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Introduction: Ancestry reporting is essential to ensure transparency and proper 

representation in biomedical studies. However, manually extracting this 

information from study texts is time-consuming and inefficient. In this paper, 

we present TRACE (Tool for Researching Ancestry and Cell Extraction), 

powered by GPT-4 and web-crawling, to automate ancestry identification by 

detecting cell lines or cultures in texts and tracing their ancestry.

Methods: TRACE extracts cell lines and primary cultures from research articles 

and follows web sources to determine their ancestry. We compared TRACE’s 

outputs to a manually generated database to confirm its performance in 

identifying and verifying ancestry information.

Results: The results reveal an overrepresentation of European/White samples 

and significant underreporting. TRACE enables large-scale, systematic 

ancestry analysis—a valuable resource for researchers and agencies assessing 

biases in sample selection.

Conclusions: As an open-source tool, TRACE it facilitates broader use to 

evaluate and improve ancestry representation in biomedical research.

KEYWORDS

ancestry representation, automated text mining, cell line identification, biomedical 

research equity, AI language models, open source tool

1 Introduction

Researchers within the field of genetics have long understood that combined social/ 

environmental and genetic factors have profound effects on disease expression and 

outcome (1, 2). The factor of ancestry can impact both health outcomes and 

therapeutic interventions. Meta-analysis amongst different disciplines within biology 

have begun to interrogate the distribution of ancestral representation within their 

field’s given landscape. Additionally, national agencies such as the National Academies 

of Sciences, Engineering and Medicine (NASEM) have employed task forces to 

evaluate the use of ancestral descriptors in biomedical research. Many meta-analyses 

have concluded that there is an overwhelming representation of White/European 

individuals within genetic and disease studies (3–5). These studies, while incredibly 

helpful in pointing towards deficits within fields, are oftentimes time-consuming and 

require a large degree of labor in order to manually extract ancestry-related 

information. Herein we describe the establishment of a machine learning model, Tool 
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for Researching Ancestry and Cell Knowledge (TRACE), to both 

expedite and also increase the scalability of such analysis.

Genetic and sociocultural determinants of ancestry have been 

found to affect health outcomes, cellular engineering efforts, and 

therapeutic interventions. Previous in vitro studies have 

demonstrated the impact of ancestral backgrounds on biological 

outputs (6). Differing response expression quantitative trait loci 

(reQTLs) between European and African-descended primary 

monocytes were responsible for a significant variation in their 

respective immune responses (7, 8). Specifically, they possessed 

genetic variants that caused NCF2 and CCR1 gene 

downregulation in response to immune signals, mutations that 

have been linked to systemic lupus erythematosus and 

hepatocellular carcinoma onset, respectively (7, 9, 10). An innate 

immune cell-type, macrophages, also exhibited a marked 

difference in immune response between European and African 

descent, with a large portion of their gene expression differences 

at least partly attributed to ancestry (8). In particular, African- 

descended macrophages displayed a much stronger pro- 

in=ammatory immune response compared to their European 

counterparts, thought to be partly a result of local adaptation 

(8). These ancestry-related differences in immune response and 

gene expression invite further interest into how modern 

biomedical researchers consider ancestry and genetic 

background when selecting cell lines for biomedical research.

The development of health inequities amongst different 

ancestral populations through the stacked effects of both 

sociocultural and molecular factors can be exemplified through 

autoimmune disorders, such as systemic lupus erythematosus. 

This form of lupus disproportionately impacts Hispanic, African 

American, and Asian populations in the US with a 2–3× greater 

likelihood of occurrence over White/European counterparts (11). 

Lupus particularly impacts African American women, with 1 in 

250 African American women developing lupus within their 

lifetime (12). African American women are also more likely to 

have a severe endophenotype (11, 13, 14). Lupus expression 

amongst this demographic is exacerbated through social 

determinants. A recent multivariable linear regression analysis 

conducted in 2019 found that increased incidences of racial 

discrimination were associated with African American women 

having greater lupus activity as well as organ damage (14). These 

inequities are not limited by genetics but are impacted multi- 

factorially by other derivatives of ancestral background, social 

inequity, class, and healthcare access (15). Studies looking at 

ancestral distribution of samples have advocated for increasing 

the inclusion of diverse ancestral groups in research and have 

stressed that without such efforts, precision medicine and 

personalized healthcare will remain limited and inequitable (3).

With these considerations in mind, biology fields have begun 

to acknowledge the impact that ancestry plays in the outcomes of 

in vitro studies. Recently, there has been a call to report and 

consider the ancestry of human-derived primary cells and cell 

lines within bioengineering platforms (16). A study conducted 

in 2021 found that most cell lines used in benchtop regenerative 

engineering studies for 10 major journals were of White/ 

European ancestry, while most primary cells utilized had no 

ancestry reported. The consensus of this study was that ancestry 

within these journals was severely underreported (17). 

