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Introduction: African elephants (Loxodonta Africana) are keystone species
whose survival is increasingly threatened by habitat loss, climate change, and
human-elephant conflict. Understanding their habitat preferences and how
these may shift under future climate conditions is vital for effective
conservation planning.

Methods: This study assessed the current and future distribution of suitable
habitats for African elephant in Hwange National Park, Zimbabwe, using Species
Distribution Models (SDMs), including MaxEnt, Random Forest, and an Ensemble
model. Presence data derived from GPS-collared elephants (2015-2018) were
combined with environmental variables such as NDVI, slope, elevation, distance
to water and park boundary, and 19 bioclimatic variables for the current, 2050,
and 2070 periods. Variable selection was guided by multicollinearity tests (VIF <
5), and models were evaluated using metrics such as AUC and TSS.

Results: Results showed that Random Forest and ensemble models
outperformed MaxEnt in predictive performance. Seasonal modeling revealed
minimal shifts between wet and dry seasons, while future projections indicated a
decline and fragmentation of highly suitable habitat, particularly along the
southern and eastern edges of the park. Key predictors included temperature
and precipitation-related variables, especially maximum temperature of the
warmest month and annual precipitation.

Discussion: These findings highlight the need to apply robust species distribution
modelling tools to enhance actionable conservation and spatial planning
strategies that incorporate climate projections to support long term survival of
the threatened elephant population in the Hwange National Park ecosystem.

African elephant, species distribution modelling, MaxEnt, random forest, ensemble,
climate change
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1 Introduction

African elephants (Loxodonta africana) are not only the largest
land mammals but also essential keystone species that sustain
savanna ecosystems (Sach et al., 2019). As mega-herbivores, their
activities such as browsing, debarking, and uprooting trees, shape
vegetation patterns and help maintain the open landscape, which
supports diverse biodiversity (Feleha, 2018). Their dung is crucial
for nutrient cycling and seed dispersal, aiding plant community
regeneration (Razak et al., 2020). During dry periods, elephants
often dig or restore waterholes, providing critical water sources for
many species (Wool, 2019). Their long migrations connect different
habitats, facilitating gene flow and strengthening ecosystem
resilience (Lohay et al., 2020). Due to these extensive and vital
influences, elephants are regarded as ecosystem engineers, with
their conservation key to preserving broader ecological health.

Despite their ecological importance, African elephants face
increasing threats that have caused significant population declines
across their range. Habitat fragmentation caused by agriculture,
human settlement, and infrastructure development continues to
shrink and isolate suitable habitats. At the same time, illegal ivory
poaching remains a major cause of death, especially in regions
with weak law enforcement and high ivory demand (Hauenstein
etal,, 2019). Human-elephant conflict is also rising, particularly in
areas bordering protected zones, where elephants often come into
contact with human landscapes. In some regions, political
instability and limited conservation funding make the
challenges worse.

Adding to these challenges is the growing threat of climate
change, which is increasingly influencing the landscapes that
sustain elephant populations. Shifting temperature and rainfall
patterns are altering the distribution of vegetation and water
sources, key drivers of elephant movement and habitat use
(Beirne et al,, 2020). More frequent and intense droughts can
force elephants to travel further in search of resources, increasing
their exposure to poaching and human-elephant conflict (Lee et al.,
2022). Recent studies (Mpakairi et al., 2020; Dejene et al., 2021)
predicted major changes in habitat suitability for large herbivores
like elephants in southern Africa due to future climate scenarios.
Such changes could render some current protected areas
inadequate, reinforcing the need for forward-looking conservation
planning. Addressing these threats requires integrated and adaptive
management strategies that are informed by spatially explicit
knowledge of the current and future distribution of suitable
habitats for the African elephants, especially in dynamic
landscapes like Hwange National Park and the broader Kavango-
Zambezi Transfrontier Conservation Area (KAZA-TFCA).

