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Sex and age estimation from
cardiac signals captured via radar
using data augmentation and
deep learning: a privacy concern

Daniel Foronda-Pascual*, Carmen Camara and
Pedro Peris-Lopez

Department of Computer Science, Carlos Ill University of Madrid, Madrid, Spain

Introduction: Electrocardiograms (ECGs) have long served as the standard
method for cardiac monitoring. While ECGs are highly accurate and widely
validated, they require direct skin contact, are sensitive to motion artifacts, and
are not always practical for continuous or unobtrusive monitoring, limiting their
generalization to real-world, dynamic environments. However, radar-based
technologies offer a novel, non-invasive alternative for acquiring cardiac signals
without direct contact. This improves both hygiene and patient comfort,
making it especially attractive for medical applications. Despite these benefits,
it may raise privacy concerns, inadvertently revealing personal attributes such
as sex and age. This study investigates, for the first time, how such
demographic information can be inferred from radar-acquired cardiac signals.
Methods: To address this question, we developed a machine learning
framework to predict demographic attributes from radar-based cardiac
signals. These signals were transformed into scalograms—a time-frequency
representation—and then classified using a Convolutional Neural Network
(CNN). Given the lack of prior studies on demographic inference from radar-
based cardiac signals, the generalization capabilities of existing approaches
remain untested in this context. Moreover, the small size of available datasets
further limits model performance. To mitigate these issues, we applied data
augmentation using a Conditional Wasserstein Generative Adversarial Network
(cWGAN), which generated synthetic scalograms conditioned on class labels.
Notably, there are very few prior studies on data augmentation specifically for
this type of signal. This strategy aimed to enhance model accuracy and
generalization by enriching the training data.

Results: Our experiments demonstrate that data augmentation significantly
improves model performance. The trained model achieved an accuracy of
78.40% in predicting the sex of individuals and 72.83% accuracy in classifying
them into two age groups (18-29 and 30-65 years), despite the dataset
being limited to only 30 subjects.

Discussion: These findings reveal a potential privacy risk associated with radar-
based biometric systems. The ability to infer sensitive demographic information
from physiological signals could have serious implications, particularly in secure
applications such as electronic passports (e-passports), where access to RFID
chip data often depends on such personal attributes. Therefore, while radar
technologies offer promising advantages, their deployment must consider
and address the associated privacy challenges.
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1 Introduction

The significance of biosignals in contemporary society,
particularly within the healthcare system, has grown steadily in
recent years. This trend is driven by advancements in
technology, including the development of sophisticated sensors
and wearable devices or data capture through the Internet of
Things. These innovations allow for continuous and real-time
monitoring of patients, leading to early detection of anomalies
and more effective management of chronic diseases.
Furthermore, the application of artificial intelligence (AI) and
machine learning algorithms to biosignal data enhances the
accuracy of diagnoses and prognoses, paving the way for
personalized medicine. Beyond traditional medical applications,
biosignals are also being utilized in emerging fields such as
human-computer interaction, neuroprosthetics, mental health
monitoring, and security. The ability to interpret biosignals
accurately is transforming how healthcare providers approach
patient care, emphasizing preventive measures and improving
overall health outcomes.

Biosignals play a crucial role in various contemporary
applications. Among the most common,
(ECGs) heart’s

diagnosing cardiac diseases. Electroencephalograms (EEGs) capture

electrocardiograms

record the electrical activity, essential for
brain activity, aiding in neurological diagnoses. Electromyograms
(EMGs) measure electrical impulses in muscles, assessing muscle
Other

biosignals, such as galvanic skin responses (GSRs), measure

function and diagnosing neuromuscular conditions.
changes in skin conductance due to emotional or physiological
arousal. Respiratory signals, along with blood pressure and oxygen
saturation (SpO2) measurements, are fundamental in monitoring
cardiovascular and respiratory health [1].

Within these signals, cardiac monitoring is essential in modern
healthcare. Specifically ECGs are instrumental in diagnosing various
cardiac conditions, including arrhythmias, myocardial infarctions,
and heart rhythm abnormalities. By capturing the depolarization
and repolarization of cardiac muscle cells, ECGs provide critical
insights into heart function and health. In clinical practice, ECGs
are obtained through electrodes placed on the skin, typically on
the chest, limbs, and sometimes the torso. These electrodes detect
the tiny electrical impulses generated by the heart with each
heartbeat. The resulting waveform reflects different phases of the
cardiac cycle and abnormalities in these patterns can indicate
specific cardiac disorders. Beyond diagnosis, ECGs are also widely
used in research to study cardiac function under various
conditions and interventions. Additionally, they have proven
valuable in fields such as emotion recognition [2], and in security
applications, where they serve as a potential biometric identifier
due to their unique characteristics and the possibility of
continuous authentication without requiring user cooperation
[3, 4]. Additionally, research in fields such as human-
computer interaction and wearable technology uses cardiac
signals to improve user experience, monitor stress levels, and
optimize performance.

However, obtaining an ECG always requires physical contact,
which presents several inherent limitations. Firstly, contact-based
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methods such as ECG require specialized equipment for signal
acquisition, which can be cumbersome and restrict accessibility
and portability. Moreover, direct physical contact with the user
may raise concerns regarding comfort, hygiene, and potential
skin issues, especially in sensitive populations like premature
babies undergoing continuous monitoring [5]. Furthermore,
these devices are susceptible to movement artifacts, which can
compromise measurement accuracy, particularly in dynamic
environments. In contrast, contactless methods using radar
technology provide an interesting alternative. Doppler radar
operates by emitting electromagnetic waves towards the chest
area, where they interact with the surface of the skin and
subtle
movements in the chest surface. These movements alter the

underlying tissues. As the heart beats, it causes
frequency of the reflected waves due to the Doppler effect,
where the frequency shift is directly related to the velocity of the
chest movements induced by the heartbeat. By analyzing these
frequency shifts over time, Doppler radar can extract detailed
information about cardiac activity, including heart rate and
rhythm enabling non-intrusive cardiac motion detection and
continuous monitoring without the need for physical contact
[6]. This approach enhances user comfort and convenience;
however, it currently faces some limitations. One of them is the
susceptibility of radar signals to noise and interference from
various environmental sources, which can compromise the
reliability of measurements. As a result, achieving clinical-grade
accuracy remains a ongoing challenge, particularly in real-world
scenarios where uncontrolled environmental factors and patient
mobility can affect the precision of radar-based health monitoring.
Furthermore, there are significant challenges in radar signal
processing and the application of machine learning, especially with
advanced deep learning techniques. Researchers are focused on
identifying the most effective methods for extracting vital
information from radar data and analyzing it robustly, ensuring
functionality across a wide range of situations [7].

However, embedded within these previously described
biosignals are implicit personal details, which may inadvertently
disclose sensitive information about individuals like sex or age.
While this data are essential for medical insights, their
unintended  disclosure poses  significant  privacy  risks.
Unauthorized access or misuse of such information could lead
to discrimination, compromised personal privacy, or even
targeted exploitation in various contexts [8], highlighting the
importance of robust data protection measures in biosignal
processing and storage. According to major privacy regulations
such as the General Data Protection Regulation (GDPR) [9] in
Europe and the California Consumer Privacy Act (CCPA) [10]
in the United States, personal information includes not only
direct identifiers but also data that can be reasonably linked to
an individual, including inferred attributes used for profiling.
There are also concrete security implications: for example, sex
and age are used in deriving access keys for RFID chips
embedded in e-passports, so their unauthorized inference via
remote sensing could reduce key entropy and facilitate brute-
force attacks [11]. Furthermore, such inferred data can be
exploited to segment individuals into demographic or consumer
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groups, potentially enabling  manipulative  advertising,
discriminatory pricing, or other unauthorized profiling practices,
as specified in Section (K) of the CCPA. The potential leakage
of personal information, alongside other medically relevant data,
has been explored in several biometric modalities, including
ECG [12], EEG [13], photoplethysmography (PPG) [14, 15], and
gait signatures [16]. These studies demonstrate the unintended
disclosure of sensitive attributes, such as age and sex. However,
to the best of our knowledge, no comprehensive investigation
has yet addressed this concern for cardiac signals derived from
radar technology, representing a significant gap in the study of
this type of signal.