A commentary analysis written by Popejoy et al., highlights the 

significant lack of ancestral diversity in genomic research. The 

authors reveal that over 80% of participants in genome-wide 

association studies (GWAS) are of European descent, leading to 

biased conclusions that limit the generalizability of genetic 

findings to other populations. This underrepresentation of 

diverse ancestries, particularly from African, Hispanic, and 

Asian populations, poses risks in the development of effective 

therapies and diagnostic tools for non-European groups. The 

paper emphasizes that more diverse representation is crucial for 

understanding genetic predispositions and health outcomes 

across all populations. The paper underscores the importance of 

addressing both genetic and sociocultural determinants to 

ensure that research findings benefit all communities (3). 

Another study looking at national cancer cell line databases and 

3D model cancer repositories found that a vast majority of these 

primary-human derived cellular resources were of European 

and/or unreported genetic ancestry (18). The authors of this 

work highlighted that there should be intentional design in 

preclinical cancer tissue engineering, especially as it pertains to 

the development of efficacious therapeutic outcomes. All of 

these analyses underscore the deficits in diversity that these 

fields operate under. However, they are limited to certain 

timeframes and particular parameters due to their arduous nature.

Traditional methods of manually extracting ancestry-related 

information from studies often involve tedious processes such as 

reading through papers, identifying relevant data, and 

categorizing it based on ancestry. These methods are labor- 

intensive and prone to human error and bias, especially when 

dealing with large datasets. Automated techniques like regular 

expressions (regex) have been introduced to expedite this 

process by searching for specific patterns or terms related to 

ancestry. However, regex-based methods are limited because 

they rely on predefined patterns and cannot interpret the 

broader context or meaning of the information (19). For 

instance, the format and naming conventions of cell lines or 

primary cell cultures often vary across studies, making it 

difficult for regex to capture relevant ancestry information 

accurately (20). Regex and similar automation techniques fail to 

comprehend the deeper meanings behind text, such as 

identifying the ancestry of a cell line or primary cell culture 

based on its source, especially when this information is 

embedded in complex or varied phrasing. This is where natural 

language processing (NLP) models like ChatGPT become 

invaluable. NLP models can not only detect keywords but also 

understand the context and meaning behind the information, 

enabling them to extract ancestry data more accurately and 

efficiently, regardless of the format or terminology used. This 

ability to comprehend meaning makes NLP models essential for 

scalable and inclusive research in this area.

Our work seeks to expedite the interrogation of ancestry 

distribution and representation in various fields through the 

establishment of an AI-assisted extraction tool compared to a 

manually extracted ancestry reporting database. This meta-analysis 
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builds upon a previous study conducted with additional nuance in 

analyzing reporting practices across journals (17). We conducted a 

meta-analysis of 7 prominent bioengineering journals. From these 

journals, we pooled articles that mention use of some human- 

derived primary sample or cell line. We further analyzed this 

pool of articles to consolidate information related to reporting 

practices and the ancestral background of the cells. If the 

ancestral background of the samples were derived from the text 

of the article it was categorized as Ancestry reported. If the 

ancestry of the samples was able to be determined through a 

secondary source, they were considered as Ancestry available. If 

ambiguity in writing or cell sourcing left no means of 

determining ancestral background, the source was considered as 

Ancestry not available.

We then implemented a custom algorithm on this manually 

extracted database. This algorithm utilizes Generative Pre-trained 

Transformer-4 omni (GPT-4o) to automate data collection and 

processing. GPT-4o is a large language model pre-trained on an 

extensive corpus of internet text, enabling it to generate useful 

outputs based on any input text and/or image modalities. The 

implementation of this model in the study work=ow is a five-step 

process. Initially, the text is extracted from research articles and 

broken into small chunks of text. These chunks are then fed to 

the model sequentially and the model is prompted to extract 

primary cell cultures and cell lines. After that, the model is 

prompted to extract any information about their ancestry. This 

tool then goes through another iteration of the refinement 

process to remove any unwanted or unrelated output that the 

model might add. Using this information and web crawling, the 

program makes two decisions: first if the ancestry of the given 

cell line or primary cell culture is available on a secondary source, 

and second if the ancestry of the cell culture is reported by the 

authors of the articles. It also extracts the correct genome 

ancestry from the internet using web crawling. Subsequently, this 

output can be analyzed to discern ancestral reporting practices. 

This tool has been named TRACE and is hosted in a 

collaborative web-platform offered in Additional Information.

