
EDITED BY  

João Miguel Santos,  

University of Coimbra, Portugal

REVIEWED BY  

Paiboon Jitprasertwong,  

Suranaree University of Technology, Thailand  

Haitao Dong,  

Chinese Academy of Medical Sciences and 

Peking Union Medical College, China

*CORRESPONDENCE  

Xiaodong Li  

spklxd@shimadzu.com.cn

Chao Yuan  

chaoyuan@bjmu.edu.cn

†These authors have contributed equally to 

this work and shared the first authorship

RECEIVED 15 August 2025 

REVISED 31 October 2025 

ACCEPTED 10 November 2025 

PUBLISHED 24 November 2025

CITATION 

Liang Q, Zhang Y, Zhang X, Liu Y, Xu S, Lei Y, 

Li X and Yuan C (2025) Periodontitis 

biomarkers through thermal desorption-gas 

chromatography-mass spectrometry analysis.  

Front. Dent. Med. 6:1684773. 

doi: 10.3389/fdmed.2025.1684773

COPYRIGHT 

© 2025 Liang, Zhang, Zhang, Liu, Xu, Lei, Li 

and Yuan. This is an open-access article 

distributed under the terms of the Creative 

Commons Attribution License (CC BY). The 

use, distribution or reproduction in other 

forums is permitted, provided the original 

author(s) and the copyright owner(s) are 

credited and that the original publication in 

this journal is cited, in accordance with 

accepted academic practice. No use, 

distribution or reproduction is permitted 

which does not comply with these terms.

Periodontitis biomarkers 
through thermal desorption-gas 
chromatography-mass 
spectrometry analysis

Qin Liang
1†
, Yanling Zhang

2†
, Xiaoli Zhang

3
, Yizhou Liu

1
,  

Shaojia Xu
1
, Yajuan Lei

3
, Xiaodong Li

3* and Chao Yuan
1*

1Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National 

Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering 

Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital 

Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental 

Materials, Beijing, China, 2Department of Periodontology, Peking University School and Hospital of 

Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases 

& National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key 

Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key 

Laboratory for Dental Materials, Beijing, China, 3Shimadzu (China) Co., LTD. China Innovation Center, 

Beijing, China

Background: Periodontitis is a growing public health concern worldwide. 

Salivary volatile metabolites have emerged as promising biomarkers for the 

diagnosis of periodontal disease. However, research on the collection and 

identification of these metabolites in periodontitis patients remains limited.

Objectives: To explore methods for collecting and identifying salivary volatile 

metabolites in periodontitis patients and investigate their potential as 

biomarkers for diagnosing periodontal disease.

Method: Oral exhaled breath and saliva samples were collected from 115 

periodontitis patients and 35 healthy individuals, divided into four cohorts. 

The discovery cohort (Periodontitis: P = 55, Healthy: H = 23) and the test 

cohort (P = 48, H = 23) were screened and validated for potential biomarkers 

in volatile metabolites from oral exhaled breath by thermal desorption-gas 

chromatography-mass spectrometry (TD-GC-MS). The validation cohort 1 

(P = 12, H = 12) was tested for volatile metabolites in saliva by solid-phase 

microextraction-gas chromatography-mass spectrometry (SPME-GC-MS), 

while validation cohort 2 (P = 55, H = 23) was tested for metabolic pathways 

in saliva by liquid chromatography-mass spectrometry (LC-MS).

Result: A total of 78 Volatile organic compounds (VOCs) were detected by TD- 

GC-MS, with 14 differential VOCs identified. A diagnostic model was established 

using cyclohexanone, styrene, and ethanol, yielding a combined AUC of 0.8237. 

These metabolites were also detected in saliva by SPME-GC-MS, with 

cyclohexanone showing higher expression in the periodontitis group 

(P < 0.05). The caprolactam degradation pathway was a key source of volatile 

metabolites in the oral exhaled breath of periodontitis patients.

Conclusion: We developed a novel method for analyzing salivary volatile 

metabolites using TD-GC-MS, demonstrating potential for periodontitis 

diagnosis. Cyclohexanone is identified as a potential biomarker for periodontitis, 

and the caprolactam degradation pathway may play a significant role in future 

studies on oral microbiota dysbiosis in periodontitis patients.
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1 Introduction

Periodontitis is a chronic infectious disease induced by dental 

plaque microorganisms, characterized by in�ammation and 

destruction of periodontal supporting tissues, which may 

ultimately lead to tooth loss (1, 2). According to the Global 

Burden of Disease study, in 2017, severe periodontitis affected 

approximately 71.48 million people worldwide, with a disability- 

adjusted life year rate of 63.49 per 100,000 person-years. This 

represents a 6.01% increase since 1990, with a notably 

higher disease burden observed in Asia. Therefore, it is crucial 

to prioritize the prevention and management of periodontal 

disease (3).

In recent years, the utilization of biomarkers for early non- 

invasive diagnosis has become a prominent research focus 

(4–10). Volatile metabolites in saliva and oral exhaled breath, 

owing to their accessibility and completely non-invasive nature, 

demonstrate significant diagnostic potential (5, 11). Recent 

advances have demonstrated the significant potential of volatile 

metabolites as biomarkers for various systemic conditions, 

including respiratory diseases (such as lung cancer, asthma, and 

COPD) (12–14), digestive disorders (e.g., gastric diseases and 

Crohn’s disease (15, 16), and endocrine disorders like obesity 

and diabetes (17), showing promise for improving disease 

diagnosis and developing novel biomarkers. The oral microbiota, 

particularly periodontopathogenic bacteria such as 

Fusobacterium nucleatum and Porphyromonas gingivalis, 

produce characteristic volatile metabolites during their metabolic 

processes. in vitro studies have confirmed that these periodontal 

pathogens generate specific VOCs, including volatile sulfur 

compounds (e.g., methyl mercaptan and hydrogen sulfide), 

short-chain fatty acids, indole, and pyridine. These microbe- 

derived VOCs can diffuse from periodontal pockets into saliva 

and are subsequently released into oral exhaled breath, thereby 

providing a direct basis for non-invasive diagnostic approaches 

(18–20). One study also found elevated levels of volatile sulfur 

compounds (VSCs) and pyridine in the salivary volatile 

metabolites of periodontitis patients compared to healthy 

individuals (21). Saliva contains microorganisms and their 

metabolites, which interact with the body, and some of these 

metabolites are released as gases into the oral exhaled breath. 

