frameworks specific to healthcare DTs
further complicates this challenge.

12.1.5 Privacy and security concerns

The comprehensive nature of DTs raises significant privacy
and security considerations, as these models integrate sensitive
personal health information from multiple sources [28, 102].
Ensuring robust data protection while maintaining model
accessibility for clinical use requires sophisticated technical
safeguards and governance frameworks [103, 104]. The tension
between data utility and privacy protection represents an
ongoing challenge, particularly as DTs become more integrated
into care delivery systems [2, 7].

12.1.6 Digital equity

Healthcare DT implementation raises significant concerns
about digital equity and bias that must be proactively addressed.
Key challenges include ensuring access to necessary technology
infrastructure in underserved and rural areas, developing diverse
datasets to mitigate biases [as marginalized communities are
often underrepresented in health data [149]], and addressing the
digital skills gap among providers and patients. Without
inclusive ~ design  and  transparent  governance, DT
implementations risk exacerbating healthcare disparities rather
than addressing them [149]. Establishing ethical guidelines,
ensuring transparency in data usage, and fostering meaningful
community engagement are essential to prevent the technology
from primarily benefiting privileged populations while leaving

vulnerable groups behind.

12.1.7 Regulatory pathways and clinical
translation

The clinical translation of healthcare DTs requires navigating
evolving regulatory frameworks for validation and certification.
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The U.S. Food and Drug Administration (FDA) has established
pathways for in silico clinical trials through its Medical Device
(MDDT)
qualification processes for computational models in regulatory

Development  Tools program, which provides
submissions [150]. The European Medicines Agency (EMA)
similarly supports modeling and simulation, including virtual
patient populations, to supplement traditional clinical trial data
[151]. International standards, notably the ASME V&V 40
standard, provide verification and validation frameworks
specifically for computational models in medicine [152]. Despite
this progress, significant challenges remain in establishing
unified regulatory criteria for DT certification, particularly for

real-time adaptive models and Al-integrated systems [153].

12.2 Future opportunities

these DTs transformative

opportunities for advancing healthcare delivery, research, and

Despite challenges, present

patient outcomes.

12.2.1 Enhanced personalization

The evolution of DTs promises unprecedented levels of
treatment personalization across various medical domains [4, 11,
12]. Future DTs will likely integrate increasingly diverse data
types, including multi-omics profiles, environmental exposures,
behavioral factors, and social determinants of health, enabling
This
comprehensive approach will support precision interventions

truly holistic patient representations [13, 39].
that account for individual variability at multiple levels, from
molecular pathways to lifestyle factors [14, 15]. The potential for
DTs to simulate patient-specific responses to different treatment
options before actual implementation represents a paradigm
shift in therapeutic decision-making, particularly for complex

conditions with heterogeneous manifestations [26, 34, 64].

12.2.2 Improved prediction accuracy

Advances in Al and computational methods will continue to
enhance the predictive capabilities of DTs [37, 42, 79]. The
integration of sophisticated ML architectures with mechanistic
models promises to combine the pattern recognition strengths of
Al with the biological plausibility of physics-based approaches
[30, 51, 52].
uncertainty quantification will improve both the accuracy and

Emerging techniques in explainable AI and

interpretability of predictions, addressing critical requirements for
clinical adoption [53, 112, 113]. These advancements will be
particularly valuable for forecasting disease progression, treatment
responses, and potential complications, enabling more proactive
and preventive care approaches [38, 44, 80].

12.2.3 Expanded application areas
While
applications currently dominate the DT landscape, future

cardiovascular, neurological, and oncological

implementations will likely extend to additional medical
domains and cross-system applications [29, 46, 77]. Promising

areas include autoimmune disorders, psychiatric conditions,
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pediatric development, and geriatric syndromes [32, 41, 69].
DTs
population health management, health system optimization, and

Beyond individual patient care, hold potential for

public health emergency response [56-58]. The development of
that model
will

DT ecosystems interactions between multiple

physiological enable
understanding of complex conditions involving multi-organ

pathologies [16, 40, 59].

systems a more comprehensive

12.2.4 Integration with emerging technologies
The convergence of DTs with other emerging technologies
presents exciting possibilities for healthcare innovation [60-62].
Integration with advanced robotics could revolutionize surgical
planning and execution through immersive simulations and
[45, 60].
address

real-time guidance Incorporation of blockchain

technology might data provenance and security
challenges while facilitating secure information sharing across
institutions [104]. Extended reality interfaces could transform
how clinicians interact with DTs, enabling intuitive exploration
of complex physiological models and collaborative decision-
making [62]. The potential synergy between DTs and gene-
editing technologies like CRISPR could unlock new approaches
for personalized genetic therapies by simulating intervention

outcomes before implementation [50-52].

12.2.5 Global health applications

DTs have the potential to address healthcare disparities by
enabling resource-efficient approaches to complex medical
[7, 10]. Cloud-based

implementations that require minimal local infrastructure could

challenges in low-resource settings
make sophisticated diagnostic and treatment planning tools
accessible in underserved regions [28, 104]. Adaptable DT
frameworks could be tailored to address region-specific health
challenges and populations, potentially transforming global health
approaches to infectious diseases, maternal health, and chronic
condition management in diverse healthcare systems [6, 9, 13].
The continued evolution of DT technologies in healthcare will
demand interdisciplinary collaboration across computational
sciences, medicine, engineering, ethics, and policy [1, 2]. As
these technologies mature from research tools to clinical
the identified

capitalizing on emerging opportunities will be essential for

applications, addressing challenges  while

realizing their transformative potential in healthcare.
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