Our research ultimately revealed that ancestry is consistently 

underreported, aligning with previous work within and in 

adjacent fields. When ancestry information was available, the 

majority of cell lines were of White/European descent. 

Importantly, within this database, ancestry availability of cell lines 

was demonstrated to be highly prevalent. Leveraging this 

manually extracted database we were able develop and validate an 

automated tool to streamline the work=ow, enabling feasible and 

reproducible analyses. Manual filtering and data extraction, which 

are time-consuming and resource-intensive, were identified as 

bottlenecks in the project. By reducing the time and cost 

associated with these steps, our work=ow becomes more efficient 

and scalable for future inquiries and inquiries within adjacent fields.

2 Methods

Upkeep and evaluation of ancestry reporting as the field 

progresses is imperative to address current and future gaps in 

transformative science. The assistive screening tool introduced 

in this work allows for consistency in this evaluation and 

alleviates aspects of manual ancestral extraction. Utilizing the 

GPT-4o model for text extraction represents a significant 

advancement over traditional natural language processing 

methods, as it simplifies the process through ChatCompletion, 

as well as offering a higher degree of accuracy in the generated 

responses. GPT-4o, developed by OpenAI, is a highly powerful 

language model built upon a deep neural network architecture 

called a transformer model. This architecture leverages multiple 

stacked self-attention layers to process and generate human-like 

text. GPT-4o benefits from extensive training on vast amounts 

of diverse text data, enabling it to learn intricate patterns, 

comprehend contextual nuances, and produce coherent and 

contextually relevant outputs. The model follows a semi- 

supervised learning approach, initially training a large 

unsupervised corpus of text and subsequently fine-tuning itself 

through self-supervised learning using human and 

model feedback.

The GPT-based tool, TRACE, offers several significant 

advantages over traditional and regex-based methods for 

ancestry reporting in meta-analysis. Unlike regex, which relies 

on fixed patterns, this tool understands context, enabling it to 

accurately interpret and extract ancestry data even when 

phrasing or terminology varies across studies. It is highly 

scalable, capable of processing large datasets rapidly, which saves 

significant time compared to manual extraction. By utilizing 

natural language processing, the tool achieves higher accuracy in 

identifying human cell lines and primary samples, even when 

information is presented in complex or indirect language. 

Additionally, it automates the extraction of ancestry data, 

reducing human error and bias, while its dynamic web crawling 

feature allows it to retrieve missing ancestry information from 

secondary sources like cell line databases. The tool also 

enhances reproducibility, ensuring that the data extraction 

process can be consistently repeated across different studies, 

improving the reliability of meta-analyses. Its inclusive approach 

to data extraction ensures that studies from diverse backgrounds 

are better represented. Finally, by automating labor-intensive 

processes, the tool frees researchers to focus on higher-level 

analysis, making it a highly efficient and robust solution for 

ancestry reporting in bioengineering research. While this process 

significantly improves efficiency and accuracy, especially 

compared to manual extraction methods, the tool occasionally 

falls short. In about 6%–7% of the papers, TRACE fails to 

extract all relevant cell culture and ancestry information. This 

issue arises when the text contains complex or unconventional 

phrasing that GPT-4o struggles to interpret. For instance, when 

studies present ancestry data in non-standard formats or use 

rare terminology, TRACE’s ability to capture the full scope of 

information becomes limited.

Future applications of the assistive screening tool can be 

expanded to evaluate other fields of studies related to health 

inequities while providing an opportunity to answer other 

ancestry-related inquiries in medicine. The tool, which can be 

accessed on GitHub (https://github.com/lab-smile/TRACE), 
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offers a =exible framework that can be adapted for these extended 

applications. For example, the use of this study can be modified to 

look at what ancestral backgrounds of biological constituents most 

represented by other particular pathologies or health disparities. 

This would also allow the field to interrogate if biological 

samples used to study a particular health issue is representative 

of the demographic impacted by that issue. While the scope of 

this study does not by itself interrogate the impacts that ancestry 

has on biomedical research, it postulates on precedents of other 

fields that have demonstrated an overrepresentation of White/ 

European demographics (4, 5). Ancestry can no longer be 

undervalued and capturing the impacts it has on the diverse 

response amongst cells and tissues may play a pivotal role in 

building upon personalized medicine.