A team of researchers has shown that Oral volatile metabolites 

involve a prominent oral source and that the potential impact of 

volatiles originating from the oral cavity should be considered in 

respiratory biomarker studies (22). However, there has been 

limited research on characterizing salivary volatile metabolites in 

oral exhaled breath of patients with periodontitis, highlighting 

the need for further investigation in this area.

The identification and analysis of volatile compounds primarily 

rely on gas chromatography (GC), mass spectrometry (MS), and 

their combined applications. Thermal Desorption (TD) is a 

widely used technique that utilizes a sorbent-containing device to 

capture and concentrate volatile metabolites before their 

introduction into the gas chromatograph. This method is 

particularly prevalent for collecting exhaled breath samples. 

During analysis, the sorbent is heated to enhance the volatility of 

the trapped compounds, facilitating their efficient separation and 

detection within the gas chromatograph (23). In this study, we 

analyzed oral volatile metabolites from periodontitis patients and 

healthy individuals using TD-GC-MS. Our objective was to 

explore methods for the collection and identification of salivary 

volatile metabolites in patients with periodontitis, and to 

investigate the potential of these metabolites as biomarkers for the 

diagnosis of periodontal diseases. Therefore, we modified the 

previous sampling method of exhaled breath, and further applied 

TD-GC-MS to the detection of salivary volatile metabolites, using 

the traditional solid-phase microextraction-gas chromatography- 

mass spectrometry (SPME-GC-MS) to validate the volatile 

metabolites of saliva, combined with the validation of relevant 

metabolic pathways by LC-MS.

2 Methods

2.1 Study population

The study was registered in Chinese Clinical Trial Registry 

(Registration Number: ChiCTR2300069047) on March 6, 2023 

and was approved by the Local Ethics Committee of Peking 

University School of Stomatology and Stomatology Hospital 

(PKUSSIRB-202281149). Population inclusion criteria: a. Age 

20–70 years old; b. Having at least 20 teeth in the mouth 

(excluding the third permanent molar) c. No systemic diseases; 

e. Signing informed consent; Population exclusion criteria: 

a. Presence of serious systemic diseases (kidney disease, 

rheumatoid arthritis, liver dysfunction, stroke or history of 

stroke) b. Being in the period of pregnancy or breastfeeding 

c. Presence of periapical abscesses, periodontal abscesses and 

other active oral infections; presence of oral mucosal disease; 

severe untreated caries in the mouth: wearing orthodontic 

appliances or removable dentures; d. History of antibiotic or 

immunization-related medication use in the past 3 months, 

e. History of periodontal therapy within 6 months.

2.2 Clinical examination and periodontal 
diagnosis

After obtaining a medical and dental history and a consent 

form, clinical examinations of all participants were performed by 

one specialized dentist using manual periodontal probes 

(PCPUNC 15; HuFriedy Mfg. Co., Inc., Chicago, IL, USA). The 

clinical periodontal indices, including probing depth (PD), and 

bleeding index (BI), were measured at six sites per tooth (mesio- 

Abbreviations  

VOCs, volatile organic compounds; VSCs, volatile sulfur compounds; GC, gas 

chromatography; MS, mass spectrometry; TD, Thermal Desorption; TD-GC- 

MS, Thermal Desorption-Gas Chromatography-Mass Spectrometry; SPME- 

GC-MS, Thermal desorption gas chromatography-mass spectrometry (); LC- 

MS, Liquid Chromatography-mass spectrometry.
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buccal, mid-buccal, disto-buccal, mesio-lingual, mid-lingual, and 

disto-lingual) (24). Subjects were included in different groups 

based on periodontal examination. Periodontitis patients was 

required to fulfill as diagnosis of stage II-III extensive 

periodontitis with reference to the 2018 International Consensus 

on New Classification of Periodontal and Periimplant Diseases. 

Healthy individuals was required to have all periodontal pockets 

probed at a depth of <4 mm and percentage of bleeding on 

probing ≤10% (25).

2.3 Experimental method

We divided the included periodontitis patients and 

periodontally healthy individuals into four cohorts: discovery 

cohort, test cohort, validation cohort 1, and validation cohort 2. 

The discovery cohort and test cohort screened and validated the 

potential biomarkers in oral exhale breath by using TD-GC-MS. 

The validation cohort 1 further detected volatile metabolites in 

saliva by SPME-GC-MS. The validation cohort 2 tested for the 

metabolic pathway in saliva by LC-MS. Therefore, in our study, 

we developed a set of detection and validation methods that can 

be applied to the oral volatile metabolites of saliva (Figure 1).

2.4 Sample collection and preparation

Sampling was conducted between 9:00 and 11:00 a.m. 

Following an overnight fast, participants were required to 

abstain from all oral hygiene procedures, food and water intake, 

gum chewing, and smoking for at least 2 h prior to sample 

collection. Immediately before sampling, subjects rinsed their 

mouths with water and subsequently rested for 10 min.

Participants were asked to collect 2–3 mL of non-irritating 

saliva. The whole saliva was stored without any processing for 

SPME-GC-MS analysis. The collected saliva was centrifuged 

(10,000 g, 4°C, 10 min), and the supernatant was retained for 

subsequent LC-MS analysis.

In addition, we have established a method for collecting the 

salivary volatile metabolites. Participants were instructed to 

swell checks to fill the mouth with gas as much as possible, 

wait for 10–15 s and then exhale all the gas into the Tedlar 

collection bag. The motion was repeated until the collection 

bag was full. Nasal inhalation was avoided prior to the 

exhaled gas collection.

