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Introduction: African elephants (Loxodonta Africana) are keystone species

whose survival is increasingly threatened by habitat loss, climate change, and

human-elephant conflict. Understanding their habitat preferences and how

these may shift under future climate conditions is vital for effective

conservation planning.

Methods: This study assessed the current and future distribution of suitable

habitats for African elephant in Hwange National Park, Zimbabwe, using Species

Distribution Models (SDMs), including MaxEnt, Random Forest, and an Ensemble

model. Presence data derived from GPS-collared elephants (2015–2018) were

combined with environmental variables such as NDVI, slope, elevation, distance

to water and park boundary, and 19 bioclimatic variables for the current, 2050,

and 2070 periods. Variable selection was guided by multicollinearity tests (VIF <

5), and models were evaluated using metrics such as AUC and TSS.

Results: Results showed that Random Forest and ensemble models

outperformed MaxEnt in predictive performance. Seasonal modeling revealed

minimal shifts between wet and dry seasons, while future projections indicated a

decline and fragmentation of highly suitable habitat, particularly along the

southern and eastern edges of the park. Key predictors included temperature

and precipitation-related variables, especially maximum temperature of the

warmest month and annual precipitation.

Discussion: These findings highlight the need to apply robust species distribution

modelling tools to enhance actionable conservation and spatial planning

strategies that incorporate climate projections to support long term survival of

the threatened elephant population in the Hwange National Park ecosystem.
KEYWORDS

African elephant, species distribution modelling, MaxEnt, random forest, ensemble,
climate change
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1 Introduction

African elephants (Loxodonta africana) are not only the largest

land mammals but also essential keystone species that sustain

savanna ecosystems (Sach et al., 2019). As mega-herbivores, their

activities such as browsing, debarking, and uprooting trees, shape

vegetation patterns and help maintain the open landscape, which

supports diverse biodiversity (Feleha, 2018). Their dung is crucial

for nutrient cycling and seed dispersal, aiding plant community

regeneration (Razak et al., 2020). During dry periods, elephants

often dig or restore waterholes, providing critical water sources for

many species (Wool, 2019). Their long migrations connect different

habitats, facilitating gene flow and strengthening ecosystem

resilience (Lohay et al., 2020). Due to these extensive and vital

influences, elephants are regarded as ecosystem engineers, with

their conservation key to preserving broader ecological health.

Despite their ecological importance, African elephants face

increasing threats that have caused significant population declines

across their range. Habitat fragmentation caused by agriculture,

human settlement, and infrastructure development continues to

shrink and isolate suitable habitats. At the same time, illegal ivory

poaching remains a major cause of death, especially in regions

with weak law enforcement and high ivory demand (Hauenstein

et al., 2019). Human-elephant conflict is also rising, particularly in

areas bordering protected zones, where elephants often come into

contact with human landscapes. In some regions, political

instability and limited conservation funding make the

challenges worse.

Adding to these challenges is the growing threat of climate

change, which is increasingly influencing the landscapes that

sustain elephant populations. Shifting temperature and rainfall

patterns are altering the distribution of vegetation and water

sources, key drivers of elephant movement and habitat use

(Beirne et al., 2020). More frequent and intense droughts can

force elephants to travel further in search of resources, increasing

their exposure to poaching and human-elephant conflict (Lee et al.,

2022). Recent studies (Mpakairi et al., 2020; Dejene et al., 2021)

predicted major changes in habitat suitability for large herbivores

like elephants in southern Africa due to future climate scenarios.

Such changes could render some current protected areas

inadequate, reinforcing the need for forward-looking conservation

planning. Addressing these threats requires integrated and adaptive

management strategies that are informed by spatially explicit

knowledge of the current and future distribution of suitable

habitats for the African elephants, especially in dynamic

landscapes like Hwange National Park and the broader Kavango-

Zambezi Transfrontier Conservation Area (KAZA-TFCA).

Species Distribution Models (SDMs) have emerged as powerful

tools for predicting species’ potential ranges by combining

environmental variables with occurrence records. For the African

and Asian elephant species, SDMs have been widely applied to

delineate suitable habitats, identify movement corridors, and

forecast distributional shifts under scenarios of climate and land-

use change (Robillard et al., 2015; Abir et al., 2025; Mpakairi et al.,

2020). They have also been used to assess seasonal habitat use,
Frontiers in Conservation Science 02
inform conservation prioritisation, and guide strategies to mitigate

human–elephant conflict (Thant et al., 2023; Yu et al., 2024).