Species Distribution Models (SDMs) have emerged as powerful
tools for predicting species’ potential ranges by combining
environmental variables with occurrence records. For the African
and Asian elephant species, SDMs have been widely applied to
delineate suitable habitats, identify movement corridors, and
forecast distributional shifts under scenarios of climate and land-
use change (Robillard et al., 2015; Abir et al., 2025; Mpakairi et al.,
2020). They have also been used to assess seasonal habitat use,
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inform conservation prioritisation, and guide strategies to mitigate
human-elephant conflict (Thant et al., 2023; Yu et al,, 2024).
Methodological approaches such as MaxEnt (Elith et al.,, 2011),
Random Forest (Searle et al., 2022), and ensemble modelling
(Dejene et al.,, 20215 Black et al, 2024) have proven effective in
capturing complex habitat-environment relationships across
diverse landscapes. However, most applications have emphasised
static or broad-scale predictions, with relatively limited attention to
fine-scale temporal dynamics that shape elephant distribution.
Understanding seasonal variability in suitable habitats is
particularly important for African elephants, given their high
mobility, dependence on shifting water and forage resources, and
frequent interactions with human-dominated landscapes.
Moreover, reliance on single algorithms often introduces
methodological bias and underestimates predictive uncertainty.
To address these limitations, there is a critical need for studies
that integrate a suite of SDMs, which combine the complementary
strengths of multiple algorithms, thereby improving predictive
accuracy, robustness, and ecological interpretability. This study
responds to this gap by applying an ensemble of SDMs to capture
both the spatial and seasonal dynamics of African elephant
distribution in the Hwange ecosystem, offering deeper insights
into their adaptive responses to environmental variability and
anthropogenic pressures.

Building on these insights, this study aims to advance our
understanding of African elephant distribution by integrating a
suite of SDMs to capture both spatial and seasonal dynamics of
habitat suitability. Specifically, we (i) identify the environmental
factors shaping elephant distribution, (ii) model the spatial
distribution of suitable habitats across the study landscape, and
(iii) examine how habitat suitability varies between wet and dry
seasons and how the projected climate change scenarios are likely to
impact on the distribution of suitable habitats. By employing
multiple modelling algorithms within an ensemble framework,
the study reduces methodological bias and enhances predictive
reliability. We hypothesise that (1) elephant distribution is
strongly influenced by the availability of water, vegetation
productivity, and anthropogenic pressures, and (2) suitable
habitats differ significantly between seasons, reflecting elephants’
adaptive responses to fluctuating resource availability and (3),
elephant suitable habitats are expected to shrink in response to
projected climate change scenarios. Together, these objectives aim
to generate actionable and fine-scale insights that support long-
term elephant conservation by anticipating habitat shifts and
identifying priority areas for management.

2 Materials and methods
2.1 Study area

Hwange National Park (HNP), in north-western Zimbabwe
(Figure 1), is the country’s largest protected area, spanning

approximately 14,651 km? (Mpakairi et al., 2020). As part of the
Kavango-Zambezi Transfrontier Conservation Area (KAZA
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FIGURE 1
Location of hwange national park.

TFCA), it plays a key role in supporting Zimbabwe’s elephant
population. The park’s semi-arid savanna ecosystem experiences a
wet season (November-April) with 570-650 mm of rainfall and a
dry season (May-October) marked by scarce water availability
(Mlambo et al., 2024). Due to its sandy soils and lack of
permanent water sources, wildlife relies heavily on artificial
waterholes, especially during the dry season. Situated in a
climate-sensitive region, HNP is vulnerable to changing rainfall
patterns and droughts, making it a critical area for assessing
elephant habitat suitability under current and future
climate scenarios.

2.2 Elephant presence data

This study utilised GPS tracking data collected from African
elephants (Loxodonta africana) in Hwange National Park between
December 2015 and April 2018 (Mlambo et al., 2024). A total of 10
elephants (nine females and one male), (Table 1), were fitted with
GPS collars, ensuring representation from different social herds to
account for potential behavioral and spatial variability. The raw
GPS dataset initially contained 47,500 presence records, which were
subsequently cleaned and processed in ArcGIS 10.1 to remove
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errors, outliers, and duplicate entries, resulting in a refined

dataset of 30,000 high-quality presence points.

2.3 Environmental variables

To model elephant habitat suitability, a suite of environmental
variables representing key ecological drivers (Table 2) were
compiled. For seasonal analyses (wet and dry seasons), the study
focused on seven biologically relevant predictors: mean
temperature, precipitation, euclidean distance to artificial
waterholes, NDVI as a proxy for vegetation productivity,
elevation, slope, and distance to park boundary to assess edge
effects (Dzinotizei, 2018; Ndaimani, 2018). These variables were
selected based on their known influence on elephant movement and
resource selection in semi-arid savannas (Dejene et al., 2021) For
current distribution modelling using the combined dataset, the
climate variables were expanded to include all 19 bioclimatic
parameters from WorldClim while retaining the same
topographic, vegetation and anthropogenic variables (Dejene
et al., 2021). For the 2050 and 2070 climate projections, the study
only focused on the 19 bioclimatic variables as they best capture
climate-related impacts on elephant habitats. All environmental
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TABLE 1 Details of collared elephants showing elephant ID, sex, collaring and last fix dates, and the number of presence data points.