Before collecting gas sample, the sampling bags were 

repeatedly cleaned by filling with nitrogen and heating to 60°C 

for 6 h to remove the residual contaminants. Each sample was 

transferred to the Tenax-TA trap tubes (Shimadzu, Japan) by 

pumping 800 mL from the sampling bag to the tube at 150 mL/ 

min. The pumping process was completed by the mini-pump 

MP-W5P (Shimadzu, Japan). During this process, the VOCs in 

exhaled breath were trapped in the sorbent tubes. The tubes 

were sealed and stored at 4 °C until analyzed.

2.5 Laboratory analysis

2.5.1 Gas sample analysis by TD-GC-MS
To ensure data quality and control for analytical variability, all 

TD-GC-MS analyses incorporated Toluene-D8 as an internal 

standard, which was added to sample tubes prior to thermal 

FIGURE 1 

Flow diagram of the study design.
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desorption for instrument response correction and data 

normalization, thus minimizing batch-to-batch variations.

The gas sample analysis was performed on GCMS-TQ8050 NX 

(Shimadzu, Japan) coupled with TD-30R thermal desorption (TD) 

instrument (Shimadzu, Japan). The trapped VOCs in the gas 

sample were desorbed at 260 °C under a �ow of 60 mL/min for 

5 min and adsorbed on a cold trap with a temperature of −20 °C. 

2103;. Then the compounds were re-desorbed at 260 °C for 

2 min and transfer to the GC inlet. The temperature of inlet and 

interface was 250 °C. 2103;. Chromatographic separation was 

performed on the SH-Rxi-624 fused silica capillary column 

(30 m × 0.25 mm × 1.4 μm, Shimadzu, Japan). Helium was used as 

the carrier gas with a constant linear velocity of 50 cm/s. The 

split ratio was 1:10. The GC temperature program was set as 

follows: the initial temperature was held at 35 °C for 5 min and 

ramped to 150 °C at a rate of 10 °C/min and to 260 °C at a rate 

of 30 °C/min with a hold time of 2 min. An electron ionization 

source was used with an ionization voltage of 70 eV and the ion 

source temperature was 250 °C. 2103;. The acquisition mode of 

data was Q3 scan mode with the m/z range 28–350. 

Chromatographic integration was performed by utilizing a single 

quantification ion extracted from the Extracted Ion 

Chromatogram (EIC). Raw GC-MS data were processed using 

GCMS solution software (Shimadzu, Japan) for peak integration 

and quantitative analysis for volatile metabolites in the sample. 

volatile metabolites were identified by spectral match according 

to the mass spectrometry library NIST 20-1, NIST 20-2 and 

NIST 20 s. The peak area was used to evaluate the relative 

concentrations of VOCs.

2.5.2 Saliva sample analysis by SPME-GC-MS and 

LC-MS
500 μL saliva sample was added to 20 mL headspace glass vial. 

The SPME-GC-MS analysis was performed on GCMS-TQ8050 

equipped with AOC-6000Plus autosampler (Shimadzu, Japan). 

The SPME process were conducted by using 1.10 mm 

divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) 

SPME arrow. The saliva samples were incubated at 37 °C for 

20 min and stirred continuously at 250 rpm. The SPME arrow 

was then exposed to the headspace for 45 min at 37 °C and 

desorbed at 250 °C in splitless mode for 5 min into the GC. The 

GC and MS conditions were set to the same as gas samples analysis.

100 μL salivary supernatant sample was added to a 1.5 ml 

centrifuge tube with 400 μL solution [acetonitrile:methanol=1:1(v:v)] 

containing 0.02 mg/mL internal standard (L-2-chlorophenylalanine) 

to extract metabolites. The samples were mixed by vortex for 30 s 

and low-temperature sonicated for 30 min (5 °C, 40 KHz). The 

samples were placed at −20 °C for 30 min to precipitate the 

proteins. Then the samples were centrifuged for 15 min (4 °C, 

13,000 g). The supernatant was removed and blown dry under 

nitrogen. The sample was then re-solubilized with 100 µL solution 

(acetonitrile: water = 1:1) and extracted by low-temperature 

ultrasonication for 5 min (5 °C, 40 KHz), followed by centrifugation 

at 13,000 g and 4 °C for 10 min. The supernatant was transferred to 

sample vials for LC-MS/MS analysis. Details of the LC-MS 

laboratory tests for saliva samples are given in Appendix 1.

2.6 Data analysis

Subject-related information as well as periodontal clinical 

parameters were analyzed by SPSS 24.0 software (SPSS; Chicago, 

IL, USA). Quantitative variables were described as mean ± 

standard deviation (SD), and frequencies or ratios were used for 

qualitative variables. The Student’s t test was used to compare 

differences between groups, with a p value <0.05 defined as 

statistically significant. In addition, for gender results, the chi- 

square test was used to detect statistically significant differences. 

Differences between groups were analyzed by ANOVA, followed 

by Tukey’s test. After performing a combined normalization of 

the discovery cohort and test cohort data, further data analysis 

was conducted. The SPME-GC-MS data were normalized using 

an internal standard method, followed by log10 transformation 

for analysis. The preprocessed matrix files were analyzed for 

differences.LC-MS and TD-GC-MS data results were analyzed 

by principal component analysis (PCA), ortho-least partial 

squares-discriminant analysis (OPLS-DA). The data matrix 

obtained by searching database was uploaded to the Majorbio 

cloud platform (https://cloud.majorbio.com) for data analysis. 

The performance of the model was screened and evaluated 

using Receiver Operating Characteristic curves (ROC). SPME- 

GC-MS results run on the MetaboAnalyst6.0 (https://www. 

metaboanalyst.ca/) platform.KEGG (https://www.kegg.jp/kegg/ 

tool/map_pathway.html) pathway analysis was performed to 

identify the metabolic pathways associated with the differential 

and total metabolites.