Methodological approaches such as MaxEnt (Elith et al., 2011),

Random Forest (Searle et al., 2022), and ensemble modelling

(Dejene et al., 2021; Black et al., 2024) have proven effective in

capturing complex habitat–environment relationships across

diverse landscapes. However, most applications have emphasised

static or broad-scale predictions, with relatively limited attention to

fine-scale temporal dynamics that shape elephant distribution.

Understanding seasonal variability in suitable habitats is

particularly important for African elephants, given their high

mobility, dependence on shifting water and forage resources, and

frequent interactions with human-dominated landscapes.

Moreover, reliance on single algorithms often introduces

methodological bias and underestimates predictive uncertainty.

To address these limitations, there is a critical need for studies

that integrate a suite of SDMs, which combine the complementary

strengths of multiple algorithms, thereby improving predictive

accuracy, robustness, and ecological interpretability. This study

responds to this gap by applying an ensemble of SDMs to capture

both the spatial and seasonal dynamics of African elephant

distribution in the Hwange ecosystem, offering deeper insights

into their adaptive responses to environmental variability and

anthropogenic pressures.

Building on these insights, this study aims to advance our

understanding of African elephant distribution by integrating a

suite of SDMs to capture both spatial and seasonal dynamics of

habitat suitability. Specifically, we (i) identify the environmental

factors shaping elephant distribution, (ii) model the spatial

distribution of suitable habitats across the study landscape, and

(iii) examine how habitat suitability varies between wet and dry

seasons and how the projected climate change scenarios are likely to

impact on the distribution of suitable habitats. By employing

multiple modelling algorithms within an ensemble framework,

the study reduces methodological bias and enhances predictive

reliability. We hypothesise that (1) elephant distribution is

strongly influenced by the availability of water, vegetation

productivity, and anthropogenic pressures, and (2) suitable

habitats differ significantly between seasons, reflecting elephants’

adaptive responses to fluctuating resource availability and (3),

elephant suitable habitats are expected to shrink in response to

projected climate change scenarios. Together, these objectives aim

to generate actionable and fine-scale insights that support long-

term elephant conservation by anticipating habitat shifts and

identifying priority areas for management.
2 Materials and methods

2.1 Study area

Hwange National Park (HNP), in north-western Zimbabwe

(Figure 1), is the country’s largest protected area, spanning

approximately 14,651 km² (Mpakairi et al., 2020). As part of the

Kavango-Zambezi Transfrontier Conservation Area (KAZA
frontiersin.org
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TFCA), it plays a key role in supporting Zimbabwe’s elephant

population. The park’s semi-arid savanna ecosystem experiences a

wet season (November–April) with 570–650 mm of rainfall and a

dry season (May–October) marked by scarce water availability

(Mlambo et al., 2024). Due to its sandy soils and lack of

permanent water sources, wildlife relies heavily on artificial

waterholes, especially during the dry season. Situated in a

climate-sensitive region, HNP is vulnerable to changing rainfall

patterns and droughts, making it a critical area for assessing

elephant habitat suitabil ity under current and future

climate scenarios.
2.2 Elephant presence data

This study utilised GPS tracking data collected from African

elephants (Loxodonta africana) in Hwange National Park between

December 2015 and April 2018 (Mlambo et al., 2024). A total of 10

elephants (nine females and one male), (Table 1), were fitted with

GPS collars, ensuring representation from different social herds to

account for potential behavioral and spatial variability. The raw

GPS dataset initially contained 47,500 presence records, which were

subsequently cleaned and processed in ArcGIS 10.1 to remove
Frontiers in Conservation Science 03
errors, outliers, and duplicate entries, resulting in a refined

dataset of 30,000 high-quality presence points.
2.3 Environmental variables

To model elephant habitat suitability, a suite of environmental

variables representing key ecological drivers (Table 2) were

compiled. For seasonal analyses (wet and dry seasons), the study

focused on seven biologically relevant predictors: mean

temperature, precipitation, euclidean distance to artificial

waterholes, NDVI as a proxy for vegetation productivity,

elevation, slope, and distance to park boundary to assess edge

effects (Dzinotizei, 2018; Ndaimani, 2018). These variables were

selected based on their known influence on elephant movement and

resource selection in semi-arid savannas (Dejene et al., 2021) For

current distribution modelling using the combined dataset, the

climate variables were expanded to include all 19 bioclimatic

parameters from WorldClim while retaining the same

topographic, vegetation and anthropogenic variables (Dejene

et al., 2021). For the 2050 and 2070 climate projections, the study

only focused on the 19 bioclimatic variables as they best capture

climate-related impacts on elephant habitats. All environmental
FIGURE 1

Location of hwange national park.
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rasters were standardised and resampled to a common spatial

resolution (500m) in QGIS.
2.3.1 Normalised difference vegetation index
NDVI served as a key indicator of vegetation productivity and

forage availability for elephants in Hwange National Park

(Mukomberanwa et al., 2024). Calculated from MODIS Terra

(MOD13A1) satellite imagery at 500m resolution, NDVI values

range from -0.1 (bare soil) to 0.7 (dense woodland), with elephants

preferentially selecting areas with values >0.3 during wet seasons

(Boult et al., 2018). During the dry season, NDVI values below 0.2

force elephants to shift from grazing to browsing (Koskey, 2016).

