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cardiac signals captured via radar 
using data augmentation and 
deep learning: a privacy concern
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Introduction: Electrocardiograms (ECGs) have long served as the standard 

method for cardiac monitoring. While ECGs are highly accurate and widely 

validated, they require direct skin contact, are sensitive to motion artifacts, and 

are not always practical for continuous or unobtrusive monitoring, limiting their 

generalization to real-world, dynamic environments. However, radar-based 

technologies offer a novel, non-invasive alternative for acquiring cardiac signals 

without direct contact. This improves both hygiene and patient comfort, 

making it especially attractive for medical applications. Despite these benefits, 

it may raise privacy concerns, inadvertently revealing personal attributes such 

as sex and age. This study investigates, for the first time, how such 

demographic information can be inferred from radar-acquired cardiac signals.

Methods: To address this question, we developed a machine learning 

framework to predict demographic attributes from radar-based cardiac 

signals. These signals were transformed into scalograms—a time-frequency 

representation—and then classified using a Convolutional Neural Network 

(CNN). Given the lack of prior studies on demographic inference from radar- 

based cardiac signals, the generalization capabilities of existing approaches 

remain untested in this context. Moreover, the small size of available datasets 

further limits model performance. To mitigate these issues, we applied data 

augmentation using a Conditional Wasserstein Generative Adversarial Network 

(cWGAN), which generated synthetic scalograms conditioned on class labels. 

Notably, there are very few prior studies on data augmentation specifically for 

this type of signal. This strategy aimed to enhance model accuracy and 

generalization by enriching the training data.

Results: Our experiments demonstrate that data augmentation significantly 

improves model performance. The trained model achieved an accuracy of 

78.40% in predicting the sex of individuals and 72.83% accuracy in classifying 

them into two age groups (18–29 and 30–65 years), despite the dataset 

being limited to only 30 subjects.

Discussion: These findings reveal a potential privacy risk associated with radar- 

based biometric systems. The ability to infer sensitive demographic information 

from physiological signals could have serious implications, particularly in secure 

applications such as electronic passports (e-passports), where access to RFID 

chip data often depends on such personal attributes. Therefore, while radar 

technologies offer promising advantages, their deployment must consider 

and address the associated privacy challenges.
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1 Introduction

The significance of biosignals in contemporary society, 

particularly within the healthcare system, has grown steadily in 

recent years. This trend is driven by advancements in 

technology, including the development of sophisticated sensors 

and wearable devices or data capture through the Internet of 

Things. These innovations allow for continuous and real-time 

monitoring of patients, leading to early detection of anomalies 

and more effective management of chronic diseases. 

Furthermore, the application of artificial intelligence (AI) and 

machine learning algorithms to biosignal data enhances the 

accuracy of diagnoses and prognoses, paving the way for 

personalized medicine. Beyond traditional medical applications, 

biosignals are also being utilized in emerging fields such as 

human-computer interaction, neuroprosthetics, mental health 

monitoring, and security. The ability to interpret biosignals 

accurately is transforming how healthcare providers approach 

patient care, emphasizing preventive measures and improving 

overall health outcomes.

Biosignals play a crucial role in various contemporary 

applications. Among the most common, electrocardiograms 

(ECGs) record the heart’s electrical activity, essential for 

diagnosing cardiac diseases. Electroencephalograms (EEGs) capture 

brain activity, aiding in neurological diagnoses. Electromyograms 

(EMGs) measure electrical impulses in muscles, assessing muscle 

function and diagnosing neuromuscular conditions. Other 

biosignals, such as galvanic skin responses (GSRs), measure 

changes in skin conductance due to emotional or physiological 

arousal. Respiratory signals, along with blood pressure and oxygen 

saturation (SpO2) measurements, are fundamental in monitoring 

cardiovascular and respiratory health [1].

Within these signals, cardiac monitoring is essential in modern 

healthcare. Specifically ECGs are instrumental in diagnosing various 

cardiac conditions, including arrhythmias, myocardial infarctions, 

and heart rhythm abnormalities. By capturing the depolarization 

and repolarization of cardiac muscle cells, ECGs provide critical 

insights into heart function and health. In clinical practice, ECGs 

are obtained through electrodes placed on the skin, typically on 

the chest, limbs, and sometimes the torso. These electrodes detect 

the tiny electrical impulses generated by the heart with each 

heartbeat. The resulting waveform re2ects different phases of the 

cardiac cycle and abnormalities in these patterns can indicate 

specific cardiac disorders. Beyond diagnosis, ECGs are also widely 

used in research to study cardiac function under various 

conditions and interventions. Additionally, they have proven 

valuable in fields such as emotion recognition [2], and in security 

applications, where they serve as a potential biometric identifier 

due to their unique characteristics and the possibility of 

continuous authentication without requiring user cooperation 

[3, 4]. Additionally, research in fields such as human- 

computer interaction and wearable technology uses cardiac 

signals to improve user experience, monitor stress levels, and 

optimize performance.

However, obtaining an ECG always requires physical contact, 

which presents several inherent limitations. Firstly, contact-based 

methods such as ECG require specialized equipment for signal 

acquisition, which can be cumbersome and restrict accessibility 

and portability. Moreover, direct physical contact with the user 

may raise concerns regarding comfort, hygiene, and potential 

skin issues, especially in sensitive populations like premature 

babies undergoing continuous monitoring [5]. Furthermore, 

these devices are susceptible to movement artifacts, which can 

compromise measurement accuracy, particularly in dynamic 

environments. In contrast, contactless methods using radar 

technology provide an interesting alternative. Doppler radar 

operates by emitting electromagnetic waves towards the chest 

area, where they interact with the surface of the skin and 

underlying tissues. As the heart beats, it causes subtle 

movements in the chest surface. These movements alter the 

frequency of the re2ected waves due to the Doppler effect, 

where the frequency shift is directly related to the velocity of the 

chest movements induced by the heartbeat. By analyzing these 

frequency shifts over time, Doppler radar can extract detailed 

information about cardiac activity, including heart rate and 

rhythm enabling non-intrusive cardiac motion detection and 

continuous monitoring without the need for physical contact 

[6]. This approach enhances user comfort and convenience; 

however, it currently faces some limitations. One of them is the 

susceptibility of radar signals to noise and interference from 

various environmental sources, which can compromise the 

reliability of measurements. As a result, achieving clinical-grade 

accuracy remains a ongoing challenge, particularly in real-world 

scenarios where uncontrolled environmental factors and patient 

mobility can affect the precision of radar-based health monitoring. 

Furthermore, there are significant challenges in radar signal 

processing and the application of machine learning, especially with 

advanced deep learning techniques. Researchers are focused on 

identifying the most effective methods for extracting vital 

information from radar data and analyzing it robustly, ensuring 

functionality across a wide range of situations [7].

However, embedded within these previously described 

biosignals are implicit personal details, which may inadvertently 

disclose sensitive information about individuals like sex or age. 

While this data are essential for medical insights, their 

unintended disclosure poses significant privacy risks. 

Unauthorized access or misuse of such information could lead 

to discrimination, compromised personal privacy, or even 

targeted exploitation in various contexts [8], highlighting the 

importance of robust data protection measures in biosignal 

processing and storage. According to major privacy regulations 

such as the General Data Protection Regulation (GDPR) [9] in 

Europe and the California Consumer Privacy Act (CCPA) [10] 

in the United States, personal information includes not only 

direct identifiers but also data that can be reasonably linked to 

an individual, including inferred attributes used for profiling. 

There are also concrete security implications: for example, sex 

and age are used in deriving access keys for RFID chips 

embedded in e-passports, so their unauthorized inference via 

remote sensing could reduce key entropy and facilitate brute- 

force attacks [11]. Furthermore, such inferred data can be 

exploited to segment individuals into demographic or consumer 
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groups, potentially enabling manipulative advertising, 

discriminatory pricing, or other unauthorized profiling practices, 

as specified in Section (K) of the CCPA. The potential leakage 

of personal information, alongside other medically relevant data, 

has been explored in several biometric modalities, including 

ECG [12], EEG [13], photoplethysmography (PPG) [14, 15], and 

gait signatures [16]. These studies demonstrate the unintended 

disclosure of sensitive attributes, such as age and sex. However, 

to the best of our knowledge, no comprehensive investigation 

has yet addressed this concern for cardiac signals derived from 

radar technology, representing a significant gap in the study of 

this type of signal.