ID Sex Collaring Date Last Fix Date Total Fixes Wet Season fixes Dry season fixes
Uzl Female 18-Dec-2015 09-Apr-2018 2,642 1,452 1,190
Uz2 Male 18-Dec-2015 30-Sep-2017 3,158 1,721 1,437
Uz3 Female 19-Dec-2015 09-Apr-2018 2,855 1,552 1,303
Uz4 Female 20-Dec-2015 09-Apr-2018 3,202 1,702 1,500
uzs Female 20-Dec-2015 09-Apr-2018 2,750 1,480 1,270
UZ6 Female 22-Dec-2015 09-Apr-2018 3,300 1,779 1,521
uz7 Female 22-Dec-2015 09-Apr-2018 2,845 1,498 1,347
Uz8 Female 23-Dec-2015 09-Apr-2018 3,198 1,693 1,505
Uz9 Female 24-Dec-2015 09-Apr-2018 2,550 1,361 1,189
UZ10 Female 24-Dec-2015 30-Sep-2017 3,500 1,749 1,751
Total 30,000 16,987 13,013

rasters were standardised and resampled to a common spatial
resolution (500m) in QGIS.

2.3.1 Normalised difference vegetation index
NDVI served as a key indicator of vegetation productivity and
forage availability for elephants in Hwange National Park
(Mukomberanwa et al., 2024). Calculated from MODIS Terra
(MODI13A1) satellite imagery at 500m resolution, NDVI values
range from -0.1 (bare soil) to 0.7 (dense woodland), with elephants
preferentially selecting areas with values >0.3 during wet seasons
(Boult et al., 2018). During the dry season, NDVI values below 0.2
force elephants to shift from grazing to browsing (Koskey, 2016).

NIR - RED

NDVI = —————
NIR + RED

2.3.2 Mean temperature and precipitation

Mean monthly temperature (°C) and total precipitation (mm)
were obtained from WorldClim 2.1 (Fick and Hijmans, 2017).
Temperature extremes (>40 °C in October) significantly influence

elephant water requirements (Chamaille-Jammes et al., 2007), while
precipitation patterns determine surface water availability. Mean
temperature and precipitation were selected due to their strong
influence on elephant ecology. Temperature affects
thermoregulation and water needs, particularly during extreme
heat (Valeix et al., 2008), while precipitation governs surface
water availability and vegetation productivity, both critical for
elephant survival and movement patterns (Valeix, 2011).

2.3.3 Slope and elevation

To analyse slope and elevation, a 30m Digital Elevation Model
(DEM) was utilised, sourced from the Shuttle Radar Topography
Mission (SRTM) data, which provides comprehensive elevation
data. Slope was derived from elevation data using the slope function
in QGIS. Elevation and slope were included as predictor variables
due to their well-documented influence on habitat selection and
movement patterns in African elephants. Elevation affects
vegetation distribution and surface water runoff, while slope
influences the energetic cost of movement, particularly in areas
with rugged terrain (Mapheto, 2023).

TABLE 2 Predictor variables used to model elephant distribution, showing spatial and temporal resolution, units of measurement and the sources.

: NeELEL Temporal :
Variable  Recolution Resolution ~ Unit  Source
NDVI 500 m Monthly - NASA LP DAAC (Land Processes Distributed Active Archive Center) via https://Ipdaac.usgs.gov.
DTPB 500 m Static Km Derived using ArcGIS 10.1 by calculating Euclidean distance from each grid cell to the park
boundary shape file.

DTW 500 m Static Km Derived using Euclidean Distance in ArcGIS 10.1 from known water GPS coordinates.
Slope 30m Static degrees SRTM DEM - Derived from the Shuttle Radar Topography Mission Digital Elevation Model,

P 8 available from USGS EarthExplorer (https://earthexplorer.usgs.gov).
Elevation 30 m Static M SRTM DEM (USGS EarthExplorer) -(https://earthexplorer.usgs.gov)
Mean .

km Monthly °C WorldClim 2.1

Temperature
Precipitation | 1 km Monthly Mm WorldClim 2.1
313‘;2;?::6 1km Annual Various | WorldClim 2.1 database (https://www.worldclim.org/data/bioclim.html)
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2.3.4 Distance to park boundary and water

Distance to the park boundary was calculated using the
Euclidean Distance tool in ArcGIS 10.1. Similarly, the Euclidean
Distance tool was used to generate a raster representing the distance
to the nearest water points. These distance layers were included as
predictor variables due to their influence on elephant movement,
habitat selection, and access to critical resources (De Knegt et al.,
2011). Elephants tend to select areas closer to water sources and
may avoid park boundaries due to potential human conflict or
disturbance, making these variables ecologically relevant for
modelling habitat suitability (Thant et al.,, 2023).

