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1 Introduction

The widespread integration of inertial sensors in smartphones has encouraged on
considerable research interest in gait recognition and human identification. Nonetheless,
early foundational studies established methodologies under unrealistic experimental
testbed using wearable sensors, not enough participants to construct dataset, and under
highly controlled conditions, such as fixing inertial sensors on specific body positions. For
example, several studies utilized wearable sensors such as inertial measurement unit (IMU),
which are not applicable for human recognition. Mondal et al. (2012) developed Intelligent
Gait Oscillation Detector (IGOD) model via wearable sensors with eight rotation sensors
recording locomotion oscillations from 30 participants/individuals. However, the model
requires full individual cooperation, which is unsuitable for natural daily solutions.
Furthermore, Deb et al. (2020) examined wrist, and ankle placements across 50 individuals,
revealing strong identification potential but remaining constrained by fixed placement
requirements. In addition, Dehzangi et al. (2017) deployed five synchronized IMUs at
multiple body positions on 10 participants, though requiring extensive instrumentation
that diverged from natural smartphone handling. Semwal et al. (2022) employing 25
individuals with IMU or wearable sensors on six body joints capturing six walking styles.

On the other hand, most of the recent studies provide human gait recognition via
constructing dataset within few number of the participants. For instance, Andersson et al.
(2024) focused on hip-joint angle estimation using smartphone sensors’ measurements
from 10 individuals on a treadmill at 4 km/h, providing biomechanical insights but failing
to replicate daily walking variability. Also, Cao et al. (2022) developed a hybrid network
combining convolutional and recurrent layers for authentication using accelerometer and
gyroscope data from 40 participants, though requiring fixed right-front-pocket placement.
Kim et al. (2025) introduced “GaitX” for real-time distracted-walking detection with 21
participants under handheld and pocketed positions. Raziff et al. (2017) tested three
handheld positions with 30 participants when devices are held against the abdomen. Shi
et al. (2023) integrated 1D-CNN with bidirectional LSTM across three datasets (18–30
subjects) requiring fixed sensor placements at waist, belt, or multiple body positions.
Filippou et al. (2023) developed StepMatchDTWBA for wrist-worn accelerometers on
30 volunteers under controlled laboratory conditions. Hoang et al. (2015) addressed
orientation instability in front-pocket placement by transforming accelerometer data to
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Earth coordinates with 38 individuals, requiring concurrent
orientation sensor data at low sampling rates (27 Hz). Multi-sensor
fusion and validation approaches have further explored positioning
diversity. Shahar and Agmon (2021) validated smartphone
front-pocket placement against APDM mobility lab with 60
adults, revealing asymmetric recognition between phone-side
and contralateral legs. Rafiq et al. (2025) investigated controlled
thigh-mounted positioning across two datasets (Extrasensory: 60
participants; KU-HAR: 90 participants), though requiring fixed
positioning that limited natural usage.

The other issue of the available human gait recognition
is that the testbed and the style of holding smartphones are
controlled. For example, Li et al. (2025) examined pants-pocket
placement with six participants for real-time recognition of seven
activities, augmenting 1D-CNN with time-domain features at 1.5-
s intervals. Moreover, a new study Degbey et al. (2024) efforts to
include a large-scale of 173 participants using waistband-pocketed
phones during straight-line walking. Again, Al-Mahadeen et al.
(2023) utilizes 100 participants from the HMOG dataset holding
phones while typing across eight sessions, demonstrating diverse
approaches from pocket-mounted to handheld configurations at
100 Hz sampling rates.

Despite advancing modeling techniques, these studies
remain fundamentally limited by modest sample sizes (6–173
subjects) and prescribed carrying positions (waist, pocket, belt, or
handheld) within wearable or IMU sensors. Furthermore, these
studies are faced controlled laboratory environments, restricting
ecological validity and ability to represent natural smartphone
usage patterns. To address these limitations, this data article
presents a large-scale smartphone-based gait dataset encompassing
390 individuals/participants walking under unconstrained
conditions, and with real-world scenarios without fixing on a
specific participant’s body positions. The dataset utilizes built-in
smartphone accelerometer, gyroscope, and magnetometer sensors.
Data were collected as individuals walked short distances while
naturally holding the smartphone without prescribed placement
constraints. This methodology captures authentic walking behavior
and sensor variability representative of everyday smartphone usage,
providing a robust foundation for developing gait recognition
systems that reflect real-world conditions.