The mechanism behind this potential privacy leakage lies in 

the inherent encoding of demographic information within the 

morphological and spectral features of cardiac signals. For 

instance, differences in chest anatomy, hormonal in2uences on 

heart rate variability, or vascular compliance associated with 

aging can subtly alter the frequency components and temporal 

structure of the radar-extracted signal. When processed using 

advanced machine learning models, these patterns can be 

exploited to infer attributes such as sex and age—even if such 

information was not explicitly targeted. This raises significant 

privacy concerns, especially in security-sensitive environments 

such as biometric authentication systems or electronic passports. 

Technically, radar-based monitoring still faces challenges such as 

noise susceptibility, difficulty in isolating the cardiac component 

from respiration and motion artifacts, and a lack of large, 

labeled datasets—factors that complicate the generalization and 

reliability of deep learning models trained on this data. 

Furthermore, traditional signal processing approaches often fall 

short in capturing the complex time-frequency dynamics needed 

to robustly infer demographic features, motivating the need for 

deep learning and data augmentation solutions. These challenges 

and opportunities motivate the present study, which aims to 

systematically investigate the presence and implications of such 

demographic leakage.

The objective of this article is to investigate whether this 

information (sex and age) is implicitly encoded in cardiac 

signals extracted via radar. In other words, our main question is: 

Is there a leakage of age and sex, along with other medical 

attributes, in the heart signal extracted from radar? To this end, 

we aim to estimate both variables from this type of signal. 

Understanding this potential correlation could provide insights 

into novel applications and implications for biometric 

identification and motivate the exploration and development of 

different security methods that could improve authentication 

and privacy protection.

The key contributions of this paper are as follows: 

1. We present the first study that demonstrates the leakage of 

demographic information (sex and age) from radar-acquired 

cardiac signals. While prior works have explored this in 

ECG and PPG signals, no such analysis has been conducted 

using radar technology. Our study addresses this gap and 

provides empirical evidence supporting the presence of 

demographic markers in radar signals.

2. We propose a novel data augmentation approach based on 

Conditional Wasserstein GANs (cWGAN), specifically 

tailored to scalograms of radar-extracted heartbeat signals. 

Unlike previous methods that rely on ECG as a generative 

input, our approach directly synthesizes radar-based 

scalograms conditioned on class labels, enabling better 

balance and generalization in small datasets.

3. Our experiments show that the use of cWGAN-generated 

scalograms significantly improves classification performance. 

For sex classification, accuracy increases from 72.80% to 

78.40% (+5.6%), and for age group classification from 

65.60% to 72.83% (+7.23%). Frame-level accuracy, FAR, 

FRR, precision, recall, and F1-score all show consistent 

improvements with data augmentation.

4. We ensure robust evaluation using leave-one-subject-out 

cross-validation, preventing data leakage and simulating 

realistic scenarios where the model must generalize to 

unseen individuals.

5. We highlight the privacy implications of our findings, 

particularly in biometric applications where demographic 

leakage from cardiac signals could compromise 

personal security.

The rest of this article is structured as follows. The Related Work 

section reviews the existing scientific literature on the use of radar- 

based heart signals, age and sex estimation through biosignals, and 

data augmentation in this field. The Materials and Methods 

section provides detailed information about the dataset, 

preprocessing steps, and the methodology used for age group 

and sex estimation with radar data. It also explains the data 

augmentation techniques employed to enhance the training 

dataset. The Results section presents the study’s findings, 

evaluating the performance of the proposed methods using 

various metrics. Finally, the article concludes with a discussion 

of the results and their implications for future research.

2 Related work

2.1 Radar-based heart signal applications

Within the field of cardiac monitoring, one of the most widely 

utilized signals is the ECG, which finds application across various 

domains such as clinical monitoring [17–19], diagnosis of cardiac 

conditions [20–23], sports medicine [24], stress monitoring [25], 

emotion recognition [2, 26] or biometric identification [27, 28].

Non-invasive health monitoring solutions, such as radar-based 

systems, are emerging as alternatives to traditional methods like 

PPG and ECG, which generally require contact-based sensors 

[29]. These non-contact radar technologies allow for continuous 

and unobtrusive physiological monitoring, offering a 

comfortable solution for patients in both clinical and everyday 

environments. With applications ranging from vital sign 

detection [30] and respiratory monitoring [31] to blood pressure 

estimation [32] and cardiac monitoring [33], radar systems 

represent a significant advancement in the context of non- 

invasive health technology. However, despite the advancements 

Foronda-Pascual et al.                                                                                                                                             10.3389/fdgth.2025.1616770 

Frontiers in Digital Health 03 frontiersin.org



in non-contact monitoring, research on radar-based cardiac 

signal analysis remains limited. A promising approach within 

this field is the use of Microwave Doppler sensors, which 

enable the extraction of heartbeat and individual feature 

quantities through time-frequency analysis without requiring 

direct skin contact. These sensors are sensitive enough to 

detect minute vibrations on the chest surface caused by 

heartbeats after isolating these vibrations from other 

movements such as respiration or artifacts. To address this 

issue, some studies [34, 35] employ Butterworth filters to 

attenuate lower frequencies associated with respiration. 

Conversely, [36] proposes Wavelet Packet Decomposition 

(WPD) as an alternative method, achieving less than 2% error 

for respiration and 3.5% for heart rate, thereby enhancing the 

accuracy of vital sign detection compared to Bandpass filters 

and Peak Detection methods. Furthermore, in [37], various 

techniques were assessed to identify the most effective 

approach for extracting cardiac signals from radar data, with 

Discrete Wavelet Transform (DWT) demonstrating superior 

performance, even surpassing WPD.

Many studies that work with this type of radar-obtained signal 

use Machine Learning techniques to extract information [38]. 

Applications can be quite diverse, such as estimating the 

patient’s heart rate [39–43] or heart rate variability [44–46], 

with some studies also applying this process to animals [47–49]. 

In [50] they use commodity Wi-Fi devices to capture the heart 

signal of subjects, and in [51] the heart signal of different 

subjects who are simultaneously in the same environment is 

captured using radar. In addition to detecting heart rate, work 

has also been done on the detection or monitoring of breath 

rate, as in [52] or more generally reviewed in [53]. Another field 

that has received much attention is the monitoring of both 

heartbeats [54–58] and vital signs [59–61]. The possible 

applications of these types of signals in security have also 

begun to be investigated, for example, with the aim of 

authenticating people in a convenient, contactless, and 

continuous manner although the results are still scarce. In [62], 

they create an authentication method based on the fiduciary 

analysis of the heart signal (which involves using specific 

reference points in the signal as references). In [63], they 

perform authentication by separating the signal into heartbeats 

and classifying each one, while in [64], they transform the 

signal into a scalogram to then extract features and classify 

using Deep Convolutional Neural Networks (DCNNs), 

achieving an accuracy of 98.5% in a sample composed of only 

4 people. In [65], they attempt identification in a set of 20 

subjects using the spectral distribution of the signal and obtain 

an Error Rate (EER) of 3.48%. On the other hand, the use of 

these types of signals for other purposes has been explored, 

such as identification from respiratory signals [66], gait 

recognition [67], event recognition [68], emotion recognition 

[69], and multiperson spatial tracking [70]. The main 

limitation in the development of this area, however, is the lack 

of datasets that collect this type of signal. Currently, those that 

exist do not usually have a large number of subjects, which 

sometimes prevents presenting more solid results.

2.2 Age and sex estimation

The field where estimation of age and sex has been most 

extensively researched is through facial images [71]. However, 

there is also notable work using other signals such as ECG [12].

Various methods have been employed to estimate sex from 

ECG, with the use of CNNs being among the most frequent 

approaches. This is demonstrated in [72] achieving 90.4% 

accuracy. In [73], clustering of heartbeats into 10 groups 

followed by training separate classifiers for each group aimed to 

maximize performance, achieving 94.4% accuracy. On the other 

hand, estimated age from ECG re2ects the overall health status 

of the cardiovascular system. When significantly above 

chronological age, it may indicate the presence of abnormalities 

or disorders [12]. In [74], they attempt to predict sex and age 

group (young/old) from ECG using CNNs, achieving accuracies 

of 86.82% for sex and 82.97% for age group. Most current 

studies utilize Deep Learning to estimate cardiac age, employing 

CNNs with ECG signals as network inputs, as demonstrated in 

[75] or in [72] where an average error of 6.9 + 5.6 years in age 

estimation was reported. In [76], a neural network regression 

model was used to predict chronological age from ECG with the 

same mean error of 6.9 + 5.6 years, while in [77], a Deep 

Learning model achieved a mean error of 6.899 years. The 

advantage of estimating age and sex from ECG lies in the 

availability and size of datasets, sometimes exceeding 700,000 

patients as seen in [72].