2.1 Journal selection and rationale for 
timeframe

The 6-month timeframe for this study took place from 01 July 

2021 to 31 December 2021. This allows for comparisons to be 

drawn with similar prior meta-analyses (14) that utilized the 

same monthly timeframe. Additionally, this study also mirrored 

the same journal selection as the previous meta-analysis, apart 

from three journals. Journals were selected based on their high- 

impact factor (Supplementary Figure 1) and their focus on 

leveraging biomaterials for in vitro cultures/modeling. High- 

impact journals were utilized due to the greater likelihood of 

mentioning the source of cells or samples used. The journals 

that were used in this study are Nature Biotechnology, Nature 

Biomedical Engineering, Science Translational Medicine, 

Advanced Healthcare Materials, Journal of Translational 

Medicine, Lab on a Chip, and Journal of Biomedical Materials 

Research. The three journals that were excluded (ACS 

Biomaterials Science, Frontiers in Bioengineering and 

Biotechnology, Scientific Reports) had the largest number of 

articles published (>1,000 article hits for the timeframe of 

interest) as well as lower impact factors. The low impact score 

and article quantity combined with the expanded nuance, 

analysis, and development of an assistive screening tool that this 

study takes on is the reasoning behind the journal exclusion. 

Larger volume journals were excluded to ensure the manual 

validation process remained feasible. Even with this exclusion, 

the database developed within this work exceeds previous work, 

with the evaluation of 326 articles (compared to 202 from a 

prior study) and 743 incidences of human sample use 

(compared to 341 from a prior study) (14). This expansion 

makes this work the largest meta-analysis of its kind to date.

2.2 Inclusion and exclusion criteria

All articles were downloaded from the journals during the 

above timeline (n = 818). These articles were then sorted based 

on the exclusion and inclusion criteria listed below and 

presented in Figure 1.

Inclusion criteria: 

• Primary scientific literature

• Mention some use of human cell line, primary cell culture, and/ 

or other primary human biological constituent (i.e., whole 

blood or tissue)

Exclusion criteria: 

• Non-primary scientific literature (i.e., reviews, communications, 

perspectives, etc.)

• Only mentions the use of animal cells or tissues

Based on the criteria, 492 articles were excluded and had no 

further downstream analysis conducted. All articles that met the 

inclusion criteria were inputted into the notion workspace for 

further downstream analysis (21). These articles were identified 

within the database through their name and digital object 

identifier. For articles that mention the use of both animal and 

human samples, only the human ones were added to the 

notion database. Every mention of a given cell, cell line or tissue 

warranted its own incidence within the database. For example, 

HeLa cells were utilized 28 distinct times warranting 28 

incidences within the database.

2.3 Ancestry reporting practices categories

All included articles were sorted into different reporting 

practices, defined in Figure 1. These categorized practices 

included Ancestry not available, Ancestry available and Ancestry 

reported. Articles can possess more than one reporting practice 

if there is some ancestry availability for some of the samples 

used, but not for others. Ancestry not available refers to articles 

that had mention of human cell or tissue use, but the ancestral 

background of those constituents was indiscernible. Ancestry 

available includes articles in which human samples’ ancestral 

background could be traced through a secondary source. 

Ancestry reported refers to articles that directly report on the 

ancestral background of the human cell or tissue used.

2.4 Ancestry categories

Ancestry for cell lines and primary samples mentioned in the 

text was determined by first making a pass through the article to 

see if it was provided within the text. If not provided directly in the 

text, then a secondary source was utilized to extract the ancestry of 

the cell or tissue in question. Oftentimes this secondary source was 

the cell line database cellosaurus.org. Occasionally vendor websites 

(e.g., atcc.org) or other cell line databases (e.g., hpscreg.eu) were 

used. To expand on previous work all cell lines and primary 

samples were sorted into different ancestral categories based on 

three different ancestral groupings: 

1. Ancestral groupings based on the United States census were 

used and included Black or African American, White, Asian, 

Native Hawaiian or Pacific Islander, American Indian, and 

Two or more races.
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2. The second grouping that was used is based on genotyping 

studies (22–24) and includes the following: African, 

European, Central/South Asian, East Asian, and Mixed 

Ancestry. Several cell lines had specific ancestral breakdown. 

For consistency, we determined that whatever ancestral 

background was >60% would be the assigned ancestry 

for that cell line. However, if it was <60% then the cell 

would be considered to be of “Two or more races” and/or 

“Mixed Ancestry.”

3. The final grouping implemented is noting the ancestral 

labeling used when extracting either from a given primary or 

secondary source. For example, a study may report that 

primary cells were taken from a “Han Chinese” patient. 

Therefore, that descriptor would be reported within a table. 

All these groupings for each sample are noted in the 

supplement (Supplementary Tables 1, 2).

Ancestry for this database was categorized in three separate 

ways to minimize limitations associated with different 

practices of assigning ancestral background and to appreciate 

the nuance more accurately in reporting ancestry, 

genotyping, and allowing for comparison with previously 

reported studies.