NDVI =
NIR − RED
NIR + RED
2.3.2 Mean temperature and precipitation
Mean monthly temperature (°C) and total precipitation (mm)

were obtained from WorldClim 2.1 (Fick and Hijmans, 2017).

Temperature extremes (>40 °C in October) significantly influence
Frontiers in Conservation Science 04
elephant water requirements (Chamaillé-Jammes et al., 2007), while

precipitation patterns determine surface water availability. Mean

temperature and precipitation were selected due to their strong

influence on e lephant eco logy . Tempera ture a ff ec t s

thermoregulation and water needs, particularly during extreme

heat (Valeix et al., 2008), while precipitation governs surface

water availability and vegetation productivity, both critical for

elephant survival and movement patterns (Valeix, 2011).
2.3.3 Slope and elevation
To analyse slope and elevation, a 30m Digital Elevation Model

(DEM) was utilised, sourced from the Shuttle Radar Topography

Mission (SRTM) data, which provides comprehensive elevation

data. Slope was derived from elevation data using the slope function

in QGIS. Elevation and slope were included as predictor variables

due to their well-documented influence on habitat selection and

movement patterns in African elephants. Elevation affects

vegetation distribution and surface water runoff, while slope

influences the energetic cost of movement, particularly in areas

with rugged terrain (Mapheto, 2023).
TABLE 2 Predictor variables used to model elephant distribution, showing spatial and temporal resolution, units of measurement and the sources.

Variable Spatial
Resolution

Temporal
Resolution Unit Source

NDVI 500 m Monthly – NASA LP DAAC (Land Processes Distributed Active Archive Center) via https://lpdaac.usgs.gov.

DTPB 500 m Static Km
Derived using ArcGIS 10.1 by calculating Euclidean distance from each grid cell to the park
boundary shape file.

DTW 500 m Static Km Derived using Euclidean Distance in ArcGIS 10.1 from known water GPS coordinates.

Slope 30 m Static degrees
SRTM DEM – Derived from the Shuttle Radar Topography Mission Digital Elevation Model,
available from USGS EarthExplorer (https://earthexplorer.usgs.gov).

Elevation 30 m Static M SRTM DEM (USGS EarthExplorer) -(https://earthexplorer.usgs.gov)

Mean
Temperature

1 km Monthly °C WorldClim 2.1

Precipitation 1 km Monthly Mm WorldClim 2.1

Bioclimatic
Variables

1km Annual Various WorldClim 2.1 database (https://www.worldclim.org/data/bioclim.html)
TABLE 1 Details of collared elephants showing elephant ID, sex, collaring and last fix dates, and the number of presence data points.

ID Sex Collaring Date Last Fix Date Total Fixes Wet Season fixes Dry season fixes

UZ1 Female 18-Dec-2015 09-Apr-2018 2,642 1,452 1,190

UZ2 Male 18-Dec-2015 30-Sep-2017 3,158 1,721 1,437

UZ3 Female 19-Dec-2015 09-Apr-2018 2,855 1,552 1,303

UZ4 Female 20-Dec-2015 09-Apr-2018 3,202 1,702 1,500

UZ5 Female 20-Dec-2015 09-Apr-2018 2,750 1,480 1,270

UZ6 Female 22-Dec-2015 09-Apr-2018 3,300 1,779 1,521

UZ7 Female 22-Dec-2015 09-Apr-2018 2,845 1,498 1,347

UZ8 Female 23-Dec-2015 09-Apr-2018 3,198 1,693 1,505

UZ9 Female 24-Dec-2015 09-Apr-2018 2,550 1,361 1,189

UZ10 Female 24-Dec-2015 30-Sep-2017 3,500 1,749 1,751

Total 30,000 16,987 13,013
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2.3.4 Distance to park boundary and water
Distance to the park boundary was calculated using the