3 Result

3.1 Demographic and clinical data

A total of 138 subjects were recruited from 2023 to 2024 at 

Peking University Stomatology Hospital, including a total of 115 

periodontitis patients and 23 healthy individuals. They were 

divided into four cohorts as shown in Table 1. There was no 

significant difference between the periodontitis group and 

healthy group in terms of the number of remaining teeth, 

gender (p = 0.191 and 0.853, respectively). It is statistically 

significant difference in age (p < 0.001). Regarding their 

periodontal clinical status, there was a statistically significant 

TABLE 1 The characteristics of the study population.

Cohort Periodontitis 
group

Healthy group p-value

PPD N PPD N

Discovery cohort 3.32 ± 0.12a n = 55 1.88 ± 0.40b n = 23 <0.001

Test cohort 3.39 ± 0.93a n = 48 1.88 ± 0.40b n = 23 <0.001

Validation cohort 1 3.33 ± 0.61a n = 12 1.84 ± 0.18b n = 12 <0.001

Validation cohort 2 3.32 ± 0.12a n = 55 1.88 ± 0.40b n = 23 <0.001

Data were described as mean ± SD. PPD, probing pocket depth; N: cohort number. 

Statistically significant difference (student’s t test, p-value < 0.001);
a,bIndicate statistically significant differences among groups (p < 0.05) as determined by 

one-way ANOVA followed by Tukey’s HSD test.
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difference in periodontal probing depth (PPD), and gingival 

bleeding index (BI) (p value < 0.001).

3.2 Characterization of salivary volatile 
metabolites by TD-GC-MS

3.2.1 Analysis of gas samples

Principal Component Analysis (PCA) revealed distinct 

clustering patterns between sample groups P1 and H1 

(Figure 2A). Intra-group samples demonstrated tight clustering, 

indicating high experimental reproducibility within each group. 

Conversely, substantial intergroup separation suggested marked 

metabolic heterogeneity between the two groups. These 

metabolic differences were further confirmed by Orthogonal 

Partial Least Squares Discriminant Analysis (OPLS-DA), which 

showed clear group discrimination (Figure 2B). The OPLS-DA 

model exhibited robust performance with high explanatory 

(R2Y = 0.85) and predictive (Q2 = 0.608) capabilities. To validate 

model integrity, a 200-iteration permutation test was performed, 

revealing a negative intercept (Q2 regression line < 0) that 

effectively excluded overfitting concerns (Figure 2C).

FIGURE 2 

P1 and HI group samples in general. (A) PCA analysis of sample relationships. Green dots indicate group P1 samples. Blue dots indicate group H1 

samples. (B) OPLS-DA analysis of sample relationship. (C) Permutation testing of OPLS-DA: R2 = (0,0.3838), Q2 = (0, −1.0119).
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3.2.2 Differential metabolite screening and 

pathway analysis
A total of 78 VOCs were identified in the discovery 

cohort. Differential VOCs were selected based on Variable 

Importance in Projection (VIP) scores from the OPLS-DA 

model and p-values from Student’s t-test. VOCs with VIP > 1 

and P < 0.05 were considered statistically significant (Figure 3A). 

A total of 14 differential VOCs (2-Ethyl-oxetane, Butanoic acid, 

methyl ester, 2-Pyrrolidinone, 1-methyl-, Ethanol, 2-butoxy-, 

Ethanol, Cyclopentane, methyl, Decane, 2,4-Dimethyl- 

1-heptene, Butylated Hydroxytoluene, Undecane, 3-methyl-, 

Cyclohexanone, 2,3-Butanedione, Styrene, Propanoic acid, 

2-methyl-, 1-(1,1-dimethylethyl)-2-methyl-1,3-propanediyl ester) 

were identified in our screening. To control for the potential 

confounding effect of age between the periodontitis group and 

the healthy control group, univariate linear regression analysis 

was conducted to assess the relationship between the 14 

identified differential metabolites and age in both groups 

(detailed results are provided in Appendix 1). According to the 

pre-defined screening criteria (R2 > 0.5 and P < 0.05), 2-Ethyl- 

oxetane (R2 = 0.537, P < 0.05) and Cyclopentane, methyl 

(R2 = 0.512, P < 0.05) in the healthy group were excluded due to 

significant age correlation. Ultimately, 12 metabolites showing 

no significant association with age were retained as candidate 

differential markers, including: Butanoic acid, methyl ester, 

2-Pyrrolidinone, 1-methyl-, Ethanol, 2-butoxy-, Ethanol, Decane, 

2,4-Dimethyl-1-heptene, Butylated Hydroxytoluene, Undecane, 

3-methyl-, Cyclohexanone, 2,3-Butanedione, Styrene, Propanoic 

acid, 2-methyl-, 1-(1,1-dimethylethyl)-2-methyl-1,3-propanediyl 

ester.As a result, 14 differential VOCs were identified and 

subsequently mapped to KEGG pathways for further functional 

annotation. Among them, cyclohexanone, styrene, and ethanol 

were associated with the “Microbial metabolism in diverse 

environments” pathway (Figure 3B). Additionally, these three 

metabolites exhibited significantly higher expression levels in the 

periodontitis group compared to healthy controls (Figures 4C–E).

3.2.3 Diagnostic capability analysis of candidate 
differential metabolites

The three metabolites, cyclohexanone, styrene, and ethanol were 

evaluated by ROC (Figure 4A), as well as a joint ROC analysis was 

done to discriminate this group of metabolites (Figure 4B). The 

AUC of cyclohexanone was 0.7470 (95% CI: 0.6345–0.8596), the 

AUC of styrene was 0.6909 (95% CI: 0.5597, 0.8221), and the AUC 

of ethanol was 0.7478 (95% CI. 0.6069, 0.8887). The combined 

AUC of the three metabolites was 0.8237 (95%CI: 0.7975– 

0.85).The results indicated that the diagnostic model with the three 

metabolites together had well diagnostic effect.