2.4 Bioclimatic variables

To incorporate climate change projections, 19 bioclimatic
variables were sourced from the WorldClim database, employing
the MIROC 8.5 General Circulation Model (GCM). This model,
representing a high-emission trajectory, was selected to explore
potential shifts in elephant habitat suitability under future climate
conditions. These variables, which summarise annual trends,
seasonality, and extreme climatic conditions, were included due
to their known influence on species distribution and ecological
niche dynamics (Dejene et al., 2021). We applied the Representative
Concentration Pathway 8.5 (RCP8.5) that represents the worst case
scenario because such scenarios are preferred for conservation
planning as they prepare climate change managers for extreme
outcomes (Beaumont et al., 2008).

2.5 Testing for multicollinearity

To ensure the robustness of the modelling approaches, the study
carefully addressed multicollinearity among environmental predictors.

TABLE 3 Environmental variables that were used to estimate current
elephant distribution after testing for multicollinearity.

NDVI 1.36
Distance to water 1.30
Slope 1.22
Elevation 218
Distance to park boundary 1.28
Precipitation

Mean temperature

Bio3 2.73
Bio4 2.77
Bio7 2.82
Biol3 1.22
Biol7 3.63
Biol9 1.79

Frontiers in Conservation Science

05

10.3389/fcosc.2025.1699938

Using the vifstep function from the usdm package in R (Naimi, 2016),
variance inflation factors (VIFs) for all candidate variables were
calculated, adopting a conservative threshold of 5 to identify and
remove highly correlated predictors. This process minimised
redundancy among variables while preserving ecologically meaningful
predictors thereby enhancing model reliability and preventing
overfitting (John et al, 2024). The final set of independent variables
was then used to model elephant distribution patterns, ensuring both
statistical validity and biological relevance in our seasonal assessments of
elephant distribution as shown in Table 3.

Table 4 shows bioclimatic variables that were used to estimate
potential distribution of suitable habitats under projected climate
change scenarios.

2.6 Modelling approaches

This study implemented three complementary modelling
approaches to predict elephant habitat suitability: Maximum
Entropy (MaxEnt), Random Forest (RF), and their Ensemble, using
the biomod2 package in RStudio. Each method was carefully selected
to address different aspects of species distribution modelling while
compensating for individual limitations.

TABLE 4 Bioclimatic variables used to estimate elephant distribution
under projected climate change scenarios. The variables shaded in gray
are those used in the model after testing for multicollinearity.

Biol Annual Mean Temperature °C
Bio2 Mean Diurnal Temperature Range °C
Bio3 Isothermality (Bio2/Bio7) J/IK
Bio4 Temperature Seasonality (Standard Deviation) CofV
Bio5 Max Temperature of Warmest Month ‘ °C
Bio6 Min Temperature of Coldest Month ‘ °C
Bio7 Temperature Annual Range (Bio5-Bio6) ‘ °C
Bio8 Mean Temperature of Wettest Quarter °C
Bio9 Mean Temperature of Driest Quarter °C
Biol0 Mean Temperature of Warmest Quarter ‘ °C
Bioll Mean Temperature of Coldest Quarter ‘ °C
Biol2 Annual Precipitation ‘ mm
Biol3 Precipitation of Wettest Month ‘ mm
Biol4 Precipitation of Driest Month mm
Biol5 Precipitation Seasonality -
Biol6 Precipitation of Wettest Quarter mm
Biol7 Precipitation of Driest Quarter Mm
Biol8 Precipitation of Warmest Quarter Mm
Biol9 Precipitation of Coldest Quarter Mm
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Maximum Entropy Modelling (MaxEnt) was employed as the
primary presence-background approach, particularly suitable for
working with presence-only occurrence data. MaxEnt was
implemented through the biomod2 interface, which provides
optimised default parameters while allowing for necessary
customisations. The model ran with randomly generated 10,000
background points from the study area polygon and 10 cross-
validation replicates to ensure robust performance evaluation.
Following recommendations from Phillips et al. (2006), hinge features
were used to capture non-linear species-environment relationships while
maintaining a regularisation multiplier of 1 to balance model complexity.