Euclidean Distance tool in ArcGIS 10.1. Similarly, the Euclidean

Distance tool was used to generate a raster representing the distance

to the nearest water points. These distance layers were included as

predictor variables due to their influence on elephant movement,

habitat selection, and access to critical resources (De Knegt et al.,

2011). Elephants tend to select areas closer to water sources and

may avoid park boundaries due to potential human conflict or

disturbance, making these variables ecologically relevant for

modelling habitat suitability (Thant et al., 2023).
2.4 Bioclimatic variables

To incorporate climate change projections, 19 bioclimatic

variables were sourced from the WorldClim database, employing

the MIROC 8.5 General Circulation Model (GCM). This model,

representing a high-emission trajectory, was selected to explore

potential shifts in elephant habitat suitability under future climate

conditions. These variables, which summarise annual trends,

seasonality, and extreme climatic conditions, were included due

to their known influence on species distribution and ecological

niche dynamics (Dejene et al., 2021). We applied the Representative

Concentration Pathway 8.5 (RCP8.5) that represents the worst case

scenario because such scenarios are preferred for conservation

planning as they prepare climate change managers for extreme

outcomes (Beaumont et al., 2008).
2.5 Testing for multicollinearity

To ensure the robustness of the modelling approaches, the study

carefully addressed multicollinearity among environmental predictors.
Frontiers in Conservation Science 05
Using the vifstep function from the usdm package in R (Naimi, 2016),

variance inflation factors (VIFs) for all candidate variables were

calculated, adopting a conservative threshold of 5 to identify and

remove highly correlated predictors. This process minimised

redundancy among variables while preserving ecologically meaningful

predictors thereby enhancing model reliability and preventing

overfitting (John et al., 2024). The final set of independent variables

was then used to model elephant distribution patterns, ensuring both

statistical validity and biological relevance in our seasonal assessments of

elephant distribution as shown in Table 3.

Table 4 shows bioclimatic variables that were used to estimate

potential distribution of suitable habitats under projected climate

change scenarios.
2.6 Modelling approaches

This study implemented three complementary modelling

approaches to predict elephant habitat suitability: Maximum

Entropy (MaxEnt), Random Forest (RF), and their Ensemble, using

the biomod2 package in RStudio. Each method was carefully selected

to address different aspects of species distribution modelling while

compensating for individual limitations.
TABLE 3 Environmental variables that were used to estimate current
elephant distribution after testing for multicollinearity.

Variable VIF

NDVI 1.36

Distance to water 1.30

Slope 1.22

Elevation 2.18

Distance to park boundary 1.28

Precipitation

Mean temperature

Bio3 2.73

Bio4 2.77

Bio7 2.82

Bio13 1.22

Bio17 3.63

Bio19 1.79
TABLE 4 Bioclimatic variables used to estimate elephant distribution
under projected climate change scenarios. The variables shaded in gray
are those used in the model after testing for multicollinearity.

Variable Description Unit

Bio1 Annual Mean Temperature °C

Bio2 Mean Diurnal Temperature Range °C

Bio3 Isothermality (Bio2/Bio7) J/K

Bio4 Temperature Seasonality (Standard Deviation) CofV

Bio5 Max Temperature of Warmest Month °C

Bio6 Min Temperature of Coldest Month °C

Bio7 Temperature Annual Range (Bio5–Bio6) °C

Bio8 Mean Temperature of Wettest Quarter °C

Bio9 Mean Temperature of Driest Quarter °C

Bio10 Mean Temperature of Warmest Quarter °C

Bio11 Mean Temperature of Coldest Quarter °C

Bio12 Annual Precipitation mm

Bio13 Precipitation of Wettest Month mm

Bio14 Precipitation of Driest Month mm

Bio15 Precipitation Seasonality –

Bio16 Precipitation of Wettest Quarter mm

Bio17 Precipitation of Driest Quarter Mm

Bio18 Precipitation of Warmest Quarter Mm

Bio19 Precipitation of Coldest Quarter Mm
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Maximum Entropy Modelling (MaxEnt) was employed as the

primary presence-background approach, particularly suitable for

working with presence-only occurrence data. MaxEnt was

implemented through the biomod2 interface, which provides

optimised default parameters while allowing for necessary

customisations. The model ran with randomly generated 10,000

background points from the study area polygon and 10 cross-

validation replicates to ensure robust performance evaluation.

Following recommendations from Phillips et al. (2006), hinge features

were used to capture non-linear species-environment relationships while

maintaining a regularisationmultiplier of 1 to balancemodel complexity.

Random Forest (RF) modelling was implemented as the

machine learning alternative, offering a different approach to

capturing complex ecological relationships. Using the biomod2

framework, we configured the RF model with 1,000 trees (ntree)

as recommended by Cutler et al. (2007) for ecological applications.

The number of variables tried at each split was automatically

determined as the square root of the total predictors, following

Jin et al. (2020) original specifications.