3.2.4 Secondary validation of the diagnostic 

model
In the test cohort. The Random Forest (RF) model was used to 

identify the diagnostic ability of the diagnostic model composed of 

cyclohexanone, styrene, and ethanol. The results illustrated that 

when the RF model was constructed with the three metabolites, 

the model error rate was the lowest (Figure 5A), the AUC of the 

ROC curve was 0.9573 (Figure 5B), and the Random Forest 

model achieved a high level of accuracy, again demonstrating 

the superior diagnostic ability of the three metabolites.

FIGURE 3 

Analysis of differentially expressed metabolites in VOCs. (A) Volcano diagram: red spots indicate the upregulated differentially expressed metabolites 

while blue spots indicate the downregulated differentially expressed metabolites. Gray spots represent metabolites with no significant differential 

expression. Screening conditions for VIP ≥ 1 and P-value ≤ 0.05 for OPLS-DA model. (B) Kegg pathway classification: Metabolites are detected 

and annotated.
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3.3 Characterization of salivary volatile 
metabolites by SPME-GC-MS

A total of 39 salivary volatile metabolites were identified in 

Validation Cohort 1 by SPME-GC-MS. Principal Component 

Analysis (PCA) of the periodontitis group (n = 12) and 

healthy group (n = 12) revealed high within-group similarity 

and clear separation between groups, indicating distinct 

metabolic differences (Figure 6A). Based on the criteria of 

fold change (FC) ≥ 1.5 and p < 0.05, seven differential 

metabolites were identified: Sulfide, allyl methyl;4-Heptanone; 

Disulfide, dimethyl; Decane, 2,2-dimethyl-; Nonane; 

Cyclohexanone; and Hexanal (Figure 6B). Among these, 

cyclohexanone was again identified as a differential 

metabolite, with its relative abundance significantly higher in 

the periodontitis group (Figure 6C).

3.4 Detection of metabolites in saliva by 
LC-MS

3.4.1 Analysis of saliva samples
PCA analysis revealed that the two groups of samples, S_P 

and S_H, exhibited relatively small distances within each 

group, indicating good reproducibility of the samples 

(Figure 7A). Significant differences between the groups 

FIGURE 4 

Diagnostic performance of exhaled gas metabolites cyclohexanone, styrene, ethanol, and combined combinations of in a discovery cohort: (A) 

independent receiver operating characteristic (ROC) analysis of cyclohexanone, styrene, ethanol. The areas under the curves (AUC) respectively 

are 0.7470, 0.6909, 0.7478. (B) The AUC for the combination of the three metabolites is 0.8237. (C–E) The box diagrams show the comparison 

of cyclohexanone, styrene, and ethanol the expression levels of between two groups. **Statistically significant difference (student’s t test, p-value 

< 0.01). ***Statistically significant difference (student’s t test, p-value < 0.0001).
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were observed in OPLS-DA analysis (Figure 7B). The degree of 

model explanation (R2Y) and prediction (Q2) were 0.922 and 

0.552, respectively, indicating strong model performance. To 

ensure the reliability of the results, the OPLS-DA model was 

validated by a 200-permutation test. The intercept of the Q2 

regression line was −0.4492, which is less than 0, confirming 

that the model was not overfitted (Figure 7C).

3.4.2 Differential metabolite screening and 

pathway analysis
A total of 1,844 metabolites were identified in saliva validation 

cohort 2. Differential metabolites were selected based on VIP 

scores from the OPLS-DA model and p-values from Student’s t- 

test, with metabolites meeting the criteria of VIP > 1 and p < 0.05 

considered statistically significant. This resulted in the 

identification of 480 differential metabolites (Figure 8A).Totally, 

262 metabolites were mapped to various KEGG pathways, 

primarily related to lipid metabolism, amino acid metabolism, 

and microbial metabolism in different environments (Figure 8D). 

While styrene and cyclohexanone were detected in saliva, their 

differences between the periodontitis and healthy groups were not 

statistically significant (p > 0.05), and ethanol was not detected in 

saliva. Notably, cyclohexanone was mapped to the “map0930: 

caprolactam degradation pathway,” where six metabolites were 

detected: cyclohexane, cyclohexanone, 6-hydroxyhexanoic acid, 

N-cyclohexylformamide, adipic acid, and adipate semialdehyde. 

Among these, N-cyclohexylformamide (Figure 8B) and adipic 

acid (Figure 8C) exhibited statistically significant differences 

between groups, with higher relative abundance in the saliva of 

periodontitis patients. As upstream and downstream metabolites 

of cyclohexanone, their elevated levels suggest that the 

caprolactam degradation pathway might play a role in the 

metabolic alterations observed in periodontitis patients (Figure 9).

4 Discussion

In this study, we analyzed the exhalation profiles of individuals 

with periodontitis and healthy controls from a discovery cohort by 

TD-GC-MS. After screening and validating a new cohort through 

machine learning with a “randomized forests” approach, we 

developed a diagnostic model consisting of cyclohexanone, 

styrene, and ethanol. These three metabolites were found to be 

present in the volatile metabolites of saliva, confirmed by 

SPME-GC-MS. Cyclohexanone exhibited a consistent trend in 

both saliva and exhaled breath, with statistically significant 

differences between the groups. Additionally, the analysis of 

salivary metabolites revealed a link between cyclohexanone and 

the caprolactam degradation pathway.

Previous studies have established volatile sulfur compounds 

(VSCs) as key contributors to oral malodor, often linked to 

Gram-negative anaerobic bacteria associated with periodontitis. 