Random Forest (RF) modelling was implemented as the
machine learning alternative, offering a different approach to
capturing complex ecological relationships. Using the biomod2
framework, we configured the RF model with 1,000 trees (ntree)
as recommended by Cutler et al. (2007) for ecological applications.
The number of variables tried at each split was automatically
determined as the square root of the total predictors, following
Jin et al. (2020) original specifications.

The Ensemble model was developed to leverage the strengths of
both individual modelling approaches while minimising their
respective limitations. Within the biomod2 framework, predictions
from MaxEnt and RF were combined using a weighted averaging
approach based on model evaluation scores (Hao et al., 2020). This
ensemble approach followed recommendations by Aratjo and New
(2007), who demonstrated that combined models typically
outperform single-algorithm predictions in species distribution
modelling. The ensemble process included evaluation of committee
averaging and weighted mean combinations, with the final selection
based on optimisation of True Skill Statistic (TSS) scores.

2.7 Model evaluation

All models were evaluated using a 70-30 split for training and
testing datasets, with spatial stratification to ensure geographic
representativeness. Model performance was assessed through Area
Under the Curve (AUC) and True Skill Statistic (TSS), following
established ecological modelling standards (Allouche et al., 2006). The
Area Under the Curve (AUC) metric evaluated the models’ ability to
distinguish suitable from unsuitable elephant habitats by analysing the
Receiver Operating Characteristic (ROC) curve, which plots true
positive rates against false positive rates across all classification
thresholds. Ranging from 0 to 1, AUC values were interpreted as: 0.5
(random performance), 0.5-0.7 (poor to moderate), 0.7-0.9 (good), and
>0.9 (excellent discrimination) (Pearce and Ferrier, 2000).

TSS values range from -1 to +1, where +1 indicates perfect
agreement and values <0 suggest performance no better than
random (Allouche et al., 2006; Sharma et al., 2020). TSS, unlike
AUG, is threshold-dependent and therefore more directly relevant
to conservation applications requiring binary distribution
classifications. The ensemble model demonstrated superior
predictive performance compared to individual models and was
subsequently used for projecting habitat suitability under future
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climate scenarios, providing a comprehensive tool for elephant
conservation planning under climate change.

2.8 Quantifying potential change in habitat
suitability

After running the species distribution models, the continuous
habitat suitability maps were reclassified into three distinct categories
based on natural colour code breaks as our threshold for each
suitability category: most suitable (0.7-1), less suitable (0.3-0.6), and
unsuitable (0-0.2). The study adopted a similar approach used by
Zvidzai et al. (2024), who applied categorical thresholds to interpret
spatial habitat dynamics under climate change scenarios. QGIS version
3.36.3 was then used to calculate the total area (in km?) of each
suitability class under current and projected climate conditions (2050
and 2070). This enabled the assessment of spatial trends in habitat
suitability, including the expansion, contraction, or stability of highly
suitable elephant habitats over time.

3 Results

3.1 Seasonal distribution (wet and dry
season)

Results show that, during the dry season (Figure 2a), the highest
concentrations in elephant movement data are observed in the
northern east and eastern areas. In the wet season (Figure 2b), the
northern east and eastern zones continue to act as primary elephant
strongholds, while in the western and southern regions, the GPS
movement data is sparse.

3.2 Model performance comparison

In the Dry season, Ensemble (ENSE) achieved an AUC of 0.95,
outperforming MaxEnt (MAX) (0.82) and Random Forest (RF) (0.91).
For TSS, MaxEnt scored the highest at 0.87, followed by Ensemble (0.85)
and Random Forest (0.80). Under wet season, the Ensemble model
showed the best AUC performance (0.96), while Random Forest and
MaxEnt scored 0.90 and 0.85, respectively. Overall, the Ensemble model
demonstrates consistent and high performance across all conditions,
particularly in AUC, while MaxEnt shows variability, excelling in TSS
under Dry conditions but lagging in others as shown in Table 5.

3.3 Variable importance

In the wet season (Figure 3a), elevation and mean temperature are
the most influential variables for all models, while slope and NDVT have
the lowest impact. In the dry season (Figure 3b), mean temperature,
precipitation and NDVT are the most influential with slope as the least
important variable. When combining presence data from both seasons
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FIGURE 2

Spatial distribution of elephant movement data for (a) the dry season (May—October) and (b) wet season (November—April) in Hwange National Park.