The Ensemble model was developed to leverage the strengths of

both individual modelling approaches while minimising their

respective limitations. Within the biomod2 framework, predictions

from MaxEnt and RF were combined using a weighted averaging

approach based on model evaluation scores (Hao et al., 2020). This

ensemble approach followed recommendations by Araújo and New

(2007), who demonstrated that combined models typically

outperform single-algorithm predictions in species distribution

modelling. The ensemble process included evaluation of committee

averaging and weighted mean combinations, with the final selection

based on optimisation of True Skill Statistic (TSS) scores.
2.7 Model evaluation

All models were evaluated using a 70–30 split for training and

testing datasets, with spatial stratification to ensure geographic

representativeness. Model performance was assessed through Area

Under the Curve (AUC) and True Skill Statistic (TSS), following

established ecological modelling standards (Allouche et al., 2006). The

Area Under the Curve (AUC) metric evaluated the models’ ability to

distinguish suitable from unsuitable elephant habitats by analysing the

Receiver Operating Characteristic (ROC) curve, which plots true

positive rates against false positive rates across all classification

thresholds. Ranging from 0 to 1, AUC values were interpreted as: 0.5

(random performance), 0.5-0.7 (poor to moderate), 0.7-0.9 (good), and

≥0.9 (excellent discrimination) (Pearce and Ferrier, 2000).

TSS values range from -1 to +1, where +1 indicates perfect

agreement and values ≤0 suggest performance no better than

random (Allouche et al., 2006; Sharma et al., 2020). TSS, unlike

AUC, is threshold-dependent and therefore more directly relevant

to conservation applications requiring binary distribution

classifications. The ensemble model demonstrated superior

predictive performance compared to individual models and was

subsequently used for projecting habitat suitability under future
Frontiers in Conservation Science 06
climate scenarios, providing a comprehensive tool for elephant

conservation planning under climate change.
2.8 Quantifying potential change in habitat
suitability

After running the species distribution models, the continuous

habitat suitability maps were reclassified into three distinct categories

based on natural colour code breaks as our threshold for each

suitability category: most suitable (0.7–1), less suitable (0.3–0.6), and

unsuitable (0–0.2). The study adopted a similar approach used by

Zvidzai et al. (2024), who applied categorical thresholds to interpret

spatial habitat dynamics under climate change scenarios. QGIS version

3.36.3 was then used to calculate the total area (in km²) of each

suitability class under current and projected climate conditions (2050

and 2070). This enabled the assessment of spatial trends in habitat

suitability, including the expansion, contraction, or stability of highly

suitable elephant habitats over time.
3 Results

3.1 Seasonal distribution (wet and dry
season)

Results show that, during the dry season (Figure 2a), the highest

concentrations in elephant movement data are observed in the

northern east and eastern areas. In the wet season (Figure 2b), the

northern east and eastern zones continue to act as primary elephant

strongholds, while in the western and southern regions, the GPS

movement data is sparse.
3.2 Model performance comparison

In the Dry season, Ensemble (ENSE) achieved an AUC of 0.95,

outperforming MaxEnt (MAX) (0.82) and Random Forest (RF) (0.91).

For TSS,MaxEnt scored the highest at 0.87, followed by Ensemble (0.85)

and Random Forest (0.80). Under wet season, the Ensemble model

showed the best AUC performance (0.96), while Random Forest and

MaxEnt scored 0.90 and 0.85, respectively. Overall, the Ensemble model

demonstrates consistent and high performance across all conditions,

particularly in AUC, while MaxEnt shows variability, excelling in TSS

under Dry conditions but lagging in others as shown in Table 5.
3.3 Variable importance

In the wet season (Figure 3a), elevation and mean temperature are

themost influential variables for all models, while slope andNDVI have

the lowest impact. In the dry season (Figure 3b), mean temperature,

precipitation and NDVI are the most influential with slope as the least

important variable. When combining presence data from both seasons
frontiersin.org
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(c), NDVI continues to show the highest importance, with variables like

precipitation or slope potentially ranking lower as shown in Figure 3. In

the future bioclimatic variables chart (d), bioclimatic factors such as

bio19, bio13, bio12 and bio5 emerged as the most significant predictors,

while bio11 had the lowest influence (4%).
3.4 Modelling elephant distribution
patterns based on combined elephant
presence data

The MaxEnt model (Figure 4a) indicates areas that are highly

suitable primarily in the northwest and central regions of Hwange

National Park, with less suitable areas appearing in the southern

part of the park. Similarly, the Random Forest model (Figure 4b)

shows a comparable pattern but with a more compact and clearly

defined distribution of less suitable habitat in the southern region.