2.5 Development of TRACE

To develop an AI assistive tool for extraction, we leverage 

GPT-4o for integration with text and meta analysis. Our code 

starts by extracting the text from each PDF file and dividing it 

into smaller chunks for subsequent “reading”. The size of the 

chunk is dependent on the token count, similar to character 

counts, however, in this case, tokens are a unit of semantic 

meaning processed by the language models. Our tool ensures 

that each chunk contains fewer than 4,000 tokens.

The text chunks are submitted to the OpenAI’s API using a 

ChatCompletionRequest with a prompt that requests information 

about cell types, formatted as an array. To ensure consistent and 

deterministic responses, the model’s temperature is set to zero. 

The cell culture outputs are stored in a way that corresponds to 

the specific text chunks from which they were extracted. These 

initial results from the API are then refined by passing all outputs 

through the GPT-4o model to filter out entries that may not 

represent a cell line or primary cell culture. The refined outputs, 

along with their corresponding text chunks stored in a dictionary, 

are fed back into the model to extract any available information 

about the ancestry of the cell cultures from these text chunks.

Additionally, the tool crawls the web and queries the Cellosaurus 

website to find the closest match for each culture. If a match is found 

FIGURE 1 

Workflow of manual analysis of 818 articles within 7 journals. Exclusion (pink) and inclusion (green) pathways are delineated to demonstrate the 

ultimate establishment of an ancestry reporting database and assistive screening tool.
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with a similarity score greater than 50%, the tool further searches for 

any available ancestry information. If no match exceeds the 50% 

threshold, the tool does not provide ancestry details.

The results obtained from the API are added to a table that 

includes the following columns: Article ID, cell culture found, 

cell name identified on the web, ancestry available, reported 

decision, ancestry information identified by GPT, and ancestry 

information found on the web. This side-by-side comparison 

allows for easy validation of the output’s accuracy and 

consistency. The table can then be used to populate the database 

manually to ensure the validity of the model’s output, while still 

cutting down on the reading and analysis time required for 

individual processing by transforming the extraction task into a 

validation task. The table can also be used for downstream tasks 

which can improve the project in further iterations.

2.6 Qualifiers and limitations to study

This study is subject to the several limitations listed and 

explained below: 

• Race and ethnicity are limited terms that are dependent on their 

sociocultural setting. For that reason, we went with a broad usage 

of the term ancestry. We describe ancestry within this work as 

any background lineage claim of an individual. This range 

includes, but is not limited to, the following: geographical, 

genetic, cultural, self-reported, and perceived ancestral claims. 

This study does not seek to redefine ancestry.

• Mislabeling of the ancestral background of cell lines and cell line 

contamination. Studies, particularly related to cancer, have 

found mislabeling of ancestral backgrounds for several cell 

lines (25). Additionally, it is well-known that mammalian cell 

lines are subject to cross-contamination amongst one another, 

and investigators rarely test for this when conducting 

experiments. A major contributor to this cross-contamination 

is the HeLa cell line (26).

• Human error in manual extraction.

• Timeframe and journal selection. This work looks at a 

particular timeframe and sample of journals and therefore is 

limited by this sampling.

• Admixed vs. Mixed Ancestry category. The Mixed Ancestry 

category is not typically seen in genotyping studies, however, 

for this study, it took the place of admixture. Claims to 

admixture, which is the formulation of new genetic 

populations, could not accurately be made with human 

sampling of individual donors.

3 Results

3.1 Ancestry was found to be mostly 
underreported among bioengineering 
journals

Among the seven journals analyzed, 326 out of 818 articles 

consisted of instances of human cell or tissue use. These articles 

were cataloged and sorted into different reporting practices 

including Ancestry not available, Ancestry available, and Ancestry 

reported (Figure 2A). Of these practices, 74.3% of articles fell 

under Ancestry not available (Figure 2B). Ancestry available is 

the second category that most articles fell under at 45.9% 

(Figure 2B). Direct ancestry reporting within the main text was 

found to be extremely limited, occurring in only 2.1% of all 

analyzed articles (n = 9). All these direct reporting incidents 

occurred with primary samples as summarized in Figure 2B.

3.2 Most cells and tissues that had ancestry 
available were of White/European descent

Many of these articles used multiple types of cells/tissues and 

every instance of human cell/tissue usage was recorded. In total, 

there were 743 incidences, 510 of which were immortalized cell 

lines, 218 were human primary samples, and 15 were 

unspecified. A large portion of these samples had no 

ascertainable ancestry (47% of all samples). Of all of the 

samples, 39.2% were of White/European descent (Figure 3A). Of 

the samples that had ascertainable ancestry, ∼74% were of 

White/European descent. Black or African American/African 

(6.9%), Asian/East Asian/Central and South Asian (6.2%), and 

Two or more races/Mixed Ancestry (0.7%) were significantly 

underrepresented in the total sample usage (Figure 3A). 