However, when it comes to estimating age and sex from 

radar-extracted cardiac signals, there is limited research. [78] 

estimates sex based on the act of transitioning from sitting to 

standing, and [79] estimates it using gait features, both 

studies using radar to capture body movement rather than 

heartbeats. Similarly, [80] uses radar to assess body 

movement in elderly individuals to estimate their age and fall 

risk. In [81], authors do study sex differences in relation to 

radar-detected cardiac signals, finding that the reference 

signal-to-noise ratio is significantly higher in males than 

females, possibly due to chest anatomy differences, making it 

somewhat more challenging to detect cardiac signals with this 

technique in females compared to males. Therefore, to the 

best of our knowledge, no prior studies have attempted to 

estimate sex or age from radar-detected cardiac signals.

2.3 Data augmentation

Data augmentation is a technique used to improve the 

performance of machine learning and deep learning models by 

artificially expanding the size and diversity of training datasets. 

In the context of biosignals, this can be particularly beneficial as 

datasets are often limited due to challenges in collecting large 

amounts of certain types of medical data. However, given the 

wide variability among classes of these data, data augmentation 

techniques can vary significantly depending on the biosignal 

being studied.
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When working with ECG data, studies often employ data 

augmentation techniques that rely on signal transformations or 

a combination thereof, rather than utilizing deep learning 

methods. For instance, in [82], researchers develop an algorithm 

that optimizes the order and parameters of these 

transformations. These methods include time masking, which 

zeros out parts of the signal, SpecAugment, which masks 

components in both the time and frequency domains of a signal 

transformed using Short-Time Fourier Transform (STFT), 

Discriminative Guided Warping, using Dynamic Time Warping 

to align a source ECG with a representative reference signal 

distinct from other classes, and SMOTE, an oversampling 

strategy that generates synthetic examples of the minority class 

by interpolating minority samples to address class imbalance in 

ECG prediction problems. Similarly, studies like [83–85] employ 

a combination of transformations to augment the training set, 

whereas [86] augments heartbeats specifically to mitigate class 

imbalance within their dataset.

A common scenario when applying data augmentation 

techniques is to work with images as inputs, for which there are 

multiple strategies to increase the training data, among which 

the use of GANs is one of the main ones [87]. This situation is 

frequently encountered when working with EEG, where different 

data augmentation techniques can yield good results [88]. In 

[89] new samples are obtained after training a GAN to 

regenerate a part of the image that has been erased, 

demonstrating that this method can improve emotion 

recognition. In [90], they use a similar procedure but employing 

a Conditional Wasserstein GAN (cWGAN), also improving the 

results in emotion classification, just like in [91], where they use 

a multiple generator cWGAN for the same purpose. In [92], a 

conditional Boundary Equilibrium GAN is employed to generate 

new samples of EEG data, eye movement data, and their direct 

concatenations. Meanwhile, in [93], GANs are utilized to 

augment one-dimensional data. On the other hand, [94] 

demonstrates the use of a Wasserstein GAN to enhance 

Ground-penetrating radar data, achieving superior results 

compared to auxiliary classifier GANs and other traditional 

methods. Finally, in [95], a Wasserstein GAN with confidence 

loss is applied to augment a dataset of plant images. Similarly, 

[96] presents an alternative strategy for augmenting ECG signals 

based on segmentation and rearrangement of time-series data. 

This method, although not based on deep generative models, 

allows the generation of realistic and well-structured synthetic 

signals with minimal computational cost. Another recent 

approach [97] focuses on emotion recognition from ECG signals 

using a unimodal system. Given the scarcity of labeled affective 

ECG datasets, the authors propose a multi-filtering 

augmentation method, which generates new data by applying 

diverse filtering techniques to enhance signal quality showing a 

significant performance boost.

Wasserstein GANs (WGANs) are a type of GAN that utilize 

the Wasserstein distance, also known as Earth Mover’s Distance 

(EMD), as a loss function to improve the training stability and 

performance of GANs [98]. Traditional GANs often suffer from 

issues such as mode collapse and vanishing gradients, which can 

make training difficult and unstable. The Wasserstein distance 

provides a smoother and more meaningful measure of the 

difference between the generated data distribution and the real 

data distribution, helping to mitigate these issues. Gradient 

penalty and spectral norm are two enhancements used to 

enforce the Lipschitz constraint in WGANs, further improving 

training stability. Gradient penalty adds a penalty term to the 

loss function to constrain the gradient norm of the critic’s 

output with respect to its input to be close to 1. This is done by 

interpolating between real and generated data points and 

penalizing deviations from this gradient norm, with the penalty 

term typically calculated as l � (krx̂D(x̂)k2 � 1)2, where x̂ are 

interpolated samples, D(x̂) is the critic’s output, and l is a 

coefficient determining the penalty strength. Spectral norm, on 

the other hand, normalizes the weight matrices of the neural 

network layers by their spectral norm, which is the largest 

singular value of the weight matrix. By constraining the spectral 

norm to be at most 1, the Lipschitz continuity of the critic 

function is ensured without the need for weight clipping or 

gradient penalties, making training more stable and reducing the 

risk of exploding or vanishing gradients.

An example of this technique is used in the study [99], where 

researchers working with accelerometer data for human activity 

recognition demonstrated that augmenting training data using 

cWGAN is more effective than using a conditional GAN. 

Regarding data augmentation for heart signals obtained through 

radar technology, we found only two studies. In [100] they use 

an attention-based WGAN with Gradient penalty to generate 

new I/Q signals, feeding the generator with ECGs. The objective 

is to classify heart signals into two groups: low heart rate (less 

than 60 beats per minute) or high. In [101], the authors utilize 

the decomposition provided by the Discrete Wavelet Transform 

to augment the data. However, they train the model with the 

newly created samples and test it on the original samples, which 

may lead to potential data leakage.

In summary, while previous research has shown the feasibility 

of using radar signals for vital sign detection and even biometric 

tasks, there is a lack of studies focused on privacy risks— 

specifically the unintended leakage of demographic information 

such as age and sex. Moreover, existing works often rely on 

small datasets and do not leverage advanced data augmentation 

techniques tailored to this signal type. Most GAN-based 

approaches in biosignal processing either require complementary 

signals (e.g., ECG) or are not designed for conditional 

generation of demographic categories. These gaps motivate our 

proposed method, which directly addresses the challenges of 

limited data, signal ambiguity, and demographic inference 

through an end-to-end deep learning and data 

augmentation pipeline.

3 Materials and methods

This section describes the methods employed throughout the 

study. A graphical summary of the work2ow for this process is 

presented in Figure 1. The first step after capturing the I/Q 
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quadrature signals was to divide them into 10 s windows. 

Subsequently, we performed preprocessing on each window, as 

detailed in Section 3.2, to extract a signal corresponding to 

thoracic movement. From this signal, we isolated the component 

related to the heartbeat using the Maximal Overlap Discrete 

Wavelet Transform (MODWT), eliminating the in2uence of 

respiration and other noise. Next, we subdivided the 10 s 

heartbeat signal into overlapping frames of 4 s each and 

generated a scalogram for each frame. These scalograms, along 

with additional scalograms artificially generated using a 

cWGAN, were then used to train a CNN that classified each 

scalogram into male or female categories or age groups. Finally, 

to derive a single prediction for each 10 s window, we 

conducted a voting process based on the predictions provided 

by the CNN for each one of its frames.

3.1 Data

The study utilized a publicly available dataset from [102], 

collected at University Hospital Erlangen, Germany, involving 

30 healthy participants (14 males, 16 females, with an average 

age of 30.7 years). A radar system, optimized with a focal point 

at approximately 40 cm, employed Six-Port technology to 

capture chest movements in a contactless manner. The system 

featured a bi-static antenna setup with transmitting and 

receiving antennas set at +10� angles and a laser for alignment 

purposes. The dataset included recordings from five distinct 

scenarios: a resting scenario, Valsalva maneuver, apnea, tilt-up, 

and tilt-down. In this study, we only used recordings from the 

resting scenario, where participants reclined for at least 10 min 

in a relaxed position with calm breathing. The data consisted of 

In-Phase and Quadrature (I/Q) signals sampled at 2,000 Hz 

from the 30 different recordings, each approximately 10 min 

long. Figures 2a and 2b show the distribution of subjects by sex 

and age. Due to the highly imbalanced age data, we divided ages 

into two groups: 18 to 29 years and 30 to 65 years. The dataset 

is accessible at [103].

