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Digital Twin (DT) technology has emerged as a transformative force in 

healthcare, offering unprecedented opportunities for personalized medicine, 

treatment optimization, and disease prevention. This comprehensive review 

examines the current state of DTs in healthcare, analyzing their 

implementation across different physiological levels—from cellular to whole- 

body systems. We systematically review the latest developments, 

methodologies, and applications while identifying challenges and 

opportunities. Our analysis encompasses technical frameworks for 

cardiovascular, neurological, respiratory, metabolic, hepatic, oncological, and 

cellular DTs, highlighting significant achievements such as population-scale 

cardiac modeling (3,461 patient cohort), reduced atrial fibrillation recurrence 

rates through patient-specific cardiac models, improved brain tumor 

radiotherapy planning, advanced liver regeneration modeling with real-time 

simulation capabilities, and enhanced glucose management in diabetes. We 

detail the methodological foundations supporting different DT 

implementations, including data acquisition strategies, physics-based 

modeling approaches, statistical learning algorithms, neural network-based 

control systems, and emerging artificial intelligence techniques. While 

discussing implementation challenges related to data quality, computational 

constraints, and validation requirements, we provide a forward-looking 

perspective on future opportunities for enhanced personalization, expanded 

application areas, and integration with emerging technologies. This review 

offers a multidimensional assessment of healthcare DTs and outlines future 

directions for their development and integration. This review demonstrates 

that while healthcare DTs have achieved remarkable clinical successes—from 

reducing cardiac arrhythmia recurrence rates by over 13% to enabling 97% 

accuracy in neurodegenerative disease prediction, and achieving sub- 

millisecond liver response predictions with high accuracy—their clinical 

translation requires addressing challenges such as data integration, 

computational scalability, digital equity, and validation frameworks.
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1 Introduction

Digital twin (DT), a concept first introduced by Grieves in 

2002 as a “conceptual ideal” for product life cycle management, 

defines the triad of (i) a physical system, (ii) its virtual 

representation, and (iii) the bilateral information "ow that links 

the physical and the virtual counterparts together [1]. This 

framework bridges the physical and digital realms, enabling the 

analysis of past and present processes and facilitating future 

predictions [2]. Initially developed for manufacturing and 

aerospace industries [3], DT technology has rapidly evolved to 

meet the critical demands of modern healthcare.

In clinical applications, DTs facilitate personalized medicine 

by enabling the construction of patient-specific models [4]. 

These models integrate data from electronic health records 

(EHR), imaging modalities, and Internet of Things (IoT) devices 

to account for individual physiological and historical nuances 

[5]. Such comprehensive models empower clinicians to tailor 

treatment strategies for each patient, optimizing therapeutic 

interventions and improving clinical outcomes [6]. Moreover, by 

providing a virtual environment for simulation, DTs allow for 

risk-free experimentation, where various treatment scenarios can 

be tested and refined before actual clinical application. This not 

only minimizes potential risks associated with trial-and-error 

approaches but also contributes to significant cost reductions in 

healthcare delivery.

The real-time monitoring capacity of DTs further enhances 

their impact: by continuously updating the digital replicas with 

new patient data, healthcare providers can anticipate and 

respond to emerging health issues promptly, thereby reducing 

the incidence of critical complications [7]. In the realm of 

precision cardiology, for example, digital heart models have 

been successfully employed to simulate interventions and guide 

surgical planning, ultimately reducing procedure-related risks 

and optimizing patient-specific treatment plans [8]. In addition, 

DTs can predict the progression of diseases and recommend 

preventive measures, thereby enabling timely interventions and 

further enhancing patient outcomes[9]. Additionally, by 

streamlining operational processes such as resource allocation 

and predictive maintenance of medical devices, DTs directly 

address the escalating healthcare costs and inefficiencies inherent 

in traditional care delivery models [10].

1.1 Importance of digital twins in healthcare

DTs represent a paradigm shift in healthcare delivery and 

medical research, offering virtual replicas of physical entities 

that can be used for simulation, prediction, and optimization. 

The importance of DTs in healthcare stems from several key 

factors: 

• Personalized medicine: DTs enable highly individualized 

treatment approaches by creating patient-specific models that 

account for unique physiological characteristics and medical 

histories. These models integrate multi-omics data, clinical 

parameters, and lifestyle factors to create comprehensive 

patient profiles that guide precision therapeutics and 

interventions [4, 11, 12]. By capturing individual variability 

in genes, environment, and lifestyle,DTs facilitate the 

realization of the P4 medicine paradigm;predictive, 

preventive, personalized, and participatory healthcare [13].

• Real-time monitoring: DT’s provide continuous monitoring 

and analysis of patient health status, enabling early detection 

of potential health issues and timely interventions. Advanced 

DTs incorporate data from wearable sensors, implantable 

devices, and ambient monitoring systems to create dynamic 

models that evolve with the patient’s condition. This 

continuous feedback loop allows for the detection of subtle 

physiological changes that might precede clinical 

manifestations of disease by days or weeks, creating 

opportunities for preemptive interventions [14–16].

• Risk-free experimentation: DTs allow healthcare providers to 

simulate different treatment scenarios without risking patient 

safety, optimizing treatment plans before implementation 

[17]. Clinicians can evaluate multiple therapeutic approaches, 

drug dosages, and intervention timings on the digital replica 

before applying them to the actual patient. This capability is 

particularly valuable in complex cases involving 

multimorbidity, where treatment interactions and compound 

effects are difficult to predict. In surgical planning, DTs 

enable surgeons to rehearse procedures on patient-specific 

anatomical models, anticipate complications, and optimize 

technical approaches, resulting in reduced operative times 

and improved outcomes [18].

• Cost reduction: By enabling virtual testing and optimization, 

DTs can significantly reduce healthcare costs associated with 

trial-and-error approaches in treatment. Economic analyses 

suggest that implementation of DT technology could reduce 

hospital readmission rates by up to 25% for certain chronic 

conditions through improved treatment planning and patient 

monitoring [19, 20]. Furthermore, DTs optimize resource 

utilization by predicting patient "ow, equipment needs, and 

staffing requirements, thereby reducing operational 

inefficiencies. The long-term economic benefits extend to 

reduced disability costs, fewer complications, and shortened 

hospital stays, collectively contributing to more sustainable 

healthcare systems.

• Enhanced decision support: DTs serve as sophisticated clinical 

decision support systems that augment human expertise with 

computational precision. By integrating machine learning 

(ML) algorithms and causal inference models, DTs can 

identify patterns and correlations in patient data that might 

escape human observation. This capability transforms the 

decision-making process from intuition-based to evidence- 

driven, particularly in complex clinical scenarios where 

multiple factors must be considered simultaneously [21, 22]. 

The transparent nature of well-designed DTs also allows 

clinicians to understand the reasoning behind 

recommendations, facilitating informed clinical judgment.

• Longitudinal health management: DTs enable lifetime health 

monitoring and management by maintaining a dynamic virtual 
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representation of an individual’s health status across their 

lifespan. This longitudinal perspective supports preventive 

healthcare strategies by identifying risk trajectories and 

intervention opportunities long before disease manifestation. 

For chronic disease management, DTs provide a cohesive 

framework that integrates episodic care events into a 

continuous care model, enhancing treatment consistency and 

long-term outcomes [23, 24].

1.2 Applications in healthcare

As shown in Figure 1, the applications of DTs in healthcare 

span across various domains, as evidenced by the numerous 

implementations throughout medical specialties: 

• Cardiovascular applications: DTs have transformed cardiac 

care through applications ranging from molecular-level drug 

interaction studies to organ-level hemodynamic simulations. 

For drug safety assessment, DTs can predict pro-arrhythmic 

risks with remarkable concordance with clinical observations, 

as demonstrated in studies evaluating hydroxychloroquine 

and azithromycin [25]. Patient-specific cardiac DTs have 

shown clinical utility in guiding antiarrhythmic drug 

selection, with studies demonstrating significantly lower 

recurrence rates (40.9% vs. 54.1%) when treatment was 

guided by virtual testing [26]. In hemodynamic monitoring, 

the longitudinal hemodynamic mapping framework (LHMF) 

has achieved unprecedented accuracy with error rates 

between 0.0002%–0.004% for simulating hundreds of 

heartbeats [27], while the Cardio Twin architecture provides 

real-time electrocardiogram (ECG) monitoring with 85.77% 

classification accuracy and 95.53% precision [28]. For surgical 

applications, digital hearts have revolutionized procedures like 

ventricular tachycardia ablation by incorporating tissue 

characteristics into 3D models, achieving significant 

reductions in ablation volumes while maintaining high 

concordance with clinical outcomes [29].

• Neurological applications: In neurology, DTs have enabled 

unprecedented insights into disease progression and 

treatment planning. Physics-based models integrating the 

Fisher-Kolmogorov equation with anisotropic diffusion have 

successfully simulated the spread of misfolded proteins across 

the brain, capturing both spatial and temporal aspects of 

neurodegenerative disease progression [30]. For multiple 

sclerosis (MS), DTs have revealed that progressive brain 

FIGURE 1 

Digital twin models in this review. The illustration is created using BioRender.com.
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tissue loss begins on average 5–6 years before clinical symptom 

onset [31]. Parkinson’s disease management has been enhanced 

through DT-based Healthcare Systems achieving prediction 

accuracy of 97.95% for earlier identification from remote 

locations [32]. For brain tumors, hybrid approaches 

combining Semi-Supervised Support Vector Machine (S3VM) 

and improved AlexNet CNN have achieved feature 

recognition accuracy of 92.52% with impressive segmentation 

metrics [33], while personalized radiotherapy planning for 

high-grade gliomas has demonstrated either increased tumor 

control or significant reductions in radiation dose (16.7%) 

while maintaining equivalent outcomes [34].

• Respiratory system applications: DTs of the respiratory system 

integrate multiple scales of analysis, from alveolar mechanics to 

whole-organ function, enabling detailed simulation of lung 

biomechanics in both health and disease states [35]. These 

models facilitate personalized treatment strategies and 

improved understanding of structure-function relationships. 

For non-invasive monitoring, systems using ESP32 Wi-Fi 

Channel State Information sensors have achieved 92.3% 

accuracy in breathing rate estimation, while ML techniques 

have demonstrated classification accuracies of 89.2% for 

binary-class and 83.7% for multi-class respiratory pattern 

recognition [36]. For lung cancer management, the DT-GPT 

model forecasts clinical variables with high accuracy (R2 of 

0.98), while the Lung-DT framework employs YOLOv8 

neural networks to classify chest X-rays with exceptional 

performance (96.8% accuracy, 92% precision) [37].

• Metabolic and endocrine applications: DTs for diabetes 

management have demonstrated remarkable clinical utility. 

The Exercise Decision Support System (exDSS) for type 1 

diabetes (T1D) provides personalized recommendations 

during exercise, increasing time in target glucose range from 

80.2% to 92.3% and reducing hypoglycemia incidents from 

15.1% to 5.1% during aerobic activities [38]. For type 2 

diabetes, comprehensive frameworks combining ML, 

multiomic data, and knowledge graphs have enhanced 

predictive accuracy for disease trajectories and treatment 

responses [39]. Multi-scale DTs for adiposity-driven insulin 

resistance successfully integrate mechanistic models of 

glucose metabolism, body composition, and cellular insulin 

signaling to predict responses to dietary and pharmacological 

interventions [40]. Specialized pediatric models, such as sex- 

specific, personalized metabolic whole-body models for 

newborns and infants, demonstrate strong agreement with 

World Health Organization (WHO) growth standards while 

providing insights into early-life metabolism and disease 

progression [41].

• Oncology applications: DTs have revolutionized cancer care 

across multiple dimensions. For prostate cancer, ML-based 

systems have achieved 96.25% accuracy in biochemical 

recurrence prediction [42], while AI-based DTs of 

pathologists have demonstrated comparable performance to 

human experts in detecting cancer and estimating tumor 

volume [43]. In head and neck cancers, DT technology 

employing deep Q-learning has improved survival rates by 

3.73% and reduced dysphagia rates by 0.75% for 

oropharyngeal squamous cell carcinoma [44], while AI- 

directed frameworks measuring soft tissue shift during 

surgery have enabled precise volume measurements with 

applications in frozen section management and improved 

surgical precision [45]. The PRIMAGE project for pediatric 

oncology integrates imaging biomarkers, clinical data, and 

artificial intelligence (AI), achieving high accuracy in tumor 

segmentation (Dice similarity coefficient of 0.997) while 

reducing radiologist workload by 93% [46]. At the tumor 

microenvironment level, DTs investigating mechanical 

stresses and immune surveillance have revealed critical 

insights into tumor behavior, invasive phenotypes, and 

potential immunotherapy strategies [47, 48].

• Cellular and molecular applications: At the cellular level, DTs 

have enabled unprecedented insights into metabolic regulation 

and cellular behavior. Perturbation prediction models simulate 

cellular responses to drugs, gene knockouts, or metabolic 

changes, accelerating research in drug discovery by enabling 

in silico experiments that significantly reduce costs and 

resource requirements [49, 50]. Advanced approaches include 

differential equation-based dynamic models like Bicycle [51] 

and Cellbox [52] that capture gene-regulatory networks and 

cellular interactions, as well as deep learning models like 

scGPT [53] that treat gene expression profiles as “sentences” 

and individual genes as “tokens” to predict genetic 

perturbation responses. For drug development, DTs have 

demonstrated higher accuracy (89%) than traditional animal 

models (75%) in predicting cardiac pro-arrhythmic 

cardiotoxicity [54], while comprehensive frameworks address 

drug resistance in cancer treatment by incorporating both 

irreversible and reversible resistance mechanisms [55].

• Clinical operations and healthcare infrastructure: DTs have 

transformed healthcare delivery systems and operational 

efficiency. Standardized frameworks compliant with ISO/IEEE 

11073 standards have integrated health devices for population 

monitoring with classification accuracy up to 96.85% [56]. 

Comprehensive DT ecosystems for oncology clinical 

operations incorporate specialized twins for medical necessity 

evaluation, care navigation, and clinical history visualization, 

streamlining work"ows and enhancing decision-making [57]. 

Early Warning Systems leveraging DT technology have 

reduced code blue incidents by 60% through predictive 

analytics and early intervention [58]. For clinical trials, 

innovations like ClinicalGAN create patient DTs that 

outperform state-of-the-art approaches by 3%–4% in 

generation quality metrics and demonstrate 5%–10% 

improvement in patient drop-off prediction [16], while 

TWIN-GPT establishes cross-dataset associations despite 

limited data availability, boosting clinical trial outcome 

prediction beyond previous approaches [59].

• Surgical and interventional applications: DT technology has 

revolutionized surgical planning and execution across 

specialties. Novel digital-twin-enabled Internet of Medical 

Things (IoMT) systems for telemedical surgical simulation 

integrate mixed reality, 5G cloud computing, and deep 
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learning techniques, achieving 92%–93% predictive accuracy 

for complex surgical scenarios [60]. For minimally invasive 

approaches, DTs of magnetic medical microrobots 

incorporate stochastic Model Predictive Control enhanced by 

ML, demonstrating high precision in navigating complex 

biological environments for targeted drug delivery [61]. 

Patient-specific, three-dimensional mixed-reality anatomical 

models derived from CT or MRI data enable surgeons to 

interact with highly accurate representations of anatomy, 

improving understanding of complex structures and spatial 

relationships while offering superior visualization compared 

to conventional methods [62].

Table 1 and Figure 1 provide a comprehensive overview of the 

DT applications across different healthcare domains and organs 

discussed in this review. The table highlights key findings and 

performance metrics from studies in cardiovascular, 

neurological, respiratory, metabolic, hepatic, oncological, 

cellular, and cross-system applications, demonstrating the 

breadth and depth of DT technology in modern healthcare.

1.3 Our contributions

This review makes several significant contributions to the field: 

• Comprehensive analysis: We provide a thorough examination 

of current DT implementations across different physiological 

levels, including molecular, cellular, organ, and whole-body 

systems. Our analysis systematically categorizes existing 

approaches based on their scale, complexity, and integration 

capabilities, offering a structured taxonomy that clarifies the 

current landscape of healthcare DTs. We specifically address 

how different DT implementations address the critical 

requirements of fidelity, interoperability, and clinical 

relevance, providing a multidimensional assessment 

framework that goes beyond simple categorization.

• Methodological framework: We present a structured analysis 

of various methods used in building and implementing DTs, 

including data acquisition strategies, modeling approaches, 

validation techniques, and deployment architectures. Our 

framework delineates the mathematical foundations 

supporting different DT implementations, from statistical 

learning algorithms to mechanistic modeling approaches. We 

provide detailed assessment of computational requirements, 

data privacy solutions, and integration protocols that enable 

effective DT implementation across diverse healthcare 

settings. This methodological analysis serves as both an 

educational resource for newcomers to the field and a 

reference for experienced researchers seeking to optimize 

their DT development approaches.

• Critical evaluation: We offer detailed analysis of the 

advantages and limitations of reviewed approaches, providing 

an objective assessment of current technological capabilities 

against clinical requirements. Our evaluation incorporates 

multiple perspectives, including technical feasibility, clinical 

utility, implementation challenges, and ethical considerations, 

providing a balanced view of the current state of the art. We 

highlight specific gaps between theoretical capabilities and 

practical implementations, identifying key bottlenecks in 

computational efficiency, data availability, model validation, 

and clinical work"ow integration that must be addressed to 

advance the field. This critical analysis extends to regulatory 

considerations and standardization needs that will in"uence 

the trajectory of DT adoption in healthcare settings.

• Future directions: We present a detailed roadmap for future 

research in DT applications for various diseases, identifying 

specific technological advances needed to overcome current 

limitations. Our forward-looking analysis outlines emerging 

opportunities in multimodal data integration, explainable AI, 

federated learning architectures, and human-computer 

interaction design that will shape next-generation DTs. We 

propose concrete research priorities for different disease 

domains, considering their unique modeling challenges and 

clinical impact potential. Additionally, we outline 

interdisciplinary collaboration models that can accelerate 

progress by leveraging complementary expertise across 

computational science, medicine, engineering, and ethics. The 

roadmap also addresses scalability considerations for 

transitioning promising research prototypes to widely 

deployed clinical tools.

In light of these expanding applications and technological 

advancements, this review synthesizes the current landscape of 

DTs in healthcare while providing a structured framework for 

understanding their development and implementation. We begin 

by examining DT applications across major physiological 

systems—cardiovascular, neural, respiratory, metabolic and 

endocrine, hepatic, and cellular—followed by cross-system 

implementations that address broader clinical needs. For each 

domain, we analyze the technological approaches, clinical 

outcomes, and remaining challenges. We then explore the 

methodological foundations of healthcare DTs, including data 

collection strategies, modeling approaches (physics-based, 

statistical, and AI-driven), and system integration techniques. By 

critically evaluating the strengths and limitations of current 

implementations, we identify key research gaps and 

technological barriers that must be addressed. Finally, we 

present a forward-looking perspective on the evolution of 

healthcare DTs, outlining promising research directions and 

emerging applications that will shape the future of personalized, 

predictive medicine. Through this comprehensive analysis, we 

aim to provide researchers, clinicians, and technology developers 

with a roadmap for advancing DT technology toward its full 

potential as a transformative force in healthcare.