(c), NDVI continues to show the highest importance, with variables like
precipitation or slope potentially ranking lower as shown in Figure 3. In
the future bioclimatic variables chart (d), bioclimatic factors such as
bio19, biol3, biol2 and bio5 emerged as the most significant predictors,
while bioll had the lowest influence (4%).

3.4 Modelling elephant distribution
patterns based on combined elephant
presence data

The MaxEnt model (Figure 4a) indicates areas that are highly
suitable primarily in the northwest and central regions of Hwange
National Park, with less suitable areas appearing in the southern
part of the park. Similarly, the Random Forest model (Figure 4b)
shows a comparable pattern but with a more compact and clearly
defined distribution of less suitable habitat in the southern region.
The ensemble model (Figure 4c) presents a smoother output, with
extensive highly suitable areas in the northwest and central parts,
while less suitable zones are mostly confined to the southern section
of the park. The western part of Hwange National Park is
consistently less suitable across all models.

3.4.1 Wet season
During the wet season, results based on the MaxEnt model
(Figure 5a) identify areas of high suitability primarily in the

northwest and central regions of Hwange National Park, with less
suitable habitats located in the southern area. The Random Forest
model (Figure 5b) shows that much of the area is less suitable in the
western region of the park. The ensemble model (Figure 5c¢), reveals
extensively highly suitable areas in the northwest and eastern
sections, while less suitable zones are predominantly found in the
south. Notably, the eastern part of Hwange National Park is
classified as suitable across all models as shown in Figure 5.

3.4.2 Dry season

For the dry season, the MaxEnt model (Figure 6a) identifies
high suitability primarily in the northwest and central regions of
Hwange National Park, with a larger area classified as unsuitable in
the southern part. The Random Forest model (Figure 6b) reveals
compact suitable areas in the eastern section of the park. Based on
the ensemble model (Figure 6¢), highly suitable areas are evident in
the eastern part of the park, while there are patches of less suitable
habitat in the northwest. Notably, the southern region of Hwange
National Park shows a significantly larger area classified as
unsuitable across all models as shown in Figure 6.

3.5 Future distribution projections

Based on the current scenario, most of the landscape, especially
within and around Hwange National Park, is classified as highly

TABLE 5 Performance metrics for RF, MaxEnt, and Ensemble models based on the combined and wet and dry seasons elephant movement data .

Combined

AUC 091 0.82 0.95 0.90 0.85

TSS 0.80 0.87 0.85 0.78 0.77
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suitable, with less suitable and unsuitable zones mainly located in
the southern and northeastern edges (Figure 7a). Projected suitable
habitats for 2050 (Figure 7b), reveal a noticeable decline in suitable
habitat, particularly along the park’s eastern and southern
boundaries and near the KAZA edge, although core areas in
Hwange remain intact. By 2070, unsuitable habitat expand
further, particularly in the southern and eastern directions, while
the most suitable areas become increasingly fragmented, indicating
continued habitat decline (Figure 7c¢).

3.6 Predicted range changes within the
KAZA TFCA

Figure 8 shows that the most suitable elephant habitat is
expected to decline from 388,489.9 km” (current) to 342,698.3
km? in 2050, and further to 282,470.3 km® by 2070. Less suitable
areas increase from 107,609.7 km? to 153,210.0 km? in 2050 and
reach 205,429.9 km? by 2070. Not suitable areas rise slightly from
23,900.4 km? to 24,101.7 km? in 2050 and 32,099.8 km? in 2070.
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FIGURE 4

Potential distribution of suitable habitat for elephants in Hwange National Park for combined presence data based on (a) MaxEnt, (b), Random Forest,

and (c) Ensemble models.
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FIGURE 5

Potential distribution of suitable habitats for elephants in Hwange National Park for the wet season based on (a) the MaxEnt model, (b), Random

Forest model and (c) the Ensemble model.

3.7 Response curves for the combined
elephant presence data

Figure 9 shows how the probability of elephants presence
responds to different environmental variables. Isothermality
(bio3) shows an increase in African elephant presence, peaking at
moderate values, after which the probability of elephant presence
decreases. Precipitation patterns (biol7 and biol9) reveal distinct
thresholds that indicate optimal moisture levels for the African
elephant, while proximity to water significantly influences presence,
with a clear decline in probability of African elephant presence as
distance to water increases. Furthermore, both elevation and NDVI
exhibit non-linear relationships, suggesting specific habitat
preferences. The comparison of models highlights differences in
predictions, with the Ensemble model often providing a more
balanced response (Figure 9).