American Indian and Native Hawaiian/Pacific Islander did not 

occur within the database. However, it is important to note, that 

some American Indian ancestral breakdown was present for 

some cell lines; the genotype percentage of American Indian 

never took on a majority percent of the cell line in question.

Cell lines made up the majority (∼67%) of this database 

(Supplementary Figure 1A). We identified 212 distinct human 

cell lines across 326 included articles. Cell lines demonstrated a 

similar pattern as the overall database for ancestry 

representation, but only 25% of all cell line incidences were 

unreported (Figure 3A). White/European represented the 

majority of cell lines (56.5%) used (Figure 3A). All other 

ancestral backgrounds were severely underrepresented. Black or 

African American/African accounted for 9.8% of the cell lines 

used, Asian/East Asian/Central and South Asian accounted for 

7.4%, and Two or more races/Mixed Ancestry accounted for 1% 

(Figure 3A). Additionally, of all Asian-represented cell lines 

(including Asian, East Asian, and Central and South Asian), 

only one (the FaDu cell line) was of Central and South Asian 

descent. Figure 3B consists of the top ten most frequently 

occurring cell lines. Despite HeLa, a cell line of Black or African 

American/African ancestry, being the second most commonly 

used, most of the Top 10 frequently used cell lines were of 

White/European descent (7 out of 10) (Figure 3B). An 

overwhelming majority of primary samples had ancestry 

unreported (94%) (Figure 3A). These numbers closely re=ect 

previous studies which similarly found that 94.2% of primary 

sample usage and 25.3% of cell line usage had unreported 

ancestry (14). While the study represents a 6-month period for 

seven bioengineering journals, we believe the results likely 
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re=ect the broader landscape of reporting practices in the field and 

are consistent with prior studies (5, 14).

3.3 Establishment of TRACE

The work=ow, as shown in Figure 4, begins by providing a 

collection of research articles for the GPT-4o model in a folder. 

The model then extracts the text from these articles, which 

serves as the input for further analysis. The settings for the 

prompt contain values for the user, system, and assistant roles, 

including the prompts given to the application programming 

interface (API) call. This approach allows the model to identify 

instances where these entities are mentioned in the text. 

Initially, the prompts focus on identifying human samples, 

which helps to exclude non-human cells and cell lines. 

Subsequently, these results are refined using a different prompt 

that filters out anything that is not specifically human cell lines 

or cell cultures. This two-step process helps the tool to be both 

sensitive and specific. Once the instances of human samples are 

identified, the model goes a step further and determines whether 

each article provides information on the ancestry of these 

entities. For primary cell cultures like T cells, which do not have 

any definitive ancestry on Cellosaurus website, will be 

categorized as “not reported” if an article fails to mention its 

ancestry. For cell lines, the tool will check whether the ancestry 

information is reported in the article and on the Cellosaurus 

website to determine the category. The output contains a list of 

the articles, with relevant text, and the associated information of 

cell types and ancestry mentioned. For cell lines and primary 

cell cultures not mentioned in the article, the tool utilizes web 

crawling to explore online cell line databases and extract 

information about the ancestry of the cells, even if this data is 

not directly reported in the article.

FIGURE 2 

Ancestral reporting practices amongst 326 articles within 7 journals. (A) Description of the following ancestry reporting categories: ancestry not 

available, ancestry available, and ancestry reported. (B) Breakdown of all articles into respective reporting practices. Ancestry not available (dark 

blue) made up 74.3%, Ancestry available (light blue) 45.9%, and ancestry reported (green) 2.1%. Articles can fall under multiple reporting practices 

for the different cells/tissues they used.
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FIGURE 3 

Breakdown of 743 incidences of human cell and tissue use into ancestral groupings. (A) Pie charts representing the entire human cells and tissues 

database (n = 743), primary samples (n = 218), and cell lines (n = 510). Some samples were unspecified as being a primary cell or cell line and were not 

displayed (n = 15). Ancestral categories include the following: Black or African American/African, White/European, Asian/East Asian/Central and South 

Asian, and Two or more races/Mixed Ancestry. (B) Table of top 10 most frequently occurring cell lines listed from highest to lowest. The table includes 

information related to the cell line’s ancestry, frequency in the database, and biological origins.
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The assistive screening pipeline helps reduce the time 

required for the preliminary processing of the data by turning 

the filtering and extraction tasks into predominantly validation 

tasks. Rather than manually reading the content of each paper 

to identify mentions of cell type or ancestry, often with thick 

blocks of texts obscuring casual and sparse mentions, mentions 

in the lists generated by the pipeline in CSV format are 

assessed. This can then be validated by comparing the extracted 

values against the original chunk of text next to it. This is a 

streamlined process, allowing for more efficiently generated 

data for downstream processing.