The mechanism behind this potential privacy leakage lies in
the inherent encoding of demographic information within the
morphological and spectral features of cardiac signals. For
instance, differences in chest anatomy, hormonal influences on
heart rate variability, or vascular compliance associated with
aging can subtly alter the frequency components and temporal
structure of the radar-extracted signal. When processed using
advanced machine learning models, these patterns can be
exploited to infer attributes such as sex and age—even if such
information was not explicitly targeted. This raises significant
privacy concerns, especially in security-sensitive environments
such as biometric authentication systems or electronic passports.
Technically, radar-based monitoring still faces challenges such as
noise susceptibility, difficulty in isolating the cardiac component
from respiration and motion artifacts, and a lack of large,
labeled datasets—factors that complicate the generalization and
reliability of deep learning models trained on this data.
Furthermore, traditional signal processing approaches often fall
short in capturing the complex time-frequency dynamics needed
to robustly infer demographic features, motivating the need for
deep learning and data augmentation solutions. These challenges
and opportunities motivate the present study, which aims to
systematically investigate the presence and implications of such
demographic leakage.

The objective of this article is to investigate whether this
information (sex and age) is implicitly encoded in cardiac
signals extracted via radar. In other words, our main question is:
Is there a leakage of age and sex, along with other medical
attributes, in the heart signal extracted from radar? To this end,
we aim to estimate both variables from this type of signal.
Understanding this potential correlation could provide insights
into novel applications and implications for biometric
identification and motivate the exploration and development of
different security methods that could improve authentication
and privacy protection.

The key contributions of this paper are as follows:

1. We present the first study that demonstrates the leakage of
demographic information (sex and age) from radar-acquired
cardiac signals. While prior works have explored this in
ECG and PPG signals, no such analysis has been conducted
using radar technology. Our study addresses this gap and
provides empirical evidence supporting the presence of
demographic markers in radar signals.
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2. We propose a novel data augmentation approach based on
Wasserstein  GANs (cWGAN),
tailored to scalograms of radar-extracted heartbeat signals.

Conditional specifically
Unlike previous methods that rely on ECG as a generative

input, our approach directly radar-based

scalograms conditioned on class labels, enabling better

synthesizes

balance and generalization in small datasets.

3. Our experiments show that the use of cWGAN-generated
scalograms significantly improves classification performance.
For sex classification, accuracy increases from 72.80% to
78.40% (+5.6%), and for age group classification from
65.60% to 72.83% (+7.23%). Frame-level accuracy, FAR,
FRR, precision, recall, and Fl-score all show consistent
improvements with data augmentation.

4. We ensure robust evaluation using leave-one-subject-out
cross-validation, preventing data leakage and simulating
realistic scenarios where the model must generalize to
unseen individuals.

5. We highlight the privacy implications of our findings,
particularly in biometric applications where demographic
leakage  from  cardiac could

signals compromise

personal security.

The rest of this article is structured as follows. The Related Work
section reviews the existing scientific literature on the use of radar-
based heart signals, age and sex estimation through biosignals, and
data augmentation in this field. The Materials and Methods
detailed about the
preprocessing steps, and the methodology used for age group

section provides information dataset,
and sex estimation with radar data. It also explains the data
augmentation techniques employed to enhance the training
dataset. The Results section presents the study’s findings,
evaluating the performance of the proposed methods using
various metrics. Finally, the article concludes with a discussion

of the results and their implications for future research.

2 Related work
2.1 Radar-based heart signal applications

Within the field of cardiac monitoring, one of the most widely
utilized signals is the ECG, which finds application across various
domains such as clinical monitoring [17-19], diagnosis of cardiac
conditions [20-23], sports medicine [24], stress monitoring [25],
emotion recognition [2, 26] or biometric identification [27, 28].

Non-invasive health monitoring solutions, such as radar-based
systems, are emerging as alternatives to traditional methods like
PPG and ECG, which generally require contact-based sensors
[29]. These non-contact radar technologies allow for continuous
and unobtrusive physiological monitoring, offering a
comfortable solution for patients in both clinical and everyday
environments. With applications ranging from vital sign
detection [30] and respiratory monitoring [31] to blood pressure
estimation [32] and cardiac monitoring [33], radar systems
represent a significant advancement in the context of non-

invasive health technology. However, despite the advancements
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in non-contact monitoring, research on radar-based cardiac
signal analysis remains limited. A promising approach within
this field is the use of Microwave Doppler sensors, which
enable the extraction of heartbeat and individual feature
quantities through time-frequency analysis without requiring
direct skin contact. These sensors are sensitive enough to
detect minute vibrations on the chest surface caused by
heartbeats after isolating these vibrations from other
movements such as respiration or artifacts. To address this
issue, some studies [34, 35] employ Butterworth filters to
attenuate lower frequencies associated with respiration.
Conversely, [36] proposes Wavelet Packet Decomposition
(WPD) as an alternative method, achieving less than 2% error
for respiration and 3.5% for heart rate, thereby enhancing the
accuracy of vital sign detection compared to Bandpass filters
and Peak Detection methods. Furthermore, in [37], various
techniques were assessed to identify the most effective
approach for extracting cardiac signals from radar data, with
Discrete Wavelet Transform (DWT) demonstrating superior
performance, even surpassing WPD.

Many studies that work with this type of radar-obtained signal
use Machine Learning techniques to extract information [38].
Applications can be quite diverse, such as estimating the
patient’s heart rate [39-43] or heart rate variability [44-46],
with some studies also applying this process to animals [47-49].
In [50] they use commodity Wi-Fi devices to capture the heart
signal of subjects, and in [51] the heart signal of different
subjects who are simultaneously in the same environment is
captured using radar. In addition to detecting heart rate, work
has also been done on the detection or monitoring of breath
rate, as in [52] or more generally reviewed in [53]. Another field
that has received much attention is the monitoring of both
(54-58] [59-61].

applications of these types of signals in security have also

heartbeats and vital signs The possible
begun to be investigated, for example, with the aim of

authenticating people in a convenient, contactless, and
continuous manner although the results are still scarce. In [62],
they create an authentication method based on the fiduciary
analysis of the heart signal (which involves using specific
reference points in the signal as references). In [63], they
perform authentication by separating the signal into heartbeats
and classifying each one, while in [64], they transform the
signal into a scalogram to then extract features and classify
(DCNNs),

achieving an accuracy of 98.5% in a sample composed of only

using Deep Convolutional Neural Networks
4 people. In [65], they attempt identification in a set of 20
subjects using the spectral distribution of the signal and obtain
an Error Rate (EER) of 3.48%. On the other hand, the use of
these types of signals for other purposes has been explored,
[66], gait
recognition [67], event recognition [68], emotion recognition
[69], [70].
limitation in the development of this area, however, is the lack

such as identification from respiratory signals

and multiperson spatial tracking The main
of datasets that collect this type of signal. Currently, those that
exist do not usually have a large number of subjects, which

sometimes prevents presenting more solid results.
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2.2 Age and sex estimation

The field where estimation of age and sex has been most
extensively researched is through facial images [71]. However,
there is also notable work using other signals such as ECG [12].

Various methods have been employed to estimate sex from
ECG, with the use of CNNs being among the most frequent
approaches. This is demonstrated in [72] achieving 90.4%
accuracy. In [73], clustering of heartbeats into 10 groups
followed by training separate classifiers for each group aimed to
maximize performance, achieving 94.4% accuracy. On the other
hand, estimated age from ECG reflects the overall health status
of the
chronological age, it may indicate the presence of abnormalities

cardiovascular system. When significantly above
or disorders [12]. In [74], they attempt to predict sex and age
group (young/old) from ECG using CNNs, achieving accuracies
of 86.82% for sex and 82.97% for age group. Most current
studies utilize Deep Learning to estimate cardiac age, employing
CNNs with ECG signals as network inputs, as demonstrated in
[75] or in [72] where an average error of 6.9 + 5.6 years in age
estimation was reported. In [76], a neural network regression
model was used to predict chronological age from ECG with the
same mean error of 6.9 + 5.6 years, while in [77], a Deep
Learning model achieved a mean error of 6.899 years. The
advantage of estimating age and sex from ECG lies in the
availability and size of datasets, sometimes exceeding 700,000
patients as seen in [72].