2 Cardiovascular system digital twins

Recent advancements in cardiovascular DTs have 

revolutionized our approach to cardiac care through various 

sophisticated applications. These developments span from 

molecular-level drug interaction studies to organ-level 

hemodynamic simulations, demonstrating the versatility of DT 
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TABLE 1 Summary of DT applications across healthcare domains.

Domain Application 
area

Key findings/contributions References

Cardiovascular Drug safety assessment DTs predict pro-arrhythmic risks with 89% accuracy, outperforming animal models (75%). Patient- 

specific virtual drug testing reduced AF recurrence rates (40.9% vs 54.1%).

[25, 26, 54, 63, 

64]

Hemodynamic 

modeling

LHMF framework achieved error rates of 0.0002%–0.004% for simulating cardiac cycles. Cardio Twin 

architecture provided 85.77% classification accuracy with 95.53% precision.

[27, 28]

Surgical applications DIFAT approach for VT ablation reduced volumes (1.87 cm3 vs. 7.05 cm3) while maintaining 79% 

overlap with clinical targets.

[29]

Population studies Large-scale cardiac DTs (3,461 from UK Biobank) revealed sex-specific QRS differences explained by 

anatomy. Sex-dependent drug classification achieved >89% accuracy for antiarrhythmic drugs.

[65, 68]

Monitoring 

frameworks

TwinCardio framework provides comprehensive cardiovascular monitoring through IoT integration with 

customized neural networks for disease classification.

[66]

Neurological Neurodegenerative 

disease

Physics-based models simulate protein misfolding propagation. MS DTs revealed brain atrophy begins 5– 

6 years before symptoms. Parkinson’s DTHS achieved 97.95% prediction accuracy.

[30–32, 69]

Brain tumor analysis Hybrid S3VM-AlexNet achieved 92.52% feature recognition accuracy. Personalized radiotherapy 

planning reduced radiation dose by 16.7% while maintaining outcomes.

[33, 34]

Early diagnosis DADD digital twin model achieved 88% accuracy in identifying CSF biomarker positivity and 87% 

accuracy in predicting clinical conversions using non-invasive EEG recordings.

[70]

Respiratory Lung modeling Multi-scale integration from alveolar to organ-level mechanics enabling detailed simulation of lung 

biomechanics.

[35]

Respiratory monitoring ESP32 Wi-Fi sensors achieved 92.3% accuracy in breathing rate estimation. ML techniques demonstrated 

89.2% binary-class accuracy.

[36]

Metabolic & 

endocrine

Diabetes management exDSS increased time in target glucose range from 80.2% to 92.3% during exercise. Type 2 diabetes 

framework enhanced predictive accuracy through multiomic data integration.

[38, 39, 71]

Insulin resistance Multi-scale DTs integrated glucose metabolism, body composition, and cellular insulin signaling to 

predict intervention responses.

[40]

Pediatric metabolism Sex-specific models for newborns and infants showed strong agreement with WHO growth standards. [41]

Hepatic Liver regeneration Mathematical mechanism-based model captured complex microarchitecture and cellular interactions 

during regeneration.

[73]

Real-time simulation Thermodynamics-informed graph neural networks achieved liver response prediction in 1.65 ms with 

<0.15% position errors and <7% stress estimation errors.

[74]

Organ-on-chip DigiLoCS platform successfully predicted liver clearance for 32 drugs with superior performance 

compared to conventional models through comprehensive ODE-based modeling.

[75]

Oncology Prostate cancer ML-based system achieved 96.25% accuracy in biochemical recurrence prediction. AI-based DTs 

performed comparably to human pathologists.

[42, 43]

Lung cancer DT-GPT forecasted clinical variables with R2 of 0.98. Lung-DT classified chest X-rays with 96.8% 

accuracy and 92% precision.

[37, 79]

Head & neck cancer Deep Q-learning improved survival rates by 3.73% and reduced dysphagia by 0.75% for OPSCC. AI- 

directed framework measured soft tissue shift during surgery.

[44, 45]

Tumor 

microenvironment

DTs revealed insights into mechanical stresses, tumor behavior, and immune surveillance of 

micrometastases.

[47, 48]

Radiation therapy Mechanistic multiscale prostate cancer model demonstrated sensitivity to key biological parameters for 

personalized radiation therapy optimization.

[78]

Specialized populations Geriatric breast cancer tool achieved 0.81 AUC for prognostic clustering using AI and clinical-biological 

features.

[81]

Cellular & 

molecular

Perturbation prediction Models like Bicycle and CellBox simulate cellular responses to drugs, gene knockouts, and metabolic 

changes, enabling in silico experiments.

[49–52, 107]

Metabolic modeling Community-scale models for gut microbiome achieved strong correlations (r = 0.62–0.63) with clinical 

health markers.

[82, 83]

Molecular 

communication

3D partial differential equation models for normal and anomalous diffusion of extracellular vesicles 

achieved high accuracy in predicting biodistribution patterns and transport dynamics. DTs model 

mitochondrial fission through biophysical interactions, identifying protein-binding interventions. Models 

of endocytosis reveal how geometric instabilities drive vesicle formation.

[84–87]

Cross-system Surgical systems IoMT system for telemedical surgical simulation achieved 92%–93% predictive accuracy. DTs of magnetic 

microrobots enhanced precision in complex environments.

[60, 61]

Clinical operations Standardized frameworks achieved up to 96.85% classification accuracy. EWS reduced code blue 

incidents by 60%.

[56–58]

Clinical trials ClinicalGAN outperformed state-of-the-art by 3%–4% in quality metrics and demonstrated 5%–10% 

improvement in patient drop-off prediction.

[16, 95]

LLM integration TWIN-GPT established cross-dataset associations for enhanced clinical trial predictions. ScFoundation 

and scGPT achieved state-of-the-art performance in single-cell perturbation prediction. LLM-enabled 

rare tumor DTs integrated 655 publications for personalized treatment plans.

[53, 59, 97, 98]
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technology in cardiology. The integration of high-performance 

computing with biological modeling has enabled unprecedented 

accuracy in predicting cardiac responses to various interventions.

2.1 Drug safety and arrhythmia assessment

Researchers developed a high-performance computational 

framework for in-silico cardiac trials incorporating sex-specific 

ion channel characteristics and phenotypic variability in 3D 

heart models [25]. The framework assessed hydroxychloroquine 

and azithromycin pro-arrhythmic risks, achieving 21.8% risk 

prediction for hydroxychloroquine with remarkable clinical 

concordance. The model incorporated electrophysiology 

simulations at cycle lengths of 600 ms and 400 ms, capturing 

cardiotoxic responses within 24 h.

DT technology expanded this approach for cardiovascular 

modeling and drug testing [63]. Hwang et al. demonstrated 

virtual antiarrhythmic drug tests in atrial fibrillation patients 

post-catheter ablation, showing lower recurrence rates (40.9% vs. 

54.1%) with DT-guided therapy [26]. Virtual amiodarone testing 

revealed AF recurrence rates of 20.8% in the effective group vs. 

45.1% in the ineffective group (adjusted hazard ratio, 0.37 

[0.14–0.98]) [64]. These studies demonstrate how patient-specific 

DTs integrate cardiac imaging and electrophysiological data for 

personalized arrhythmia management.

Advances in sex-specific drug classification have emerged 

through comprehensive DT frameworks. Bai et al. developed an 

approach for sex-specific identification of Class III 

antiarrhythmic drugs by integrating in vitro measurements, in 

silico models, and machine learning [65]. Simulating drug 

effects on diverse cardiomyocyte populations (5,663 males and 

6,184 females), they achieved high prediction accuracy (>89%) 

using sex-dependent Support Vector Machine algorithms. The 

study revealed gender differences attributed to lower IK1, INa, 

and Ito currents in females, highlighting the importance of sex- 

specific considerations in antiarrhythmic drug development.

2.2 Hemodynamic modeling and 
monitoring

A significant breakthrough in hemodynamic modeling came 

with the development of the LHMF [27]. This framework 

addresses three critical challenges: computational intractability of 

explicit methods, boundary conditions re"ecting varying activity 

states, and accessibility of computing resources for clinical 

translation. LHMF achieved unprecedented accuracy with error 

rates between 0.0002%–0.004% when compared to explicit data 

of 750 heartbeats. The introduction of LHMFC (clustering 

approach) further optimized the framework by identifying 

hemodynamically similar heartbeats, enabling the simulation of 

4.5 million heartbeats while requiring only 1,160 representative 

hemodynamic units. This advancement represents a significant 

step toward creating comprehensive cardiovascular DTs capable 

of long-term monitoring and prediction.

The integration of edge computing with DT technology has 

enabled real-time cardiac monitoring. The Cardio Twin 

architecture [28] represents a significant advancement in this 

domain, achieving 85.77% accuracy in classifying ECG segments 

with a precision of 95.53%. This system processes ECG signals 

in approximately 4.8 ms, demonstrating its capability for real- 

time analysis on edge devices. The framework’s success lies in 

its ability to provide continuous monitoring while maintaining 

data privacy and computational efficiency on edge devices.

2.3 Cardiovascular monitoring frameworks

The development of comprehensive monitoring frameworks 

has advanced through the integration of IoT sensors with DT 

technology. Iyer and Umadevi introduced the TwinCardio 

framework, a novel reference architecture for DT-enabled smart 

health monitoring specifically designed for cardiovascular 

disease detection and monitoring [66]. The framework 

incorporates TwinNet, a customized neural network designed 

for cardiovascular disease classification and prediction, enabling 

continuous data acquisition, simulation, and evaluation while 

maintaining security protocols. This human-in-the-loop 

approach facilitates integration between the patient’s physical 

world and the medical virtual world, addressing the alarming 

30% increase in heart attack cases among individuals aged 25– 

44 between 2020 and 2023 through more precise and timely 

healthcare delivery.

2.4 Heart failure and surgery

Novel approaches to treating heart failure with preserved 

ejection fraction (HFpEF) have emerged through computational 

modeling [67]. The research investigated the mechanical 

relationship between left ventricular (LV) function and ascending 

aorta elasticity, demonstrating that releasing the LV apex from 

pericardial confinement could significantly improve cardiac 

function. The simulations revealed impressive improvements in 

various cardiac parameters: longitudinal strain increased from 

�4.8% to �8.2%, radial strain from 18.5% to 22.4%, and 

circumferential strain from �14.2% to �16.5%, while reducing 

average myofiber stress by 18%. These findings suggest promising 

new therapeutic approaches for HFpEF treatment.

Personalized digital heart technologies have transformed 

surgical planning, particularly in treating complex arrhythmias. 

The digital-heart identification of fat-based ablation targeting 

(DIFAT) technology [29] has revolutionized ventricular 

tachycardia (VT) ablation by incorporating infiltrating adipose 

tissue distribution in 3D models. This technology achieved 

significant reductions in ablation volumes (mean 1.87 cm3 vs 

7.05 cm3 in clinical procedures) while maintaining high 

concordance with clinical outcomes. The system showed 

remarkable accuracy in predicting critical ablation sites, with 

79% overlap between predicted targets and actual clinical 

ablation locations.
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2.5 Population-scale cardiac digital twins

Large-scale population studies have leveraged DT technology to 

uncover fundamental insights into cardiac electrophysiology and its 

relationship with demographics and disease states. Qian et al. 

constructed an unprecedented cohort of 3,461 cardiac DTs from 

the UK Biobank plus 359 from an ischemic heart disease cohort 

using cardiac magnetic resonance images and electrocardiograms 

[68]. This population-scale approach revealed that sex-specific 

differences in QRS duration were fully explained by myocardial 

anatomy while myocardial conduction velocity remained similar 

across sexes but changed with age and obesity, indicating 

myocardial tissue remodeling. The study demonstrated that 

longer QTc intervals in obese females were attributed to larger 

delayed rectifier potassium conductance, providing mechanistic 

insights into sex-specific cardiac electrophysiology that would be 

impossible to obtain through traditional clinical studies alone.

3 Neural system digital twins

Significant advances have been made in understanding 

neurodegenerative disease progression through physics-based 

modeling. The integration of sophisticated imaging analysis with 

DT technology has revolutionized our understanding of neural 

system dynamics and pathologies, particularly in the context of 

protein misfolding diseases.

3.1 Neurodegenerative disease modeling

The Fisher-Kolmogorov equation with anisotropic diffusion 

successfully simulates misfolded protein spread across the brain in 

Alzheimer’s, Parkinson’s, and ALS [30]. This model replicates 

characteristic progression patterns from histological and 

biomarker data, supporting the prion-like hypothesis of protein 

propagation. Recent DT advances include Cen et al.’s approach 

for estimating disease-specific brain atrophy onset in multiple 

sclerosis, revealing progressive tissue loss begins 5-6 years before 

clinical symptoms [31]. DTs demonstrate promise for 

neurological condition detection and management. Abirami and 

Karthikeyan’s DT-based Healthcare System (DTHS) for 

Parkinson’s disease achieved 97.95% and 91.48% prediction 

accuracy using optimized fuzzy-based k-nearest neighbor 

classifiers [32]. Allen et al. developed a variational autoencoder- 

based DT model for ischemic stroke patients, forecasting clinical 

trajectories with simulated data virtually indistinguishable from 

real patient data [69]. These advances provide capabilities for 

personalized monitoring, earlier detection, and predictive modeling.

Breakthrough developments in early-stage neurodegenerative 

disease detection have emerged through integrating non-invasive 

recordings with DT technology. Amato et al. introduced the 

Digital Alzheimer’s Disease Diagnosis (DADD) model, deriving 

personalized AD biomarkers from electroencephalographic 

recordings [70]. In 124 participants with varying cognitive 

decline, digital biomarkers improved classification accuracy by 

7% over standard EEG biomarkers, identified CSF biomarker- 

positive patients with 88% accuracy (vs. 58% for standard EEG), 

and predicted cognitive decline conversions with 87% accuracy. 

This approach is valuable for preclinical patients excluded from 

invasive procedures, potentially revolutionizing early-stage AD 

diagnosis through digital twins with non-invasive recordings.

3.2 Brain tumor analysis

Advanced imaging analysis has been revolutionized through 

the integration of DT technology with sophisticated ML 

approaches [33]. The combination of S3VM and improved 

AlexNet CNN achieved a feature recognition accuracy of 

92.52%, with impressive segmentation metrics including a 

Jaccard coefficient of 79.55% and positive predictive value of 

90.43%. This hybrid approach effectively addresses the 

challenges of processing large volumes of unlabeled brain 

imaging data while maintaining high computational efficiency. 

The system demonstrated superior performance in both binary- 

class and multi-class classification tasks, outperforming 

traditional ML methods by at least 2.76%.

Recent advances have expanded DT applications to treatment 

optimization for high-grade gliomas. Chaudhuri et al. developed a 

data-driven predictive DT methodology for optimal risk-aware 

clinical decision-making in radiotherapy [34]. Their approach 

integrates mechanistic modeling with Bayesian calibration to 

assimilate patient-specific magnetic resonance imaging data, 

creating personalized DTs that account for uncertainties in tumor 

biology. By solving multi-objective, risk-based optimization 

problems, the framework generates patient-specific optimal 

radiotherapy regimens that balance the competing clinical 

objectives of maximizing tumor control while minimizing toxicity. 

In their in silico cohort of 100 virtual patients, personalized 

treatments achieved either a median increase in tumor time to 

progression of approximately six days using the same total 

radiation dose as standard-of-care, or a significant median 

reduction in radiation dose by 16.7% (10 Gy) while maintaining 

equivalent tumor control. This framework demonstrates how DTs 

can enable anticipatory personalized treatment strategies that adapt 

to the heterogeneous response patterns observed in high-grade 

gliomas, potentially improving outcomes for patients who respond 

poorly to standardized approaches.

4 Respiratory system digital twins

4.1 Lung modeling

Computational lung modeling has emerged as a sophisticated 

tool for understanding respiratory mechanics and disease 

progression [35]. These models integrate multiple scales of 

analysis, from alveolar mechanics to whole-organ function, 

incorporating compartmental models, discrete micromechanical 

models, and continuum representations. The approach enables 

detailed simulation of lung biomechanics in both health and 
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disease states, facilitating personalized treatment strategies and 

improved understanding of structure-function relationships. The 

models have demonstrated particular success in simulating 

various aspects of lung function, including airway resistance, 

alveolar deformation, and ventilation heterogeneity.

4.2 Respiratory monitoring

Recent innovations in respiratory monitoring have introduced 

novel statistical approaches for data enhancement [36]. Using 

ESP32 wi-fi channel state information sensors for unobtrusive 

monitoring, researchers achieved 92.3% accuracy in breathing 

rate estimation. The implementation of sophisticated ML 

techniques, particularly bagged trees ensemble algorithm, 

demonstrated impressive classification accuracies of 89.2% for 

binary-class and 83.7% for multi-class respiratory pattern 

recognition. This approach represents a significant advancement 

in non-invasive respiratory monitoring, combining high 

accuracy with practical applicability.

5 Metabolic and endocrine system 
digital twins

5.1 Diabetes management

Advanced DT technology has been developed for T1D 

management through complementary approaches. The Exercise 

Decision Support System (exDSS) [38] provides personalized 

recommendations for glucose management during exercise, 

demonstrating significant improvements in maintaining target 

glucose ranges (increasing from 80.2% to 92.3% during aerobic 

exercise). The system showed particular effectiveness in reducing 

hypoglycemia incidents from 15.1% to 5.1% during aerobic 

activities. Additionally, statistical virtual patient populations [71] 

have been created to evaluate artificial pancreas control 

algorithms, incorporating both single-hormone and dual- 

hormone models validated against clinical data from T1D 

patients. These models demonstrated robust performance across 

diverse patient characteristics and treatment scenarios.

A comprehensive framework for Type 2 Diabetes DTs [39] 

combines ML, multiomic data, and knowledge graphs to 

improve predictive accuracy and disease mechanism 

interpretation. The system leverages the Arivale dataset and 

SPOKE knowledge engine to enable personalized predictions of 

disease trajectories and treatment responses. The integration of 

proteomic and metabolomic data significantly enhanced the 

model’s predictive capabilities, particularly for key clinical 

markers like HbA1c and eGFR.

5.2 Insulin resistance

A multi-scale DT for adiposity-driven insulin resistance [40] 

integrates mechanistic models of glucose metabolism, body 

composition, and cellular insulin signaling. This comprehensive 

framework successfully simulates and predicts responses to 

dietary and pharmacological interventions, providing insights 

into the progression of insulin resistance and supporting 

personalized treatment strategies. The model effectively captures 

both short-term responses to meals and long-term adaptations 

to dietary changes.