3.4 Evaluating TRACE against manually 
extracted dataset

TRACE was rigorously tested against a human-curated dataset 

to assess its ability to identify cell cultures and accurately 

determine their ancestry. While TRACE accurately identified 

many exact matches, its raw outputs also included matches that 

were semantically correct but not literal string matches. To 

account for these, we introduced the category of “Good Matches 

Found”, defined as predicted cell culture names that achieve a 

string similarity score of ≥50% with the reference names using a 

FIGURE 4 

Workflow and architecture for assistive screening tool, TRACE, and example of the table for facile ancestry reporting extraction. General workflow of 

automated extraction.
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normalized Levenshtein distance. This threshold was empirically 

selected to balance sensitivity and specificity, allowing TRACE 

to capture meaningful variations in naming while filtering out 

unrelated results. Incorporating this category allows for a more 

realistic assessment of TRACE’s practical utility in handling 

heterogeneous and inconsistently reported data across the 

biomedical literature. While TRACE effectively extracted 

relevant information, its raw outputs contained loosely related 

results and occasional misclassifications due to inconsistencies in 

how ancestry is reported across studies. To improve accuracy, 

we implemented a post-processing step to refine the tool’s 

ability to detect and classify ancestry. This process involved 

filtering out ambiguous matches, removing misclassified entries, 

and improving the precision of extracted ancestry data. Before 

refinement, TRACE achieved an Ancestry Accuracy of 81.82%, 

with 163 exact matches out of 431. After refinement, accuracy 

slightly adjusted to 80.91%, with 165 exact matches, but the 

proportion of “Good Matches Found” improved from 79.12% to 

80.01%, demonstrating that while overall accuracy remained 

stable, TRACE became more precise in identifying relevant 

results as well as instances of model hallucination. To enhance 

precision, we implemented a post-processing step that filtered 

out predicted cell cultures not explicitly mentioned in the source 

text. This refinement reduced false positives and improved the 

semantic relevance of matches by ensuring that only grounded, 

text-supported predictions were retained. Prior to post-processing, 

TRACE achieved 163 exact matches with the manually curated 

dataset. Although the overall accuracy remained largely consistent 

after refinement with slight improvement, re=ecting improved 

alignment between predictions and source content.

Beyond accuracy, TRACE’s automated process often retrieved 

an excessive number of extra outputs due to the diverse ways cell 

cultures are referenced in literature. Many cell lines appear under 

multiple names, leading to redundant matches, while some 

extracted results were only loosely related to the expected cell 

cultures. To address this, we developed a curation step that 

grouped duplicates and clustered highly similar cell culture 

references, significantly reducing noise while retaining 

meaningful extractions. Before curation, TRACE produced an 

overwhelming 4,123 extra outputs for 431 expected matches, 

making manual review difficult. After curation, the number of 

extra outputs was reduced to 1,963, demonstrating that grouping 

similar entries and filtering redundant results improved the 

efficiency of the tool without compromising sensitivity. While 

the high number of extra outputs may seem like a drawback, it 

is actually an advantage over manual extraction, as TRACE 

captures every single cell culture reference present in the text. 

This comprehensive extraction ensures that no relevant data is 

overlooked, unlike human extraction, which may miss less 

explicitly mentioned cultures. Combined with the curation 

process, this enhances TRACE’s effectiveness in cell culture 

identification, making it a highly efficient and thorough tool for 

ancestry reporting in biomedical research.

The combined effect of post-processing and curation 

significantly enhanced TRACE’s performance. An Overall 

Similarity Score was calculated as the average string similarity 

(via normalized Levenshtein distance) between each predicted 

cell culture and its closest corresponding match in the manually 

curated dataset. This score improved from 77.98 to 81.98, 

highlighting better alignment with the manually extracted 

dataset. The final accuracy metrics showed an Ancestry 

Accuracy of 80.91%, 165 exact matches, and 80.01% good 

matches found after refinement, while the number of extra 

results was reduced by more than half. These results 

demonstrate that TRACE, when coupled with systematic post- 

processing and curation, is a powerful tool for ancestry 

reporting, capable of balancing sensitivity and specificity to 

provide accurate, relevant, and actionable outputs for large-scale 

biomedical research.