FIGURE 5 

Forty-eight subjects were included in the test cohort for optimization, forming the validation cohort P2 (n = 48), H2 (n = 23). (A) Evaluation of 

Random Forest Model: The RFECV (Recursive Feature Elimination with Cross-Validation) algorithm was used to compute the features, with the 

horizontal coordinates representing the number of metabolites (variables) ranked TOP in terms of importance, and the vertical coordinates 

representing the average prediction error rate when the corresponding number of metabolites (variables) was used; solid points with markers in 

the plot indicate the point with the lowest error rate selected. The lowest model error rate was found when all three metabolites were modeled 

together. (B) The Independent Receiver operating characteristic (ROC) analysis of the RF models. The random forest models all achieved high 

accuracy with an AUC of 0.9573.
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VSCs have been proposed as potential biomarkers for 

periodontitis-related oral malodor in adults (26). In our study, 

we also observed a statistically significant increase in dimethyl 

sulfide concentration within the periodontitis group through 

SPME analysis volatile metabolites in saliva. However, no 

significant differences in sulfides were detected in the gas 

samples, possibly due to the concentration of sulfides being too 

low in the gas samples or the presence of oxidation prior to 

sample processing. This finding is consistent with that of 

another research group, which observed a lower detection rate 

of volatile metabolites in exhaled breath compared to urine and 

other liquid samples (27). Previous research has suggested that 

periodontal disease is associated with an increased risk of 

halitosis. However, not all periodontitis patients exhibit oral 

FIGURE 6 

Differences in salivary volatile metabolites. saliva validation cohort 2:The sample consisted of a periodontitis group (n = 12) and a healthy group 

(n = 12). (A) Unsupervised principal component analysis (PCA) showed that the samples were reproducible within groups, but there were some 

differences between groups. (B) Volcano plot combines results from Fold Change (FC) Analysis and T-tests into one single graph, Mean 

quantitative differential fold change was limited to ± 1.5, P value less than 0.05. (C) Histogram of cyclohexanone before and after 

standardized treatment.
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malodor, and VSCs are not directly applicable as biomarkers for 

periodontitis itself (28). Therefore, further investigation into the 

relationship between periodontitis and sulfides is warranted by 

improving the sampling methods and expanding the sample size.

In this study, ethanol is one of the volatile metabolites in the 

diagnostic model. Ethanol is a volatile organic compound in 

saliva, produced by bacterial alcohol dehydrogenase or alcohol 

consumption, and can be converted to acetaldehyde (29). In a 

previous study using nuclear magnetic resonance spectroscopy, 

ethanol was identified as a biomarker for periodontitis. 

Interestingly, the ethanol concentration was lower in 

periodontitis patients compared to healthy controls, suggesting a 

link to microbial oxidative activity in periodontitis (5). This 

discrepancy may be attributed to differences in detection 

methods and the relatively low ethanol concentration in saliva. 

It is possible that ethanol is more likely to exist in the form of 

volatile metabolites in exhaled breath rather than in saliva.

Styrene, a volatile organic compound (VOC) that has been 

linked to increased lung cancer risk, has been extensively 

studied and identified as a promising biomarker for various 

health conditions (30). Recently, a research team employed 

needle trap extraction to analyze volatile compounds present 

above Helicobacter pylori cultures. They revealed that styrene 

was markedly elevated in the culture medium of Helicobacter 

FIGURE 7 

Saliva validation cohort 2: Saliva samples from periodontitis group (n = 55) and healthy group (n = 23) (A) PCA analysis of sample relationships. Green 

dots indicate S_P group, blue dots indicate S_H group. (B) OPLS-DA analysis of sample relationship. (C) Permutation testing of OPLS-DA: R2 = (0, 

0.8885), Q2 = (0, −0.4492).
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FIGURE 8 

Screening and pathway analysis of differential metabolites in Saliva. (A) Volcano diagram: blue spot indicates the downregulated differently expressed 

protein, while red spot indicates the upregulated. Gray spot represents the proteins with no different expression. Screening conditions for VIP ≥ 1 and 

P-value ≤ 0.05 for OPLS-DA models. (B) Histogram of N-Cyclohexylformamide. (C) Histogram of Adipic Acid. (D) The vertical coordinate is the 

secondary classification of KEGG metabolic pathways, and the horizontal coordinate is the number of metabolites annotated to the pathway 

(Metabolism), Genetic Information Processing), (Environmental Information Processing), (Cellular Processes), (Organismal Systems), (Human 

Diseases), (Drug Development).
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pylori. This phenomenon, along with other notably distinct 

metabolites, contributed to a unique volatile profile that could as 

a potential tool for monitoring infections caused by this 

pathogen (31). In our study, styrene levels were significantly 

elevated in the periodontitis group, suggesting a potential link to 

oral microbiome dysbiosis.

Cyclohexanone (CAS number: 108-94-1), a six-carbon cyclic 

compound with a ketone group, was identified as a potential 

volatile biomarker for periodontitis in this study. Cyclohexanone 

has been detected in previous research as a VOC associated with 

various diseases. It has been found in the breath of patients with 

colorectal cancer (32), and elevated levels have been observed in 

patients with chronic kidney disease following hemodialysis (33). 

A research team had identified cyclohexanone as a promising 

biomarker in the breath of patients with biliary diseases, as well as 

in the volatile gases present in bile (34, 35). Our study excluded 

systemic diseases using strict inclusion criteria, suggesting that the 

elevated levels of cyclohexanone in periodontitis patients are 

primarily due to an imbalance in the oral microbiome. Another 

research team measured the components of VOCs by using 

FIGURE 9 

Caprolactam degradation pathway: green boxes indicate metabolites detected on the pathway but with no statistically significant differences 

between groups, while red boxes indicate metabolites detected and highly expressed on the pathway with statistically significant differences 

between groups.
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Proton Transfer Reaction Time-of-Flight Mass Spectrometry (MS). 

They found the cyclohexanone in oral volatile organic compounds 

will decrease by an average of 4.3% among healthy individuals after 

brushing their teeth every morning (36). It indicates that the 

detection rate of cyclohexanone will increase in the more complex 

oral microbiota environment, further demonstrating that patients 

with periodontitis have a dysbiosis of the oral microbiota, 

metabolic disorders, leading to an increase in cyclohexanone.