5.3 Metabolic response

Advanced DT technology has been developed to predict 

metabolic responses to various dietary compositions and fasting 

schedules [72]. The system employs a mechanistic, multi-scale 

model encompassing both intracellular processes and organ- 

organ crosstalk, particularly focusing on liver function and 

protein metabolism. This model enables personalized predictions 

based on individual demographics and metabolic history, 

demonstrating strong validation against experimental data for 

both fed and fasted states.

5.4 Pediatric metabolism

Sex-specific, personalized metabolic whole-body models 

(WBMs) have been developed for newborns and infants [41]. 

These “infant-WBMs” integrate organ-specific growth, energy 

demands, and metabolic processes to provide insights into 

infant development and predict biomarkers for inherited 

metabolic diseases. The models demonstrate strong agreement 

with WHO growth standards and enable the simulation of 

dietary interventions, offering a valuable tool for understanding 

early-life metabolism and disease progression.

6 Hepatic system digital twins

Recent advances in hepatic DT technology have encompassed 

both regeneration modeling and predictive organ-on-chip 

simulations, representing significant progress in understanding 

liver function and drug metabolism.

6.1 Liver regeneration modeling

Liver regeneration modeling has seen significant advancement 

through the development of sophisticated DTs [73]. The 

mathematical mechanism-based model provides unprecedented 

insight into tissue microarchitecture and cellular interactions 

during regeneration. This approach enables the testing of 

various hypotheses about cell-cell interactions, quantifying 

regeneration dynamics through multiple parameters including 

dead cell area size, hepatocyte density, and spatial-temporal 

profiles of different cell types. The model successfully captures 

the complex interplay between various cell types, including 

Kupffer cells and hepatic stellate cells, in the regenerative 
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process. Its ability to identify gaps in mechanistic relationships has 

proven valuable for guiding experimental design and 

understanding complex biological processes.

6.2 Real-time hepatic tissue simulation

Cutting-edge developments in real-time liver simulation have 

emerged through thermodynamics-informed graph neural 

networks. Tesán et al. presented a novel hybrid model that 

integrates the geometric bias of graph neural networks with 

physical constraints derived from metriplectic structure 

implementation [74]. This approach enables simulation of 

hepatic tissue with dissipative properties while maintaining 

remarkable generalization capability for previously unseen 

anatomies. The model predicts human liver responses to 

traction and compression loads in as little as 1.65 ms in optimal 

configurations, achieving relative position errors below 0.15% 

and stress tensor estimations with relative errors under 7%. The 

integration of thermodynamic principles ensures that the 

network satisfies physical laws during inference, making this 

approach particularly relevant for precision medicine and haptic 

rendering applications.

6.3 Organ-on-chip digital twins

Revolutionary advances in predictive organ-on-chip simulations 

have been achieved through the DigiLoCS platform. Aravindakshan 

et al. developed a comprehensive digital twin model of liver-on-chip 

systems that closely mimics human liver clearance functionality [75]. 

Using compartmental physiological models based on ordinary 

differential equations, the system estimates pharmacokinetic 

parameters related to on-chip liver clearance for drug development 

applications. The approach successfully predicted in vitro liver 

clearance for 32 drugs and demonstrated superior performance 

compared to conventional models in predicting intrinsic liver 

clearance. By establishing connections between hardware chip 

structure and advanced biological mapping, DigiLoCS enables 

differentiation between active biological processes (metabolism) 

and passive processes (permeability and partitioning), 

incorporating detailed compound-specific characteristics and 

hardware-specific data. This represents the largest cross-organ-on- 

chip platform investigation to date, systematically analyzing and 

predicting human clearance values to reduce time, cost, and 

patient burden in drug development.

7 Cancer and tumor digital twins

7.1 Cancer-specific models

Recent advances in cancer-specific DTs have demonstrated 

significant progress in predicting treatment responses and 

optimizing therapeutic strategies. [76] developed a systems-based 

DT approach for characterizing dose-response relationships in 

non-Hodgkin lymphoma, using quantitative systems 

pharmacology (QSP) to generate individualized virtual patients. 

This approach enabled the simulation of patient responses to 

varying dosing regimens, accounting for biological variability 

and competitive binding effects. In the domain of multi-organ 

DTs, significant progress has been made in cancer progression 

monitoring [77]. The implementation of natural language 

processing for analyzing structured radiology reports has 

enabled sophisticated tracking of metastatic disease across 

multiple organs, showing superior performance in detecting and 

monitoring cancer progression, particularly in the lungs, liver, 

and adrenal glands. The integration of consecutive report 

analysis has significantly improved detection accuracy, with 

models showing enhanced predictive power for identifying 

progression patterns across different organ systems.

7.2 Prostate cancer

The development of DTs for prostate cancer has focused on 

two main areas: prediction and pathology. An ML-based DT 

system was developed for predicting prostate cancer progression 

[42], achieving 96.25% accuracy in biochemical recurrence 

prediction using data from 404 patients. The system 

demonstrated particularly high performance when using all 

available clinical data, showing approximately a 4% 

improvement over traditional methods. Complementing this 

work, a critical evaluation of AI as a DT of pathologists [43] 

demonstrated comparable performance to human pathologists in 

detecting prostate cancer and estimating tumor volume, though 

noting challenges in grade discordance for prostatectomy 

specimens. The study achieved significant improvements in 

diagnosis efficiency while maintaining high accuracy levels 

comparable to human experts.

Advanced mechanistic modeling approaches have enhanced 

prostate cancer treatment through comprehensive DT 

frameworks. Stamatakos et al. developed a mechanistic multiscale 

model of clinical prostate cancer response to external radiation 

therapy as the core of a digital virtual twin [78]. This discrete 

entity and discrete event simulation approach incorporates 

patient-specific cancer biology in terms of radio resistance and 

individual patient preferences. The model demonstrated particular 

sensitivity to critical parameters including apoptosis rates of living 

stem and progenitor cells, the fraction of dormant cells reentering 

cell cycle, and the fraction of stem cells performing symmetric 

division. Following technical verification and sensitivity analysis, 

the model showed qualitative agreement with experimental and 

clinical knowledge, establishing the foundation for clinical 

validation and eventual certification for clinical translation as part 

of the envisaged OncoSimulator system.

7.3 Lung cancer

DT technology has demonstrated remarkable advancements in 

lung cancer management. The DT-GPT model integrates 
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electronic health record data to forecast clinical variables for non- 

small cell lung cancer patients with high accuracy (R2 of 0.98) and 

a 3.4% improvement in mean absolute error, effectively managing 

missing data while enabling zero-shot forecasting capabilities [79]. 

Complementing this trajectory modeling, the Lung-DT 

framework creates comprehensive digital representations of 

respiratory health by integrating IoT sensors with AI algorithms, 

specifically employing the YOLOv8 neural network to classify 

chest X-rays into five distinct categories with exceptional 

performance metrics (96.8% accuracy, 92% precision, 97% recall, 

and 94% F1-score) [37]. This framework enables real-time 

monitoring through continuous data acquisition, automated 

objective assessments of chest X-rays, and comprehensive 

correlation of multiple data streams, representing a significant 

advancement in thoracic healthcare delivery with potential 

benefits for early diagnosis, enhanced patient outcomes, reduced 

healthcare costs, and optimized resource allocation.

7.4 Head and neck cancer

DT technology has been applied to optimize treatment 

decisions for oropharyngeal squamous cell carcinoma (OPSCC) 

[44]. The system employs deep Q-learning with a patient- 

physician DT dyad, trained on data from 536 OPSCC patients, 

improving survival rates by 3.73% and reducing dysphagia rates 

by 0.75% while achieving an average prediction accuracy of 87% 

for treatment outcomes. Recent innovations by Männle et al. 

have extended DT applications to surgical planning and 

intraoperative guidance through an AI-directed framework that 

measures soft tissue shift during head and neck surgery [45]. 

Using a pig head cadaver model with 104 soft tissue resections, 

they created DTs of both removed tissue pieces and 

corresponding resection cavities using two different 3D scanners 

(HoloLens 2 and ArtecEva), demonstrating the ability to 

simulate and measure tissue deformation by inducing 

temperature changes, with resection cavities showing a volume 

increase of 3.1 mL or 9.09% upon heating. This approach 

addresses the previously unsolved problem of soft tissue shift 

detection during surgery, with potential applications in frozen 

section management and improved surgical precision, while 

validating that despite different point cloud densities between 

scanning devices, both provided comparable volume estimates 

suitable for clinical applications.

7.5 Pediatric oncology

The PRIMAGE project [46] introduces an innovative 

approach to pediatric cancer diagnosis and prognosis. This 

framework integrates imaging biomarkers, clinical data, and AI, 

specifically targeting neuroblastoma and diffuse intrinsic pontine 

glioma. The system achieved high accuracy in tumor 

segmentation with a Dice similarity coefficient of 0.997, 

significantly reducing radiologist workload by 93%. The 

framework’s success lies in its comprehensive approach to data 

integration and its ability to provide actionable insights for 

clinical decision-making.

7.6 Cancer metabolic monitoring

Patient-specific DTs have been developed for monitoring 

metabolic biomarkers in cancer patients [80]. Using Long Short- 

Term Memory (LSTM) recurrent neural networks, these models 

achieve relative errors below 10% for key biomarkers, enabling 

both retrospective analysis and short-term forecasting of patient 

health states. The system demonstrates successful transfer 

learning capabilities, allowing efficient adaptation to new 

patients while maintaining prediction accuracy. The framework’s 

ability to track multiple metabolic indices simultaneously makes 

it a valuable tool for comprehensive patient monitoring.

7.7 Tumor microenvironment

Understanding the mechanical and immunological aspects of 

tumor development has emerged as a crucial area in DT 

research. Loewke et al. [47] introduced a DT framework for 

Cellular Capsule Technology that investigates how mechanical 

stresses in"uence tumor growth and cellular dynamics, with 

their multiphase poro-mechanical model revealing critical 

insights into how capsule constraints affect tumor behavior and 

invasive phenotypes while successfully capturing complex 

interactions between tumor cells, interstitial "uid, and the 

extracellular matrix. Complementing this mechanical 

perspective, Rocha et al. [48] developed a multiscale 

mathematical model to study immune surveillance of 

micrometastases in epithelial tissues, generating over 100,000 

virtual patient trajectories that recapitulated diverse clinical 

scenarios including uncontrolled growth, partial response, and 

complete immune response to tumor growth. Their work on 

cancer patient DTs (CPDTs) identified key parameters affecting 

simulated immunosurveillance. It also highlighted significant 

challenges in the field, including uncertainties in immune 

responses, unreliable patient stratification, and unpredictable 

personalized treatment outcomes. However, they demonstrated 

that patient-specific models can suggest strategies to increase the 

control of clinically undetectable micrometastases even without 

complete parameter certainty.

7.8 Geriatric and rare cancer applications

DT technology has expanded to specialized oncological 

populations. Heudel et al. developed a prognostic tool for 

geriatric breast cancer patients using AI and clinical-biological 

features [81]. Analyzing 793 women aged 70+ with 

HER2-negative early-stage breast cancer, their machine learning 

approach achieved AUC scores of 0.81, outperforming 

traditional models.
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8 Cellular and molecular digital twins

Significant advances in metabolic modeling have emerged 

through DT applications, particularly in understanding complex 

biological systems and their interactions at the cellular level. 

These developments have enabled unprecedented insights into 

metabolic regulation and cellular behavior.

8.1 Metabolic modeling

Researchers developed microbial community-scale metabolic 

models for predicting personalized short-chain fatty acid 

production in the human gut, demonstrating strong correlations 

with clinical health markers and enabling the design of 

personalized interventions [82]. The models achieved significant 

predictive accuracy, with Pearson correlations of r = 0.62 for 

butyrate and r = 0.63 for propionate production. At the genome 

scale, [83] introduced a comprehensive method for modeling 

metabolism and gene product expression, successfully integrating 

biochemical reactions with transcription and translation 

processes. This approach provided a unified framework for 

understanding cellular physiology at multiple scales.

8.2 Drug development

DTs have significantly advanced our understanding of drug 

responses and resistance mechanisms. Authors in [54] 

demonstrated that human in silico drug trials achieve higher 

accuracy (89%) than traditional animal models (75%) in 

predicting cardiac pro-arrhythmic cardiotoxicity. Recent work 

by [55] has addressed the challenge of drug resistance in cancer 

treatment by developing a comprehensive framework that 

incorporates both irreversible and reversible resistance 

mechanisms, demonstrating improved patient outcomes through 

optimized treatment strategies.

8.3 Molecular communication

Advances in molecular communication and drug delivery have 

been significantly propelled by innovative modeling approaches. 

For example, Khoshfekr Rudsari et al. [84, 85] developed three- 

dimensional partial differential equation models to characterize 

both normal and anomalous diffusion of extracellular vesicles 

(EVs) within the extracellular matrix. By incorporating matrix- 

specific properties, these models accurately predicted EV 

biodistribution patterns and transport dynamics, particularly 

within cardiac tissue. Building on this foundation, recent DT- 

based studies have progressed from organ- and tissue-level 

simulations to modeling cellular and subcellular processes, 

particularly those governing cell–cell and cell–microenvironment 

interactions that modulate therapeutic response. Notably, 

Irajizad et al. [86] modeled mitochondrial fission by capturing 

the biophysical interactions between lipids and proteins, 

enabling detailed insights into the division mechanisms of 

mitochondria and identifying protein-binding interventions 

capable of disrupting this process. Similarly, DT models of 

endocytosis have elucidated how geometric instabilities emerging 

during the cell cycle drive vesicle formation, and how these 

instabilities can be regulated through targeted modulation of 

protein interactions [87].

8.4 Genetic dynamics

The role of genetic dynamics in treatment optimization has 

been explored through sophisticated modeling approaches. 

Authors in [88] investigated how genetic dynamics and single- 

cell heterogeneity impact personalized medicine strategies for 

cancer. Their work demonstrated that accounting for tumor 

evolution and genetic diversity can significantly improve 

treatment outcomes, particularly in the context of drug 

resistance development.

8.5 Perturbation prediction modeling

DTs of cells are virtual models designed to simulate the 

behavior and function of biological cells. A key subset of these 

DTs, commonly referred to as in silico prediction models, 

focuses on predicting cellular responses, often measured by gene 

expressions or protein expressions, to perturbations such as 

drugs, gene knockouts, or metabolic changes [89, 90]. These 

models play an important role in accelerating research in drug 

discovery and development by enabling in silico experiments 

[49], significantly reducing costs and saving valuable resources 

typically required for in vitro experiments [50].

Figure 2 outlines the construction and purpose of a cell DT for 

perturbation modeling. A large number of perturbations are 

performed in vitro (in a wet lab) and cellular responses 

measured (Figure 2a). These experiments are expensive to run, 

requiring substantial time and financial resources. The in vitro 

response data is used to construct a DT of the cell, also known 

as an in silico model. A researcher may then use the DT to 

predict cellular responses for some new perturbation, which has 

not be tested in vitro (Figure 2b). The twin predicts a response 

to this combination (Figure 2c), eliminating the need to run 

further expensive in vitro experiments.

9 Cross-system applications

9.1 Surgical and interventional systems

A novel DT-enabled IoMT system [60] has been developed for 

telemedical surgical simulation. The system integrates mixed 

reality, 5G cloud computing, and robust auxiliary classifier 

generative adversarial networks (rAC-GAN) to address complex 

surgical scenarios, achieving 92%–93% predictive accuracy. The 
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framework demonstrated particular success in lung cancer cases 

complicated by pulmonary embolism, utilizing advanced deep 

learning techniques for real-time surgical simulation and 

decision support.

DT technology has been applied to magnetic medical 

microrobots [61], incorporating stochastic model predictive 

control enhanced by ML. The system demonstrates high precision 

in navigating complex biological environments, with applications 

in targeted drug delivery and minimally invasive surgeries. The 

integration of Kalman filtering and advanced control strategies 

enables robust performance even in noisy environments.

9.2 Treatment optimization

An in-silico model has been developed to analyze cytotoxic 

drug administration to solid tumors [91]. This DT incorporates 

multiple biological processes, including tumor growth, blood 

vessel development, and drug transport mechanisms. The model 

revealed significant insights into how drug binding affinity and 

blood vessel permeability in"uence treatment efficacy, with 

high-affinity drugs showing consistent effectiveness regardless of 

administration timing.

DTs have been developed to optimize transdermal fentanyl 

therapy for chronic pain management [92]. This individualized 

approach addresses patient variability in treatment response, 

leading to a 16% decrease in pain intensity and a 23 h 

increase in median pain-free time over 72 h periods. The 

model successfully integrated pharmacokinetics with patient- 

specific physiological parameters to enable precise 

dosing strategies.

9.3 Medical education

A DT application for critical care education [93] has been 

developed to simulate patient conditions and responses during 

the crucial first six hours of critical illness. The system 

demonstrates good usability with a median System Usability 

Scale score of 70, providing a realistic platform for training 

medical residents in complex clinical scenarios.

Patient-specific, three-dimensional mixed-reality anatomical 

models [62] have been developed for surgical training and 

intraoperative guidance. These models, derived from CT or MRI 

data, enable surgeons to interact with highly accurate 

representations of anatomy, improving understanding of 

complex structures and spatial relationships. The technology 

demonstrates significant advantages over traditional 3D-printed 

models, particularly in terms of cost-effectiveness and "exibility. 

The process requires 20–30 h for model creation but offers 

FIGURE 2 

Outline of digital twin of cells for perturbation prediction modeling. (a) In vitro drug perturbation data provide baseline response profiles. (b) A new 

perturbation is introduced to the digital twin model. (c) The digital twin predicts the resulting profile response in silico.
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superior visualization and manipulation capabilities compared to 

conventional methods.

Mixed-reality anatomical models serve dual purposes in 

surgical education and training, enabling preoperative rehearsal 

and intraoperative guidance, while also facilitating remote 

teaching and collaboration through mixed-reality interfaces. The 

technology has shown particular value in complex surgical 

planning and training scenarios.

9.4 Healthcare infrastructure

An ISO/IEEE 11073-standardized framework [56] has been 

developed for health and well-being in smart cities. This system 

integrates compliant and non-compliant health devices through 

an X73 wrapper module, achieving classification accuracy up to 

96.85% in activity tracking. The framework demonstrates 

significant potential for improving population health monitoring 

and management in urban environments.

Cloud-based design and additive manufacturing approaches 

have been developed for custom orthoses [94]. This DT 

application streamlines the design and production of 

personalized medical devices, such as custom ankle-foot 

orthoses, spinal braces, or wrist supports by integrating cloud 

computing and 3D printing technologies. The system has shown 

particular success in reducing production time and costs while 

maintaining high accuracy in custom device creation.