However, when it comes to estimating age and sex from
radar-extracted cardiac signals, there is limited research. [78]
estimates sex based on the act of transitioning from sitting to
standing, and [79] estimates it using gait features, both
studies using radar to capture body movement rather than
heartbeats. Similarly, [80] body
movement in elderly individuals to estimate their age and fall

uses radar to assess
risk. In [81], authors do study sex differences in relation to
radar-detected cardiac signals, finding that the reference
signal-to-noise ratio is significantly higher in males than
females, possibly due to chest anatomy differences, making it
somewhat more challenging to detect cardiac signals with this
technique in females compared to males. Therefore, to the
best of our knowledge, no prior studies have attempted to

estimate sex or age from radar-detected cardiac signals.

2.3 Data augmentation

Data augmentation is a technique used to improve the
performance of machine learning and deep learning models by
artificially expanding the size and diversity of training datasets.
In the context of biosignals, this can be particularly beneficial as
datasets are often limited due to challenges in collecting large
amounts of certain types of medical data. However, given the
wide variability among classes of these data, data augmentation
techniques can vary significantly depending on the biosignal
being studied.
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When working with ECG data, studies often employ data
augmentation techniques that rely on signal transformations or
a combination thereof, rather than utilizing deep learning
methods. For instance, in [82], researchers develop an algorithm
these
transformations. These methods include time masking, which

that optimizes the order and parameters of
zeros out parts of the signal, SpecAugment, which masks
components in both the time and frequency domains of a signal
(STFT),

Discriminative Guided Warping, using Dynamic Time Warping

transformed using Short-Time Fourier Transform

to align a source ECG with a representative reference signal
distinct from other classes, and SMOTE, an oversampling
strategy that generates synthetic examples of the minority class
by interpolating minority samples to address class imbalance in
ECG prediction problems. Similarly, studies like [83-85] employ
a combination of transformations to augment the training set,
whereas [86] augments heartbeats specifically to mitigate class
imbalance within their dataset.

A common scenario when applying data augmentation
techniques is to work with images as inputs, for which there are
multiple strategies to increase the training data, among which
the use of GANs is one of the main ones [87]. This situation is
frequently encountered when working with EEG, where different
data augmentation techniques can yield good results [88]. In
[89] new samples are obtained after training a GAN to
regenerate a part of the image that has been erased,

demonstrating that this method can improve emotion
recognition. In [90], they use a similar procedure but employing
a Conditional Wasserstein GAN (cWGAN), also improving the
results in emotion classification, just like in [91], where they use
a multiple generator cWGAN for the same purpose. In [92], a
conditional Boundary Equilibrium GAN is employed to generate
new samples of EEG data, eye movement data, and their direct
concatenations. Meanwhile, in [93], GANs are utilized to
augment one-dimensional data. On the other hand, [94]
demonstrates the use of a Wasserstein GAN to enhance
data,
compared to auxiliary classifier GANs and other traditional
methods. Finally, in [95], a Wasserstein GAN with confidence

loss is applied to augment a dataset of plant images. Similarly,

Ground-penetrating radar achieving superior results

[96] presents an alternative strategy for augmenting ECG signals
based on segmentation and rearrangement of time-series data.
This method, although not based on deep generative models,
allows the generation of realistic and well-structured synthetic
signals with minimal computational cost. Another recent
approach [97] focuses on emotion recognition from ECG signals
using a unimodal system. Given the scarcity of labeled affective
ECG datasets, the
augmentation method, which generates new data by applying

authors propose a multi-filtering
diverse filtering techniques to enhance signal quality showing a
significant performance boost.

Wasserstein GANs (WGANSs) are a type of GAN that utilize
the Wasserstein distance, also known as Earth Mover’s Distance
(EMD), as a loss function to improve the training stability and
performance of GANs [98]. Traditional GANs often suffer from

issues such as mode collapse and vanishing gradients, which can
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make training difficult and unstable. The Wasserstein distance
provides a smoother and more meaningful measure of the
difference between the generated data distribution and the real
data distribution, helping to mitigate these issues. Gradient
penalty and spectral norm are two enhancements used to
enforce the Lipschitz constraint in WGANS, further improving
training stability. Gradient penalty adds a penalty term to the
loss function to constrain the gradient norm of the critic’s
output with respect to its input to be close to 1. This is done by
interpolating between real and generated data points and
penalizing deviations from this gradient norm, with the penalty
term typically calculated as A - (||ViD(X)|, — 1)%, where X are
interpolated samples, D(x) is the critic’s output, and A is a
coefficient determining the penalty strength. Spectral norm, on
the other hand, normalizes the weight matrices of the neural
network layers by their spectral norm, which is the largest
singular value of the weight matrix. By constraining the spectral
norm to be at most 1, the Lipschitz continuity of the critic
function is ensured without the need for weight clipping or
gradient penalties, making training more stable and reducing the
risk of exploding or vanishing gradients.

An example of this technique is used in the study [99], where
researchers working with accelerometer data for human activity
recognition demonstrated that augmenting training data using
cWGAN is more effective than using a conditional GAN.
Regarding data augmentation for heart signals obtained through
radar technology, we found only two studies. In [100] they use
an attention-based WGAN with Gradient penalty to generate
new I/Q signals, feeding the generator with ECGs. The objective
is to classify heart signals into two groups: low heart rate (less
than 60 beats per minute) or high. In [101], the authors utilize
the decomposition provided by the Discrete Wavelet Transform
to augment the data. However, they train the model with the
newly created samples and test it on the original samples, which
may lead to potential data leakage.

In summary, while previous research has shown the feasibility
of using radar signals for vital sign detection and even biometric
tasks, there is a lack of studies focused on privacy risks—
specifically the unintended leakage of demographic information
such as age and sex. Moreover, existing works often rely on
small datasets and do not leverage advanced data augmentation
techniques tailored to this signal type. Most GAN-based
approaches in biosignal processing either require complementary
signals (e.g, ECG) or are not designed for conditional
generation of demographic categories. These gaps motivate our
proposed method, which directly addresses the challenges of
limited data, signal ambiguity, and demographic inference
through an  end-to-end data

deep  learning and

augmentation pipeline.

3 Materials and methods

This section describes the methods employed throughout the
study. A graphical summary of the workflow for this process is
presented in Figure 1. The first step after capturing the I/Q
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quadrature signals was to divide them into 10s windows.
Subsequently, we performed preprocessing on each window, as
detailed in Section 3.2, to extract a signal corresponding to
thoracic movement. From this signal, we isolated the component
related to the heartbeat using the Maximal Overlap Discrete
Wavelet Transform (MODWT), eliminating the influence of
respiration and other noise. Next, we subdivided the 10s
heartbeat signal into overlapping frames of 4s each and
generated a scalogram for each frame. These scalograms, along
with additional scalograms artificially generated using a
cWGAN, were then used to train a CNN that classified each
scalogram into male or female categories or age groups. Finally,
to derive a single prediction for each 10s window, we
conducted a voting process based on the predictions provided
by the CNN for each one of its frames.

3.1 Data

The study utilized a publicly available dataset from [102],
collected at University Hospital Erlangen, Germany, involving
30 healthy participants (14 males, 16 females, with an average
age of 30.7 years). A radar system, optimized with a focal point
at approximately 40cm, employed Six-Port technology to
capture chest movements in a contactless manner. The system
featured a bi-static antenna setup with transmitting and
receiving antennas set at +10° angles and a laser for alignment
purposes. The dataset included recordings from five distinct
scenarios: a resting scenario, Valsalva maneuver, apnea, tilt—up,
and tilt-down. In this study, we only used recordings from the
resting scenario, where participants reclined for at least 10 min
in a relaxed position with calm breathing. The data consisted of
In-Phase and Quadrature (I/Q) signals sampled at 2,000 Hz
from the 30 different recordings, each approximately 10 min
long. Figures 2a and 2b show the distribution of subjects by sex
and age. Due to the highly imbalanced age data, we divided ages
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into two groups: 18 to 29 years and 30 to 65 years. The dataset
is accessible at [103].