3.8 Response curves of elephants to
bioclimatic variables using ensemble
modelling

Figure 10 illustrates how the probability of elephant presence
response to bioclimatic variables based on the Ensemble model. The
probability of African elephant presence was highest when the
maximum temperature of the warmest month (bio5) was around 30
°C and declined at higher temperatures. Minimum temperature of the
coldest month (bio6) and mean temperatures (biol0, biol1) showed a
positive relationship, stabilising above 15 °C. The probability of
elephant presence also increased as the Annual precipitation (biol2),
and rainfall during the wettest month (biol3), and warmest quarter
(bio18) increased. The probability of elephant presence also peaked at
moderate values (70-90 mm) for precipitation of the coldest quarter
(bio19), after which it started declining (Figure 10).
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Potential distribution of suitable habitats of elephants in Hwange National Park for dry season based on (a) MaxEnt, (b) Random Forest and (c)

Ensemble models.
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4 Discussion

The main objective of this study was to apply and assess three
species distribution models (Random Forest, MaxEnt, and
Ensemble models) to understand current and future distribution
of suitable habitats for the African elephant in Hwange National
Park under climate change scenarios. Results demonstrated that all
three models were capable of capturing elephant-environment
relationships, with the ensemble model consistently producing
more ecologically realistic spatial predictions. While Random
Forest created compact and well-defined suitability areas, MaxEnt
generated broader, more generalised surfaces. The ensemble model
combined both strengths, resulting in maps and plots that are more
balanced and aligned well with known elephant ecological
behaviour. Garcia-Callejas and Aratjo (2016) found that
ensemble models improve predictive accuracy and reflect
ecological complexity more effectively than single algorithms. To
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FIGURE 8

® Less Suitable

this end, this study demonstrated the utility of integrating a suite of
SDMs, which combine the complementary strengths of multiple
algorithms, thereby improving predictive accuracy and
conservation planning outcomes.

When elephant presence data from both seasons were
combined, models consistently identified core habitat zones in the
northeast, east-central, and northwest regions of the park. These
zones likely represent year-round strongholds due to their
association with artificial waterholes, high vegetation productivity
(as indicated by NDVI), moderate elevation, and favourable
topographic conditions. Previous studies found that elephants in
semi-arid systems strongly prefer habitats with stable water access,
moderate terrain, and productive vegetation, especially in protected
areas (Chamaille-Jammes et al., 2007; Muposhi et al., 2016). In
contrast, the southwestern and far southeastern regions were
consistently avoided in all models, indicating ecologically
marginal or disturbed zones. This supports earlier findings by

2050 2070

®m Most Suitable

Predicted potential range changes for the African elephant under different climate change scenarios.
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Response curves for combined elephant presence data.

Gara et al. (2021) and Sach et al. (2019), who found that elephants
tend to avoid areas with poor water and forage availability, human
barriers, or landscape that are fragmented.

In the wet season, elephants expanded their range into areas
typically avoided during the dry season, likely due to increased
rainfall, surface water availability, and green-up of forage. Consistent
with prior work, elephants were found to use ephemeral resources
during wet periods, reducing their reliance on artificial waterholes
(Muposhi et al., 2016; Naidoo et al., 2020). However, the northeast and
east-central regions remained important core habitats even during wet
months, highlighting the role of habitat fidelity and persistent
environmental suitability. de Knegt (2010) found that elephants
continue to revisit historically favourable areas regardless of season.

In the dry season, elephants showed a more restricted distribution,
concentrating around northeastern and eastern Hwange, which are
characterised by the highest densities of artificial waterholes. These
locations are vital during the dry months (May-October), when natural
water sources diminish. Previous studies found that artificial water
provisioning determines dry-season elephant distribution in Hwange
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and other KAZA landscapes (Chamaille-Jammes et al., 2007; Ochieng,
2015). Conversely, the southwestern and northwestern areas remained
underused, showing low suitability. Chui et al. (2024), observed that
dry season distributions become more clustered and selective around
artificial water points, often resulting in local overuse and degradation.

A consistent observation across all seasons was the persistent
avoidance of the southwestern part of the park. Mpakairi et al.
(2020) found that elephants rarely use this region due to poor water
access, low NDVI, human activity near boundaries, and historical
rainfall deficits. These ecologically marginal zones may function as
natural or anthropogenic boundaries limiting movement under
normal conditions.