Although the dataset used in this study comprised only 30 

individuals, this sample size was comparatively large within the 

current state of radar-based cardiac signal research. As reviewed 

in [104], most datasets incorporating radar signals—both public 

and private—were significantly smaller, with a median of just 12 

subjects and an interquartile range of 5 to 24. Among the few 

public datasets available (only 10 in total), only one included 

more subjects than ours; however, it contained only children 

under the age of 13, making it unsuitable for our study. 

Therefore, the field of radar-based cardiac signal analysis 

remains in an early stage, and datasets of a size comparable to 

those available for other signals—such as ECG or PPG—are not 

yet available. Consequently, our use of 30 adult participants 

represents a substantially above-average sample size in this 

emerging research domain and marks a meaningful step forward 

in demonstrating the feasibility of demographic attribute 

estimation from radar signals at a scale larger than typically seen 

in previous work. Furthermore, we ensured strict subject-wise 

separation between training and testing data to avoid data 

leakage and to enhance the generalizability of our results. It is 

also reasonable to assume that, with larger datasets 

encompassing a broader diversity of subjects and recording 

conditions, the model’s generalization capability would further 

improve, potentially leading to even higher classification 

performance. This design strengthens the validity of our 

findings and provides a valuable contribution to a field still 

constrained by limited data availability.

3.2 Preprocessing

The raw cardiac signals used as input to our models consisted 

of I/Q components. These complex-valued signals were recorded 

at a sampling frequency of 2,000 Hz and captured subtle chest 

FIGURE 1 

Flowchart for the age group and sex estimation process. Created using Canva, licensed under Free Content License.
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movements in a contactless manner. Using these I/Q signals 

provided by the dataset, the initial step involved segmenting 

them into non-overlapping 10 s windows, a window size that 

aligns with common practices in the state-of-the-art [105]. 

Subsequently, ellipse fitting was applied to the I/Q data points 

within each window, following the methodology outlined in 

[106]. This process enables arc tangent demodulation using the 

parameters derived from the fitted ellipses [107]. The outcome 

of this procedure represents the movement observed in the 

region of interest (the thorax), which encompasses various 

FIGURE 2 

Distribution of subjects by sex and age. (a) Distribution by Sex. (b) Distribution by Age.
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components, notably including the patient’s movements, 

respiratory patterns, and cardiac motion. To isolate the cardiac 

motion signal, we employed the Maximal Overlap Discrete 

Wavelet Transform (MODWT). MODWT is particularly 

effective in this context due to its ability to perform 

multiresolution analysis without the downsampling step present 

in classical discrete wavelet transforms (DWT). This property 

ensures translation invariance, which is essential when time 

alignment of features such as heartbeats must be preserved 

across frames. Radar signals from the thorax are highly non- 

stationary and contain overlapping frequency components from 

respiration, subtle body movements, and cardiac activity. 

MODWT offers a data-driven decomposition that adaptively 

separates these sources by their dominant frequency ranges, 

outperforming traditional bandpass filters. In [37], this approach 

has been evaluated against alternative methods, demonstrating 

superior performance. Subsequently, the cardiac motion signal 

within each window was segmented into overlapping 4 s frames 

with a stride of 0.5 s for classification, similar to the 

methodology outlined in [63] for heartbeat detection. Each 

frame was then transformed into its scalogram, represented as a 

black-and-white image with dimensions of 200 � 200 pixels. The 

CNN produces predictions at the frame level. To obtain the 

final decision for each 10 s window, frame-level probabilities are 

aggregated into a single probability distribution, from which the 

window-level prediction is derived. This voting scheme ensures 

more robust and stable classifications by combining evidence 

from multiple frames.

3.3 Data augmentation

In accordance with findings from other studies [108–110], we 

performed data augmentation using a GAN [111], specifically a 

cWGAN. This kind of WGAN incorporates conditional 

information: both the generator and the discriminator (or critic) 

receive additional input, typically in the form of class labels or 

other conditioning variables. The architectures of our generator 

and critic can be seen in Tables 1, 2 respectively. We used 

Adam as the optimizer for the generator, and RMSprop, as 

recommended in [98], for the critic. Additionally, we 

implemented gradient penalty with a coefficient of 10 to 

stabilize the training process, which helps enforce the Lipschitz 

constraint by ensuring the gradients have a norm close to 1. For 

both tasks, predicting sex and age respectively, each data sample 

was assigned a single label.

The cWGAN addressed the challenge of limited and 

imbalanced radar datasets by synthetically generating realistic 

scalograms conditioned on class labels (e.g., sex or age group). 

By modeling the data distribution and introducing controlled 

variability, the cWGAN enriched the training set with 

representative samples that improved generalization and reduced 

overfitting. This approach is particularly effective when 

collecting more real radar data is impractical due to time, cost, 

or ethical constraints. By training our cWGAN on the 

scalograms of patients dedicated to the training set, we were 

able to generate new scalograms labeled in each of the two 

categories: male and female in the case of sex, and 18–29 and 

30–65 in the case of age. We chose this strategy instead of 

oversampling or undersampling to preserve the original 

distribution and avoid overfitting. Although other methods such 

as SMOTE or class weighting were considered, the cWGAN was 

selected for its ability to generate label-consistent and 

structurally realistic samples.

Our cWGAN was trained for 151 epochs with a batch size of 

32. Early stopping was not used, but both generator and critic 

losses were monitored throughout training. The generator used 

a learning rate of 8 � 10�5, while the critic (or discriminator) 

used a smaller learning rate of 6:7 � 10�6. For every generator 

update, the critic was updated five times. The latent space 

dimension was set to 100. We conditioned the generation on 

two labels (e.g., male/female or age group), which were 

embedded and concatenated to both the generator input and the 

critic input. The training was carried out on scalograms 

corresponding to the training set, and a gradient penalty with 

coefficient 10 was applied to enforce the Lipschitz constraint 

and promote stable convergence.

3.4 Classification

We utilized a CNN for the classification task, as these models 

are frequently used in computer vision tasks, particularly as 

feature extractors from images across various fields [112, 113]. 

They concatenate hierarchical layers of convolutional filters to 

automatically learn meaningful representations from raw pixel 

data. These learned features capture hierarchical patterns such as 

edges, textures, and shapes, which are essential for 

understanding and classifying visual content. This feature 

TABLE 1 Architecture summary of the generator in the cWGAN with 2 
labels and 100 as input dimension.

Layer Configuration Activation Other

1 ConvTranspose2d 

(102, 256, 3, 2)

ReLU Batch 

normalization

2 ConvTranspose2d 

(256, 128, 3, 2)

ReLU Batch 

normalization

3 ConvTranspose2d(128, 64, 

5, 3)

ReLU Batch 

normalization

4 ConvTranspose2d(64, 32, 

3, 3)

ReLU Batch 

normalization

5 ConvTranspose2d(32, 16, 

3, 2)

Tanh –

TABLE 2 Architecture summary of the critic for cWGAN with 2 labels.

Layer Configuration Activation Other

1 Conv2d(1, 128, 4, 2) LeakyReLU Batch normalization

2 Conv2d(128, 256, 4, 2) LeakyReLU Batch normalization

3 Flatten() – –

4 Linear(1024 + 2, 64) LeakyReLU –

5 Dropout() – –

6 Linear(64, 1) – –
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extraction process from the scalograms is carried out in the 

convolutional layers of the CNN, while the fully connected 

layers placed at the end serve to classify the scalograms based 

on the previously obtained features.

The structure of our CNN is shown in Figure 3 and consisted 

of 5 convolutional layers followed by 4 fully connected layers. The 

output was a number corresponding to the predicted class for the 

input scalogram. After each convolutional layer, we applied batch 

normalization to normalize the input and mitigate internal 

covariate shift [114]. The Rectified Linear Unit (ReLU) was used 

as the activation function to introduce non-linearity, which aids 

in learning complex patterns in the data. Max pooling was 

applied after each convolutional block to progressively reduce 

spatial dimensions and retain the most relevant features. The 

kernel sizes for the five convolutional layers were 5, 3, 13, 5, and 

2 respectively, all with stride 1 and no padding. The input to 

the network consisted of 3-channel scalograms with fixed 

dimensions, and the size of the 2attened feature map after the 

final convolutional block was 2048. The fully connected (MLP) 

part of the network contained layers of size 1024, 256, 64, and 

1, with ReLU activations and dropout (p = 0.5) applied after 

each layer except the final output. The model was trained using 

the Adam optimizer with a learning rate of 0.001 and binary 

cross-entropy loss. With this model, we were able to predict the 

class of each scalogram, and thus of each frame. To obtain a 

prediction for each window, we then used hard voting based on 

the predictions of all the frames within that window. 