9.5 Clinical trials digital twins

Recent innovations in DT technology are transforming 

clinical trials through advanced modeling approaches that 

address critical challenges in patient recruitment, retention, 

and outcome prediction. Chandra et al. introduced 

ClinicalGAN, a generative adversarial network that creates 

patient DTs for clinical trial monitoring by enabling patient- 

level personalized generation using meta-data for conditional 

generation [16]. Validated on two Alzheimer’s clinical trial 

datasets, ClinicalGAN outperformed state-of-the-art 

approaches by 3%–4% across generation quality metrics and 

demonstrated 5%–10% improvement in mean absolute 

percentage error (MAPE) scores for patient drop-off 

prediction, offering powerful capabilities for proactive 

monitoring and improved retention.

These technological advancements align with broader 

industry trends, as Moingeon et al. highlight how virtual 

patients and DTs are increasingly being used to simulate in 

silico the efficacy and safety of drug candidates and medical 

devices [95]. Their work emphasizes the growing acceptance 

of digital evidence by regulators and how predictive AI-based 

models can support confirmatory trial design while 

accelerating drug and medical device development, pointing 

toward a future where computational models complement 

traditional clinical trials to improve efficiency, reduce costs, 

and enhance patient safety.

9.6 Clinical operations and infrastructure

DT ecosystems for clinical operations have transformed 

healthcare delivery through integrated frameworks that 

streamline work"ows and enhance decision-making. These 

systems incorporate specialized twins for medical necessity 

evaluation, care navigation, and clinical history visualization, 

demonstrating particular success in oncology where they 

optimize treatment pathways and improve care coordination 

[57]. Standardized frameworks compliant with ISO/IEEE 11073 

standards have enabled comprehensive health monitoring by 

integrating diverse health devices and data sources, achieving 

classification accuracy up to 96.85% while ensuring robust data 

collection and analysis cycles [56]. These implementations 

provide essential infrastructure for systematic health monitoring 

and clinical decision support.

Early Warning Systems leveraging DT technology have 

significantly improved patient safety outcomes, achieving a 60% 

reduction in code blue incidents through predictive analytics 

that identify early signs of patient deterioration [58]. This 

proactive approach has demonstrated substantial improvements 

in response times and patient outcomes through timely 

intervention strategies.

9.7 Chronic condition management

DT technology has been applied to chronic wound 

management [96], utilizing AI techniques to enhance clinical 

decision support and predict healing trajectories. The system 

employs generative adversarial networks for visual prediction, 

achieving approximately 74% accuracy in tissue distribution 

predictions. The framework demonstrates particular success in 

providing personalized treatment recommendations based on 

wound characteristics and healing patterns.

Advanced monitoring systems using DTs [80] enable tracking 

and forecasting of patient-specific metabolic indices. These 

systems achieve relative errors below 10% for key biomarkers 

and demonstrate successful transfer learning capabilities. The 

technology has shown significant potential in personalized 

medicine applications, particularly in monitoring and managing 

chronic metabolic conditions.

9.8 Large language model integration in 
digital twins

The integration of Large Language Models (LLMs) into digital 

twin architectures enables sophisticated cross-dataset associations 

and knowledge synthesis from heterogeneous data sources. Wang 

et al. developed TWIN-GPT, an LLM-based approach that 

establishes cross-dataset associations despite limited data 

availability, generating personalized DTs that enhance clinical 

trial outcome prediction while producing high-fidelity trial data 

in data-scarce situations [59]. This capability addresses critical 
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limitations in precision medicine where rare conditions often lack 

sufficient training data, enabling transfer learning across diverse 

clinical contexts to inform patient-specific predictions even 

when direct observational data remain sparse.

At the cellular level, LLM applications have revolutionized 

perturbation prediction and single-cell analysis. ScFoundation 

features read-depth-aware pre-training for handling sparsity in 

single-cell RNA sequencing data [97], while scGPT treats gene 

expression profiles as “sentences” and genes as “tokens,” 

achieving state-of-the-art performance in predicting genetic 

perturbation responses and multi-omic integration [53]. For rare 

malignancies, Lammert et al. developed LLM-enabled digital 

twins for metastatic uterine carcinosarcoma by integrating 

clinical data from 21 patients with 655 publications, identifying 

treatment options missed by traditional analysis and facilitating 

a shift from organ-based to biology-based tumor definitions [98].

10 Methods in building digital twins

10.1 Data collection and integration

DT development relies on diverse data sources including 

sensor-based monitoring, medical imaging, and EHR, enhanced 

by real-time data streaming for dynamic updates and predictive 

capabilities. IoT devices enable early detection of potential 

problems through continuous physiological monitoring [99].

Multiple sensor types collect real-time patient data: biometric 

sensors measure vital signs (heart rate, blood pressure, 

temperature), movement sensors track activity and gait patterns, 

electrophysiological sensors monitor electrical activity like 

Electroencephalography (EEG) and electromyography (EMG), 

and chemical sensors detect biomarkers such as glucose levels 

[100]. Medical imaging scans including magnetic resonance 

imaging (MRI), computed tomography (CT), and ultrasound 

provide detailed anatomical information, requiring sophisticated 

image processing algorithms, segmentation techniques, and ML 

models for integration into patient-specific computational 

models [101].

EHR integration presents both opportunities and challenges, 

providing valuable repositories of patient histories, laboratory 

results, medication records, and clinical notes, while facing issues 

of data heterogeneity, interoperability, and privacy concerns. 

Standardized protocols such as Fast Healthcare Interoperability 

Resources (FHIR) [102] and Health Level Seven (HL7) enable 

data integration across healthcare systems [103]. Real-time data 

streaming employs edge computing, cloud-based analytics, and 

federated learning for rapid processing and synchronization, with 

frameworks including Apache Kafka and Message Queuing 

Telemetry Transport (MQTT) protocols enabling efficient 

handling of high-velocity medical data streams [104].

This integrated approach forms the foundation of healthcare DT 

technology, with continued evolution in AI, data interoperability, and 

secure data-sharing frameworks driving unprecedented precision in 

personalized medicine and predictive healthcare.

10.2 Perturbation datasets for perturbation 
cell prediction modeling

Recently, researchers have generated datasets suitable for 

training in silico prediction models. The LINCS platform [105] 

provides 1,000 measured gene expression profiles for 71 cell 

lines and over 25,000 perturbations, including small molecule 

compounds, gene knockdowns or overexpressions, and biologics. 

Approximately 10% of the possible 1.75 million perturbation 

experiments were conducted, leaving significant room for 

predictive models to estimate cellular responses for the vast 

number of untested cell line-perturbation combinations.

A 2023 Kaggle competition [106] introduced another 

perturbation dataset suitable for training predictive models. The 

dataset originates from a novel single-cell perturbation 

experiment conducted on peripheral blood mononuclear cells 

(PBMCs). It includes 18,211 gene expression profiles following 

treatment with 144 compounds across six PBMC cell types. The 

experiments were performed on PBMCs from three healthy 

donors, allowing downstream analysis to discover population- 

level biological findings.

Another valuable source of datasets is scPerturb [49], which 

comprises a collection of 44 publicly available single-cell 

perturbation-response datasets with molecular readouts, 

including transcriptomics, proteomics, and epigenomics. These 

datasets provide researchers with the "exibility to develop and 

train various in silico prediction models, contributing valuable 

resources to advance this field.

10.3 Modeling approaches

10.3.1 Perturbation cell prediction models
10.3.1.1 Dynamic models

In silico prediction models using differential equations 

capture biological system dynamics, particularly suitable for 

modeling gene-regulatory networks (GRNs), metabolic 

pathways, and time-dependent processes. This approach 

enhances mechanistic interpretability for analyzing feedback 

loops and regulatory interactions, incorporates nonlinearity 

characteristic of biological systems, and enables predictive 

studies through parameter adjustments.

Bicycle [51] infers causal relationships in cyclic GRNs using 

stochastic differential equations, predicting gene expression 

through latent space modeling, intervention-specific parameters, 

and steady-state dynamics. Cellbox [52] models cellular systems 

with nonlinear ordinary differential equations, where parameters 

represent interaction strength and direction between cellular 

components, linking molecular to phenotypic changes and 

generalizing to unseen perturbations. Cellbox was augmented 

with adjoint sensitivity optimization [107], applying adjoint 

methods for efficient parameter optimization with backward 

optimization over full system trajectories using high-order ODE 

solvers. Other works include a graph variational Bayesian causal 

inference framework [108] and sc-OTGM [109], which predicts 
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cell responses by solving optimal mass transport on Gaussian 

mixture manifolds.

10.3.1.2 Generative models

In silico prediction models leverage deep learning and LLM 

approaches to model cellular behavior and predict perturbation 

responses. While less biologically interpretable than dynamic 

models, their complex network structures represent cellular 

signaling pathways, offering alternative perspectives on 

cell dynamics.

Lotfollahi et al. introduced variational autoencoder-based 

models including Single-cell Generative Network (scGen) [110], 

Transfer Variational Autoencoder (trVAE) [111], and 

Compositional Perturbation Autoencoder (CPA) [112]. These 

models assume scRNA-seq data reside on low-dimensional 

manifolds, using VAEs to map high-dimensional expression data 

into latent space for interpolating between cell states and 

capturing perturbation-specific and cell type-specific patterns.

Graph Enhanced Gene Activation And Repression Simulator 

(GEARS) [113] integrates biological knowledge into graph 

neural network (GNN) architecture using gene coexpression and 

perturbation graphs. It predicts perturbed gene expression by 

mapping gene embeddings and cross-gene effects to 

transcriptional space.

10.3.1.3 Alternative modeling approaches

Some alternative models use novel approach to predict cellular 

responses to perturbations but do not exactly model cells. SI-A 

[50] is one of the examples that uses the synthetic intervention 

framework to predict the target cellular responses by building a 

synthetic version from the donor observations. The model 

assumes a latent factor model and a linear causal DAG of latent 

factors and gene interactions. Under these assumptions, the 

model proves the consistency of the synthetic intervention 

estimator, providing a robust framework for causal inference in 

cellular perturbation experiments.

10.3.2 Physics-based modeling
Physics-based models describe biological systems using first 

principle equations, simulating key biological factors and their 

interactions to understand observed behaviors. These models 

employ discrete methods (where components are unique entities 

with defined states, locations, and behavioral rules) or 

continuum descriptions using spatial/spatiotemporal equations 

(ordinary or partial differential equations) representing average 

behaviors across regions or time.

Discrete methods represent individual amino acids for de novo 

protein modeling, individual cells within tissues, organs within 

individuals, or whole patients for infectious disease spread 

modeling [114]. Continuum methods study "uid "ow using 

Navier-Stokes equations in cardiovascular systems [27] or Fick’s 

law-based molecular diffusion within tissues. Discrete and 

continuum components can be hybridized for more complete 

biophysical system descriptions.

Physics-based models excel in applications with limited 

experimental or clinical data, requiring only single-patient 

measurements. They identify underlying mechanisms 

responsible for behaviors of interest and enable in silico study of 

how biophysical factor changes affect system behavior.

10.3.2.1 Continuum models

Continuum models describe changes in quantities of interests, 

as well as their feedback and interactions, using ordinary or partial 

differential equations (usually functions of time or space and time, 

respectively). These models are especially useful to study how 

molecules move among multiple systems or organs in the body, 

and they have been successfully applied to diverse problems, 

such as hemodynamic "ow [27], neurodegenerative diseases 

(Section 4.2) [30], insulin resistance [40], and even cancer 

treatment with checkpoint inhibitor immunotherapy based only 

on clinically available data [115]. Table 2 presents common 

equations used in continuum modeling approaches.

These examples used systems of ordinary differential 

equations to study the rates at which molecules of interest enter 

and leave connected systems across the body and interact with 

other molecules based on system specific properties (such as 

molecular "ux, diffusion, consumption, or reaction rates) to 

understand bidirectional interactions between system and 

molecular properties and their roles in homeostasis or disease 

development and progression. If the spatial distribution of 

molecules is relevant to the problem being studied, partial 

differential equations may be used, as shown in Table 2. 

Examples of DT applications include molecular communication 

via extracellular vesicles [84, 85].

The same methods are also commonly applied to systemic 

drug delivery to calculate how much drug is delivered to the 

target, limiting factors, and estimate the dosage required to 

achieve a therapeutic effect. These are referred to as 

pharmacokinetic (PK; the process of drug absorption, delivery, 

TABLE 2 Common equations in continuum models for biological systems.

Model type Governing equation

Compartmental ODE model [154, 155] dCi

dt
¼
X

j

k jiCj �
X

j

kijCi þ Si � DiCi

Reaction-diffusion equation [156, 157] dC

dt
¼ r � (DrC) þ R(C, t)

Navier-Stokes equations [158, 159]
r

@~v

@t
þ~v � r~v

� �

¼ �rp þ mr2
~v þ~f

r �~v ¼ 0

Fick’s First law (diffusion) [160, 161] J ¼ �DrC

Lotka–Volterra predator–prey model 

[162]

dx

dt
¼ ax � bxy

dy

dt
¼ �gy þ dxy

Linear quadratic model [163] S ¼ exp ( � aD � bD2)

Ci represents the concentration of a molecule in compartment i, kij represents the transfer 

rate between compartments, Si represents sources, Di represents decay rates, D is the 

diffusion coefficient, R(C) represents reaction terms, ~v is the velocity field, p is pressure, 

r is density, m is viscosity, ~f represents external forces, and J is the diffusion "ux. Note 

that the reaction-diffusion equation simplifies to Fick’s Second Law of diffusion if 

R(C, t) ¼ 0. In the Lokta-Volterra predator-prey model, x and y are population densites 

of prey and predator species over time, a and b are per-captia growth (birth) rates and 

death rates due to predation in the prey population, and l and d are death rates and rate 

of population increase facilitated by the prey population. The linear quadratic model 

describes the portion of surviving cells (S) after radiation dose (D) as a function of fitted 

parameters a and b that correspond to linear and quadratic response patterns.
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elimination) or pharmacodynamic (PD; quantify drug 

mechanisms of action and effects), and can be hybridized into 

PK/PD models [116]. Table 3 presents examples of some of the 

fundamental equations commonly used in these approaches.

These models, as seen in Table 3, have been especially fruitful 

in studying cancer therapeutic delivery, including chemotherapy 

[117], checkpoint inhibitor immunotherapy [118], and 

nanoparticle-encapsulated drug delivery [119], and they can 

even be hybridized with discrete agent-based methods [116] to 

study how the drug affects tumors at the individual cell level. 

Importantly, because these models quantify the mechanistic 

links between the disease, the individual patient’s characteristics, 

and simulated outcomes, they allow for simulation of a wide 

range of potential treatment outcomes for DT-based treatment 

optimization (see also Section 11.1.1).

10.3.2.2 Discrete models

Discrete models employ unique representations of entities to 

be studied, which may range from individual people to 

molecules or atoms. By imposing a set of rules and states on 

each agent, models can study how these rules and associated 

outcomes and interactions between agents at a discrete scale 

sum to outcomes at population scales. Commonly, discrete 

entities are referred to as agents, and these models are known as 

agent-based models (ABMs). At the human scale, these are 

often used to study transmission of infectious disease or effects 

of health behaviors on populations [120]. Although these 

examples are not necessarily physics based, many agent-based 

models depend on physics. Table 4 presents the fundamental 

equations used in discrete modeling approaches. However, these 

models are often complex and highly customized to the 

application of study; widely-applicable equations are less 

common. Discrete models may be programmed according to 

sets of discrete Boolean rules based on simple equations (e.g., 

logistics of Heaviside functions for binary decisions) or even 

based on randomized outcomes, avoiding the need for 

governing equations altogether.

For example, models using discrete representations of atoms 

or small molecules are often employed to study molecular or 

protein conformation based on force field variants obtained 

from molecular dynamics simulations, such as AMBER [121] or 

CHARMM [122], as illustrated in Table 4. By representing 

covalent bonds as springs, including weak forces such as 

hydrogen bonds and van der Walls forces, and enforcing 

penalties to prevent overlap of atoms within the simulations, 

these simulations are able to generate and provide reliable 

protein conformation predictions. The strengths of these 

approaches are now being combined with deep learning 

methods such as AlphaFold2 [123] to further improve results.

Individual cells are also often represented as agents 

(sometimes referred to as cellular automata), which 

commonly interact with each other based on physical rules 

such as repulsion, adhesion, and deformation that are solved 

based on physics-engine algorithms, as shown in the second 

row of Table 4. Cell-scale ABMs have been applied to in silico 

study of organogenesis, for example the mammary gland 

[124], organ repair after damage (see Section 10.3.2.3) [73] 

and tumorigenesis. Powerful open-source tools like PhysiCell 

[125] are now enabling faster advancement in this technically 

challenging field by supporting the development of complex 

cell-scale ABMs.Commonly, cells within an ABM are 

combined with a continuum scale, allowing for chemical 

signaling among cells and explicit feedback between cells and 

their microenvironment.

10.3.2.3 Hybrid discrete-continuum models

Hybrid models leverage the strengths of discrete and 

continuum models to generate more complete descriptions of 

biological systems. For example, users may choose to describe 

the cells within a tissue as discrete agents, while representing 

small molecule (oxygen, glucose, drug, etc.) movement through 

the tissue using continuum descriptions (e.g., Fick’s law) 

because the complexity of modeling each molecule is 

computationally prohibitive or not advantageous to the problem 

being studied. Table 5 presents examples of fundamental 

equations used in hybrid modeling approaches. The methods 

discussed in Sections 10.3.2.1, 10.3.2.2 can also be combined in 

clever and often complex ways to generate hybrid models that 

combine governing equations and Boolean decision making, 

enabling simulations of highly diverse phenomena across 

multiple scales.

TABLE 3 Pharmacokinetic/Pharmacodynamic (PK/PD) model equations.

Model type Governing equation

Basic pharmacokinetic model [164, 165] dCp

dt
¼ kaDabs � keCp �

X

i

kiCp

dDabs
dt

¼ �kaDabs

Hill equation (pharmacodynamic) [166, 167]
E ¼ Emax

Cn

Cn þ ECn
50

Cp is the plasma concentration, Dabs is the amount of drug at the absorption site, ka is the 

absorption rate constant, ke is the elimination rate constant, ki are rate constants for 

distribution to various tissues, E is the effect, Emax is the maximum effect, C is the drug 

concentration, EC50 is the concentration producing 50% of the maximum effect, and n is 

the Hill coefficient.

TABLE 4 Common equations in discrete Models for biological systems.

Model type Governing equation

Molecular dynamics force 

field [168, 169]
Etotal ¼

X

bonds

Kr(r � req)2
þ
X

angles

Ku(u� ueq)2

þ
X

dihedrals

Vn

2
[1 þ cos (nf� g)]

þ
X

i,j

Aij

r12
ij

�
Bij

r6
ij

þ
qiqj

4p10rij

" #

Cell-Cell interaction forces 

[170, 171]
~Fij ¼ krep

1

rn
ij

�
1

rn
0

 !