2 Data description

2.1 Dataset overview

This dataset comprises synchronized triaxial inertial sensors
data from 390 participants (61% male, 39% female), with each
participant completing 10 independent walking trials. The range
of the age of the participants started from 18 to 51 years old.
Furthermore, the participants are students and faculty from Koya
University. Thus, the dataset provides 3,900 individual recordings
organized hierarchically by participants. This is followed by,
that each record contains nine-dimensional measurements from
accelerometer (ACC_X, ACC_Y, and ACC_Z), gyroscope (GY_X,
GY_Y, and GY_Z), and magnetometer (MAG_X, MAG_Y, and
MAG_Z). The inclusion of magnetometer data extends beyond

conventional accelerometer-gyroscope configurations, enabling
multi-sensor fusion for enhanced gait characterization (Cao
et al., 2022). Individual sequences contain approximately 250–
400 temporal samples per axis, capturing complete walking
episodes at 30 Hz. Figure 1 illustrates representative sensor
signal patterns and value distributions across all three axes for
each sensor modality, demonstrating the characteristic temporal
dynamics and statistical properties of naturalistic gait data.

2.2 Data acquisition hardware and sensors

The dataset is collected via using a Samsung Galaxy A53
smartphone (Samsung Electronics, Suwon, South Korea) as the
sensing platform. The embedded smartphone inertial sensors
are configured to sample all the three sensors modalities
synchronously at 30 Hz throughout each walking trial. A custom
Android application provided intuitive start/stop controls, allowing
participants to independently initiate and terminate recordings
for each trial sequence. The sampling frequency of 30 Hz
is selected to adequately capture human gait dynamics while
maintaining manageable data volumes and battery consumption
during extended data collection sessions. This sampling rate has
been demonstrated as sufficient for capturing fundamental gait
characteristics and temporal patterns in most of the current
applications including ambulatory motion.

2.3 Experimental protocol

Each participant completed 10 walking trials along a straight
12-m pathway, totaling 120 m per participant and 46.8 km across
all 390 participants. To maximize ecological validity, participants
walked at their natural, self-selected step while holding the
smartphone in their dominant hand without constraints on device
orientation or grip position. Thus, such a protocol makes the
dataset more realistic in comparison of the current studies. This
is because the current studies fixed the smartphones or wearable
IMU sensors in the fixed positions of the participants’ bodies. This
unconstrained approach, contrasting with rigid device fixation used
in previous studies (Kim et al., 2025; Raziff et al., 2017), reflects real-
world usage scenarios where fixing device orientation is impractical
(Deb et al., 2020). The naturalistic protocol captures authentic
variability in smartphone handling and orientation, enhancing the
external validity and generalizability of models trained on this
dataset.

2.4 Data collection period and data source
location

Dataset acquisition spanned four months (September 2024–
January 2025) of extensive work encompassing application
development, infrastructure establishment, and systematic
recruitment of all 390 participants from the Koya University, Iraq.
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FIGURE 1

Representative inertial sensor data from a single walking trial.

Participants comprised predominantly students with additional
university faculty. Data collection occurred at two standardized
indoor locations: the ground-floor corridor of the Deanship of
Research and Development Centers Building and the second-
floor hall of the Faculty of Physical Education Library. These
controlled environments ensured consistent ambient conditions
while maintaining ecological validity through naturalistic device
handling and gait patterns. Note, the controlled environments
mean that all participants are equally walked in a period of distance
as well as they held smartphone within the dominant hand.
Holding smartphones while walking is common during active use
(texting, navigation, checking apps), and our approach captures
this real-world scenario better than existing datasets that strap
devices to fixed body positions like waists or belts. We intentionally
allowed natural grip variations without prescribed orientations to
reflect authentic handling patterns. This design enables practical
applications including continuous authentication during app use,
fall detection, and mobility monitoring while users actively hold
their devices. We acknowledge this approach does not represent
phones kept in pockets or bags.