Nevertheless, we did not conduct an optimization process for 

the selected CNN architecture; therefore, alternative 

architectures might have yielded superior final results.

3.5 Privacy threat model

Radar-based cardiac sensing enables unobtrusive acquisition 

of physiological signals, often without requiring physical contact 

or active participation from the subject. While typically used for 

clinical monitoring or biometric authentication, this modality 

also allows for the potential inference of sensitive demographic 

attributes from the collected signals.

In our threat model, we considered a passive adversary who 

can covertly acquire radar re2ections from a subject without 

requiring physical access to the sensing system. The adversary 

may place a radar device in the environment (e.g., in smart 

home devices, hospital rooms, or public kiosks) to continuously 

collect cardiac signals from individuals situated within sensing 

range. Data acquisition can occur in everyday scenarios where 

individuals are seated or stationary, and does not require user 

awareness or consent. The adversary is assumed to have access 

to trained deep learning models capable of inferring 

demographic attributes such as age or sex from radar-derived 

cardiac signals. By applying repeated predictions the adversary 

can aggregate results via majority voting to improve 

classification accuracy. Although individual predictions may be 

affected by noise, the accumulation of repeated inferences over 

extended periods enables reliable profiling of individuals based 

on latent features contained in the physiological signal.

3.6 Experimental setup

To prevent data leakage, training and testing sets were split at 

the subject level, ensuring that all frames from a given individual 

were assigned exclusively to either the training or the test set. 

Specifically, for each experiment, 80% of the subjects were 

randomly assigned to the training set and the remaining 20% 

to the test set, while maintaining a balanced distribution of sex 

or age groups as needed. Frames from the training subjects 

were used to train the CNN, including both real scalograms 

and synthetic scalograms generated by a cWGAN trained only 

on the training subjects’ data, while the test set contained only 

real scalograms. Consequently, neither the CNN nor the 

cWGAN was exposed to any data from the test subjects during 

training. This subject-wise splitting strategy guarantees that the 

CNN learns meaningful physiological features without any 

contamination from the test data.

FIGURE 3 

Structure of the CNN.
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All experiments were conducted on a workstation running 

Ubuntu 22.04.4 LTS. The system was equipped with a 12th Gen 

Intel Core i7-12700KF CPU running at 5.00 GHz, 32 GB of 

DDR4 RAM, and an NVIDIA GeForce RTX 3080 Ti GPU with 

12 GB of VRAM. The code was executed using Python 3.11.7, 

PyTorch 2.3.0, and CUDA 12.2. For wavelet-based signal 

processing, the functions modwt and modwtmra from 

MATLAB’s Wavelet Toolbox were invoked via the Python- 

MATLAB engine. Key parts of the implementation, including 

model architecture, MODWT filtering, data generation with 

cWGAN and splitting functions will be made publicly available 

for full reproducibility [115].

4 Results

The aim of this article is to investigate whether personal data, 

specifically sex and age group, can inadvertently leak alongside 

other medically relevant information in cardiac signals obtained 

through radar technology. To address this issue, we will explore 

the feasibility of predicting these two variables from the radar- 

derived signals in a substantial number of cases. For the train- 

test split in the experiments, since the goal is to estimate two 

attributes specific to each person, age group and sex, we are 

separating the data by individuals. This ensures that signals 

from the same individual do not appear in both the training 

and testing sets, preventing possible data leakage, which may 

have occurred in the use of other biosignals [116].

4.1 Metrics

To evaluate whether cardiac signals obtained via radar 

transmit sensitive patient information, such as sex or age, in 

addition to heart-specific data, we will employ the following 

metrics in the classification process. Accuracy measures the 

overall effectiveness of the model by calculating the proportion 

of correctly classified instances out of the total. False Acceptance 

Rate (FAR) indicates how often unauthorized individuals are 

incorrectly accepted by the system, re2ecting the rate of false 

positives among all actual negatives. On the other hand, False 

Rejection Rate (FRR) measures how frequently authorized 

individuals are incorrectly rejected, showing the rate of false 

negatives among all actual positives. Precision evaluates the 

proportion of true positive predictions among all positive 

predictions made by the model, while recall assesses the 

proportion of true positive instances correctly identified out of 

all actual positives. Finally, the F1-score combines precision and 

recall into a single metric, offering a balanced measure of the 

model’s performance in identifying positive instances [117].

4.2 Sex

To determine whether sex information is being inadvertently 

transmitted through the cardiac signals, we attempted to predict 

the sex of patients set aside for testing by training the 

classification model on the remaining ones. The dataset consists 

of 30 patients, with 16 females and 14 males. We reserved 6 

patients (3 males and 3 females chosen randomly) for testing, 

and used the data of the other 24 patients for training. To 

enhance the robustness of the training process, we applied data 

augmentation by generating new scalograms that do not 

correspond to any specific patient but are labeled by class, 

following the procedure described in Section 3.3. In Figure 4, we 

present a comparison between real and generated samples, 

showing a random subset of real scalograms from the training 

set alongside synthetic scalograms produced by the cWGAN. 

For a quantitative assessment, we computed the Fréchet 

Inception Distance (FID) [118] between real and synthetic 

scalograms for the sex classification task, obtaining a value of 

88.74. To adapt the grayscale scalograms to Inception-v3, the 

single channel was replicated three times and the images were 

resized to match the network’s input size. Although relatively 

high, this FID may be in2uenced by the domain mismatch 

between our grayscale scalograms and the RGB images used to 

pretrain Inception-v3, which can amplify the measured distance. 

To evaluate the impact of the amount of additional data, we 

performed the classification process four times by varying this 

amount, expressed as the percentage increase in scalograms 

added to the training set. The average accuracy results for sex 

prediction are shown in Figure 5. In this figure, we can observe 

that, except when increasing data by 25% or 150%, data 

augmentation with the cWGAN generally benefits the model’s 

efficiency in all other cases. Among these, optimal results appear 

to be achieved with a 75% data increase, where the test set 

window accuracy for sex prediction reaches nearly 72%. To 

evaluate whether the observed improvement with data 

augmentation is statistically significant, we repeated the 

classification experiment 34 times under two conditions: (i) 

without data augmentation, and (ii) with a 75% increase in the 

training set using synthetic scalograms. For each run, we 

computed the average test window accuracy. To compare both 

distributions, we applied Welch’s t-test, obtaining a t-statistic of 

�2.6169, a p-value of 0.0146, and a 95% confidence interval for 

the difference in means of [�0.1080, �0.0130]. These findings 

indicate that the improvement in classification accuracy due to 

data augmentation is statistically significant, reinforcing the 

hypothesis that synthetically generated data enhances the 

model’s ability to predict sex.

Given the limited number of subjects in the dataset, we can 

perform a leave-one-out classification for each of the 6 test 

patients, using the other five as additional training material. In 

this way, for each of these 6 patients dedicated for test, a model 

is trained with the remaining 29 patients plus the generated 

scalograms. The goal of the data augmentation process was to 

generate samples conditioned on specific attributes, thereby 

enhancing the model’s ability to control and manipulate the 

output based on desired characteristics. Table 3 presents 

the results obtained using this methodology, comparing the 

classification performance with only the original data to the 

performance with a 75% increase in data through augmentation. 
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FIGURE 4 

Comparison between real and synthetic scalograms generated by the cWGAN.
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The application of data augmentation led to substantial 

improvements across all metrics. The classification accuracy for 

10 s windows (i.e., after aggregating frame-level predictions into 

a single decision per window) rose significantly, from 72.80% to 

78.40%, re2ecting a 5.6% improvement. This enhancement 

demonstrates the model’s increased capability to accurately 

classify sex due to the added variability in the data. Frame-level 

accuracy (i.e., the performance of the CNN when predicting 

individual 4 s frames) also benefited, showing a 4.11% increase, 

which indicates a consistent trend of enhanced performance 

even at finer time granularities. In terms of error rates, both the 

FAR and FRR declined, with reductions of 6.02% and 5.69%, 

respectively, after applying data augmentation. Precision and 

recall also improved, with precision increasing by 6.02% and 

recall by 5.69%. These results suggest that the augmented 

dataset not only makes the model more accurate but also 

promotes a better balance between detecting true positives and 

minimizing false negatives. This balance is further evidenced by 

a 5.57% increase in the F1-score. Additionally, in Figure 6, we 

can observe the confusion matrix for the case where data 

augmentation is increased by 75%. It is important to note that 

we are classifying 10 s windows, which the numbers in the 

figure correspond to. In this figure, we can see that for the 

model, women are easier to identify (86.19% accuracy), whereas 

men present more difficulties (71.13% accuracy).