Variable importance analysis revealed season-specific drivers of
habitat selection. In the wet season, elevation and mean
temperature were the top predictors, while in the dry season,
NDVI, mean temperature, and precipitation variables dominated.
NDVI emerged as the strongest variable across all models. Previous
studies found that NDVI is a reliable proxy for vegetation
productivity and is often the best predictor of elephant forage
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Response curves for African elephant for different bioclimatic variables based on the ensemble model.

availability and space use across savanna systems (Boult et al., 2018;
Mpakairi et al., 2020; Mlambo et al., 2024). Also, Ndaimani (2018),
demonstrated NDVT’s value in seasonal and long-term elephant
habitat modelling. In general, the results reinforce that elephants
respond strongly to environmental heterogeneity and seasonal
availability of water and forage.

Future projections suggested a substantial contraction of suitable
elephant habitat by 2050, worsening by 2070. This is consistent with
one of our hypotheses. Core habitats in the north and center may
persist, but the southern and eastern zones are predicted to become
highly unsuitable due to increasing aridity and declining vegetation
productivity. Previous studies (Gandiwa et al., 2016; Smit et al., 2020;
Dejene et al,, 2021) found that climate change is likely to reduce
suitable ranges for large herbivores, including elephants, especially in
southern Africa’s arid and semi-arid zones. This supports findings by
Lu et al. (2025), who emphasised the need for landscape-level
conservation strategies to maintain elephant connectivity in the
face of climate extremes. These projected shifts imply that

Frontiers in Conservation Science

elephants may increasingly seek resources outside protected areas,
potentially escalating human-elephant conflict.

Response curves further clarified key ecological thresholds.
Suitability peaked at moderate maximum temperatures (15-25 °C),
with steep declines at higher values, suggesting thermal sensitivity.
Similarly, optimal precipitation values for habitat suitability clustered
around 1250-1750 mm/year, with seasonal rainfall variables (Biol8,
Bio19) playing key roles. Dunkin (2012) found that elephants are
physiologically sensitive to high temperatures and require year-round
water availability, making them vulnerable to climatic extremes. This
shows that climate thresholds shape movement and distribution
patterns for large herbivores across southern Africa’s savannas.

This study has some limitations. The GPS data were collected
from only ten elephants (mostly female), which may limit the
generalisability of movement patterns. Taylor et al. (2020) found
that male elephants often display different ranging behaviour and
habitat use compared to females. Furthermore, the monitoring
period (2015-2018) was relatively short, possibly missing long-

12 frontiersin.org


https://doi.org/10.3389/fcosc.2025.1699938
https://www.frontiersin.org/journals/conservation-science
https://www.frontiersin.org

Boas and Zvidzai

term ecological responses. This contrasts with long-term telemetry
studies that found substantial interannual variation in elephant
movement tied to multi-year rainfall cycles (Garstang et al., 2014).
Additionally, the exclusion of anthropogenic features like roads,
fences, and settlements is another limitation of the study as
numerous studies found that human infrastructure strongly
shapes elephant movement and habitat selection (Bastille-
Rousseau et al., 2020; Gara et al., 2021; Hahn et al., 2024).

5 Conclusion

Understanding the interactions between species and their
environment is essential for determining optimal habitat
conditions and guiding conservation decisions. This study
confirms the value of using GIS and remote sensing technologies
in combination with a suit of SDMs to assess habitat suitability,
especially in data-scarce regions like HNP. The integration of
biophysical variables (NDVI, temperature, precipitation) with
GPS data enabled the creation of ecologically meaningful seasonal
and future distribution models.

Key findings revealed distinct dry and wet season spatial
patterns influenced by resource availability. Ensemble SDMs
provided high predictive accuracy, validating their utility in
ecological forecasting. The use of multiple SDMs also provide
expanded insights that can guide effective conservation planning.
Crucially, future projections under the MIROC 8.5 climate scenario
revealed potential contractions in suitable habitat by 2070,
particularly in the southern part of HNP. This highlights the
vulnerability of elephants to climate-induced habitat loss and the
need for adaptive conservation planning.

The implications of these findings are significant. Management
authorities may need to reconsider the spatial configuration of
protected areas and artificial water provisioning to maintain
ecological balance and minimise habitat degradation. The
identification of future refugia and seasonal corridors is
particularly urgent in the face of accelerating environmental change.

Overall, this study contributes to a growing body of work
advocating for the integration of climate-smart spatial planning
into biodiversity conservation. Continued research using expanded
datasets, real-time satellite monitoring, and cross-border
conservation frameworks will be key to ensuring the persistence
of Africa’s elephants in the decades to come.
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