2.5 Dataset applications

This dataset supports multiple research domains: (1) biometric
identification and continuous authentication using gait-based

person recognition, (2) gait analysis including stride dynamics and
walking kinematics across diverse populations, and (3) human
activity recognition and computational modeling of locomotion
behavior. This realistic or unconstrained data collection approach
enhances applicability for real-world deployment scenarios where
rigid device positioning is impractical. Thus, making such resource
particularly valuable for behavioral biometrics, mobile health
monitoring, and deep learning applications requiring ecologically
valid training data.

2.6 Value of the dataset

This study presents a novel dataset for human gait identification
using smartphone sensors. The main characteristics of the dataset
are as follows:

1- The dataset provides unrestricted access to comprehensive
nine-channel of inertial sensors measurements including
accelerometer, gyroscope, and magnetometer.

2- Unlike existing datasets with constrained smartphone
positioning, this dataset captures natural handheld usage patterns.
Thus, it is offering researchers authentic data for developing real-
world applicable biometric solutions.

3- Last but not least, the dataset is considered as a large dataset
for human gait identification using smartphone inertial sensors.
This is due to the participation of 390 individuals within 46.8 km
across all the participants.
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3 Data processing

3.1 Raw data loading and magnitude
calculation

The pre-processing steps are systematically processing
the 3,900 CSV files, which are containing the raw inertial
sensors measurements. Each file represents a single walking
trial with nine-channel time-series data sampled at 30 Hz. The
workflow transforms three-dimensional sensor vectors into scalar
magnitude values representing overall motion intensity. For each
sensor modality (accelerometer, gyroscope, and magnetometer),
magnitude vectors are computed using the Euclidean norm, as
expressed in Equation 1:

Magnitude =
√

x2 + y2 + z2 (1)

where M denotes the computed norm value of the three-
dimensional sensor measurements, and x, y, and z represent the
measurements from the respective sensor axes. This transformation
captures total acceleration, angular velocity, and magnetic field
strength independent of smartphone orientation. Thus, it is
providing robust gait representations which are less sensitive to
smartphone positioning variations. The magnitude calculation
function performs three operations: (1) loads each CSV file, (2)
verifies data integrity across all required sensor channels (accx,
accy, accz, gyx, gyy, gyz, magx, magy, and magz), and (3) generates
three magnitude signals per trial, one for each sensor modality.

3.2 Filters and selection criteria for gait
cycle extraction

Thereafter, following magnitude computation, the data
preprocessing is implemented to attenuate high-frequency
noise while preserving gait-relevant motion characteristics. A
fourth-order Butterworth low-pass filter with a cutoff frequency
of 10 Hz is applied to the three sensors magnitude. Prior to
filtering, edge effects are mitigated by systematically trimming
30 samples from the beginning and 60 samples from the end of
each trial sequence. Peak detection is performed on the filtered
accelerometer magnitude to identify local maxima corresponding
to heel strike events during walking. The detection algorithm
employed three constraints: minimum inter-peak distance of
10 samples, minimum peak height of 10 m/s, and minimum
prominence of 2.5 m/s. Subsequently, the detected peaks are
further refined by enforcing an inter-peak (contiguous peaks)
distance constraint of no more than 22 samples. This is ensuring
physiologically reasonable step intervals while eliminating spurious
detections. This is followed by the segmentation of gait cycles by
identifying triplets of consecutive refined peaks, where each peak
represents a heel strike event. Given that each step corresponds to
half of a complete stride (gait cycle). The three consecutive peaks
define one full gait cycle, where the first and third peaks represent
successive heel strikes of the same foot, while the intermediate peak
captures the contra lateral foot’s heel strike. Thus, the temporal
span between the first and third peaks constitutes one complete
stride cycle. To ensure biomechanical validity, stringent quality

selection criteria are enforced: only cycles with durations between
28 and 44 samples (corresponding to 0.93–1.47 s at the 30 Hz
sampling rate) are retained.