The ensemble model (Figure 4c) presents a smoother output, with

extensive highly suitable areas in the northwest and central parts,

while less suitable zones are mostly confined to the southern section

of the park. The western part of Hwange National Park is

consistently less suitable across all models.
3.4.1 Wet season
During the wet season, results based on the MaxEnt model

(Figure 5a) identify areas of high suitability primarily in the
Frontiers in Conservation Science 07
northwest and central regions of Hwange National Park, with less

suitable habitats located in the southern area. The Random Forest

model (Figure 5b) shows that much of the area is less suitable in the

western region of the park. The ensemble model (Figure 5c), reveals

extensively highly suitable areas in the northwest and eastern

sections, while less suitable zones are predominantly found in the

south. Notably, the eastern part of Hwange National Park is

classified as suitable across all models as shown in Figure 5.

3.4.2 Dry season
For the dry season, the MaxEnt model (Figure 6a) identifies

high suitability primarily in the northwest and central regions of

Hwange National Park, with a larger area classified as unsuitable in

the southern part. The Random Forest model (Figure 6b) reveals

compact suitable areas in the eastern section of the park. Based on

the ensemble model (Figure 6c), highly suitable areas are evident in

the eastern part of the park, while there are patches of less suitable

habitat in the northwest. Notably, the southern region of Hwange

National Park shows a significantly larger area classified as

unsuitable across all models as shown in Figure 6.
3.5 Future distribution projections

Based on the current scenario, most of the landscape, especially

within and around Hwange National Park, is classified as highly
FIGURE 2

Spatial distribution of elephant movement data for (a) the dry season (May–October) and (b) wet season (November–April) in Hwange National Park.
TABLE 5 Performance metrics for RF, MaxEnt, and Ensemble models based on the combined and wet and dry seasons elephant movement data .

Dry Wet Combined

RF MAX ENSE RF MAX ENSE RF MAX ENSE

AUC 0.91 0.82 0.95 0.90 0.85 0.96 0.93 0.89 0.96

TSS 0.80 0.87 0.85 0.78 0.77 0.80 0.79 0.75 0.97
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suitable, with less suitable and unsuitable zones mainly located in

the southern and northeastern edges (Figure 7a). Projected suitable

habitats for 2050 (Figure 7b), reveal a noticeable decline in suitable

habitat, particularly along the park’s eastern and southern

boundaries and near the KAZA edge, although core areas in

Hwange remain intact. By 2070, unsuitable habitat expand

further, particularly in the southern and eastern directions, while

the most suitable areas become increasingly fragmented, indicating

continued habitat decline (Figure 7c).
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3.6 Predicted range changes within the
KAZA TFCA

Figure 8 shows that the most suitable elephant habitat is

expected to decline from 388,489.9 km² (current) to 342,698.3

km² in 2050, and further to 282,470.3 km² by 2070. Less suitable

areas increase from 107,609.7 km² to 153,210.0 km² in 2050 and

reach 205,429.9 km² by 2070. Not suitable areas rise slightly from

23,900.4 km² to 24,101.7 km² in 2050 and 32,099.8 km² in 2070.
FIGURE 4

Potential distribution of suitable habitat for elephants in Hwange National Park for combined presence data based on (a) MaxEnt, (b), Random Forest,
and (c) Ensemble models.
FIGURE 3

Variable importance for (a) wet season, (b) dry season, (c) combined presence data, and (d) bioclimatic variables used for future projections.
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3.7 Response curves for the combined
elephant presence data

Figure 9 shows how the probability of elephants presence

responds to different environmental variables. Isothermality

(bio3) shows an increase in African elephant presence, peaking at

moderate values, after which the probability of elephant presence

decreases. Precipitation patterns (bio17 and bio19) reveal distinct

thresholds that indicate optimal moisture levels for the African

elephant, while proximity to water significantly influences presence,

with a clear decline in probability of African elephant presence as

distance to water increases. Furthermore, both elevation and NDVI

exhibit non-linear relationships, suggesting specific habitat

preferences. The comparison of models highlights differences in

predictions, with the Ensemble model often providing a more

balanced response (Figure 9).
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3.8 Response curves of elephants to
bioclimatic variables using ensemble
modelling