Although the dataset used in this study comprised only 30
individuals, this sample size was comparatively large within the
current state of radar-based cardiac signal research. As reviewed
in [104], most datasets incorporating radar signals—both public
and private—were significantly smaller, with a median of just 12
subjects and an interquartile range of 5 to 24. Among the few
public datasets available (only 10 in total), only one included
more subjects than ours; however, it contained only children
under the age of 13, making it unsuitable for our study.
Therefore, the field of radar-based cardiac signal analysis
remains in an early stage, and datasets of a size comparable to
those available for other signals—such as ECG or PPG—are not
yet available. Consequently, our use of 30 adult participants
represents a substantially above-average sample size in this
emerging research domain and marks a meaningful step forward
in demonstrating the feasibility of demographic attribute
estimation from radar signals at a scale larger than typically seen
in previous work. Furthermore, we ensured strict subject-wise
separation between training and testing data to avoid data
leakage and to enhance the generalizability of our results. It is
also reasonable to assume that, with larger datasets
encompassing a broader diversity of subjects and recording
conditions, the model’s generalization capability would further
improve, potentially leading to even higher classification
performance. This design strengthens the validity of our
findings and provides a valuable contribution to a field still
constrained by limited data availability.

3.2 Preprocessing

The raw cardiac signals used as input to our models consisted
of I/Q components. These complex-valued signals were recorded
at a sampling frequency of 2,000 Hz and captured subtle chest
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FIGURE 2
Distribution of subjects by sex and age. (a) Distribution by Sex. (b) Distribution by Age

movements in a contactless manner. Using these I/Q signals  within each window, following the methodology outlined in
provided by the dataset, the initial step involved segmenting  [106]. This process enables arc tangent demodulation using the
them into non-overlapping 10s windows, a window size that  parameters derived from the fitted ellipses [107]. The outcome
aligns with common practices in the state-of-the-art [105].  of this procedure represents the movement observed in the
Subsequently, ellipse fitting was applied to the I/Q data points  region of interest (the thorax), which encompasses various
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components, notably including the patient’s movements,
respiratory patterns, and cardiac motion. To isolate the cardiac
motion signal, we employed the Maximal Overlap Discrete
Wavelet Transform (MODWT). MODWT is

effective in this context due to its ability to perform

particularly

multiresolution analysis without the downsampling step present
in classical discrete wavelet transforms (DWT). This property
ensures translation invariance, which is essential when time
alignment of features such as heartbeats must be preserved
across frames. Radar signals from the thorax are highly non-
stationary and contain overlapping frequency components from
respiration, subtle body movements, and cardiac activity.
MODWT offers a data-driven decomposition that adaptively
separates these sources by their dominant frequency ranges,
outperforming traditional bandpass filters. In [37], this approach
has been evaluated against alternative methods, demonstrating
superior performance. Subsequently, the cardiac motion signal
within each window was segmented into overlapping 4 s frames
stride of 0.5s for
methodology outlined in [63] for heartbeat detection. Each

with a classification, similar to the
frame was then transformed into its scalogram, represented as a
black-and-white image with dimensions of 200 x 200 pixels. The
CNN produces predictions at the frame level. To obtain the
final decision for each 10 s window, frame-level probabilities are
aggregated into a single probability distribution, from which the
window-level prediction is derived. This voting scheme ensures
more robust and stable classifications by combining evidence

from multiple frames.

3.3 Data augmentation

In accordance with findings from other studies [108-110], we
performed data augmentation using a GAN [111], specifically a
c¢WGAN. This kind of WGAN
information: both the generator and the discriminator (or critic)

incorporates conditional
receive additional input, typically in the form of class labels or
other conditioning variables. The architectures of our generator
and critic can be seen in Tables 1, 2 respectively. We used
Adam as the optimizer for the generator, and RMSprop, as
Additionally, we
implemented gradient penalty with a coefficient of 10 to

recommended in [98], for the critic.
stabilize the training process, which helps enforce the Lipschitz
constraint by ensuring the gradients have a norm close to 1. For
both tasks, predicting sex and age respectively, each data sample
was assigned a single label.

The c¢cWGAN addressed the challenge of limited and
imbalanced radar datasets by synthetically generating realistic
scalograms conditioned on class labels (e.g., sex or age group).
By modeling the data distribution and introducing controlled
the ¢WGAN enriched the with
representative samples that improved generalization and reduced

variability, training  set

overfitting. This approach is effective when
collecting more real radar data is impractical due to time, cost,
By training our ¢WGAN on the

scalograms of patients dedicated to the training set, we were

particularly

or ethical constraints.
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TABLE 1 Architecture summary of the generator in the cWGAN with 2
labels and 100 as input dimension.

Configuration

1 ConvTranspose2d ReLU Batch

(102, 256, 3, 2) normalization
2 ConvTranspose2d ReLU Batch

(256, 128, 3, 2) normalization
3 ConvTranspose2d (128, 64, | ReLU Batch

5, 3) normalization
4 ConvTranspose2d (64, 32, ReLU Batch

3, 3) normalization
5 ConvTranspose2d (32, 16, Tanh -

3, 2)

TABLE 2 Architecture summary of the critic for cWGAN with 2 labels.

Lover  Confguration__ Activation _ Other

Conv2d (1, 128, 4, 2) LeakyReLU Batch normalization
Conv2d (128, 256, 4, 2) | LeakyReLU Batch normalization
Flatten () - -
Linear (1024 + 2, 64) LeakyReLU -

Dropout () - -
Linear (64, 1) - -

QNG e W N

able to generate new scalograms labeled in each of the two
categories: male and female in the case of sex, and 18-29 and
30-65 in the case of age. We chose this strategy instead of
oversampling or undersampling to preserve the original
distribution and avoid overfitting. Although other methods such
as SMOTE or class weighting were considered, the c(WGAN was
selected for its ability
structurally realistic samples.
Our c(WGAN was trained for 151 epochs with a batch size of

32. Early stopping was not used, but both generator and critic

to generate label-consistent and

losses were monitored throughout training. The generator used
a learning rate of 8 x 107>, while the critic (or discriminator)
used a smaller learning rate of 6.7 x 107°. For every generator
update, the critic was updated five times. The latent space
dimension was set to 100. We conditioned the generation on
two labels (e.g., male/female or age group), which were
embedded and concatenated to both the generator input and the
critic input. The training was carried out on scalograms
corresponding to the training set, and a gradient penalty with
coefficient 10 was applied to enforce the Lipschitz constraint

and promote stable convergence.

3.4 Classification

We utilized a CNN for the classification task, as these models
are frequently used in computer vision tasks, particularly as
feature extractors from images across various fields [112, 113].
They concatenate hierarchical layers of convolutional filters to
automatically learn meaningful representations from raw pixel
data. These learned features capture hierarchical patterns such as
edges, which are essential for

textures, and shapes,

understanding and classifying visual content. This feature
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extraction process from the scalograms is carried out in the
convolutional layers of the CNN, while the fully connected
layers placed at the end serve to classify the scalograms based
on the previously obtained features.

The structure of our CNN is shown in Figure 3 and consisted
of 5 convolutional layers followed by 4 fully connected layers. The
output was a number corresponding to the predicted class for the
input scalogram. After each convolutional layer, we applied batch
normalization to normalize the input and mitigate internal
covariate shift [114]. The Rectified Linear Unit (ReLU) was used
as the activation function to introduce non-linearity, which aids
in learning complex patterns in the data. Max pooling was
applied after each convolutional block to progressively reduce
spatial dimensions and retain the most relevant features. The
kernel sizes for the five convolutional layers were 5, 3, 13, 5, and
2 respectively, all with stride 1 and no padding. The input to
the network consisted of 3-channel scalograms with fixed
dimensions, and the size of the flattened feature map after the
final convolutional block was 2048. The fully connected (MLP)
part of the network contained layers of size 1024, 256, 64, and
1, with ReLU activations and dropout (p = 0.5) applied after
each layer except the final output. The model was trained using
the Adam optimizer with a learning rate of 0.001 and binary
cross-entropy loss. With this model, we were able to predict the
class of each scalogram, and thus of each frame. To obtain a
prediction for each window, we then used hard voting based on
the predictions of all the frames within that window.
Nevertheless, we did not conduct an optimization process for
the selected CNN architecture; therefore, alternative
architectures might have yielded superior final results.