Additionally, we can analyze the accuracy of sex prediction for 

each window in relation to the patient, as depicted in Figure 7, 

where we see that there is a male whose windows are mostly 

classified by the model as belonging to female, thereby reducing 

the average results.

Given the limited number of subjects in the dataset, we can 

perform a leave-one-out classification for each of the 6 test 

patients, using the other five as additional training material. In 

this way, for each of these 6 patients dedicated for test, a model 

is trained with the remaining 29 patients plus the generated 

scalograms. The goal of the data augmentation process was to 

generate samples conditioned on specific attributes, thereby 

enhancing the model’s ability to control and manipulate the 

output based on desired characteristics. Table 3 presents 

the results obtained using this methodology, comparing the 

classification performance with only the original data to the 

performance with a 75% increase in data through augmentation. 

FIGURE 5 

Average accuracy on sex estimation by data augmentation size.

TABLE 3 Classification metrics for sex estimation with and without data augmentation.

Data Accuracy in Accuracy in FAR FRR Precision Recall F1-score

augmentation windows (%) frames (%) (%) (%) (%) (%) (%)

0% 72.80 64.33 26.90 27.03 73.10 72.97 72.78

75% 78.40 68.44 20.88 21.34 79.12 78.66 78.35
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FIGURE 6 

Confusion matrix for sex classification.

FIGURE 7 

Accuracy in sex estimation by person.
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The application of data augmentation led to substantial 

improvements across all metrics. The classification accuracy for 

10 s windows (i.e., after aggregating frame-level predictions into 

a single decision per window) rose significantly, from 72.80% to 

78.40%, re2ecting a 5.6% improvement. This enhancement 

demonstrates the model’s increased capability to accurately 

classify sex due to the added variability in the data. Frame-level 

accuracy (i.e., the performance of the CNN when predicting 

individual 4 s frames) also benefited, showing a 4.11% increase, 

which indicates a consistent trend of enhanced performance 

even at finer time granularities. In terms of error rates, both the 

FAR and FRR declined, with reductions of 6.02% and 5.69%, 

respectively, after applying data augmentation. Precision and 

recall also improved, with precision increasing by 6.02% and 

recall by 5.69%. These results suggest that the augmented 

dataset not only makes the model more accurate but also 

promotes a better balance between detecting true positives and 

minimizing false negatives. This balance is further evidenced by 

a 5.57% increase in the F1-score. All metrics reported, except 

for frame-level accuracy, are computed at the window level. 

Additionally, in Figure 6, we can observe the confusion matrix 

for the case where data augmentation is increased by 75%. It is 

important to note that we are classifying 10 s windows, which 

the numbers in the figure correspond to. In this figure, we can 

see that for the model, women are easier to identify 

(86.19% accuracy), whereas men present more difficulties 

(71.13% accuracy).

4.3 Age

Similarly to the sex analysis, we explored the extent to which 

personal information, such as age, might be conveyed through 

the available cardiac signals. Given the small dataset of only 

30 subjects, age presents a more significant challenge, as 

illustrated in Figure 2b. There are age groups with no 

patients, and the distribution is clearly imbalanced. To 

mitigate this issue, we categorized the data into two groups: 

individuals aged 18 to 29 and those aged 30 or older. Given 

the imbalance in distribution, grouping them into a larger 

number of categories would have resulted in some groups 

having very few elements. Despite this grouping, the data 

distribution remains markedly imbalanced, as shown in 

Figure 8a. Therefore, data augmentation was crucial to 

achieve a more balanced training set. As illustrated in 

Figure 8b, after increasing the original dataset by 75%, the 

scalogram dataset for age classification became balanced 

across the two groups. Specifically, synthetic scalograms were 

generated until both classes had approximately equal sample 

sizes (around 14,000 each). This approach was preferred over 

oversampling or undersampling to preserve the original 

distribution and reduce the risk of overfitting. While other 

techniques such as SMOTE or class weighting were 

considered, the cWGAN was ultimately chosen due to its 

capacity to produce label-consistent and structurally realistic 

synthetic samples. In Figure 4, we also provide a comparison 

between real and synthetic scalograms for the age 

classification task. As in the sex classification analysis, we 

quantitatively assessed the similarity between real and 

synthetic scalograms for age by computing the FID, which 

resulted in a value of 39.56.

Similar to our approach with sex, we can investigate the 

impact of the amount of new scalograms added to the training 

set on the classification of test patients by age group. This 

analysis is illustrated in Figure 9, where the best results are 

obtained by training the classifier with an additional 75% of 

generated data. To create this plot, we performed classification 

four times, depicting the average results. In this figure, it is 

observed that the use of data augmentation does notably 

improve the performance of the classification algorithm between 

the two groups. Furthermore, the accuracy takes on a concave 

shape, reaching its maximum when increasing the data by 75% 

and decreasing thereafter. On the other hand, in Table 4, we 

observe the metrics comparing the results after applying data 

augmentation and without applying it, following the procedure 

described for sex using leave-one-out classification with the aim 

of maximizing the training data. The inclusion of 75% data 

augmentation resulted in a marked improvement across all 

classification metrics. The window-level accuracy rose from 

65.60% to 72.83%, an increase of 7.23%, while frame-level 

accuracy similarly increased by 6.48%, reaching 69.50%. In 

terms of error rates, both the FAR and the FRR exhibited 

notable decreases, dropping from 25.73% to 18.54% and from 

34.73% to 27.46%, respectively. This reduction in error rates 

indicates that the model becomes more reliable with data 

augmentation, with fewer incorrect classifications on both 

acceptance and rejection. Precision and recall showed notable 

improvements, with increases of 7.19% and 7.27%, respectively, 

compared to the initial values. The F1-score also rose by 8.85%, 

re2ecting a better balance between precision and recall. As in 

the case of sex, we evaluated the statistical significance of the 

observed improvement by repeating the classification experiment 

34 times and applying Welch’s t-test. The results yielded a t- 

statistic of �2.4017, a p-value of 0.0225, and a 95% confidence 

interval of [�0.1067, �0.0087], indicating that the performance 

gain from data augmentation is statistically significant in the age 

group classification task.

In Figures 10a, 10b, we can respectively observe the confusion 

matrix and the accuracy when predicting the age group for each 

person’s windows, ordered by age. In Figure 10a, we observe 

that the model exhibits a slight bias, tending to classify a higher 

number of windows into the most frequent age group in the 

dataset, which is 18 to 29 years. Additionally, one of the six 

individuals in the test set, a 35-year-old woman, is being 

classified as under 30. It is worth clarifying that the age detected 

through heart signals does not uniquely correspond to a 

person’s chronological age but rather expresses the general state 

of the cardiovascular system [12]. In certain cases, this may 

cause individuals with ages near the boundaries of age groups to 

be misclassified. This error might not be attributed to the model 

in some cases, but rather to the characteristics and condition of 

their particular cardiovascular system.
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FIGURE 8 

Distribution of frames in the training set by age group. (a) Without data augmentation. (b) After data augmentation of 75%.
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4.4 Explainability

Despite the strong performance often achieved by deep 

learning models, their black-box nature can limit interpretability 

and hinder trust in their outputs. In our context, where cardiac 

radar signals are analyzed using convolutional neural networks 

(CNNs) to infer demographic attributes, understanding the 

rationale behind the model’s decisions is crucial—both for 

scientific insight and for fostering confidence in the system. To 

this end, we employed Gradient-weighted Class Activation 

Mapping (Grad-CAM) [119] to generate visual explanations of 

the CNN’s predictions. Grad-CAM produces heatmaps that 

highlight the regions of the input scalogram that most 

strongly in2uence the output, enabling the identification of 

time-frequency patterns the model deems most relevant for 

distinguishing between classes such as sex or age 

group. Incorporating such explainability not only 

improves the transparency of our system but also provides a 

means for qualitative assessment and validation of the 

model’s behavior.