Figure 10 illustrates how the probability of elephant presence

response to bioclimatic variables based on the Ensemble model. The

probability of African elephant presence was highest when the

maximum temperature of the warmest month (bio5) was around 30

°C and declined at higher temperatures. Minimum temperature of the

coldest month (bio6) and mean temperatures (bio10, bio11) showed a

positive relationship, stabilising above 15 °C. The probability of

elephant presence also increased as the Annual precipitation (bio12),

and rainfall during the wettest month (bio13), and warmest quarter

(bio18) increased. The probability of elephant presence also peaked at

moderate values (70–90 mm) for precipitation of the coldest quarter

(bio19), after which it started declining (Figure 10).
FIGURE 6

Potential distribution of suitable habitats of elephants in Hwange National Park for dry season based on (a) MaxEnt, (b) Random Forest and (c)
Ensemble models.
FIGURE 5

Potential distribution of suitable habitats for elephants in Hwange National Park for the wet season based on (a) the MaxEnt model, (b), Random
Forest model and (c) the Ensemble model.
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4 Discussion

The main objective of this study was to apply and assess three

species distribution models (Random Forest, MaxEnt, and

Ensemble models) to understand current and future distribution

of suitable habitats for the African elephant in Hwange National

Park under climate change scenarios. Results demonstrated that all

three models were capable of capturing elephant-environment

relationships, with the ensemble model consistently producing

more ecologically realistic spatial predictions. While Random

Forest created compact and well-defined suitability areas, MaxEnt

generated broader, more generalised surfaces. The ensemble model

combined both strengths, resulting in maps and plots that are more

balanced and aligned well with known elephant ecological

behaviour. Garcı ́a-Callejas and Araújo (2016) found that

ensemble models improve predictive accuracy and reflect

ecological complexity more effectively than single algorithms. To
Frontiers in Conservation Science 10
this end, this study demonstrated the utility of integrating a suite of

SDMs, which combine the complementary strengths of multiple

algorithms, thereby improving predictive accuracy and

conservation planning outcomes.

When elephant presence data from both seasons were

combined, models consistently identified core habitat zones in the

northeast, east-central, and northwest regions of the park. These

zones likely represent year-round strongholds due to their

association with artificial waterholes, high vegetation productivity

(as indicated by NDVI), moderate elevation, and favourable

topographic conditions. Previous studies found that elephants in

semi-arid systems strongly prefer habitats with stable water access,

moderate terrain, and productive vegetation, especially in protected

areas (Chamaillé-Jammes et al., 2007; Muposhi et al., 2016). In

contrast, the southwestern and far southeastern regions were

consistently avoided in all models, indicating ecologically

marginal or disturbed zones. This supports earlier findings by
FIGURE 8

Predicted potential range changes for the African elephant under different climate change scenarios.
FIGURE 7

Potential distribution of suitable habitat for African elephants in the KAZA TFCA under different climate scenarios (a) current (2015-2018), (b) future
(2050) and (c) future (2070).
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Gara et al. (2021) and Sach et al. (2019), who found that elephants

tend to avoid areas with poor water and forage availability, human

barriers, or landscape that are fragmented.

In the wet season, elephants expanded their range into areas

typically avoided during the dry season, likely due to increased

rainfall, surface water availability, and green-up of forage. Consistent

with prior work, elephants were found to use ephemeral resources

during wet periods, reducing their reliance on artificial waterholes

(Muposhi et al., 2016; Naidoo et al., 2020). However, the northeast and

east-central regions remained important core habitats even during wet

months, highlighting the role of habitat fidelity and persistent

environmental suitability. de Knegt (2010) found that elephants

continue to revisit historically favourable areas regardless of season.

In the dry season, elephants showed a more restricted distribution,

concentrating around northeastern and eastern Hwange, which are

characterised by the highest densities of artificial waterholes. These

locations are vital during the drymonths (May–October), when natural

water sources diminish. Previous studies found that artificial water

provisioning determines dry-season elephant distribution in Hwange
Frontiers in Conservation Science 11
and other KAZA landscapes (Chamaillé-Jammes et al., 2007; Ochieng,

2015). Conversely, the southwestern and northwestern areas remained

underused, showing low suitability. Chui et al. (2024), observed that

dry season distributions become more clustered and selective around

artificial water points, often resulting in local overuse and degradation.

A consistent observation across all seasons was the persistent

avoidance of the southwestern part of the park. Mpakairi et al.

(2020) found that elephants rarely use this region due to poor water

access, low NDVI, human activity near boundaries, and historical

rainfall deficits. These ecologically marginal zones may function as

natural or anthropogenic boundaries limiting movement under

normal conditions.

Variable importance analysis revealed season-specific drivers of

habitat selection. In the wet season, elevation and mean

temperature were the top predictors, while in the dry season,

NDVI, mean temperature, and precipitation variables dominated.