3.5 Privacy threat model

Radar-based cardiac sensing enables unobtrusive acquisition
of physiological signals, often without requiring physical contact
or active participation from the subject. While typically used for
clinical monitoring or biometric authentication, this modality

10.3389/fdgth.2025.1616770

also allows for the potential inference of sensitive demographic
attributes from the collected signals.

In our threat model, we considered a passive adversary who
can covertly acquire radar reflections from a subject without
requiring physical access to the sensing system. The adversary
may place a radar device in the environment (e.g., in smart
home devices, hospital rooms, or public kiosks) to continuously
collect cardiac signals from individuals situated within sensing
range. Data acquisition can occur in everyday scenarios where
individuals are seated or stationary, and does not require user
awareness or consent. The adversary is assumed to have access
to trained deep learning models capable of inferring
demographic attributes such as age or sex from radar-derived
cardiac signals. By applying repeated predictions the adversary
can aggregate results via majority voting to improve
classification accuracy. Although individual predictions may be
affected by noise, the accumulation of repeated inferences over
extended periods enables reliable profiling of individuals based
on latent features contained in the physiological signal.

3.6 Experimental setup

To prevent data leakage, training and testing sets were split at
the subject level, ensuring that all frames from a given individual
were assigned exclusively to either the training or the test set.
Specifically, for each experiment, 80% of the subjects were
randomly assigned to the training set and the remaining 20%
to the test set, while maintaining a balanced distribution of sex
or age groups as needed. Frames from the training subjects
were used to train the CNN, including both real scalograms
and synthetic scalograms generated by a c(WGAN trained only
on the training subjects’ data, while the test set contained only
real scalograms. Consequently, neither the CNN nor the
cWGAN was exposed to any data from the test subjects during
training. This subject-wise splitting strategy guarantees that the
CNN learns meaningful physiological features without any
contamination from the test data.

AN

A=W

FIGURE 3
Structure of the CNN.
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All experiments were conducted on a workstation running
Ubuntu 22.04.4 LTS. The system was equipped with a 12th Gen
Intel Core i7-12700KF CPU running at 5.00 GHz, 32GB of
DDR4 RAM, and an NVIDIA GeForce RTX 3080 Ti GPU with
12GB of VRAM. The code was executed using Python 3.11.7,
PyTorch 2.3.0, and CUDA 12.2. For wavelet-based signal
processing, the functions modwt and modwtmra from
MATLAB’s Wavelet Toolbox were invoked via the Python-
MATLAB engine. Key parts of the implementation, including
model architecture, MODWT filtering, data generation with
cWGAN and splitting functions will be made publicly available
for full reproducibility [115].

4 Results

The aim of this article is to investigate whether personal data,
specifically sex and age group, can inadvertently leak alongside
other medically relevant information in cardiac signals obtained
through radar technology. To address this issue, we will explore
the feasibility of predicting these two variables from the radar-
derived signals in a substantial number of cases. For the train-
test split in the experiments, since the goal is to estimate two
attributes specific to each person, age group and sex, we are
separating the data by individuals. This ensures that signals
from the same individual do not appear in both the training
and testing sets, preventing possible data leakage, which may
have occurred in the use of other biosignals [116].

4.1 Metrics

To evaluate whether cardiac signals obtained via radar
transmit sensitive patient information, such as sex or age, in
addition to heart-specific data, we will employ the following
metrics in the classification process. Accuracy measures the
overall effectiveness of the model by calculating the proportion
of correctly classified instances out of the total. False Acceptance
Rate (FAR) indicates how often unauthorized individuals are
incorrectly accepted by the system, reflecting the rate of false
positives among all actual negatives. On the other hand, False
Rejection Rate (FRR) measures how frequently authorized
individuals are incorrectly rejected, showing the rate of false
negatives among all actual positives. Precision evaluates the
proportion of true positive predictions among all positive
predictions made by the model, while recall assesses the
proportion of true positive instances correctly identified out of
all actual positives. Finally, the F1-score combines precision and
recall into a single metric, offering a balanced measure of the
model’s performance in identifying positive instances [117].

4.2 Sex

To determine whether sex information is being inadvertently
transmitted through the cardiac signals, we attempted to predict
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the sex of patients set aside for testing by training the
classification model on the remaining ones. The dataset consists
of 30 patients, with 16 females and 14 males. We reserved 6
patients (3 males and 3 females chosen randomly) for testing,
and used the data of the other 24 patients for training. To
enhance the robustness of the training process, we applied data
augmentation by generating new scalograms that do not
correspond to any specific patient but are labeled by class,
following the procedure described in Section 3.3. In Figure 4, we
present a comparison between real and generated samples,
showing a random subset of real scalograms from the training
set alongside synthetic scalograms produced by the ¢cWGAN.
For a quantitative assessment, we computed the Fréchet
Inception Distance (FID) [118] between real and synthetic
scalograms for the sex classification task, obtaining a value of
88.74. To adapt the grayscale scalograms to Inception-v3, the
single channel was replicated three times and the images were
resized to match the network’s input size. Although relatively
high, this FID may be influenced by the domain mismatch
between our grayscale scalograms and the RGB images used to
pretrain Inception-v3, which can amplify the measured distance.
To evaluate the impact of the amount of additional data, we
performed the classification process four times by varying this
amount, expressed as the percentage increase in scalograms
added to the training set. The average accuracy results for sex
prediction are shown in Figure 5. In this figure, we can observe
that, except when increasing data by 25% or 150%, data
augmentation with the c(WGAN generally benefits the model’s
efficiency in all other cases. Among these, optimal results appear
to be achieved with a 75% data increase, where the test set
window accuracy for sex prediction reaches nearly 72%. To
whether the with data
statistically repeated the

evaluate observed improvement

augmentation is significant, we
classification experiment 34 times under two conditions: (i)
without data augmentation, and (ii) with a 75% increase in the
training set using synthetic scalograms. For each run, we
computed the average test window accuracy. To compare both
distributions, we applied Welch’s t-test, obtaining a t-statistic of
—2.6169, a p-value of 0.0146, and a 95% confidence interval for
the difference in means of [—0.1080, —0.0130]. These findings
indicate that the improvement in classification accuracy due to
data augmentation is statistically significant, reinforcing the
hypothesis that synthetically generated data enhances the
model’s ability to predict sex.

Given the limited number of subjects in the dataset, we can
perform a leave-one-out classification for each of the 6 test
patients, using the other five as additional training material. In
this way, for each of these 6 patients dedicated for test, a model
is trained with the remaining 29 patients plus the generated
scalograms. The goal of the data augmentation process was to
generate samples conditioned on specific attributes, thereby
enhancing the model’s ability to control and manipulate the
output based on desired characteristics. Table 3 presents
the results obtained using this methodology, comparing the
classification performance with only the original data to the
performance with a 75% increase in data through augmentation.

frontiersin.org



Foronda-Pascual et al. 10.3389/fdgth.2025.1616770

Real Generated

Males

Females

18-29 years

30-65 years

FIGURE 4
Comparison between real and synthetic scalograms generated by the cWGAN
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TABLE 3 Classification metrics for sex estimation with and without data augmentation.