~rij þ kadhe�
(rij�r

adh
)2

2s2 ~rij

In the force field equation, the first term represents bond stretching with force constant Kr 

and equilibrium distance req, the second term represents angle bending with force constant 

Ku and equilibrium angle ueq, the third term represents torsional rotation with barrier 

height Vn , periodicity n, and phase g, and the fourth term represents non-bonded 

interactions (van der Waals and electrostatic) with parameters Aij , Bij for van der Waals 

interactions and charges qi , qj . In the cell-cell interaction equation, ~Fij is the force 

between cells i and j, rij is their distance, krep and kadh are repulsion and adhesion 

coefficients, r0 is the equilibrium distance, and radh and s control the range of adhesion.
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Even so, the complexity and computational costs for 

hybrid models, as represented in Table 5, commonly limits 

them to DT descriptions or tissues or organs (i.e, subsystems) 

within a patient. Examples include studying liver regeneration 

after drug-induced damage (Section 8) [73], how endocrine 

and paracrine signaling in"uence organ development on a 

cellular level [124], and how phenotypic hierarchies and 

hormonal signaling in"uence the development and 

progression of hormone-dependent tumors such as breast 

cancer [126]. This approach allows for complex, 

multiscale study of detailed behaviors that are often not 

observable in vivo or in vitro, revealing new insights into 

disease behaviors, promising treatment strategies, and new 

therapeutic targets.

11 Statistical and artificial intelligence 
modeling

Statistical and AI modeling techniques have become 

indispensable in constructing and refining DTs within 

healthcare. These methods enable predictive analytics, 

patient-specific outcome forecasting, and support for medical 

decision-making across a wide spectrum of diseases and 

organ systems. By leveraging large datasets—ranging from 

EHRs and omics profiles to sensor signals—researchers can 

develop sophisticated statistical and AI algorithms that mimic 

biological and clinical processes in silico. This section 

outlines the core statistical and AI-based modeling strategies 

commonly used to build healthcare DTs, highlighting both 

foundational and emerging methods.

11.1 Classical statistical approaches

Classical statistical models remain popular due to 

their interpretability and ease of implementation. Although 

few DT frameworks rely exclusively on traditional statistical 

methods, they are frequently employed as baseline or 

evaluation approaches to validate prediction using learned 

feature representation against ground truth data, thereby 

helping to benchmark the performance of more 

advanced modeling.

11.1.1 Regression models

Traditional regression models remain integral in building 

DTs, offering interpretable insights into the relationships 

between predictive features and outcomes [25, 27, 39, 42]. 

Linear regression is used to relate predictors (e.g., demographics, 

clinical markers) to a continuous response variable (e.g., blood 

pressure, metabolic indices), and logistic regression is used for 

modeling dichotomous outcomes (e.g., disease vs. no disease). 

Generalized linear models can be used for modeling outcome 

following other distributions such as Poisson or negative 

binomial distribution (e.g., modeling counts of hospital 

admission in hospital operations).

11.1.2 Survival analysis models

Survival analysis, such as the Cox proportional hazards model, 

estimates hazard functions for time-to-event data while handling 

censored observations [127]. In DTs focused on oncology or 

chronic diseases, survival analysis might be used to predict the 

time until tumor recurrence or a major adverse cardiac event. 

By continuously updating patient-specific factors (e.g., changes 

in lab results, new symptoms), the DT refines risk estimates 

over time.

11.2 Machine learning and deep learning

While classical statistical methods offer interpretability and a 

well-established theoretical foundation, they often rely on linear 

assumptions and manually selected features that may not fully 

capture the complexities of large-scale healthcare data. In 

contrast, ML [128] and DL [129] techniques excel at identifying 

non-linear patterns, extracting high-dimensional representations, 

and integrating a wider range of data sources(from clinical notes 

and sensor readings to multi-omics profiles and imaging) 

without requiring extensive feature engineering or predefined 

functional forms [130].

11.2.1 Tree-based ensemble methods

Tree-based ensemble methods, such as Random 

Forests, Gradient Boosting Machines, and Extreme Gradient 

Boosting (XGBoost), have gained prominence in DT 

applications due to their robustness, interpretability, and 

strong predictive performance across diverse healthcare 

datasets [69, 131–135].

Tree-based ensemble methods work by training multiple 

decision trees and then combining the outputs to generate a 

final prediction [136, 137]. In Random Forest, each tree is 

built on a random subset of the training data and a random 

subset of features, thereby capturing diverse patterns and 

reducing overfitting [138]. Gradient Boosting methods, on the 

other hand, build trees iteratively, with each tree focusing on 

correcting the prediction errors of the previous one [139]. By 

combining the results of several weak learners (individual 

trees) into a single “ensemble,” these approaches often 

outperform individual decision trees. The final output, 

TABLE 5 Hybrid discrete-continuum model equations.

Component Governing equation

Molecular diffusion [172, 173] @C

@t
¼ Dr

2C �
X

i

Ui(~xi, C) þ S(~x, t)

Cell movement [174, 175] d~xi

dt
¼~vi(C, ~Fi)

Cell force balance [125, 171] d~Fi

dt
¼
X

j

~Fij þ~Fext

C is the concentration field of a signaling molecule, D is the diffusion coefficient, Ui 

represents uptake by cell i at position ~xi , S represents sources, ~vi is the velocity of cell i 

which depends on the concentration field and forces, ~Fi is the total force on cell i, ~Fij is 

the force between cells i and j, and ~Fext represents external forces acting on the cell.
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typically an average (for regression) or a majority vote (for 

classification), re"ects the aggregated knowledge of all the 

trees. This design allows tree-based ensembles to handle 

noisy, high-dimensional data and naturally rank the 

importance of input features, making them highly valuable 

for DT applications, where data integration and 

interpretability are crucial.

11.2.2 Neural networks and control systems

Neural networks have become a central component in DT 

applications thanks to their capacity for learning rich, non- 

linear representations from high-dimensional healthcare data 

[140–142]. Neural networks can automatically discover 

complex patterns at different levels through multi-layer 

architecture and back-propagation, leading to latent 

representations that capture underlying physiological or 

pathological states.

Different neural network architectures specialize in various 

tasks in DT systems. For example, Convolutional Neural 

Networks are highly effective for processing medical images and 

segmenting disease-relevant regions [143], while Recurrent Neural 

Networks and transformers excel at modeling time-series data 

(e.g., electrocardiograms or patient trajectories) [14, 144, 145].

While neural networks demonstrate remarkable predictive 

power, they can be prone to overfitting and may require large- 

scale, well-annotated datasets. Techniques such as data 

augmentation, regularization, and model distillation can help 

address these limitations. In parallel, emerging research 

integrates domain knowledge (e.g., known physiological 

constraints) directly into model architectures or training 

objectives, yielding models that are both high-performing and 

more interpretable.

Advanced control methodologies for medical DTs utilize 

neural network-based approaches. Böttcher et al. developed 

dynamics-informed neural-network controllers for agent-based 

biomedical models [146], addressing challenges in multi-scale, 

stochastic biological systems like immunity. Their methods 

demonstrated effectiveness with uncertainty quantification, 

advancing control theory application to complex 

biomedical systems.

11.2.3 Synthetic classification approach
TabPFN (Tabular Prior-data Fitted Network) is a transformer- 

based foundation model for tabular data across biomedicine, 

economics, climate science, and materials research [147]. Unlike 

traditional ML requiring dataset-specific training, TabPFN learns 

prediction algorithms through meta-learning on millions of 

synthetic tasks. It delivers high-accuracy predictions on new 

datasets (up to 10,000 samples) in seconds via single forward 

passes, outperforming gradient-boosted decision trees. Beyond 

classification, TabPFN supports fine-tuning, data generation, 

density estimation, and transferable embeddings, positioning it 

as a transformative tool for accelerating scientific discovery 

across disciplines.

12 Discussion

12.1 Current limitations

The implementation of DTs in healthcare faces several critical 

challenges that must be addressed to realize their full potential. 

These limitations span technical, clinical, and regulatory domains.

12.1.1 Data quality and availability
The development of accurate healthcare DTs requires 

comprehensive, high-quality patient data that is often 

fragmented across disparate systems [102, 103]. Patient-specific 

models demand extensive longitudinal datasets encompassing 

multiple physiological parameters, all of which remain difficult 

to collect and integrate [99–101]. This challenge is particularly 

pronounced for rare diseases and underrepresented populations, 

where limited data availability may compromise model 

generalizability. Furthermore, issues with data standardization, 

completeness, and interoperability continue to hinder seamless 

integration of information from various sources, including 

EHRs, imaging systems, and wearable sensors [102, 104].

12.1.2 Computational constraints
Many sophisticated DT implementations, particularly those 

involving complex physiological systems or high-resolution 

imaging, impose significant computational demands [25, 27]. 

Physics-based models employing detailed finite element analysis 

or agent-based simulations often require specialized high- 

performance computing infrastructure that may not be readily 

available in clinical settings [35, 73]. The computational 

intensity of maintaining updated DT models in real-time 

presents a substantial barrier to widespread adoption, 

particularly for resource-constrained healthcare environments 

[28, 58]. These computational limitations often necessitate trade- 

offs between model complexity, accuracy, and practical utility in 

clinical work"ows.

12.1.3 Implementation complexity

Integrating digital twins into existing clinical work"ows 

remains challenging due to technical, operational, and human 

factors [57]. Healthcare systems frequently operate with legacy 

technologies that may not readily accommodate the 

sophisticated infrastructure required for DT implementations 

[56, 58]. The complexity of deployment extends beyond 

technical considerations to include staff training, work"ow 

redesign, and establishing protocols for interpretation and action 

based on DT insights [93]. This multifaceted implementation 

challenge requires coordinated efforts across technical teams, 

clinical staff, and healthcare administrators.

Provider adoption represents a particularly significant barrier 

to health DT (HDT) implementation, as it may be hindered by 

the inherent opacity of these sophisticated systems [148]. Amid 

ongoing frustrations with existing technologies like EHR and 

common concerns about bias in AI models, transparency and 

education regarding HDTs become crucial for facilitating both 
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provider and patient buy-in, potentially during the informed 

consent process [148]. The economic framework for HDT 

adoption adds another layer of complexity, as implementation 

success is largely determined by payment considerations that 

may require novel financing approaches beyond traditional fee- 

for-service models, such as value-based payment schemes that 

reward improved patient outcomes without resulting in 

overutilization [148].

12.1.4 Validation challenges

Establishing the validity and reliability of DT models in 

healthcare presents unique difficulties given the stakes involved 

in clinical decision-making [54, 63, 64]. Traditional validation 

approaches often rely on historical data, which may not 

adequately represent future patient populations or novel clinical 

scenarios [31, 49]. Prospective validation studies are resource- 

intensive and time-consuming, particularly for chronic 

conditions requiring long-term follow-up [40, 72]. Furthermore, 

validating DTs against gold standard measures can be 

problematic when such standards themselves have limitations or 

when the DT aims to provide insights beyond what 

conventional approaches can measure [33, 43]. The lack of 

standardized validation frameworks specific to healthcare DTs 

further complicates this challenge.

12.1.5 Privacy and security concerns
The comprehensive nature of DTs raises significant privacy 

and security considerations, as these models integrate sensitive 

personal health information from multiple sources [28, 102]. 

Ensuring robust data protection while maintaining model 

accessibility for clinical use requires sophisticated technical 

safeguards and governance frameworks [103, 104]. The tension 

between data utility and privacy protection represents an 

ongoing challenge, particularly as DTs become more integrated 

into care delivery systems [2, 7].

12.1.6 Digital equity

Healthcare DT implementation raises significant concerns 

about digital equity and bias that must be proactively addressed. 

Key challenges include ensuring access to necessary technology 

infrastructure in underserved and rural areas, developing diverse 

datasets to mitigate biases [as marginalized communities are 

often underrepresented in health data [149]], and addressing the 

digital skills gap among providers and patients. Without 

inclusive design and transparent governance, DT 

implementations risk exacerbating healthcare disparities rather 

than addressing them [149]. Establishing ethical guidelines, 

ensuring transparency in data usage, and fostering meaningful 

community engagement are essential to prevent the technology 

from primarily benefiting privileged populations while leaving 

vulnerable groups behind.

12.1.7 Regulatory pathways and clinical 

translation
The clinical translation of healthcare DTs requires navigating 

evolving regulatory frameworks for validation and certification. 

The U.S. Food and Drug Administration (FDA) has established 

pathways for in silico clinical trials through its Medical Device 

Development Tools (MDDT) program, which provides 

qualification processes for computational models in regulatory 

submissions [150]. The European Medicines Agency (EMA) 

similarly supports modeling and simulation, including virtual 

patient populations, to supplement traditional clinical trial data 

[151]. International standards, notably the ASME V&V 40 

standard, provide verification and validation frameworks 

specifically for computational models in medicine [152]. Despite 

this progress, significant challenges remain in establishing 

unified regulatory criteria for DT certification, particularly for 

real-time adaptive models and AI-integrated systems [153].

12.2 Future opportunities

Despite these challenges, DTs present transformative 

opportunities for advancing healthcare delivery, research, and 

patient outcomes.

12.2.1 Enhanced personalization
The evolution of DTs promises unprecedented levels of 

treatment personalization across various medical domains [4, 11, 

12]. Future DTs will likely integrate increasingly diverse data 

types, including multi-omics profiles, environmental exposures, 

behavioral factors, and social determinants of health, enabling 

truly holistic patient representations [13, 39]. This 

comprehensive approach will support precision interventions 

that account for individual variability at multiple levels, from 

molecular pathways to lifestyle factors [14, 15]. The potential for 

DTs to simulate patient-specific responses to different treatment 

options before actual implementation represents a paradigm 

shift in therapeutic decision-making, particularly for complex 

conditions with heterogeneous manifestations [26, 34, 64].

12.2.2 Improved prediction accuracy
Advances in AI and computational methods will continue to 

enhance the predictive capabilities of DTs [37, 42, 79]. The 

integration of sophisticated ML architectures with mechanistic 

models promises to combine the pattern recognition strengths of 

AI with the biological plausibility of physics-based approaches 

[30, 51, 52]. Emerging techniques in explainable AI and 

uncertainty quantification will improve both the accuracy and 

interpretability of predictions, addressing critical requirements for 

clinical adoption [53, 112, 113]. These advancements will be 

particularly valuable for forecasting disease progression, treatment 

responses, and potential complications, enabling more proactive 

and preventive care approaches [38, 44, 80].

12.2.3 Expanded application areas

While cardiovascular, neurological, and oncological 

applications currently dominate the DT landscape, future 

implementations will likely extend to additional medical 

domains and cross-system applications [29, 46, 77]. Promising 

areas include autoimmune disorders, psychiatric conditions, 
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pediatric development, and geriatric syndromes [32, 41, 69]. 

Beyond individual patient care, DTs hold potential for 

population health management, health system optimization, and 

public health emergency response [56–58]. The development of 

DT ecosystems that model interactions between multiple 

physiological systems will enable a more comprehensive 

understanding of complex conditions involving multi-organ 

pathologies [16, 40, 59].

12.2.4 Integration with emerging technologies

The convergence of DTs with other emerging technologies 

presents exciting possibilities for healthcare innovation [60–62]. 

Integration with advanced robotics could revolutionize surgical 

planning and execution through immersive simulations and 

real-time guidance [45, 60]. Incorporation of blockchain 

technology might address data provenance and security 

challenges while facilitating secure information sharing across 

institutions [104]. Extended reality interfaces could transform 

how clinicians interact with DTs, enabling intuitive exploration 

of complex physiological models and collaborative decision- 

making [62]. The potential synergy between DTs and gene- 

editing technologies like CRISPR could unlock new approaches 

for personalized genetic therapies by simulating intervention 

outcomes before implementation [50–52].

12.2.5 Global health applications
DTs have the potential to address healthcare disparities by 

enabling resource-efficient approaches to complex medical 

challenges in low-resource settings [7, 10]. Cloud-based 

implementations that require minimal local infrastructure could 

make sophisticated diagnostic and treatment planning tools 

accessible in underserved regions [28, 104]. Adaptable DT 

frameworks could be tailored to address region-specific health 

challenges and populations, potentially transforming global health 

approaches to infectious diseases, maternal health, and chronic 

condition management in diverse healthcare systems [6, 9, 13].

The continued evolution of DT technologies in healthcare will 

demand interdisciplinary collaboration across computational 

sciences, medicine, engineering, ethics, and policy [1, 2]. As 

these technologies mature from research tools to clinical 

applications, addressing the identified challenges while 

capitalizing on emerging opportunities will be essential for 

realizing their transformative potential in healthcare.

Author contributions

HK: Conceptualization, Data curation, Formal analysis, 

Investigation, Project administration, Visualization, Writing – 

original draft, Writing – review & editing. BT: Data curation, 

Investigation, Writing – original draft. HZ: Data curation, 

Investigation, Visualization, Writing – original draft. LS: Data 

curation, Investigation, Writing – original draft. CG: Data 

curation, Investigation, Writing – original draft. AR: Data 

curation, Writing – review & editing. EI: Conceptualization, 

Data curation, Investigation, Project administration, Resources, 

Supervision, Writing – original draft, Writing – review & 

editing. JB: Data curation, Investigation, Writing – original 

draft, Writing – review & editing. JL: Conceptualization, 

Funding acquisition, Project administration, Resources, 

Supervision, Writing – review & editing. K-AD: 

Conceptualization, Funding acquisition, Project administration, 

Resources, Supervision, Writing – review & editing.

Funding

The author(s) declare financial support was received for the 

research and/or publication of this article. This work was 

funded by NIH grant numbers RP160693; SPORE 

P50CA140388; Center for Clinical and Translational Sciences 

(CCTS) TR000371 and MDACC Cancer Center Support Grant 

(CCSG) grant P30CA016672. JB received support from Andrew 

M. McDougall Brain Metastasis Clinic and Research Program, 

The University of Texas MD Anderson Start-Up Funds Program 

and MDACC CCSG Development Funds on NIH 

P30CA016672. JL received support from the National Cancer 

Institute and the National Center for Advancing Translational 

Sciences of the NIH [P50CA127001-16, CCSG P30CA016672-46, 

and CCTS UM1TR004906].

Conflict of interest

The authors declare that the research was conducted in the 

absence of any commercial or financial relationships that could 

be construed as a potential con"ict of interest.

Generative AI statement

The author(s) declare that Generative AI was used in the 

creation of this manuscript. The authors declare that Gen AI, 

ChatGPT, was used to improve the language clarity and 

precision, as English is not the primary language of the authors. 

It was not used for content creation or any other purpose 

beyond improving language.

Any alternative text (alt text) provided alongside figures in this 

article has been generated by Frontiers with the support of 

artificial intelligence and reasonable efforts have been made to 

ensure accuracy, including review by the authors wherever 

possible. If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the 

authors and do not necessarily represent those of their affiliated 

organizations, or those of the publisher, the editors and the 

reviewers. Any product that may be evaluated in this article, or 

claim that may be made by its manufacturer, is not guaranteed 

or endorsed by the publisher.