Our study revealed a significant increase in cyclohexanone 

concentration among salivary volatile metabolites in patients with 

periodontitis, with consistent detection through both TD-GC-MS 

and SPME-GC-MS analyses. Furthermore, the cyclohexanone was 

annotated to the caprolactam metabolic pathway along with the 

other five differential metabolite analysis of saliva. Therefore, we 

hypothesized that cyclohexanone in oral exhaled breath mainly 

originated from the caprolactam degradation pathway in saliva of 

periodontitis patients. The caprolactam degradation pathway has 

been regarded as an ex vivo metabolic pathway for different 

microbial metabolisms. However, in recent years, it has been found 

to play an important role in systemic diseases. We speculate that 

this metabolic pathway may also be an endogenous metabolic 

pathway. A research team analyzed the progression of nasal 

microbiota detection in young adults and elderly asthmatics using 

high-throughput sequencing, and found that the relative 

abundance of lysine degradation, N-glycan biosynthesis, 

caprolactam degradation, and PPAR signaling pathways was 

significantly lower in asthmatics than in non-asthmatics, which 

may be associated with the reduction of in�ammation and 

degradation of air pollutants (37). In our research, 

N-Cyclohexylformamide had a rise in expression in the 

periodontitis group. It is at the upstream of the caprolactam 

degradation pathway. With the increase of metabolites at the 

upstream, the cyclohexanone in the downstream will also increase. 

Due to cyclohexanone slightly water-soluble and easily volatilizable 

properties, it is more often detected in the gaseous form.

The team of Kajsa Roslund employed a combination of solid- 

phase microextraction (SPME) and of�ine gas chromatography- 

mass spectrometry (GC-MS) to measure volatile compounds 

produced by bacteria. They analyzed the in vitro volatile 

fingerprints of several major pathogens associated with 

periodontitis, including Porphyromonas gingivalis ATCC 33277, 

P. gingivalis ATCC 53978 (W50), P. gingivalis OMG434, 

Prevotella intermedia ATCC 25611, Prevotella nigrescens ATCC 

35563, and Tannerella forsythia ATCC 43037. Signals for 

ethanol and styrene were detected above cultures of these 

periodontitis-related microbes grown on agar medium. 

Specifically, the ethanol signal intensified at 90 h compared to 

34 h for P. gingivalis W50 and P. gingivalis OMG434. While the 

styrene signal showed no significant variation above the three 

serotypes of P. gingivalis, it increased at 90 h for P. nigrescens 

ATCC 35563 and T. forsythia ATCC 43037. However, the study 

noted that these two volatile organic compounds (VOCs) are 

not necessarily produced directly by the bacteria, and the precise 

mechanisms were not investigated in detail. Although 

cyclohexanone itself was not directly detected in this study, 

propylcyclohexane was found to be produced by P. gingivalis 

OMG434 (38). In a prior study by the same team utilizing 

Proton Transfer Reaction Time-of-Flight Mass Spectrometry 

(PTR-TOF-MS) to analyze these periodontitis-associated 

microorganisms, all three P. gingivalis strains appeared to 

produce high levels of acetone, suggesting its potential as a 

major marker for this bacterium (39). Ketone formation can be 

attributed to two possible pathways: the oxidation of secondary 

alcohols catalyzed either by alcohol dehydrogenase (ADH) or by 

cytochrome P450 CYP2E1 (40). Acetone can be generated via 

the ADH-catalyzed oxidation of 2-propanol, whereas the 

biosynthetic pathway for cyclohexanone involves a two-stage 

enzymatic reaction: initial hydroxylation of cyclohexane to 

cyclohexanol by bacterial cyclohexane monooxygenase, followed 

by further oxidation to cyclohexanone by cyclohexanol 

dehydrogenase. The present study identified the presence of 

cyclohexane in the saliva of periodontitis patients, along with 

significantly elevated concentrations of cyclohexanone in both 

exhaled breath and salivary volatile metabolites. We hypothesize 

that the dysbiosis induced by periodontitis may activate alkane 

metabolic pathways at the mechanistic level, thereby promoting 

the cyclohexane-cyclohexanol-cyclohexanone cascade. Notably, 

this metabolic axis coincides with key nodes of the caprolactam 

degradation pathway annotated in the KEGG database, 

suggesting that oral microbes might in�uence the host-microbe 

metabolic interaction network by modulating this pathway. 

These observations collectively provide a novel metabolic 

perspective for elucidating the pathological mechanisms of 

periodontitis and indicate that targeted intervention in the 

caprolactam degradation pathway could emerge as a crucial 

regulatory node for novel periodontitis treatment strategies.

This study has several limitations that warrant consideration. 

Firstly, strict screening conditions increased the difficulty of 

collecting healthy samples. The prevalence of subjects with 

periodontal health was 5% based on data from the Fourth 

National Oral Health Survey of China (41). It was the main 

reason for failing to match a sufficient number of periodontal 

health samples of older adults in this study. Secondly, while our 

metabolomic findings implicate the caprolactam degradation 

pathway in periodontitis, a key mechanistic limitation of our 

study is the inability to pinpoint the precise microbial sources of 

critical metabolites, such as N-cyclohexylformamide. The 

absence of supplementary microbial culture or metagenomic 

sequencing data prevents us from identifying the specific oral 

bacteria responsible for driving this pathway and clarifying the 

causal relationship between oral dysbiosis and the observed 

metabolic shifts. Therefore, future research integrating 

culturomics with metagenomic analyses is essential to isolate the 

relevant microorganisms and characterize the functional genes 

underlying this pathway’s activation in periodontitis.

5 Conclusions

We have developed a novel method for collecting and 

analyzing salivary volatile metabolites by TD-GC-MS. This 

method holds significant promise for diagnosing periodontitis. 
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Our findings indicate that the diagnostic model, constructed from 

volatile metabolites such as cyclohexanone, ethanol, and styrene in 

saliva, demonstrates strong potential for periodontitis diagnosis. 