Data Accuracy in Accuracy in FAR Precision Recall Fl-score
augmentation windows (%) frames (%) (%) (%) (%) (%)
0% 72.80 64.33 26.90 27.03 73.10 72.97 72.78
75% 78.40 68.44 20.88 21.34 79.12 78.66 78.35

The application of data augmentation led to substantial
improvements across all metrics. The classification accuracy for
10 s windows (i.e., after aggregating frame-level predictions into
a single decision per window) rose significantly, from 72.80% to
78.40%, reflecting a 5.6% improvement. This enhancement
demonstrates the model’s increased capability to accurately
classify sex due to the added variability in the data. Frame-level
accuracy (i.e., the performance of the CNN when predicting
individual 4s frames) also benefited, showing a 4.11% increase,
which indicates a consistent trend of enhanced performance
even at finer time granularities. In terms of error rates, both the
FAR and FRR declined, with reductions of 6.02% and 5.69%,
respectively, after applying data augmentation. Precision and
recall also improved, with precision increasing by 6.02% and
recall by 5.69%. These results suggest that the augmented
dataset not only makes the model more accurate but also
promotes a better balance between detecting true positives and
minimizing false negatives. This balance is further evidenced by
a 5.57% increase in the Fl-score. Additionally, in Figure 6, we
can observe the confusion matrix for the case where data
augmentation is increased by 75%. It is important to note that
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we are classifying 10s windows, which the numbers in the
figure correspond to. In this figure, we can see that for the
model, women are easier to identify (86.19% accuracy), whereas
men present more difficulties (71.13% accuracy).

Additionally, we can analyze the accuracy of sex prediction for
each window in relation to the patient, as depicted in Figure 7,
where we see that there is a male whose windows are mostly
classified by the model as belonging to female, thereby reducing
the average results.

Given the limited number of subjects in the dataset, we can
perform a leave-one-out classification for each of the 6 test
patients, using the other five as additional training material. In
this way, for each of these 6 patients dedicated for test, a model
is trained with the remaining 29 patients plus the generated
scalograms. The goal of the data augmentation process was to
generate samples conditioned on specific attributes, thereby
enhancing the model’s ability to control and manipulate the
output based on desired characteristics. Table 3 presents
the results obtained using this methodology, comparing the
classification performance with only the original data to the
performance with a 75% increase in data through augmentation.
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The application of data augmentation led to substantial
improvements across all metrics. The classification accuracy for
10 s windows (i.e., after aggregating frame-level predictions into
a single decision per window) rose significantly, from 72.80% to
78.40%, reflecting a 5.6% improvement. This enhancement
demonstrates the model’s increased capability to accurately
classify sex due to the added variability in the data. Frame-level
accuracy (i.e., the performance of the CNN when predicting
individual 4 s frames) also benefited, showing a 4.11% increase,
which indicates a consistent trend of enhanced performance
even at finer time granularities. In terms of error rates, both the
FAR and FRR declined, with reductions of 6.02% and 5.69%,
respectively, after applying data augmentation. Precision and
recall also improved, with precision increasing by 6.02% and
recall by 5.69%. These results suggest that the augmented
dataset not only makes the model more accurate but also
promotes a better balance between detecting true positives and
minimizing false negatives. This balance is further evidenced by
a 5.57% increase in the Fl-score. All metrics reported, except
for frame-level accuracy, are computed at the window level.
Additionally, in Figure 6, we can observe the confusion matrix
for the case where data augmentation is increased by 75%. It is
important to note that we are classifying 10s windows, which
the numbers in the figure correspond to. In this figure, we can
the model, identify
(86.19% accuracy), whereas men present more difficulties

see that for women are easier to

(71.13% accuracy).

4.3 Age

Similarly to the sex analysis, we explored the extent to which
personal information, such as age, might be conveyed through
the available cardiac signals. Given the small dataset of only
30 subjects, age presents a more significant challenge, as
illustrated in Figure 2b. There are age groups with no
patients, and the distribution is clearly imbalanced. To
mitigate this issue, we categorized the data into two groups:
individuals aged 18 to 29 and those aged 30 or older. Given
the imbalance in distribution, grouping them into a larger
number of categories would have resulted in some groups
having very few elements. Despite this grouping, the data
distribution remains markedly imbalanced, as shown in
Figure 8a. Therefore, data augmentation was crucial to
achieve a more balanced training set. As illustrated in
Figure 8b, after increasing the original dataset by 75%, the
scalogram dataset for age classification became balanced
across the two groups. Specifically, synthetic scalograms were
generated until both classes had approximately equal sample
sizes (around 14,000 each). This approach was preferred over
oversampling or undersampling to preserve the original
distribution and reduce the risk of overfitting. While other
SMOTE or
considered, the cWGAN was ultimately chosen due to its

techniques such as class weighting were

capacity to produce label-consistent and structurally realistic
synthetic samples. In Figure 4, we also provide a comparison
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between real and synthetic scalograms for the age
classification task. As in the sex classification analysis, we
quantitatively assessed the similarity between real and

synthetic scalograms for age by computing the FID, which
resulted in a value of 39.56.

Similar to our approach with sex, we can investigate the
impact of the amount of new scalograms added to the training
set on the classification of test patients by age group. This
analysis is illustrated in Figure 9, where the best results are
obtained by training the classifier with an additional 75% of
generated data. To create this plot, we performed classification
four times, depicting the average results. In this figure, it is
observed that the use of data augmentation does notably
improve the performance of the classification algorithm between
the two groups. Furthermore, the accuracy takes on a concave
shape, reaching its maximum when increasing the data by 75%
and decreasing thereafter. On the other hand, in Table 4, we
observe the metrics comparing the results after applying data
augmentation and without applying it, following the procedure
described for sex using leave-one-out classification with the aim
of maximizing the training data. The inclusion of 75% data
augmentation resulted in a marked improvement across all
classification metrics. The window-level accuracy rose from
65.60% to 72.83%, an increase of 7.23%, while frame-level
accuracy similarly increased by 6.48%, reaching 69.50%. In
terms of error rates, both the FAR and the FRR exhibited
notable decreases, dropping from 25.73% to 18.54% and from
34.73% to 27.46%, respectively. This reduction in error rates
indicates that the model becomes more reliable with data
augmentation, with fewer incorrect classifications on both
acceptance and rejection. Precision and recall showed notable
improvements, with increases of 7.19% and 7.27%, respectively,
compared to the initial values. The F1-score also rose by 8.85%,
reflecting a better balance between precision and recall. As in
the case of sex, we evaluated the statistical significance of the
observed improvement by repeating the classification experiment
34 times and applying Welch’s t-test. The results yielded a t-
statistic of —2.4017, a p-value of 0.0225, and a 95% confidence
interval of [—0.1067, —0.0087], indicating that the performance
gain from data augmentation is statistically significant in the age
group classification task.

In Figures 10a, 10b, we can respectively observe the confusion
matrix and the accuracy when predicting the age group for each
person’s windows, ordered by age. In Figure 10a, we observe
that the model exhibits a slight bias, tending to classify a higher
number of windows into the most frequent age group in the
dataset, which is 18 to 29 years. Additionally, one of the six
individuals in the test set, a 35-year-old woman, is being
classified as under 30. It is worth clarifying that the age detected
through heart signals does not uniquely correspond to a
person’s chronological age but rather expresses the general state
of the cardiovascular system [12]. In certain cases, this may
cause individuals with ages near the boundaries of age groups to
be misclassified. This error might not be attributed to the model
in some cases, but rather to the characteristics and condition of
their particular cardiovascular system.
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Distribution of frames in the training set by age group. (a) Without data augmentation. (b) After data augmentation of 75%
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TABLE 4 Classification metrics for age group classification with and without data augmentation.

Data

Accuracy in

Accuracy in

FAR

FRR Precision Recall F1-score

augmentation windows (%) frames (%) (VA (%) (VA
0% 65.60 63.02 25.73 3473 74.27 65.27 61.81
75% 72.83 69.50 18.54 27.46 81.46 72.54 70.66 |

4.4 Explainability

Despite the strong performance often achieved by deep
learning models, their black-box nature can limit interpretability
and hinder trust in their outputs. In our context, where cardiac
radar signals are analyzed using convolutional neural networks
(CNNs) to infer demographic attributes, understanding the
rationale behind the model’s decisions is crucial—both for
scientific insight and for fostering confidence in the system. To
this end, we employed Gradient-weighted Class Activation
Mapping (Grad-CAM) [119] to generate visual explanations of
the CNN’s predictions. Grad-CAM produces heatmaps that
highlight the regions of the input scalogram that most
strongly influence the output, enabling the identification of
time-frequency patterns the model deems most relevant for
distinguishing between classes such as sex or
group. Incorporating

improves the transparency of our system but also provides a

age

such  explainability not only
means for qualitative assessment and validation of the
model’s behavior.