4 Discussion

Upkeep and evaluation of ancestry reporting as the field 

progresses is imperative to address current and future gaps in 

transformative science. The assistive screening tool introduced 

in this work allows for consistency in this evaluation and 

alleviates aspects of manual ancestral extraction. Utilizing the 

GPT-4o model for text extraction represents a significant 

advancement over traditional natural language processing 

methods, as it simplifies the process through ChatCompletion, 

as well as offering a higher degree of accuracy in the generated 

responses. GPT-4o, developed by OpenAI, is a highly powerful 

language model built upon a deep neural network architecture 

called a transformer model. This architecture leverages multiple 

stacked self-attention layers to process and generate human-like 

text. GPT-4o benefits from extensive training on vast amounts of 

diverse text data, enabling it to learn intricate patterns, 

comprehend contextual nuances, and produce coherent and 

contextually relevant outputs. The model follows a semi- 

supervised learning approach, initially trained on a large 

unsupervised corpus of text and subsequently fine-tuning itself 

through self-supervised learning using human and model feedback.

The GPT-based tool, TRACE, offers several significant 

advantages over traditional and regex-based methods for 

ancestry reporting in meta-analysis. Unlike regex, which relies 

on fixed patterns, this tool understands context, enabling it to 

accurately interpret and extract ancestry data even when 

phrasing or terminology varies across studies. It is highly 

scalable, capable of processing large datasets rapidly, which saves 

significant time compared to manual extraction. By utilizing 

natural language processing, the tool achieves higher accuracy in 

identifying human cell lines and primary samples, even when 

information is presented in complex or indirect language. 

Additionally, it automates the extraction of ancestry data, 

reducing human error and bias, while its dynamic web crawling 

feature allows it to retrieve missing ancestry information from 

secondary sources like cell line databases. The tool also 

enhances reproducibility, ensuring that the data extraction 

process can be consistently repeated across different studies, 

improving the reliability of meta-analyses. Its inclusive approach 

to data extraction ensures that studies from diverse backgrounds 
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are better represented. Finally, by automating labor-intensive 

processes, the tool frees researchers to focus on higher-level 

analysis, making it a highly efficient and robust solution for 

ancestry reporting in biomedical research.

While the tool offers many advantages, both its limitations and 

those of the study itself should be acknowledged. In about 6%–7% 

of the papers, TRACE fails to extract all relevant cell culture and 

ancestry information. This issue arises when the text contains 

complex or unconventional phrasing that GPT-4o struggles to 

interpret. For instance, when studies present ancestry data in 

non-standard formats or use rare terminology, TRACE’s ability to 

capture the full scope of information becomes limited. 

Additionally, the study focuses on high-impact journals and those 

with smaller, more manageable volumes. High-impact journals 

were selected for their presumed greater robustness, which 

increases the likelihood of reporting on cell/sample origin. Larger 

volume journals, such as Scientific Reports, were excluded for 

feasibility purposes in the manual extraction done within the 

study. Another limitation of the study is the use of ancestral 

nomenclature, which is inconsistent and can lead to 

misinformation in scientific literature. Issues related to ancestral 

designations are discussed in greater detail in the Methods 

section under “Qualifiers and Limitations of the Study.”

Another limitation of TRACE is the accessibility of GPT-4o, as 

its full functionality requires a paid subscription. However, users 

can readily access trial versions of GPT-4o mini and GPT-4o to 

evaluate TRACE’s suitability for specific studies. Currently, 

TRACE relies on the OpenAI API to utilize both GPT-4o and 

GPT-4o-mini for language understanding tasks. While we 

recognize the constraints of API-based access, we are actively 

exploring alternatives that support open-source and local 

solutions, such as LLaMA and Mistral, which can perform 

inference of=ine. In the future we plan to release a companion 

script that will integrate freely available models through Hugging 

Face pipelines or allow for local deployment. This will help make 

TRACE more accessible to a broader community. Additionally, 

TRACE’s modular architecture is designed to easily 

accommodative the backends of alternative large language models. 

Although our initial focus has been on cell line ancestry, the 

pipeline is highly adaptable to other entity extraction tasks such 

as demographic reporting and sample metadata. Future studies 

can continue to explore its applicability across a variety of use cases.

Future applications of the assistive screening tool can be 

expanded to evaluate other fields of studies related to health 

inequities while providing an opportunity to answer other 

ancestry-related inquiries in medicine. The tool, which can be 

accessed on GitHub (https://github.com/lab-smile/TRACE), 

offers a =exible framework that can be adapted for these 

extended applications. For example, the use of this study can be 

modified to look at what ancestral backgrounds of biological 

constituents most represented by other particular pathologies or 

health disparities. This would also allow the field to interrogate 

if biological samples used to study a particular health issue is 

representative of the demographic impacted by that issue. While 

the scope of this study does not by itself interrogate the impacts 

that ancestry has on biomedical research, it postulates on 

precedents of other fields that have demonstrated an 

overrepresentation of White/European demographics (4, 5). 

Ancestry can no longer be undervalued and capturing the 

impacts it has on the diverse response amongst cells and tissues 

may play a pivotal role in building upon personalized medicine.
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