Khoshfekr Rudsari et al.                                                                                                                                           10.3389/fdgth.2025.1633539 

Frontiers in Digital Health 21 frontiersin.org



References

1. Grieves M. Digital twin: manufacturing excellence through virtual factory 
replication. White Pap. (2014) 1:1–7. Available online at: http://www.apriso.com/ 
library/Whitepaper_Dr_Grieves_DigitalTwin_ManufacturingExcellence.php

2. Erol T, Mendi AF, Doğan D. Digital transformation revolution with digital twin 
technology. In: 2020 4th International Symposium on Multidisciplinary Studies and 
Innovative Technologies (ISMSIT). IEEE (2020). p. 1–7.

3. Kritzinger W, Karner M, Traar G, Henjes J, Sihn W. Digital twin in 
manufacturing: a categorical literature review and classification. IFAC- 
PapersOnline. (2018) 51:1016–22. doi: 10.1016/j.ifacol.2018.08.474

4. Björnsson B, Borrebaeck C, Elander N, Gasslander T, Gawel DR, Gustafsson M, 
et al. Digital twins to personalize medicine. Genome Med. (2020) 12:1–4. doi: 10.1186/ 
s13073-019-0701-3

5. Jacoby M, Usländer T. Digital twin and internet of things—current standards 
landscape. Appl Sci. (2020) 10:6519. doi: 10.3390/app10186519

6. Shah N, Nagar J, Desai K, Bhatt N, Bhatt N, Mewada H. Machine learning– 
enabled digital twins for diagnostic and therapeutic purposes. In: Tyagi Ab, editor. 
Artificial Intelligence-Enabled Blockchain Technology and Digital Twin for Smart 
Hospitals. Beverly: Wiley Online Library (2024). p. 77–97.

7. Bruynseels K, Santoni de Sio F, Van den Hoven J. Digital twins in health care: 
ethical implications of an emerging engineering paradigm. Front Genet. (2018) 
9:31. doi: 10.3389/fgene.2018.00031

8. Corral-Acero J, Margara F, Marciniak M, Rodero C, Loncaric F, Feng Y, et al. 
The “digital twin” to enable the vision of precision cardiology. Eur Heart J. (2020) 
41:4556–64. doi: 10.1093/eurheartj/ehaa159

9. Vallée A. Digital twin for healthcare systems. Front Digit Health. (2023) 
5:1253050. doi: 10.1186/s13073-019-0701-3

10. Shen M, Chen S, Ding X. The effectiveness of digital twins in promoting 
precision health across the entire population: a systematic review. NPJ Digit Med. 
(2024) 7:145. doi: 10.1038/s41746-024-01146-0

11. Cellina M, Cè M, Alì M, Irmici G, Ibba S, Caloro E, et al. Digital twins: The new 
frontier for personalized medicine? Appl Sci. (2023) 13:7940. doi: 10.3390/app13137940

12. Vodovotz Y. Towards systems immunology of critical illness at scale: from 
single cell omics to digital twins. Trends Immunol. (2023) 44:345–55. doi: 10.1016/ 
j.it.2023.03.004

13. Sagner M, McNeil A, Puska P, Auffray C, Price ND, Hood L, et al. The p4 
health spectrum–a predictive, preventive, personalized and participatory 
continuum for promoting healthspan. Prog Prev Med. (2017) 2:e0002. doi: 10.1097/ 
pp9.0000000000000002

14. Rivera LF, Jiménez M, Angara P, Villegas NM, Tamura G, Müller HA. Towards 
continuous monitoring in personalized healthcare through digital twins. In: 
Proceedings of the 29th Annual International Conference on Computer Science and 
Software Engineering. (2019). p. 329–35.

15. Ahmadi-Assalemi G, Al-Khateeb H, Maple C, Epiphaniou G, Alhaboby ZA, 
Alkaabi S, et al. Digital twins for precision healthcare. In: Jahankhani H, 
Kendzierskyj S, Chelvachandran N, Ibarra J, editors., Cyber Defence in the Age of 
AI, Smart Societies and Augmented Humanity. Cham: Springer (2020). p. 133–58.

16. Chandra S, Prakash P, Samanta S, Chilukuri S. Clinicalgan: powering patient 
monitoring in clinical trials with patient digital twins. Sci Rep. (2024) 14:12236. 
doi: 10.1038/s41598-024-62567-1

17. Barrett S, Zahid MU, Enderling H, Marignol L. Predicting individual tumor 
response dynamics in locally advanced non-small cell lung cancer radiation 
therapy: a mathematical modelling study. Int J Radiat Oncol Biol Phys. (2025) 
121:1077–87. doi: 10.1016/j.ijrobp.2024.10.038

18. Shu H, Liang R, Li Z, Goodridge A, Zhang X, Ding H, et al. Twin-s: a digital 
twin for skull base surgery. Int J Comput Assist Radiol Surg. (2023) 18:1077–84. 
doi: 10.1007/s11548-023-02863-9

19. Haleem A, Javaid M, Singh RP, Suman R. Exploring the revolution in healthcare 
systems through the applications of digital twin technology. Biomed Technol. (2023) 
4:28–38. doi: 10.1016/j.bmt.2023.02.001

20. Katsoulakis E, Wang Q, Wu H, Shahriyari L, Fletcher R, Liu J, et al. Digital 
twins for health: a scoping review. NPJ Digit Med. (2024) 7:77. doi: 10.1038/ 
s41746-024-01073-0

21. Sanchez P, Voisey JP, Xia T, Watson HI, O’Neil AQ, Tsaftaris SA. Causal 
machine learning for healthcare and precision medicine. R Soc Open Sci. (2022) 
9:220638. doi: 10.1098/rsos.220638

22. Vlontzos A, Kainz B, Gilligan-Lee CM. Estimating categorical counterfactuals 
via deep twin networks. Nat Mach Intell. (2023) 5:159–68. doi: 10.1038/s42256- 
023-00611-x

23. Drummond D, Coulet A. Technical, ethical, legal, and societal challenges with 
digital twin systems for the management of chronic diseases in children and young 
people. J Med Internet Res. (2022) 24:e39698. doi: 10.2196/39698

24. Sahal R, Alsamhi SH, Brown KN. Personal digital twin: a close look into the 
present and a step towards the future of personalised healthcare industry. Sensors. 
(2022) 22:5918. doi: 10.3390/s22155918

25. Aguado-Sierra J, Brigham R, Baron AK, Gomez PD, Houzeaux G, Guerra JM, 
et al. HPC Framework for Performing in Silico Trials Using a 3D Virtual Human 
Cardiac Population as Means to Assess Drug-Induced Arrhythmic Risk. New York: 
Springer (2023). p. 307–34.

26. Hwang DT, Kwon MO, Lim MB, Jin MZ, Yang MS, Kim DD, et al. Clinical 
application of virtual antiarrhythmic drug test using digital twins in patients who 
recurred atrial fibrillation after catheter ablation. Europace. (2023) 25:euad122-076. 
doi: 10.1093/europace/euad122.076

27. Tanade C, Khan NS, Rakestraw E, Ladd WD, Draeger EW, Randles A. 
Establishing the longitudinal hemodynamic mapping framework for wearable- 
driven coronary digital twins. npj Digit Med. (2024) 7:236. doi: 10.1038/s41746- 
024-01216-3

28. Martinez-Velazquez R, Gamez R, El Saddik A. Cardio twin: a digital twin 
of the human heart running on the edge. In: 2019 IEEE International 
Symposium on Medical Measurements and Applications (MeMeA). IEEE (2019). 
p. 1–6.

29. Sung E, Prakosa A, Aronis KN, Zhou S, Zimmerman SL, Tandri H, et al. 
Personalized digital-heart technology for ventricular tachycardia ablation targeting 
in hearts with infiltrating adiposity. Circ Arrhythm Electrophysiol. (2020) 13: 
e008912. doi: 10.1161/CIRCEP.120.008912

30. Weickenmeier J, Jucker M, Goriely A, Kuhl E. A physics-based model explains 
the prion-like features of neurodegeneration in Alzheimer’s disease, Parkinson’s 
disease, and amyotrophic lateral sclerosis. J Mech Phys Solids. (2019) 124:264–81. 
doi: 10.1016/j.jmps.2018.10.013

31. Cen S, Gebregziabher M, Moazami S, Azevedo CJ, Pelletier D. Toward precision 
medicine using a “digital twin” approach: modeling the onset of disease-specific brain 
atrophy in individuals with multiple sclerosis. Sci Rep. (2023) 13:16279. doi: 10.1038/ 
s41598-023-43618-5

32. Abirami L, Karthikeyan J. Digital twin-based healthcare system (DTHS) for 
earlier parkinson disease identification and diagnosis using optimized fuzzy based 
k-nearest neighbor classifier model. IEEE Access. (2023) 11:96661–72. doi: 10.1109/ 
ACCESS.2023.3312278

33. Wan Z, Dong Y, Yu Z, Lv H, Lv Z. Semi-supervised support vector machine for 
digital twins based brain image fusion. Front Neurosci. (2021) 15:705323. doi: 10. 
3389/fnins.2021.705323

34. Chaudhuri A, Pash G, Hormuth DA, Lorenzo G, Kapteyn M, Wu C, et al. 
Predictive digital twin for optimizing patient-specific radiotherapy regimens under 
uncertainty in high-grade gliomas. Front Artif Intell. (2023) 6:1222612. doi: 10. 
3389/frai.2023.1222612

35. Neelakantan S, Xin Y, Gaver DP, Cereda M, Rizi R, Smith BJ, et al. 
Computational lung modelling in respiratory medicine. J R Soc Interface. (2022) 
19:20220062. doi: 10.1098/rsif.2022.0062

36. Khan S, Alzaabi A, Ratnarajah T, Arslan T. Novel statistical time series data 
augmentation and machine learning based classification of unobtrusive respiration 
data for respiration digital twin model. Comput Biol Med. (2024) 168:107825. 
doi: 10.1016/j.compbiomed.2023.107825

37. Avanzato R, Beritelli F, Lombardo A, Ricci C. Lung-DT: an ai-powered digital 
twin framework for thoracic health monitoring and diagnosis. Sensors. (2024) 24:958. 
doi: 10.3390/s24030958

38. Young G, Dodier R, Youssef JE, Castle JR, Wilson L, Riddell MC, et al. Data 
from: Design and in silico evaluation of an exercise decision support system using 
digital twin models. (2024). doi: 10.1177/19322968231223217

39. Zhang Y, Qin G, Aguilar B, Rappaport N, Yurkovich JT, P"ieger L, et al. A 
framework towards digital twins for type 2 diabetes. Front Digit Health. (2024) 
6:1336050. doi: 10.3389/fdgth.2024.1336050

40. Herrgårdh T, Simonsson C, Ekstedt M, Lundberg P, Stenkula KG, Nyman E, 
et al. A multi-scale digital twin for adiposity-driven insulin resistance in humans: 
diet and drug effects. Diabetol Metab Syndr. (2023) 15:250. doi: 10.1186/s13098- 
023-01223-6

41. Zaunseder E, Mütze U, Okun JG, Hoffmann GF, Kölker S, Heuveline V, et al. 
Personalized metabolic whole-body models for newborns and infants predict growth 
and biomarkers of inherited metabolic diseases. Cell Metab. (2024) 36:1882–1897.e7. 
doi: 10.1016/j.cmet.2024.05.006

42. Kim JK, Lee SJ, Hong SH, Choi IY. Machine-learning-based digital twin system 
for predicting the progression of prostate cancer. Appl Sci. (2022) 12:8156. doi: 10. 
3390/app12168156

43. Eminaga O, Abbas M, Kunder C, Tolkach Y, Han R, Brooks JD, et al. Critical 
evaluation of artificial intelligence as a digital twin of pathologists for prostate cancer 
pathology. Sci Rep. (2024) 14:5824. doi: 10.1038/s41598-024-55228-w

Khoshfekr Rudsari et al.                                                                                                                                           10.3389/fdgth.2025.1633539 

Frontiers in Digital Health 22 frontiersin.org

http://www.apriso.com/library/Whitepaper_Dr_Grieves_DigitalTwin_ManufacturingExcellence.php
http://www.apriso.com/library/Whitepaper_Dr_Grieves_DigitalTwin_ManufacturingExcellence.php
https://doi.org/10.1016/j.ifacol.2018.08.474
https://doi.org/10.1186/s13073-019-0701-3
https://doi.org/10.1186/s13073-019-0701-3
https://doi.org/10.3390/app10186519
https://doi.org/10.3389/fgene.2018.00031
https://doi.org/10.1093/eurheartj/ehaa159
https://doi.org/10.1186/s13073-019-0701-3
https://doi.org/10.1038/s41746-024-01146-0
https://doi.org/10.3390/app13137940
https://doi.org/10.1016/j.it.2023.03.004
https://doi.org/10.1016/j.it.2023.03.004
https://doi.org/10.1097/pp9.0000000000000002
https://doi.org/10.1097/pp9.0000000000000002
https://doi.org/10.1038/s41598-024-62567-1
https://doi.org/10.1016/j.ijrobp.2024.10.038
https://doi.org/10.1007/s11548-023-02863-9
https://doi.org/10.1016/j.bmt.2023.02.001
https://doi.org/10.1038/s41746-024-01073-0
https://doi.org/10.1038/s41746-024-01073-0
https://doi.org/10.1098/rsos.220638
https://doi.org/10.1038/s42256-023-00611-x
https://doi.org/10.1038/s42256-023-00611-x
https://doi.org/10.2196/39698
https://doi.org/10.3390/s22155918
https://doi.org/10.1093/europace/euad122.076
https://doi.org/10.1038/s41746-024-01216-3
https://doi.org/10.1038/s41746-024-01216-3
https://doi.org/10.1161/CIRCEP.120.008912
https://doi.org/10.1016/j.jmps.2018.10.013
https://doi.org/10.1038/s41598-023-43618-5
https://doi.org/10.1038/s41598-023-43618-5
https://doi.org/10.1109/ACCESS.2023.3312278
https://doi.org/10.1109/ACCESS.2023.3312278
https://doi.org/10.3389/fnins.2021.705323
https://doi.org/10.3389/fnins.2021.705323
https://doi.org/10.3389/frai.2023.1222612
https://doi.org/10.3389/frai.2023.1222612
https://doi.org/10.1098/rsif.2022.0062
https://doi.org/10.1016/j.compbiomed.2023.107825
https://doi.org/10.3390/s24030958
https://doi.org/10.1177/19322968231223217
https://doi.org/10.3389/fdgth.2024.1336050
https://doi.org/10.1186/s13098-023-01223-6
https://doi.org/10.1186/s13098-023-01223-6
https://doi.org/10.1016/j.cmet.2024.05.006
https://doi.org/10.3390/app12168156
https://doi.org/10.3390/app12168156
https://doi.org/10.1038/s41598-024-55228-w


44. Tardini E, Zhang X, Canahuate G, Wentzel A, Mohamed ASR, Van Dijk L, 
et al. Optimal treatment selection in sequential systemic and 
locoregional therapy of oropharyngeal squamous carcinomas: deep q-learning with 
a patient-physician digital twin dyad. J Med Internet Res. (2022) 24:e29455. doi: 10. 
2196/29455

45. Männle D, Pohlmann J, Monji-Azad S, Hesser J, Rotter N, Affolter A, et al. 
Artificial intelligence directed development of a digital twin to measure soft tissue 
shift during head and neck surgery. PLoS One. (2023) 18:e0287081. doi: 10.1371/ 
journal.pone.0287081

46. Veiga-Canuto D, Cerdá Alberich L, Fernández-Patón M, Jiménez Pastor A, 
Lozano-Montoya J, Miguel Blanco A, et al. Imaging biomarkers and radiomics in 
pediatric oncology: a view from the primage (predictive in silico multiscale 
analytics to support cancer personalized diagnosis and prognosis, empowered by 
imaging biomarkers) project. Pediatr Radiol. (2024) 54:562–70. doi: 10.1007/ 
s00247-023-05770-y.

47. Urcun S, Rohan PY, Skalli W, Nassoy P, Bordas SPA, Sciumè G. Digital 
twinning of cellular capsule technology: emerging outcomes from the perspective 
of porous media mechanics. PLoS One. (2021) 16:e0254512. doi: 10.1371/journal. 
pone.0254512

48. L Rocha H, Aguilar B, Getz M, Shmulevich I, Macklin P. A multiscale model of 
immune surveillance in micrometastases gives insights on cancer patient digital 
twins. npj Syst Biol Appl. (2024) 10:1–12. doi: 10.1038/s41540-024-00472-z

49. Peidli S, Green TD, Shen C, Gross T, Min J, Garda S, et al. scPerturb: 
harmonized single-cell perturbation data. Nat Methods. (2024) 21:531–40. doi: 10. 
1038/s41592-023-02144-y

50. Squires C, Shen D, Agarwal A, Shah D, Uhler C. Causal imputation via 
synthetic interventions. In: Conference on Causal Learning and Reasoning. PMLR 
(2022). p. 688–711.

51. Rohbeck M, Clarke B, Mikulik K, Pettet A, Stegle O, Ueltzhöffer K. Bicycle: 
intervention-based causal discovery with cycles. In: Causal Learning and Reasoning. 
PMLR (2024). p. 209–42.

52. Yuan B, Shen C, Luna A, Korkut A, Marks DS, Ingraham J, et al. Cellbox: 
interpretable machine learning for perturbation biology with application to the 
design of cancer combination therapy. Cell Syst. (2021) 12:128–140.e4. doi: 10. 
1016/j.cels.2020.11.013

53. Cui H, Wang C, Maan H, Pang K, Luo F, Duan N, et al. scGPT: toward building 
a foundation model for single-cell multi-omics using generative AI. Nat Methods. 
(2024) 21:1470–80. doi: 10.1038/s41592-024-02201-0

54. Passini E, Britton OJ, Lu HR, Rohrbacher J, Hermans AN, Gallacher DJ, et al. 
Human in silico drug trials demonstrate higher accuracy than animal models in 
predicting clinical pro-arrhythmic cardiotoxicity. Front Physiol. (2017) 8:668. 
doi: 10.3389/fphys.2017.00668

55. He W, Mccoy MD, Riggins RB, Beckman RA, Yeang CH. Personalized cancer 
treatment strategies incorporating irreversible and reversible drug resistance 
mechanisms. (2024).

56. Laamarti F, Badawi HF, Ding Y, Arafsha F, Hafidh B, El Saddik A. An ISO/IEEE 
11073 standardized digital twin framework for health and well-being in smart cities. 
IEEE Access. (2020) 8:105950–61. doi: 10.1109/access.2020.2999871

57. Pandey H, Amod A, Jaggi K, Garg R, Jain A, Tantia V. Digital twin ecosystem 
for oncology clinical operations. arXiv [Preprint]. arXiv:2409.17650 (2024).