To analyze the internal decision-making process of our CNN

classifier, we integrated Grad-CAM into the fourth convolutional
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layer of the network. We trained the CNN multiple times (five
repetitions) with the augmented dataset to ensure robustness,
and then applied Grad-CAM to the test set to identify the
regions of the input scalograms that most influenced the
model’s predictions. For each correctly classified instance, we
extracted class-specific activation maps and aggregated them
separately for each class (male and female). This yielded
averaged heatmaps representing the most salient time-frequency
patterns used by the network to distinguish between the two
categories. The results for both sex and age classification tasks
are presented in Figure 11. In general, the network consistently
allocates more attention to the low-frequency regions of the
scalogram, which appear to contain the most discriminative
information for class separation, while higher frequencies receive
comparatively less focus. This observation suggests that future
work could benefit from emphasizing this lower frequency
range, which seems to play a decisive role in the model’s
decisions. In both classification tasks, we also observe class-
specific differences in the regions of highest activation. These
differences are particularly pronounced in the sex classification
task, where the network tends to focus on slightly wider
frequency bands for female subjects. As previously suggested in
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Performance metrics for age group classification. (a) Confusion matrix for classification in age group. (b) Accuracy in age group classification
by person.

the literature [81], this might be attributed to morphological
differences in the chest between male and female individuals,
which the
consequently, the frequency content of the resulting scalograms.

could influence cardiac radar signal and,

Similarly, in the age classification task, differences in activation
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patterns may reflect known physiological changes in cardiac
dynamics with age. For instance, cardiac features such as Heart
Rate Variability (HRV) have been shown to vary with age [120],
which may contribute to the distinct attention patterns observed
between the two age groups.
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4.5 Use of transfer learning

Due to the limited number of patients in our dataset, Transfer
Learning is one of the most common approaches to improve
model training in scenarios with scarce data [121]. Transfer
Learning is particularly valuable in cases with restricted data
it
previously trained models, optimizing the training process and

availability, as transfers relevant representations from

potentially enhancing prediction accuracy. Moreover, its
applicability extends to various biomedical tasks where acquiring
large volumes of labeled data is both costly and challenging [122].

In our study, we evaluated four different pre-trained networks
by applying fine-tuning to each. This fine-tuning process involves
freezing the parameters of the network’s initial layers, thereby
retaining the general features learned from a large and diverse
dataset, while training only the final layers to adapt to the
specific characteristics of our study. The networks evaluated
included ResNet50 [123], DenseNet [124], ShuffleNet [125], and
VGG-19 [126], all pre-trained on large-scale, real-world image

datasets. Despite the potential advantages, the performance
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results achieved with these networks were not satisfactory.
Tables 5, 6 show the classification results by sex and age group
using each of these networks with 75% data augmentation
applied consistently across all cases.

The performance of transfer learning models such as ResNet-
50, DenseNet, ShuffleNet, and VGG-19 was noticeably lower than
that of our custom-designed network. We attribute this
performance gap primarily to domain mismatch [127]: these
architectures are pre-trained on ImageNet, a dataset of natural
with spectral
characteristics compared to radar-derived cardiac scalograms.

images vastly  different  structural and
While transfer learning is effective when source and target
domains are similar, in this case, the feature representations
learned from natural textures, shapes, and objects do not
transfer well to time-frequency biomedical signals. We also
experimented with fine-tuning deeper layers and
top of the

backbones. However, these adjustments did not yield substantial

adding

domain-specific dense layers on pre-trained

improvements, suggesting that the core convolutional filters
learned from natural images were suboptimal for this task.
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TABLE 5 Sex classification metrics with different pre-trained networks, using 75% of data augmentation.

Accuracy in Accuracy in Precision

windows (%) frames (%) (VA]
ResNet-50 49.07 49.84 51.26 51.23 48.74 48.77 48.54
DenseNet 56.27 60.20 43.85 43.99 56.15 56.01 55.88
ShuffleNet 45.87 50.49 54.26 54.24 4574 4576 45.74
VGG-19 54.93 55.53 44.93 44.95 55.07 55.05 54.92
Our network 78.40 68.44 20.88 21.34 79.12 78.66 78.35

TABLE 6 Age group classification metrics with different pre-trained networks, using 75% of data augmentation.

Network Accuracy in Accuracy in Precision Fl-score
windows (%) frames (%) (%) (%)
ResNet-50 55.98 53.83 43.13 4424 56.87 55.76 54.02
DenseNet 47.55 49.43 54.26 52.77 45.74 47.23 42.31
ShuffleNet 45.65 46.81 54.63 54.45 4537 45.55 45.07
VGG-19 58.15 59.35 38.85 42.14 61.15 57.86 54.67
Our network 72.83 69.50 18.54 27.46 81.46 72.54 70.66

These results indicate that task-specific architecture design and
training from scratch are more effective strategies for modeling
radar-acquired physiological signals.

4.6 Evaluating threat feasibility through
temporal aggregation

To assess the practical feasibility of the privacy threat
described in Section 3.5, we conducted an additional experiment
based on the hypothesis that an adversary could improve the
reliability of demographic inference by aggregating predictions
over longer temporal spans. Specifically, we evaluated the
classification accuracy of our model when predictions are
aggregated from multiple consecutive input segments
corresponding to the same individual. Since the model provides
a prediction for each individual frame, we generated all possible
contiguous subsets of frames for each subject in the test set
(6 subjects), where each subset spans at least 7 seconds. For
each subset, a final prediction was obtained by applying
majority voting over the model’s predictions for the individual
frames within that subset. We then grouped these subsets into
bins according to their temporal length and computed the
average accuracy for each bin. The results are shown in
Figure 12a, where each line corresponds to a single test subject
and each point represents the average accuracy over all subsets
of that specific duration. As can be observed, in the age group
task,

consistently misclassified as belonging to the 18-29 age group,

classification one subject—a 35-year-old female—is
regardless of the temporal span. Aside from this case, the overall
accuracy increases steadily as the input duration grows,
supporting the notion that temporal aggregation significantly
boosts inference reliability. In the age classification task, for
example, three out of the six test subjects reach 100% accuracy

when the aggregated input covers at least 20s. Figure 12b
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complements this analysis by showing the cumulative percentage
of subjects for whom the model achieves at least 95% accuracy
at or before a given input duration. Notably, for both tasks, the
model predicts the correct class with high confidence (>95%)
for 80% of subjects after observing less than 100 s of data. These
findings provide empirical support for the proposed privacy
threat model. By demonstrating that demographic attributes
such as sex and age can be inferred with high confidence from
temporally aggregated cardiac radar signals—even in the absence
of physical contact or subject cooperation—our results highlight
the tangible risks of long-term passive monitoring. The
consistent increase in prediction accuracy with longer input
durations suggests that an adversary with access to sustained
radar observations could reliably construct demographic profiles
of individuals over time.

5 Discussion & conclusions

The results of this research suggest that radar-extracted cardiac
signals, while primarily intended to capture relevant medical
features, also inadvertently encode personal information such as
sex and age, which could pose privacy concerns. This
characteristic, also observed in other biometric data types like
facial recognition and ECG, highlights the importance of
implementing robust security measures for the storage and
management of such data. Specifically, we achieved an accuracy
of 78.40% for correctly predicting sex, and 72.83% for predicting
the patient’s age group, consistently using 10s temporal
windows. To accomplish this, we employed a model primarily
based on a CNN that classifies the scalograms derived from
cardiac signals into their respective categories. An important
tool for improving these results was data augmentation, which
we conducted using a ¢WGAN, also studying the amount of
extra data that influences the model’s

most  positively
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Classification accuracy for both sex and age group as a function of temporal aggregation. (a) Average classification accuracy per test subject over
temporally aggregated subsets of varying duration. (b) Cumulative percentage of test subjects for whom the model achieves at least 95% accuracy, as

performance. Both for sex (Figure 5) and for age (Figure 9),
experiments determined that a 75% increase in the original
training set offered optimal performance. This increase in
accuracy was 5.6% in sex estimation and 7.23% for age
(Tables 3, 4). On the other hand, the use of pre-trained
networks on large image datasets (Transfer Learning) did not
prove beneficial in our case, yielding results that were inferior
to those of our own model, which was trained solely on
samples obtained from the original dataset. Hyperparameter
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optimization for both the CNN classifier and the c(WGAN
model was not performed and remains an open task for
future work. Due to the limited size of the dataset, we did not

perform a full grid search. Instead, hyperparameters

were selected through manual tuning informed by prior
literature and validation performance. Future work will

include a systematic search strategy, such as Bayesian

optimization or nested cross-validation, to improve

reproducibility and fairness.
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TABLE 7 Summary of studies on Age and Sex estimation using biosignals.