To analyze the internal decision-making process of our CNN 

classifier, we integrated Grad-CAM into the fourth convolutional 

layer of the network. We trained the CNN multiple times (five 

repetitions) with the augmented dataset to ensure robustness, 

and then applied Grad-CAM to the test set to identify the 

regions of the input scalograms that most in2uenced the 

model’s predictions. For each correctly classified instance, we 

extracted class-specific activation maps and aggregated them 

separately for each class (male and female). This yielded 

averaged heatmaps representing the most salient time-frequency 

patterns used by the network to distinguish between the two 

categories. The results for both sex and age classification tasks 

are presented in Figure 11. In general, the network consistently 

allocates more attention to the low-frequency regions of the 

scalogram, which appear to contain the most discriminative 

information for class separation, while higher frequencies receive 

comparatively less focus. This observation suggests that future 

work could benefit from emphasizing this lower frequency 

range, which seems to play a decisive role in the model’s 

decisions. In both classification tasks, we also observe class- 

specific differences in the regions of highest activation. These 

differences are particularly pronounced in the sex classification 

task, where the network tends to focus on slightly wider 

frequency bands for female subjects. As previously suggested in 

FIGURE 9 

Average accuracy on age group classification by data augmentation size.

TABLE 4 Classification metrics for age group classification with and without data augmentation.

Data Accuracy in Accuracy in FAR FRR Precision Recall F1-score

augmentation windows (%) frames (%) (%) (%) (%) (%) (%)

0% 65.60 63.02 25.73 34.73 74.27 65.27 61.81

75% 72.83 69.50 18.54 27.46 81.46 72.54 70.66
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the literature [81], this might be attributed to morphological 

differences in the chest between male and female individuals, 

which could in2uence the cardiac radar signal and, 

consequently, the frequency content of the resulting scalograms. 

Similarly, in the age classification task, differences in activation 

patterns may re2ect known physiological changes in cardiac 

dynamics with age. For instance, cardiac features such as Heart 

Rate Variability (HRV) have been shown to vary with age [120], 

which may contribute to the distinct attention patterns observed 

between the two age groups.

FIGURE 10 

Performance metrics for age group classification. (a) Confusion matrix for classification in age group. (b) Accuracy in age group classification 

by person.
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4.5 Use of transfer learning

Due to the limited number of patients in our dataset, Transfer 

Learning is one of the most common approaches to improve 

model training in scenarios with scarce data [121]. Transfer 

Learning is particularly valuable in cases with restricted data 

availability, as it transfers relevant representations from 

previously trained models, optimizing the training process and 

potentially enhancing prediction accuracy. Moreover, its 

applicability extends to various biomedical tasks where acquiring 

large volumes of labeled data is both costly and challenging [122].

In our study, we evaluated four different pre-trained networks 

by applying fine-tuning to each. This fine-tuning process involves 

freezing the parameters of the network’s initial layers, thereby 

retaining the general features learned from a large and diverse 

dataset, while training only the final layers to adapt to the 

specific characteristics of our study. The networks evaluated 

included ResNet50 [123], DenseNet [124], Shuf2eNet [125], and 

VGG-19 [126], all pre-trained on large-scale, real-world image 

datasets. Despite the potential advantages, the performance 

results achieved with these networks were not satisfactory. 

Tables 5, 6 show the classification results by sex and age group 

using each of these networks with 75% data augmentation 

applied consistently across all cases.

The performance of transfer learning models such as ResNet- 

50, DenseNet, Shuf2eNet, and VGG-19 was noticeably lower than 

that of our custom-designed network. We attribute this 

performance gap primarily to domain mismatch [127]: these 

architectures are pre-trained on ImageNet, a dataset of natural 

images with vastly different structural and spectral 

characteristics compared to radar-derived cardiac scalograms. 

While transfer learning is effective when source and target 

domains are similar, in this case, the feature representations 

learned from natural textures, shapes, and objects do not 

transfer well to time-frequency biomedical signals. We also 

experimented with fine-tuning deeper layers and adding 

domain-specific dense layers on top of the pre-trained 

backbones. However, these adjustments did not yield substantial 

improvements, suggesting that the core convolutional filters 

learned from natural images were suboptimal for this task. 

FIGURE 11 

Grad-CAM heatmaps showing CNN attention regions on scalograms. (a) Age group classification. (b) Sex clasification.
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These results indicate that task-specific architecture design and 

training from scratch are more effective strategies for modeling 

radar-acquired physiological signals.

4.6 Evaluating threat feasibility through 
temporal aggregation

To assess the practical feasibility of the privacy threat 

described in Section 3.5, we conducted an additional experiment 

based on the hypothesis that an adversary could improve the 

reliability of demographic inference by aggregating predictions 

over longer temporal spans. Specifically, we evaluated the 

classification accuracy of our model when predictions are 

aggregated from multiple consecutive input segments 

corresponding to the same individual. Since the model provides 

a prediction for each individual frame, we generated all possible 

contiguous subsets of frames for each subject in the test set 

(6 subjects), where each subset spans at least 7 seconds. For 

each subset, a final prediction was obtained by applying 

majority voting over the model’s predictions for the individual 

frames within that subset. We then grouped these subsets into 

bins according to their temporal length and computed the 

average accuracy for each bin. The results are shown in 

Figure 12a, where each line corresponds to a single test subject 

and each point represents the average accuracy over all subsets 

of that specific duration. As can be observed, in the age group 

classification task, one subject—a 35-year-old female—is 

consistently misclassified as belonging to the 18–29 age group, 

regardless of the temporal span. Aside from this case, the overall 

accuracy increases steadily as the input duration grows, 

supporting the notion that temporal aggregation significantly 

boosts inference reliability. In the age classification task, for 

example, three out of the six test subjects reach 100% accuracy 

when the aggregated input covers at least 20 s. Figure 12b

complements this analysis by showing the cumulative percentage 

of subjects for whom the model achieves at least 95% accuracy 

at or before a given input duration. Notably, for both tasks, the 

model predicts the correct class with high confidence (�95%) 

for 80% of subjects after observing less than 100 s of data. These 

findings provide empirical support for the proposed privacy 

threat model. By demonstrating that demographic attributes 

such as sex and age can be inferred with high confidence from 

temporally aggregated cardiac radar signals—even in the absence 

of physical contact or subject cooperation—our results highlight 

the tangible risks of long-term passive monitoring. The 

consistent increase in prediction accuracy with longer input 

durations suggests that an adversary with access to sustained 

radar observations could reliably construct demographic profiles 

of individuals over time.

5 Discussion & conclusions

The results of this research suggest that radar-extracted cardiac 

signals, while primarily intended to capture relevant medical 

features, also inadvertently encode personal information such as 

sex and age, which could pose privacy concerns. This 

characteristic, also observed in other biometric data types like 

facial recognition and ECG, highlights the importance of 

implementing robust security measures for the storage and 

management of such data. Specifically, we achieved an accuracy 

of 78.40% for correctly predicting sex, and 72.83% for predicting 

the patient’s age group, consistently using 10 s temporal 

windows. To accomplish this, we employed a model primarily 

based on a CNN that classifies the scalograms derived from 

cardiac signals into their respective categories. An important 

tool for improving these results was data augmentation, which 

we conducted using a cWGAN, also studying the amount of 

extra data that most positively in2uences the model’s 

TABLE 6 Age group classification metrics with different pre-trained networks, using 75% of data augmentation.

Network Accuracy in Accuracy in FAR FRR Precision Recall F1-score

windows (%) frames (%) (%) (%) (%) (%) (%)

ResNet-50 55.98 53.83 43.13 44.24 56.87 55.76 54.02

DenseNet 47.55 49.43 54.26 52.77 45.74 47.23 42.31

Shuf2eNet 45.65 46.81 54.63 54.45 45.37 45.55 45.07

VGG-19 58.15 59.35 38.85 42.14 61.15 57.86 54.67

Our network 72.83 69.50 18.54 27.46 81.46 72.54 70.66

TABLE 5 Sex classification metrics with different pre-trained networks, using 75% of data augmentation.

Network Accuracy in Accuracy in FAR FRR Precision Recall F1-score

windows (%) frames (%) (%) (%) (%) (%) (%)

ResNet-50 49.07 49.84 51.26 51.23 48.74 48.77 48.54

DenseNet 56.27 60.20 43.85 43.99 56.15 56.01 55.88

Shuf2eNet 45.87 50.49 54.26 54.24 45.74 45.76 45.74

VGG-19 54.93 55.53 44.93 44.95 55.07 55.05 54.92

Our network 78.40 68.44 20.88 21.34 79.12 78.66 78.35
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performance. Both for sex (Figure 5) and for age (Figure 9), 

experiments determined that a 75% increase in the original 

training set offered optimal performance. This increase in 

accuracy was 5.6% in sex estimation and 7.23% for age 

(Tables 3, 4). On the other hand, the use of pre-trained 

networks on large image datasets (Transfer Learning) did not 

prove beneficial in our case, yielding results that were inferior 

to those of our own model, which was trained solely on 

samples obtained from the original dataset. Hyperparameter 

optimization for both the CNN classifier and the cWGAN 

model was not performed and remains an open task for 

future work. Due to the limited size of the dataset, we did not 

perform a full grid search. Instead, hyperparameters 

were selected through manual tuning informed by prior 

literature and validation performance. Future work will 

include a systematic search strategy, such as Bayesian 

optimization or nested cross-validation, to improve 

reproducibility and fairness.