NDVI emerged as the strongest variable across all models. Previous

studies found that NDVI is a reliable proxy for vegetation

productivity and is often the best predictor of elephant forage
FIGURE 9

Response curves for combined elephant presence data.
frontiersin.org

https://doi.org/10.3389/fcosc.2025.1699938
https://www.frontiersin.org/journals/conservation-science
https://www.frontiersin.org


Boas and Zvidzai 10.3389/fcosc.2025.1699938
availability and space use across savanna systems (Boult et al., 2018;

Mpakairi et al., 2020; Mlambo et al., 2024). Also, Ndaimani (2018),

demonstrated NDVI’s value in seasonal and long-term elephant

habitat modelling. In general, the results reinforce that elephants

respond strongly to environmental heterogeneity and seasonal

availability of water and forage.

Future projections suggested a substantial contraction of suitable

elephant habitat by 2050, worsening by 2070. This is consistent with

one of our hypotheses. Core habitats in the north and center may

persist, but the southern and eastern zones are predicted to become

highly unsuitable due to increasing aridity and declining vegetation

productivity. Previous studies (Gandiwa et al., 2016; Smit et al., 2020;

Dejene et al., 2021) found that climate change is likely to reduce

suitable ranges for large herbivores, including elephants, especially in

southern Africa’s arid and semi-arid zones. This supports findings by

Lu et al. (2025), who emphasised the need for landscape-level

conservation strategies to maintain elephant connectivity in the

face of climate extremes. These projected shifts imply that
Frontiers in Conservation Science 12
elephants may increasingly seek resources outside protected areas,

potentially escalating human-elephant conflict.

Response curves further clarified key ecological thresholds.

Suitability peaked at moderate maximum temperatures (15–25 °C),

with steep declines at higher values, suggesting thermal sensitivity.

Similarly, optimal precipitation values for habitat suitability clustered

around 1250–1750 mm/year, with seasonal rainfall variables (Bio18,

Bio19) playing key roles. Dunkin (2012) found that elephants are

physiologically sensitive to high temperatures and require year-round

water availability, making them vulnerable to climatic extremes. This

shows that climate thresholds shape movement and distribution

patterns for large herbivores across southern Africa’s savannas.

This study has some limitations. The GPS data were collected

from only ten elephants (mostly female), which may limit the

generalisability of movement patterns. Taylor et al. (2020) found

that male elephants often display different ranging behaviour and

habitat use compared to females. Furthermore, the monitoring

period (2015–2018) was relatively short, possibly missing long-
FIGURE 10

Response curves for African elephant for different bioclimatic variables based on the ensemble model.
frontiersin.org

https://doi.org/10.3389/fcosc.2025.1699938
https://www.frontiersin.org/journals/conservation-science
https://www.frontiersin.org


Boas and Zvidzai 10.3389/fcosc.2025.1699938
term ecological responses. This contrasts with long-term telemetry

studies that found substantial interannual variation in elephant

movement tied to multi-year rainfall cycles (Garstang et al., 2014).

Additionally, the exclusion of anthropogenic features like roads,

fences, and settlements is another limitation of the study as

numerous studies found that human infrastructure strongly

shapes elephant movement and habitat selection (Bastille-

Rousseau et al., 2020; Gara et al., 2021; Hahn et al., 2024).
5 Conclusion

Understanding the interactions between species and their

environment is essential for determining optimal habitat

conditions and guiding conservation decisions. This study

confirms the value of using GIS and remote sensing technologies

in combination with a suit of SDMs to assess habitat suitability,

especially in data-scarce regions like HNP. The integration of

biophysical variables (NDVI, temperature, precipitation) with

GPS data enabled the creation of ecologically meaningful seasonal

and future distribution models.

Key findings revealed distinct dry and wet season spatial

patterns influenced by resource availability. Ensemble SDMs

provided high predictive accuracy, validating their utility in

ecological forecasting. The use of multiple SDMs also provide

expanded insights that can guide effective conservation planning.

Crucially, future projections under the MIROC 8.5 climate scenario

revealed potential contractions in suitable habitat by 2070,

particularly in the southern part of HNP. This highlights the

vulnerability of elephants to climate-induced habitat loss and the

need for adaptive conservation planning.

The implications of these findings are significant. Management

authorities may need to reconsider the spatial configuration of

protected areas and artificial water provisioning to maintain

ecological balance and minimise habitat degradation. The

identification of future refugia and seasonal corridors is

particularly urgent in the face of accelerating environmental change.

Overall, this study contributes to a growing body of work

advocating for the integration of climate-smart spatial planning

into biodiversity conservation. Continued research using expanded

datasets, real-time satellite monitoring, and cross-border

conservation frameworks will be key to ensuring the persistence

of Africa’s elephants in the decades to come.
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