Ref (Year)  Type Patients

10.3389/fdgth.2025.1616770

Attia et al. [72] | Age & | ECG Sex: 90.4% accuracy, Age: average error of 6.9 + | CNN 774,783
Sex 5.6 years (R? = 0.7)
Kaushik et al. Age & | EEG Sex: Accuracy of 93.7%, Age: Accuracy 97.5% Bi-directional LSTM and LSTM 60
[130] Sex (divided in 6 age groups)
Lyle et al. [131] | Sex ECG Datasetl: accuracy 91.3%, Dataset2: accuracy Symmetric Projection Attractor Reconstruction 104 8,903
86.3% method
Saho et al. [80] | Sex Radar-based gait Accuracy of 93.6% Multilayer Perceptron 181
features
Lima et al. [132] | Age ECG MAE: 8.38 + 7.00 (CODE), 8.44 + 6.19 (ELSA- | Deep neural network 1,558,415 14,236
Brasil), 10.04 + 7.76 (SaMi-Trop) 1,631
Cabra Lopez Sex ECG Accuracy 94.4% £ 2.0% GoogLeNet 202
et al. [73]
Wang et al. [78] | Sex Radar-based body Accuracy of 90% Analyzes transition between sitting and standing. 178 elderly
movement CNN people
van der Wall Age ECG Average error of 6.9 + 5.6 years Neural network regression model 6,228 healthy
et al. [76] (R* =0.72 + 0.04) subjects
Chang et al. Age ECG MAE 6.899 years (r = 0.822) CNN with attention mechanism for potassium 71,741
[77] concentration estimation
Adib et al. [133] | Age ECG MAE: 3.99 (all subjects), 2.99 (healthy subjects) | Deep neural network model 4,884
Cabra Lopez Sex ECG Accuracy 94.82% + 1.96% DCNN, RGB wavelet transformation 202
et al. [134]
Kaneko et al. Age ECG Accuracy 68.19% They analyze Heart Rate Variability, classifing in 420,000
[135] two age groups with Random Forest
Naser et al. Sex ECG & hormones ECG could be a biomarker of hormone status Artificial intelligence-augmented ECG and sex 90,337
[136] hormone levels
Dias et al. [137] | Age & ECG Sex: F1-score 0.800 + 0.007; Age: MAE 8.961 + | ResNeXt-based architecture trained with 1,558,415
Sex 0.180 CODEI5 dataset
Wei et al. [138] | Age & | EEG Sex: 55.07% accuracy; Age: 66.67% accuracy Random Forest 351 children
Sex (allowing 1 year error)
Niu et al. [139] | Sex EEG Accuracy of 95.2% accuracy k-means clustering and SVM 232
Our proposal Age & | Radar-based cardiac | Sex: Accuracy of 78.40%, Age: Accuracy of Data augmentation with GAN, CNN, 2 age 30
(2024) Sex signal 72.83% groups

However, while traditional methods such as ECG benefit from
larger datasets and have shown high performance in demographic
attribute estimation, they still face challenges regarding portability,
comfort, and suitability for continuous monitoring. In contrast,
radar-based techniques offer a good contactless alternative but are
currently limited by smaller datasets, which can affect both model
accuracy and generalization capacity. Additionally, due to the
novelty of this approach, further studies are required to
systematically evaluate its robustness in diverse real-world
settings. This comparison can be seen in Table 7, where we
compare our results with those obtained through other signals, as
we are not aware of previous studies conducting this procedure
with this type of signal. In this table, it is observed that the
accuracy in estimating sex usually exceeds 90%, and the databases
used sometimes include hundreds of thousands of patients.

Overall, the small dataset size can impose certain limitations on
the generalization of these results, as dedicating only 6 patients for
testing means that the incorrect prediction of just one of them
can significantly influence the final results. This is evident in both
sex and age cases, where in each, there is a subject consistently
misclassified into the wrong class. In the case of sex, this occurs
with patient 17 (Figure 7), who is the male with the lowest body
weight in the dataset (28 years, 165 cm, 57 kg), while for age, it
occurs with a 35-year-old woman, who is near the boundary
between both age groups. Furthermore, public datasets for this
type of signal remain very limited, with 30 patients representing a
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number that is actually higher than the average found in other
studies [105]. It is also important to note that we are dividing the
training set and the test set by patients, ensuring that the model
has never seen data from the same patient when predicting the
class of a window. This procedure brings the study’s results closer
to potential real-world applications.

Our results show that classification accuracy improves
significantly when predictions are aggregated over longer temporal
windows, indicating that even models with moderate single-frame
high
observations. These findings highlight the potential for passive

performance can achieve reliability ~given sustained
adversaries to infer sensitive demographic attributes through
unobtrusive, long-term data collection, emphasizing the need for
robust privacy protections. Our concerns align with biometric
information protection standards such as ISO/IEC 24745 [128],
the General Data Protection Regulation (GDPR) [9], and NIST
Special Publication 800-63 [129], which require safeguarding
against unauthorized identity disclosure and the inference of
secondary attributes This

underscores the necessity to develop effective countermeasures and

without explicit consent. work
privacy-preserving techniques for radar-based cardiac monitoring

systems. To mitigate these risks, future work should explore:
« Signal sanitization techniques, such as adversarial perturbations

or autoencoder-based anonymization, to suppress demographic
features while preserving the primary utility of the signal.
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« Differential privacy mechanisms, applied at the feature
extraction or model output level, to provide formal privacy
guarantees against attribute inference.

o Detection and auditing frameworks capable of identifying
unauthorized use of inference models or repeated inference
attempts in deployed systems.

As a conclusion of our study, we can affirm the presence of
personal information within radar-extracted cardiac signals that
could be exploited for identification purposes. As a result, it is
crucial to treat these signals with the same level of security and
privacy considerations as more traditional biometric data. This
is particularly important in the context of biomedical
applications, where the misuse of personal health information
could have serious ethical and legal implications. A specific
example of how data leakage can compromise the security of
widely used applications is the use of sex and age information
in e-passports. This information is utilized to derive the access
key for the RFID chip embedded in the passport, a practice that
has been in effect since September 11 [11]. Future research
should focus on improving the accuracy and robustness of these
methods but also on developing protocols and technologies to
safeguard the collected data. By addressing these concerns, we
can harness the potential of radar-based cardiac signal analysis
for a wide range of medical and healthcare applications while
maintaining the trust and confidence of the public.

Therefore, non-invasive monitoring methods, such as radar-
based cardiac signal analysis, offer substantial benefits in
healthcare by enabling continuous monitoring without the need
This
particularly valuable in scenarios where patient mobility or

for direct contact with the patient. technology is
frequent follow-up is challenging, as it provides an efficient,
unobtrusive way to track vital signs and other health metrics
over time. However, this accessibility also introduces privacy
risks, as sensitive biometric information can be derived from
these signals, including details about a patient’s sex, age, and
possibly unique identifying
safeguarded, this information could be exploited in unintended

characteristics. If improperly
ways, posing risks to patient privacy and autonomy. The trade-
off lies in balancing the advantages of improved patient
monitoring and personalized care with stringent data protection
measures to prevent unauthorized access and misuse of personal
health information. Ultimately, ensuring the security of radar-
based health data will be essential for achieving patient trust,
regulatory compliance, and ethical application in healthcare.
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