FIGURE 12 

Classification accuracy for both sex and age group as a function of temporal aggregation. (a) Average classification accuracy per test subject over 

temporally aggregated subsets of varying duration. (b) Cumulative percentage of test subjects for whom the model achieves at least 95% accuracy, as 

a function of temporal input duration.
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However, while traditional methods such as ECG benefit from 

larger datasets and have shown high performance in demographic 

attribute estimation, they still face challenges regarding portability, 

comfort, and suitability for continuous monitoring. In contrast, 

radar-based techniques offer a good contactless alternative but are 

currently limited by smaller datasets, which can affect both model 

accuracy and generalization capacity. Additionally, due to the 

novelty of this approach, further studies are required to 

systematically evaluate its robustness in diverse real-world 

settings. This comparison can be seen in Table 7, where we 

compare our results with those obtained through other signals, as 

we are not aware of previous studies conducting this procedure 

with this type of signal. In this table, it is observed that the 

accuracy in estimating sex usually exceeds 90%, and the databases 

used sometimes include hundreds of thousands of patients.

Overall, the small dataset size can impose certain limitations on 

the generalization of these results, as dedicating only 6 patients for 

testing means that the incorrect prediction of just one of them 

can significantly in2uence the final results. This is evident in both 

sex and age cases, where in each, there is a subject consistently 

misclassified into the wrong class. In the case of sex, this occurs 

with patient 17 (Figure 7), who is the male with the lowest body 

weight in the dataset (28 years, 165 cm, 57 kg), while for age, it 

occurs with a 35-year-old woman, who is near the boundary 

between both age groups. Furthermore, public datasets for this 

type of signal remain very limited, with 30 patients representing a 

number that is actually higher than the average found in other 

studies [105]. It is also important to note that we are dividing the 

training set and the test set by patients, ensuring that the model 

has never seen data from the same patient when predicting the 

class of a window. This procedure brings the study’s results closer 

to potential real-world applications.

Our results show that classification accuracy improves 

significantly when predictions are aggregated over longer temporal 

windows, indicating that even models with moderate single-frame 

performance can achieve high reliability given sustained 

observations. These findings highlight the potential for passive 

adversaries to infer sensitive demographic attributes through 

unobtrusive, long-term data collection, emphasizing the need for 

robust privacy protections. Our concerns align with biometric 

information protection standards such as ISO/IEC 24745 [128], 

the General Data Protection Regulation (GDPR) [9], and NIST 

Special Publication 800-63 [129], which require safeguarding 

against unauthorized identity disclosure and the inference of 

secondary attributes without explicit consent. This work 

underscores the necessity to develop effective countermeasures and 

privacy-preserving techniques for radar-based cardiac monitoring 

systems. To mitigate these risks, future work should explore: 

• Signal sanitization techniques, such as adversarial perturbations 

or autoencoder-based anonymization, to suppress demographic 

features while preserving the primary utility of the signal.

TABLE 7 Summary of studies on Age and Sex estimation using biosignals.

Ref (Year) Type Biosignal Results Comments Patients

Attia et al. [72] Age & 

Sex

ECG Sex: 90.4% accuracy, Age: average error of 6.9 + 

5.6 years (R2 ¼ 0:7)

CNN 774,783

Kaushik et al. 

[130]

Age & 

Sex

EEG Sex: Accuracy of 93.7%, Age: Accuracy 97.5% 

(divided in 6 age groups)

Bi-directional LSTM and LSTM 60

Lyle et al. [131] Sex ECG Dataset1: accuracy 91.3%, Dataset2: accuracy 

86.3%

Symmetric Projection Attractor Reconstruction 

method

104 8,903

Saho et al. [80] Sex Radar-based gait 

features

Accuracy of 93.6% Multilayer Perceptron 181

Lima et al. [132] Age ECG MAE: 8.38 + 7.00 (CODE), 8.44 + 6.19 (ELSA- 

Brasil), 10.04 + 7.76 (SaMi-Trop)

Deep neural network 1,558,415 14,236 

1,631

Cabra Lopez 

et al. [73]

Sex ECG Accuracy 94.4% + 2.0% GoogLeNet 202

Wang et al. [78] Sex Radar-based body 

movement

Accuracy of 90% Analyzes transition between sitting and standing. 

CNN

178 elderly 

people

van der Wall 

et al. [76]

Age ECG Average error of 6.9 + 5.6 years 

(R2 ¼ 0:72 + 0:04)

Neural network regression model 6,228 healthy 

subjects

Chang et al. 

[77]

Age ECG MAE 6.899 years (r = 0.822) CNN with attention mechanism for potassium 

concentration estimation

71,741

Adib et al. [133] Age ECG MAE: 3.99 (all subjects), 2.99 (healthy subjects) Deep neural network model 4,884

Cabra Lopez 

et al. [134]

Sex ECG Accuracy 94.82% + 1.96% DCNN, RGB wavelet transformation 202

Kaneko et al. 

[135]

Age ECG Accuracy 68.19% They analyze Heart Rate Variability, classifing in 

two age groups with Random Forest

420,000

Naser et al. 

[136]

Sex ECG & hormones ECG could be a biomarker of hormone status Artificial intelligence-augmented ECG and sex 

hormone levels

90,337

Dias et al. [137] Age & 

Sex

ECG Sex: F1-score 0.800 + 0.007; Age: MAE 8.961 + 

0.180

ResNeXt-based architecture trained with 

CODE15 dataset

1,558,415

Wei et al. [138] Age & 

Sex

EEG Sex: 55.07% accuracy; Age: 66.67% accuracy 

(allowing 1 year error)

Random Forest 351 children

Niu et al. [139] Sex EEG Accuracy of 95.2% accuracy k-means clustering and SVM 232

Our proposal 

(2024)

Age & 

Sex

Radar-based cardiac 

signal

Sex: Accuracy of 78.40%, Age: Accuracy of 

72.83%

Data augmentation with GAN, CNN, 2 age 

groups

30
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• Differential privacy mechanisms, applied at the feature 

extraction or model output level, to provide formal privacy 

guarantees against attribute inference.

• Detection and auditing frameworks capable of identifying 

unauthorized use of inference models or repeated inference 

attempts in deployed systems.

As a conclusion of our study, we can affirm the presence of 

personal information within radar-extracted cardiac signals that 

could be exploited for identification purposes. As a result, it is 

crucial to treat these signals with the same level of security and 

privacy considerations as more traditional biometric data. This 

is particularly important in the context of biomedical 

applications, where the misuse of personal health information 

could have serious ethical and legal implications. A specific 

example of how data leakage can compromise the security of 

widely used applications is the use of sex and age information 

in e-passports. This information is utilized to derive the access 

key for the RFID chip embedded in the passport, a practice that 

has been in effect since September 11 [11]. Future research 

should focus on improving the accuracy and robustness of these 

methods but also on developing protocols and technologies to 

safeguard the collected data. By addressing these concerns, we 

can harness the potential of radar-based cardiac signal analysis 

for a wide range of medical and healthcare applications while 

maintaining the trust and confidence of the public.

Therefore, non-invasive monitoring methods, such as radar- 

based cardiac signal analysis, offer substantial benefits in 

healthcare by enabling continuous monitoring without the need 

for direct contact with the patient. This technology is 

particularly valuable in scenarios where patient mobility or 

frequent follow-up is challenging, as it provides an efficient, 

unobtrusive way to track vital signs and other health metrics 

over time. However, this accessibility also introduces privacy 

risks, as sensitive biometric information can be derived from 

these signals, including details about a patient’s sex, age, and 

possibly unique identifying characteristics. If improperly 

safeguarded, this information could be exploited in unintended 

ways, posing risks to patient privacy and autonomy. The trade- 

off lies in balancing the advantages of improved patient 

monitoring and personalized care with stringent data protection 

measures to prevent unauthorized access and misuse of personal 

health information. Ultimately, ensuring the security of radar- 

based health data will be essential for achieving patient trust, 

regulatory compliance, and ethical application in healthcare.
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