58. Monteith M. Further reducing the rate of code blue calls through early warning 
systems and enabling technologies. Healthc Manage Forum. (2020) 33:30–3. doi: 10. 
1177/0840470419872770

59. Wang Y, Fu T, Xu Y, Ma Z, Xu H, Du B, et al. Twin-GPT: digital twins for 
clinical trials via large language model. In: ACM Transactions on Multimedia 
Computing, Communications and Applications. Association for Computing 
Machinery (2024). doi: 10.1145/3674838

60. Tai Y, Zhang L, Li Q, Zhu C, Chang V, Rodrigues JJPC, et al. Digital-twin- 
enabled IoMT system for surgical simulation using rAC-GAN. IEEE Internet 
Things J. (2022) 9:20918–31. doi: 10.1109/jiot.2022.3176300

61. Keshmiri Neghab H, Jamshidi MB, Keshmiri Neghab H. Digital twin of a 
magnetic medical microrobot with stochastic model predictive controller boosted 
by machine learning in cyber-physical healthcare systems. Information. (2022) 
13:321. doi: 10.3390/info13070321

62. Devoto L, Muscroft S, Chand M. Highly accurate, patient-specific, 
3-dimensional mixed-reality model creation for surgical training and decision- 
making. JAMA Surg. (2019) 154:968–9. doi: 10.1001/jamasurg.2019.2546

63. Sel K, Osman D, Zare F, Masoumi Shahrbabak S, Brattain L, Hahn JO, et al. 
Building digital twins for cardiovascular health: from principles to clinical impact. 
J Am Heart Assoc. (2024) 13:e031981. doi: 10.1161/JAHA.123.031981

64. Hwang T, Lim B, Kwon OS, Kim MH, Kim D, Park JW, et al. Clinical usefulness 
of digital twin guided virtual amiodarone test in patients with atrial fibrillation 
ablation. NPJ Digit Med. (2024) 7:297. doi: 10.1038/s41746-024-01298-z

65. Bai J, Wang W, Zhang X, Lu H, Zhang H, Panfilov AV, et al. Digital twin for 
sex-specific identification of class III antiarrhythmic drugs based on in vitro 
measurements, computer models, and machine learning tools. PLoS Comput Biol. 
(2025) 21:e1013154. doi: 10.1371/journal.pcbi.1013154

66. Iyer AA, Umadevi K. Design and analysis of twincardio framework to detect 
and monitor cardiovascular diseases using digital twin and deep neural network. 
Sci Rep. (2025) 15:24376. doi: 10.1038/s41598-025-08824-3

67. Goetz WA, Yao J, Brener M, Puri R, Swaans M, Schopka S, et al. Inversion of 
left ventricular axial shortening: in silico proof of concept for treatment of HFpEF. 
Bioengineering. (2024) 11:676. doi: 10.3390/bioengineering11070676

68. Qian S, Ugurlu D, Fairweather E, Toso LD, Deng Y, Strocchi M, et al. 
Developing cardiac digital twin populations powered by machine learning provides 
electrophysiological insights in conduction and repolarization. Nat Cardiovasc Res. 
(2025) 4:624–36. doi: 10.1038/s44161-025-00650-0

69. Allen A, Siefkas A, Pellegrini E, Burdick H, Barnes G, Calvert J, et al. A digital 
twins machine learning model for forecasting disease progression in stroke patients. 
Appl Sci. (2021) 11:5576. doi: 10.3390/app11125576

70. Amato LG, Lassi M, Vergani AA, Carpaneto J, Mazzeo S, Moschini V, et al. 
Digital twins and non-invasive recordings enable early diagnosis of Alzheimer’s 
disease. Alzheimer Res Ther. (2025) 17:125. doi: 10.1186/s13195-025-01765-z

71. Resalat N, El Youssef J, Tyler N, Castle J, Jacobs PG. A statistical virtual 
patient population for the glucoregulatory system in type 1 diabetes with 
integrated exercise model. PLoS One. (2019) 14:e0217301. doi: 10.1371/journal. 
pone.0217301

72. Silfvergren O, Simonsson C, Ekstedt M, Lundberg P, Gennemark P, Cedersund 
G. Digital twin predicting diet response before and after long-term fasting. PLoS 
Comput Biol. (2022) 18:e1010469. doi: 10.1371/journal.pcbi.1010469

73. Zhao J, Ghallab A, Hassan R, Dooley S, Hengstler JG, Drasdo D. A liver digital 
twin for in silico testing of cellular and inter-cellular mechanisms in regeneration 
after drug-induced damage. iScience. (2024) 27:108077. doi: 10.1016/j.isci.2023. 
108077

74. Tesán L, González D, Martins P, Cueto E. Thermodynamics-informed graph 
neural networks for real-time simulation of digital human twins. Comput Mech. 
(2025) 76:923–44. doi: 10.1007/s00466-025-02633-1

75. Aravindakshan MR, Mandal C, Pothen A, Schaller S, Maass C. Digilocs: a leap 
forward in predictive organ-on-chip simulations. PLoS One. (2025) 20:e0314083. 
doi: 10.1371/journal.pone.0314083

76. Susilo ME, Li C, Gadkar K, Hernandez G, Huw L, Jin JY, et al. Systems-based 
digital twins to help characterize clinical dose–response and propose predictive 
biomarkers in a phase I study of bispecific antibody, mosunetuzumab, in NHL. 
Clin Transl Sci. (2023) 16:1134–48. doi: 10.1111/cts.13501

77. Batch KE, Yue J, Darcovich A, Lupton K, Liu CC, Woodlock DP, et al. 
Developing a cancer digital twin: supervised metastases detection from consecutive 
structured radiology reports. Front Artif Intell. (2022) 5:826402. doi: 10.3389/frai. 
2022.826402

78. Stamatakos G, Kolokotroni E, Panagiotidou F, Tsampa S, Kyroudis C, Spohn S, 
et al. In silico oncology: a mechanistic multiscale model of clinical prostate cancer 
response to external radiation therapy as the core of a digital (virtual) twin. 
Sensitivity analysis and a clinical adaptation approach. Front Physiol. (2025) 
16:1434739. doi: 10.3389/fphys.2025.1434739

79. Makarov N, Bordukova M, Rodriguez-Esteban R, Schmich F, Menden MP. 
Large language models forecast patient health trajectories enabling digital twins. 
(2024). doi: 10.1101/2024.07.05.24309957

80. Hou J, Deng J, Li C, Wang Q. Tracing and forecasting metabolic indices of 
cancer patients using patient-specific deep learning models. J Pers Med. (2022) 
12:742. doi: 10.3390/jpm12050742

81. Heudel P, Ahmed M, Renard F, Attye A. Leveraging digital twins for 
stratification of patients with breast cancer and treatment optimization in geriatric 
oncology: multivariate clustering analysis. JMIR Cancer. (2025) 11:e64000. doi: 10. 
2196/64000

82. Quinn-Bohmann N, Wilmanski T, Sarmiento KR, Levy L, Lampe JW, Gurry T, 
et al. Microbial community-scale metabolic modelling predicts personalized short- 
chain fatty acid production profiles in the human gut. Nat Microbiol. (2024) 
9:1700–12. doi: 10.1038/s41564-024-01728-4

83. Lerman JA, Hyduke DR, Latif H, Portnoy VA, Lewis NE, Orth JD, et al. In silico 
method for modelling metabolism and gene product expression at genome scale. Nat 
Commun. (2012) 3:929. doi: 10.1038/ncomms1928

84. Khoshfekr Rudsari H, Zoofaghari M, Veletić M, Bergsland J, Balasingham I. 
The end-to-end molecular communication model of extracellular vesicle-based 
drug delivery. IEEE Trans Nanobiosci. (2022) 22:498–510. doi: 10.1109/TNB.2022. 
3206908

85. Khoshfekr Rudsari H, Zoofaghari M, Damrath M, Veletić M, Bergsland J, 
Balasingham I. Anomalous diffusion of extracellular vesicles in an extracellular 
matrix for molecular communication. IEEE Trans Mol Biol MultiScale Commun. 
(2023) 9:8–12. doi: 10.1109/TMBMC.2023.3240928

86. Irajizad E, Ramachandran R, Agrawal A. Geometric instability catalyzes 
mitochondrial fission. Mol Biol Cell. (2019) 30:160–8. doi: 10.1091/mbc.E18-01-0018

87. Irajizad E, Walani N, Veatch SL, Liu AP, Agrawal A. Clathrin polymerization 
exhibits high mechano-geometric sensitivity. Soft Matter. (2017) 13:1455–62. 
doi: 10.1039/C6SM02623K

Khoshfekr Rudsari et al.                                                                                                                                           10.3389/fdgth.2025.1633539 

Frontiers in Digital Health 23 frontiersin.org

https://doi.org/10.2196/29455
https://doi.org/10.2196/29455
https://doi.org/10.1371/journal.pone.0287081
https://doi.org/10.1371/journal.pone.0287081
https://doi.org/10.1007/s00247-023-05770-y.
https://doi.org/10.1007/s00247-023-05770-y.
https://doi.org/10.1371/journal.pone.0254512
https://doi.org/10.1371/journal.pone.0254512
https://doi.org/10.1038/s41540-024-00472-z
https://doi.org/10.1038/s41592-023-02144-y
https://doi.org/10.1038/s41592-023-02144-y
https://doi.org/10.1016/j.cels.2020.11.013
https://doi.org/10.1016/j.cels.2020.11.013
https://doi.org/10.1038/s41592-024-02201-0
https://doi.org/10.3389/fphys.2017.00668
https://doi.org/10.1109/access.2020.2999871
https://doi.org/10.1177/0840470419872770
https://doi.org/10.1177/0840470419872770
https://doi.org/10.1145/3674838
https://doi.org/10.1109/jiot.2022.3176300
https://doi.org/10.3390/info13070321
https://doi.org/10.1001/jamasurg.2019.2546
https://doi.org/10.1161/JAHA.123.031981
https://doi.org/10.1038/s41746-024-01298-z
https://doi.org/10.1371/journal.pcbi.1013154
https://doi.org/10.1038/s41598-025-08824-3
https://doi.org/10.3390/bioengineering11070676
https://doi.org/10.1038/s44161-025-00650-0
https://doi.org/10.3390/app11125576
https://doi.org/10.1186/s13195-025-01765-z
https://doi.org/10.1371/journal.pone.0217301
https://doi.org/10.1371/journal.pone.0217301
https://doi.org/10.1371/journal.pcbi.1010469
https://doi.org/10.1016/j.isci.2023.108077
https://doi.org/10.1016/j.isci.2023.108077
https://doi.org/10.1007/s00466-025-02633-1
https://doi.org/10.1371/journal.pone.0314083
https://doi.org/10.1111/cts.13501
https://doi.org/10.3389/frai.2022.826402
https://doi.org/10.3389/frai.2022.826402
https://doi.org/10.3389/fphys.2025.1434739
https://doi.org/10.1101/2024.07.05.24309957
https://doi.org/10.3390/jpm12050742
https://doi.org/10.2196/64000
https://doi.org/10.2196/64000
https://doi.org/10.1038/s41564-024-01728-4
https://doi.org/10.1038/ncomms1928
https://doi.org/10.1109/TNB.2022.3206908
https://doi.org/10.1109/TNB.2022.3206908
https://doi.org/10.1109/TMBMC.2023.3240928
https://doi.org/10.1091/mbc.E18-01-0018
https://doi.org/10.1039/C6SM02623K


88. Beckman RA, Schemmann GS, Yeang CH. Impact of genetic dynamics and 
single-cell heterogeneity on development of nonstandard personalized medicine 
strategies for cancer. Proc Natl Acad Sci. (2012) 109:14586–91. doi: 10.1073/pnas. 
1203559109

89. Nelander S, Wang W, Nilsson B, She QB, Pratilas C, Rosen N, et al. Models 
from experiments: combinatorial drug perturbations of cancer cells. Mol Syst Biol. 
(2008) 4:216. doi: 10.1038/msb.2008.53

90. Slack MD, Martinez ED, Wu LF, Altschuler SJ. Characterizing heterogeneous 
cellular responses to perturbations. Proc Natl Acad Sci. (2008) 105:19306–11. 
doi: 10.1073/pnas.0807038105

91. Vavourakis V, Stylianopoulos T, Wijeratne PA. In-silico dynamic analysis of 
cytotoxic drug administration to solid tumours: effect of binding affinity and vessel 
permeability. PLoS Comput Biol. (2018) 14:e1006460. doi: 10.1371/journal.pcbi. 
1006460

92. Bahrami F, Rossi RM, De Nys K, Defraeye T. An individualized digital twin of a 
patient for transdermal fentanyl therapy for chronic pain management. Drug Deliv 
Transl Res. (2023) 13:2272–85. doi: 10.1007/s13346-023-01305-y

93. Rovati L, Gary PJ, Cubro E, Dong Y, Kilickaya O, Schulte PJ, et al. Development 
and usability testing of a patient digital twin for critical care education: a mixed 
methods study. Front Med. (2024) 10:1336897. doi: 10.3389/fmed.2023.1336897

94. Shih A, Park DW, Yang YYD, Chisena R, Wu D. Cloud-based design and 
additive manufacturing of custom orthoses. Procedia Cirp. (2017) 63:156–60. 
doi: 10.1016/j.procir.2017.03.355

95. Moingeon P, Chenel M, Rousseau C, Voisin E, Guedj M. Virtual patients, 
digital twins and causal disease models: paving the ground for in silico clinical 
trials. Drug Discov Today. (2023) 28:103605. doi: 10.1016/j.drudis.2023.103605

96. Sarp S, Kuzlu M, Zhao Y, Gueler O. Digital twin in healthcare: a study for 
chronic wound management. IEEE J Biomed Health Inform. (2023) 27:5634–43. 
doi: 10.1109/jbhi.2023.3299028

97. Hao M, Gong J, Zeng X, Liu C, Guo Y, Cheng X, et al. Large-scale foundation 
model on single-cell transcriptomics. Nat Methods. (2024) 21:1481–91. doi: 10.1038/ 
s41592-024-02305-7

98. Lammert J, Pfarr N, Kuligin L, Mathes S, Dreyer T, Modersohn L, et al. Large 
language models-enabled digital twins for precision medicine in rare gynecological 
tumors. npj Digit Med. (2025) 8:420. doi: 10.1038/s41746-025-01810-z

99. Chopade SS, Gupta HP, Dutta T. Survey on sensors and smart devices for iot 
enabled intelligent healthcare system. Wirel Pers Commun. (2023) 131:1957–95. 
doi: 10.1007/s11277-023-10528-8

100. Shajari S, Kuruvinashetti K, Komeili A, Sundararaj U. The emergence of ai- 
based wearable sensors for digital health technology: a review. Sensors. (2023) 
23:9498. doi: 10.3390/s23239498

101. Zhao F, Wu Y, Hu M, Chang CW, Liu R, Qiu R, et al. Current progress of 
digital twin construction using medical imaging. arXiv [Preprint]. arXiv:2411.08173 
(2024).

102. Vorisek CN, Lehne M, Klopfenstein SAI, Mayer PJ, Bartschke A, Haese T, 
et al. Fast healthcare interoperability resources (FHIR) for interoperability in health 
research: systematic review. JMIR Med Inform. (2022) 10:e35724. doi: 10.2196/35724

103. Sinha S, Seys M. Hl7 data acquisition & integration: challenges and best 
practices. In: 2018 IEEE International Conference on Big Data (Big Data). IEEE 
(2018). p. 2453–7.

104. Dihan MS, Akash AI, Tasneem Z, Das P, Das SK, Islam MR, et al. Digital twin: 
data exploration, architecture, implementation and future. Heliyon. (2024) 10:e26503. 
doi: 10.1016/j.heliyon.2024.e26503

105. Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, et al. A 
next generation connectivity map: L1000 platform and the first 1,000,000 profiles. 
Cell. (2017) 171:1437–1452.e17. doi: 10.1016/j.cell.2017.10.049

106. Burkhardt D. Data from: Open problems – single-cell perturbations (2023)

107. Ji W, Yuan B, Shen C, Regev A, Sander C, Deng S. Inference of cell dynamics 
on perturbation data using adjoint sensitivity. arXiv [Preprint]. arXiv:2104.06467 
(2021).

108. Wu Y, Barton RA, Wang Z, Ioannidis VN, De Donno C, Price LC, et al. 
Predicting cellular responses with variational causal inference and refined relational 
information. arXiv [Preprint]. arXiv:2210.00116 (2022).

109. Demir A, Solovyeva E, Boylan J, Xiao M, Serluca F, Hoersch S, et al. sc-OTGM: 
single-cell perturbation modeling by solving optimal mass transport on the manifold 
of Gaussian mixtures. arXiv [Preprint]. arXiv:2405.03726 (2024).

110. Lotfollahi M, Wolf FA, Theis FJ. scgen predicts single-cell perturbation 
responses. Nat Methods. (2019) 16:715–21. doi: 10.1038/s41592-019-0494-8

111. Lotfollahi M, Naghipourfar M, Theis FJ, Wolf FA. Conditional out-of- 
distribution generation for unpaired data using transfer vae. Bioinformatics. (2020) 
36:i610–7. doi: 10.1093/bioinformatics/btaa800

112. Lotfollahi M, Susmelj AK, De Donno C, Ji Y, Ibarra IL, Wolf FA, et al. 
Compositional perturbation autoencoder for single-cell response modeling. BioRxiv 
[Preprint]. (2021).