Furthermore, the caprolactam degradation pathway associated 

with cyclohexanone may play a crucial role in future studies 

investigating oral microbiota dysbiosis in periodontitis patients.
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Appendix 1: Analysis of saliva sample 
using LC-MS

Quality control sample

As a part of the system conditioning and quality control 

process, a pooled quality control sample (QC) was prepared by 

mixing equal volumes of all samples. The QC samples were 

disposed and tested in the same manner as the analytic samples. 

It helped to represent the whole sample set, which would be 

injected at regular intervals (every 5–15 samples) in order to 

monitor the stability of the analysis.

(UHPLC-MS/MS) analysis

The LC-MS/MS analysis of sample was conducted on a 

Thermo UHPLC-Q Exactive HF-X system equipped with an 

ACQUITY HSS T3 column (100 mm × 2.1 mm i.d., 1.8 μm; 

Waters, USA) at Majorbio Bio-Pharm Technology Co. Ltd. 

(Shanghai, China). The mobile phases consisted of 0.1% formic 

acid in water:acetonitrile (95:5, v/v) (solvent A) and 0.1% formic 

acid in acetonitrile:isopropanol:water (47.5:47.5, v/v) (solvent B). 

Positive ion mode separation gradient: 0–3 min, mobile phase 

B was increased from 0% to 20%; 3–4.5 min, mobile phase 

B was increased from 20% to 35%; 4.5–5 min, mobile phase 

B was increased from 35% to 100%; 5–6.3 min, mobile phase 

B was maintained at 100%; 6.3–6.4 min, mobile phase B was 

decreased from 100% to 0%; 6.4–8 min, mobile phase B was 

maintained at 0%. Separation gradient in negative ion mode: 0– 

1.5 min, mobile phase B rises from 0 to 5%; 1.5–2 min, mobile 

phase B rises from 5% to 10%; 2–4.5 min, mobile phase B rises 

from 10% to 30%; 4.5–5 min, mobile phase B rises from 30% to 

100%; 5–6.3 min, mobile phase B linearly maintains 100%; 6.3– 

6.4 min, the mobile phase B decreased from 100% to 0%; 6.4– 

8 min, the mobile phase B was linearly maintained at 0%. The 

�ow rate was 0.40 mL/min and the column temperature was 40°C.

MS conditions:

The mass spectrometric data were collected using a Thermo 

UHPLC-Q Exactive HF-X Mass Spectrometer equipped with an 

electrospray ionization (ESI) source operating in positive mode 

and negative mode. The optimal conditions were set as followed: 

source temperature at 425°C; sheath gas �ow rate at 50 arb; Aux 

gas �ow rate at 13 arb; ion-spray voltage �oating (ISVF) at 

−3,500 V in negative mode and 3,500 V in positive mode, 

respectively; Normalized collision energy, 20–40–60 V rolling for 

MS/MS. Full MS resolution was 60,000, and MS/MS resolution 

was 7,500. Data acquisition was performed with the Data 

Dependent Acquisition (DDA) mode. The detection was carried 

out over a mass range of 70–1,050 m/z.

Analysis of the correlation between 
differential metabolites and age

TABLE A1 Analysis of the correlation between differential metabolites 
and age in the periodontitis group.

Metabolites R R2 Adjusted 
R2

P

2-Ethyl-oxetane 0.037 0.001 −0.008 0.708

Butanoic acid, methyl ester 0.063 0.004 −0.006 0.527

2-Pyrrolidinone, 1-methyl- 0.188 0.035 0.026 0.057

Ethanol, 2-butoxy- 0.033 0.001 −0.009 0.741

Ethanol 0.135 0.018 0.009 0.173

Cyclopentane, methyl- 0.031 0.001 −0.009 0.758

Decane 0.165 0.027 0.018 0.096

2,4-Dimethyl-1-heptene 0.237 0.056 0.047 0.016

Butylated Hydroxytoluene 0.090 0.008 −0.002 0.367

Undecane, 3-methyl- 0.055 0.003 −0.007 0.578

Cyclohexanone 0.071 0.005 −0.005 0.475

2,3-Butanedione 0.035 0.001 −0.009 0.725

Styrene 0.114 0.013 0.003 0.252

Propanoic acid, 2-methyl-, 

1-(1,1-dimethylethyl)-2-methyl- 

1,3-propanediyl ester

0.164 0.027 0.017 0.097

TABLE A2 Analysis of the correlation between differential metabolites 
and age in the healthy group.

Metabolites R R2 Adjusted 
R2

P

2-Ethyl-oxetane 0.733 0.537 0.515 <0.001

Butanoic acid, methyl ester 0.425 0.181 0.142 0.053

2-Pyrrolidinone, 1-methyl- 0.219 0.048 0.003 0.315

Ethanol, 2-butoxy- 0.140 0.019 −0.027 0.525

Ethanol 0.402 0.162 0.122 0.057

Cyclopentane, methyl- 0.715 0.512 0.489 <0.001

Decane 0.018 0.001 −0.470 0.935

2,4-Dimethyl-1-heptene 0.385 0.148 0.108 0.069

Butylated Hydroxytoluene 0.248 0.061 0.017 0.254

Undecane, 3-methyl- 0.305 0.093 0.050 0.157

Cyclohexanone 0.025 0.001 0.043 0.905

2,3-Butanedione 0.571 0.326 0.297 0.003

Styrene 0.145 0.021 −0.022 0.490

Propanoic acid, 2-methyl-, 

1-(1,1-dimethylethyl)-2-methyl- 

1,3-propanediyl ester

0.013 <0.001 −0.043 0.950

R: Strength and direction of the linear correlation between the independent and 

dependent variables.

R-squared (R2): Proportion of variance explained by the model.

Adjusted R-squared: R-squared adjusted for degrees of freedom, to prevent overfitting.

P-value: Tests whether the independent variable has a significant effect on the 

dependent variable.
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