113. Roohani Y, Huang K, Leskovec J. Predicting transcriptional outcomes of novel 
multigene perturbations with gears. Nat Biotechnol. (2024) 42:927–35. doi: 10.1038/ 
s41587-023-01905-6

114. Hunter E, Mac Namee B, Kelleher J. An open-data-driven agent-based model 
to simulate infectious disease outbreaks. PLoS One. (2018) 13:e0208775. doi: 10.1371/ 
journal.pone.0208775

115. Butner JD, Wang Z, Elganainy D, Al Feghali KA, Plodinec M, Calin GA, et al. 
A mathematical model for the quantification of a patient’s sensitivity to checkpoint 
inhibitors and long-term tumour burden. Nat Biomed Eng. (2021) 5:297–308. 
doi: 10.1038/s41551-020-00662-0

116. Wang Z, Butner JD, Cristini V, Deisboeck TS. Integrated PK-PD and agent- 
based modeling in oncology. J Pharmacokinet Pharmacodyn. (2015) 42:179–89. 
doi: 10.1007/s10928-015-9403-7

117. Gebhard A, Lilienthal P, Metzler M, Rauh M, Sager S, Schmiegelow K, et al. 
Pharmacokinetic–pharmacodynamic modeling of maintenance therapy for 
childhood acute lymphoblastic leukemia. Sci Rep. (2023) 13:11749. doi: 10.1038/ 
s41598-023-38414-0

118. Yan T, Yu L, Shangguan D, Li W, Liu N, Chen Y, et al. Advances in 
pharmacokinetics and pharmacodynamics of PD-1/PD-l1 inhibitors. Int 
Immunopharmacol. (2023) 115:109638. doi: 10.1016/j.intimp.2022.109638

119. Dogra P, Butner JD, Ramírez JR, Chuang Y, Noureddine A, Brinker CJ, et al. A 
mathematical model to predict nanomedicine pharmacokinetics and tumor delivery. 
Comput Struct Biotechnol J. (2020) 18:518–31. doi: 10.1016/j.csbj.2020.02.014

120. Tracy M, Cerdá M, Keyes KM. Agent-based modeling in public health: current 
applications and future directions. Annu Rev Public Health. (2018) 39:77–94. doi: 10. 
1146/annurev-publhealth-040617-014317

121. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and 
testing of a general amber force field. J Comput Chem. (2004) 25:1157–74. doi: 10. 
1002/jcc.20035

122. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, et al. 
Charmm general force field: a force field for drug-like molecules compatible with the 
charmm all-atom additive biological force fields. J Comput Chem. (2010) 31:671–90. 
doi: 10.1002/jcc.21367

123. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. 
Highly accurate protein structure prediction with alphafold. Nature. (2021) 
596:583–9. doi: 10.1038/s41586-021-03819-2

124. Butner JD, Chuang YL, Simbawa E, Al-Fhaid A, Mahmoud S, Cristini V, et al. 
A hybrid agent-based model of the developing mammary terminal end bud. J Theor 
Biol. (2016) 407:259–70. doi: 10.1016/j.jtbi.2016.07.040

125. Ghaffarizadeh A, Heiland R, Friedman SH, Mumenthaler SM, Macklin P. 
Physicell: an open source physics-based cell simulator for 3-D multicellular 
systems. PLoS Comput Biol. (2018) 14:e1005991. doi: 10.1371/journal.pcbi.1005991

126. Butner JD, Fuentes D, Ozpolat B, Calin GA, Zhou X, Lowengrub J, et al. A 
multiscale agent-based model of ductal carcinoma in situ. IEEE Trans Biomed Eng. 
(2019) 67:1450–61. doi: 10.1109/TBME.2019.2938485

127. Zhang Q, Xu Y, Kang S, Chen J, Yao Z, Wang H, et al. A novel computational 
framework for integrating multidimensional data to enhance accuracy in predicting 
the prognosis of colorectal cancer. MedComm Future Med. (2022) 1:e27. doi: 10. 
1002/mef2.27

128. Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and 
prospects. Science. (2015) 349:255–60. doi: 10.1126/science.aaa8415

129. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. (2015) 521:436–44. 
doi: 10.1038/nature14539

130. Dhillon A, Singh A, Bhalla VK. A systematic review on biomarker 
identification for cancer diagnosis and prognosis in multi-omics: from 
computational needs to machine learning and deep learning. Arch Comput 
Methods Eng. (2023) 30:917–49. doi: 10.1007/s11831-022-09821-9

131. Moztarzadeh O, Jamshidi M, Sargolzaei S, Jamshidi A, Baghalipour N, Malekzadeh 
Moghani M, et al. Metaverse and healthcare: machine learning-enabled digital twins of 
cancer. Bioengineering. (2023) 10:455. doi: 10.3390/bioengineering10040455

132. Lv Z, Guo J, Lv H. Deep learning-empowered clinical big data analytics in 
healthcare digital twins. In: IEEE/ACM Transactions on Computational Biology and 
Bioinformatics. (2023).

133. Booyse W, Wilke DN, Heyns S. Deep digital twins for detection, diagnostics 
and prognostics. Mech Syst Signal Process. (2020) 140:106612. doi: 10.1016/j.ymssp. 
2019.106612

134. Ferdousi R, Laamarti F, El Saddik A. Artificial intelligence models in digital twins 
for health and well-being. In: Digital Twin for Healthcare. London: Elsevier (2023). 
p. 121–36.

135. Dang HV, Tatipamula M, Nguyen HX. Cloud-based digital twinning for 
structural health monitoring using deep learning. IEEE Trans Ind Inform. (2021) 
18:3820–30. doi: 10.1109/TII.2021.3115119

136. Ghiasi MM, Zendehboudi S. Application of decision tree-based ensemble 
learning in the classification of breast cancer. Comput Biol Med. (2021) 
128:104089. doi: 10.1016/j.compbiomed.2020.104089

Khoshfekr Rudsari et al.                                                                                                                                           10.3389/fdgth.2025.1633539 

Frontiers in Digital Health 24 frontiersin.org

https://doi.org/10.1073/pnas.1203559109
https://doi.org/10.1073/pnas.1203559109
https://doi.org/10.1038/msb.2008.53
https://doi.org/10.1073/pnas.0807038105
https://doi.org/10.1371/journal.pcbi.1006460
https://doi.org/10.1371/journal.pcbi.1006460
https://doi.org/10.1007/s13346-023-01305-y
https://doi.org/10.3389/fmed.2023.1336897
https://doi.org/10.1016/j.procir.2017.03.355
https://doi.org/10.1016/j.drudis.2023.103605
https://doi.org/10.1109/jbhi.2023.3299028
https://doi.org/10.1038/s41592-024-02305-7
https://doi.org/10.1038/s41592-024-02305-7
https://doi.org/10.1038/s41746-025-01810-z
https://doi.org/10.1007/s11277-023-10528-8
https://doi.org/10.3390/s23239498
https://doi.org/10.2196/35724
https://doi.org/10.1016/j.heliyon.2024.e26503
https://doi.org/10.1016/j.cell.2017.10.049
https://doi.org/10.1038/s41592-019-0494-8
https://doi.org/10.1093/bioinformatics/btaa800
https://doi.org/10.1038/s41587-023-01905-6
https://doi.org/10.1038/s41587-023-01905-6
https://doi.org/10.1371/journal.pone.0208775
https://doi.org/10.1371/journal.pone.0208775
https://doi.org/10.1038/s41551-020-00662-0
https://doi.org/10.1007/s10928-015-9403-7
https://doi.org/10.1038/s41598-023-38414-0
https://doi.org/10.1038/s41598-023-38414-0
https://doi.org/10.1016/j.intimp.2022.109638
https://doi.org/10.1016/j.csbj.2020.02.014
https://doi.org/10.1146/annurev-publhealth-040617-014317
https://doi.org/10.1146/annurev-publhealth-040617-014317
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1002/jcc.21367
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1016/j.jtbi.2016.07.040
https://doi.org/10.1371/journal.pcbi.1005991
https://doi.org/10.1109/TBME.2019.2938485
https://doi.org/10.1002/mef2.27
https://doi.org/10.1002/mef2.27
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/s11831-022-09821-9
https://doi.org/10.3390/bioengineering10040455
https://doi.org/10.1016/j.ymssp.2019.106612
https://doi.org/10.1016/j.ymssp.2019.106612
https://doi.org/10.1109/TII.2021.3115119
https://doi.org/10.1016/j.compbiomed.2020.104089


137. Zhou ZH. Ensemble Methods: Foundations and Algorithms. Boca Raton: CRC 
Press (2025).

138. Breiman L. Random forests. Mach Learn. (2001) 45:5–32. doi: 10.1023/ 
A:1010933404324

139. Natekin A, Knoll A. Gradient boosting machines, a tutorial. Front Neurorobot. 
(2013) 7:21. doi: 10.3389/fnbot.2013.00021

140. Hielscher T, Khalil S, Virgona N, Hadigheh S. A neural network based digital 
twin model for the structural health monitoring of reinforced concrete bridges. In: 
Structures. Elsevier (2023). Vol. 57. p. 105248.

141. Garg H, Sharma B, Shekhar S, Agarwal R. Spoofing detection system for e- 
health digital twin using efficientnet convolution neural network. Multimed Tools 
Appl. (2022) 81:26873–88. doi: 10.1007/s11042-021-11578-5

142. Elayan H, Aloqaily M, Guizani M. Digital twin for intelligent context-aware iot 
healthcare systems. IEEE Internet Things J. (2021) 8:16749–57. doi: 10.1109/JIOT. 
2021.3051158

143. Li Z, Liu F, Yang W, Peng S, Zhou J. A survey of convolutional neural 
networks: analysis, applications, and prospects. IEEE Trans Neural Networks Learn 
Syst. (2021) 33:6999–7019. doi: 10.1109/TNNLS.2021.3084827

144. Medsker L, Jain LC. Recurrent Neural Networks: Design and Applications. Boca 
Raton: CRC Press (1999).

145. Palau AS, Bakliwal K, Dhada MH, Pearce T, Parlikad AK. Recurrent neural 
networks for real-time distributed collaborative prognostics. In: 2018 IEEE 
International Conference on Prognostics and Health Management (ICPHM). IEEE 
(2018). p. 1–8.

146. Böttcher L, Fonseca LL, Laubenbacher RC. Control of medical digital twins 
with artificial neural networks. Philos Trans A. (2025) 383:20240228. doi: 10.1098/ 
rsta.2024.0228

147. Hollmann N, Müller S, Purucker L, Krishnakumar A, Körfer M, Hoo SB, et al. 
Accurate predictions on small data with a tabular foundation model. Nature. (2025) 
637:319–26. doi: 10.1038/s41586-024-08328-6

148. Venkatesh KP, Raza MM, Kvedar JC. Health digital twins as tools for precision 
medicine: considerations for computation, implementation, and regulation. NPJ Digit 
Med. (2022) 5:150. doi: 10.1038/s41746-022-00694-7

149. Weinberger N, Hery D, Mahr D, Adler SO, Stadlbauer J, Ahrens TD. Beyond 
the gender data gap: co-creating equitable digital patient twins. Front Digit Health. 
(2025) 7:1584415. doi: 10.3389/fdgth.2025.1584415

150. Morrison TM, Pathmanathan P, Adwan M, Margerrison E. Advancing 
regulatory science with computational modeling for medical devices at the FDA’s 
office of science and engineering laboratories. Front Med. (2018) 5:241. doi: 10. 
3389/fmed.2018.00241

151. Viceconti M, Juárez MA, Curreli C, Pennisi M, Russo G, Pappalardo F. 
Credibility of in silico trial technologies—a theoretical framing. IEEE J Biomed 
Health Inform. (2020) 24:4–13. doi: 10.1109/JBHI.2019.2949888

152. V&V 40-2018: assessing credibility of computational modeling through 
verification and validation: application to medical devices (Tech. rep.). New York, 
NY: 2018.

153. Morrison TM, Dreher ML, Nagaraja S, Angelone LM, Kainz W. The role of 
computational modeling and simulation in the total product life cycle of peripheral 
vascular devices. J Med Device. (2017) 11:024503. doi: 10.1115/1.4035866

154. Jacquez JA. Compartmental Analysis in Biology and Medicine: Kinetics of 
Distribution of tracer-labeled materials. New York: Elsevier Publishing Company (1972).

155. Mager DE, Jusko WJ. Pharmacodynamic modeling of time-dependent 
transduction systems. Clin Pharmacol Ther. (2003) 73:212–23. doi: 10.1067/mcp. 
2001.118244

156. Turing AM. The chemical basis of morphogenesis. Philos Trans R Soc Lond B. 
(1952) 237:37–72. doi: 10.1007/BF02459572

157. Murray JD. Mathematical Biology: I. An Introduction. 3rd ed. New York: 
Springer (2002).

158. Formaggia L, Quarteroni A, Veneziani A. Cardiovascular mathematics: 
modeling and simulation of the circulatory system. Model Simul Appl. (2009) 1. 
doi: 10.1007/978-88-470-1152-6

159. Taylor CA, Figueroa CA. Patient-specific modeling of cardiovascular 
mechanics. Annu Rev Biomed Eng. (2010) 12:177–212. doi: 10.1146/annurev. 
bioeng.10.061807.160521

160. Crank J. The Mathematics of Diffusion. 2nd ed. New York: Oxford University 
Press (1975).

161. Cussler EL. Diffusion: Mass Transfer in Fluid Systems. 3rd ed. Cambridge: 
Cambridge University Press (2009).

162. Volterra V. Fluctuations in the abundance of a species considered 
mathematically. Nature. (1926) 118:558–60. doi: 10.1038/118558a0

163. Chadwick K, Leenhouts H. Molecular theory of cell survival (Tech. rep.). 
Wageningen: Instituut voor Toepassing van Atoomenergie in de Landbouw (1973).

164. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. New York: Marcel Dekker 
(1982).

165. Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics: 
Concepts and Applications. Philadelphia: Lippincott Williams & Wilkins (2010).

166. Hill AV. The possible effects of the aggregation of the molecules of 
haemoglobin on its dissociation curves. J Physiol. (1910) 40:4–7.

167. Goutelle S, Maurin M, Rougier F, Barbaut X, Bourguignon L, Ducher M, et al. 
The hill equation: a review of its capabilities in pharmacological modelling. Fundam 
Clin Pharmacol. (2008) 22:633–48. doi: 10.1111/j.1472-8206.2008.00633.x

168. Karplus M, Petsko GA. Molecular dynamics simulations in biology. Nature. 
(1990) 347:631–9. doi: 10.1038/347631a0

169. MacKerell Jr AD. Empirical force fields for biological macromolecules: 
overview and issues. J Comput Chem. (2004) 25:1584–604. doi: 10.1002/jcc.20082

170. Moenke G, Cristiano E, Findeisen R, Meyer-Hermann M, Uhrmacher AM, 
Hoehme S. From single cells to tissue architecture—a bottom-up approach to 
modelling the spatio-temporal organization of complex multi-cellular systems. 
J Math Biol. (2020) 81:359–402. doi: 10.1007/s00285-008-0172-4

171. Drasdo D, Höhme S. A single-cell-based model of tumor growth in vitro: 
monolayers and spheroids. Phys Biol. (2005) 2:133–47. doi: 10.1088/1478-3975/2/3/001

172. Anderson ARA, Quaranta V. Integrative mathematical oncology. Nat Rev 
Cancer. (2007) 7:227–34. doi: 10.1038/nrc2329

173. Deisboeck TS, Wang Z, Macklin P, Cristini V. Multiscale cancer modeling. Annu 
Rev Biomed Eng. (2011) 13:127–55. doi: 10.1146/annurev-bioeng-071910-124729

174. Rejniak KA, Anderson ARA. Hybrid models of tumor growth. Wiley 
Interdiscip Rev Syst Biol Med. (2011) 3:115–25. doi: 10.1002/wsbm.102

175. Macklin P, Edgerton ME, Thompson AM, Cristini V. Patient-calibrated agent- 
based modelling of ductal carcinoma in situ (DCIS): from microscopic measurements 
to macroscopic predictions of clinical progression. J Theor Biol. (2012) 301:122–40. 
doi: 10.1016/j.jtbi.2012.02.002

Khoshfekr Rudsari et al.                                                                                                                                           10.3389/fdgth.2025.1633539 

Frontiers in Digital Health 25 frontiersin.org

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.3389/fnbot.2013.00021
https://doi.org/10.1007/s11042-021-11578-5
https://doi.org/10.1109/JIOT.2021.3051158
https://doi.org/10.1109/JIOT.2021.3051158
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1098/rsta.2024.0228
https://doi.org/10.1098/rsta.2024.0228
https://doi.org/10.1038/s41586-024-08328-6
https://doi.org/10.1038/s41746-022-00694-7
https://doi.org/10.3389/fdgth.2025.1584415
https://doi.org/10.3389/fmed.2018.00241
https://doi.org/10.3389/fmed.2018.00241
https://doi.org/10.1109/JBHI.2019.2949888
https://doi.org/10.1115/1.4035866
https://doi.org/10.1067/mcp.2001.118244
https://doi.org/10.1067/mcp.2001.118244
https://doi.org/10.1007/BF02459572
https://doi.org/10.1007/978-88-470-1152-6
https://doi.org/10.1146/annurev.bioeng.10.061807.160521
https://doi.org/10.1146/annurev.bioeng.10.061807.160521
https://doi.org/10.1038/118558a0
https://doi.org/10.1111/j.1472-8206.2008.00633.x
https://doi.org/10.1038/347631a0
https://doi.org/10.1002/jcc.20082
https://doi.org/10.1007/s00285-008-0172-4
https://doi.org/10.1088/1478-3975/2/3/001
https://doi.org/10.1038/nrc2329
https://doi.org/10.1146/annurev-bioeng-071910-124729
https://doi.org/10.1002/wsbm.102
https://doi.org/10.1016/j.jtbi.2012.02.002

	Digital twins in healthcare: a comprehensive review and future directions
	Introduction
	Importance of digital twins in healthcare
	Applications in healthcare
	Our contributions

	Cardiovascular system digital twins
	Drug safety and arrhythmia assessment
	Hemodynamic modeling and monitoring
	Cardiovascular monitoring frameworks
	Heart failure and surgery
	Population-scale cardiac digital twins

	Neural system digital twins
	Neurodegenerative disease modeling
	Brain tumor analysis

	Respiratory system digital twins
	Lung modeling
	Respiratory monitoring

	Metabolic and endocrine system digital twins
	Diabetes management
	Insulin resistance
	Metabolic response
	Pediatric metabolism

	Hepatic system digital twins
	Liver regeneration modeling
	Real-time hepatic tissue simulation
	Organ-on-chip digital twins

	Cancer and tumor digital twins
	Cancer-specific models
	Prostate cancer
	Lung cancer
	Head and neck cancer
	Pediatric oncology
	Cancer metabolic monitoring
	Tumor microenvironment
	Geriatric and rare cancer applications

	Cellular and molecular digital twins
	Metabolic modeling
	Drug development
	Molecular communication
	Genetic dynamics
	Perturbation prediction modeling

	Cross-system applications
	Surgical and interventional systems
	Treatment optimization
	Medical education
	Healthcare infrastructure
	Clinical trials digital twins
	Clinical operations and infrastructure
	Chronic condition management
	Large language model integration in digital twins

	Methods in building digital twins
	Data collection and integration
	Perturbation datasets for perturbation cell prediction modeling
	Modeling approaches
	Perturbation cell prediction models
	Dynamic models
	Generative models
	Alternative modeling approaches

	Physics-based modeling
	Continuum models
	Discrete models
	Hybrid discrete-continuum models



	Statistical and artificial intelligence modeling
	Classical statistical approaches
	Regression models
	Survival analysis models

	Machine learning and deep learning
	Tree-based ensemble methods
	Neural networks and control systems
	Synthetic classification approach


	Discussion
	Current limitations
	Data quality and availability
	Computational constraints
	Implementation complexity
	Validation challenges
	Privacy and security concerns
	Digital equity
	Regulatory pathways and clinical translation

	Future opportunities
	Enhanced personalization
	Improved prediction accuracy
	Expanded application areas
	Integration with emerging technologies
	Global health applications


	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