3.3 Temporal normalization and padding
selection

Variability in gait cycle lengths arises from differences in
individual walking speeds and stride patterns, necessitating
temporal normalization for standardized feature extraction
and classification. Temporal normalization is performed by
computing the local median length for each participant/class as
the target standardization length. Twelve padding techniques
are evaluated including constant, edge replication, linear ramp,
maximum/minimum extension, mean, reflection, wrapping,
symmetric, median, cubic spline interpolation, and Piecewise
Aggregate Approximation (PAA). The effectiveness of these
techniques is assessed using minimum Euclidean distance
measurements to evaluate preservation of gait similarity patterns.
The PAA demonstrated superior performance as well as provides
better preserving temporal relationships. The PAA technique
is therefore implemented at both local (per-class) and global
(cross-class) levels following established frameworks (Lin et al.,
2003). This is serving as the optimal technique for gait cycle
standardization prior to feature extraction.

4 Statistical properties of sensor
measurements

To understand the typical patterns observed across our
3,900-file dataset, we examined the descriptive statistics from a
representative recording containing 338 samples, as summarized
in Table 1 . The accelerometer readings along the Z-axis averaged
9.17 m/s2 with a standard deviation of 2.17, capturing both the
gravitational component and the vertical oscillations characteristic
of human gait.

The magnetometer data revealed a strong Z-axis component,
averaging −47.32 μT with a standard deviation of 7.68, consistent
with what we would expect from the Earth’s magnetic field. The
overall magnitude of these readings ranged between 38.43 and
63.52 μT. Meanwhile, the gyroscope measurements showed near-
zero mean values across all axes (with absolute means below
0.03 rad/s), suggesting minimal rotational bias in the sensor.
During natural walking, gyroscope magnitudes typically stayed
below 2.3 rad/s.

One particularly useful aspect of our feature set is
the magnitude calculations, which offer rotation-invariant
representations of the sensor signals. These features preserve
the essential signal intensity while reducing dimensionality
from three dimensions down to one. This approach gives us the
flexibility to characterize gait using both orientation-dependent
features (the individual axis values) and orientation-invariant
features (the computed magnitudes), ultimately supporting more
robust biometric identification regardless of how the device
is positioned.
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TABLE 1 Descriptive statistics from one representative walking trial.

Sensor Axis Mean Std dev Min Max Range Unit

Accelerometer X −0.261 1.435 −4.649 3.705 8.354 m/s2

Y 3.273 1.030 −0.140 5.786 5.926 m/s2

Z 9.166 2.174 4.292 15.986 11.694 m/s2

Magnitude 9.909 2.112 5.154 6.345 111.192 m/s2

Magnetometer X 10.564 10.514 −8.044 37.688 45.732 μT

Y 2.004 6.150 −11.869 12.600 24.469 μT

Z −47.319 7.682 −63.000 −34.988 28.012 μT

Magnitude 50.054 7.534 38.431 63.522 25.091 μT

Gyroscope X 0.011 0.583 −1.988 1.227 3.215 rad/s

Y 0.023 0.237 −1.034 0.782 1.816 rad/s

Z 0.019 0.590 −1.194 1.306 2.500 rad/s

Magnitude 0.750 0.429 0.042 2.276 2.233 rad/s

This example represents one walking trial of one participant. The complete dataset contains 3,900 such files (390 participants × 10 trials each). Magnitude rows (bolded) represent Euclidean
norm. Values rounded to two decimal places. Std Dev, Standard Deviation.

5 Feature extractions

A set of 57 features is extracted from combined gait cycles
across 10 trial sessions to characterize individual walking
patterns for biometric identification. These features are
systematically derived from accelerometer, gyroscope, and
magnetometer magnitude signals using a synchronized multi-
sensor approach. Gait cycles are identified through peak detection
on the accelerometer magnitude signal, with each cycle defined
from one peak to the next, representing the interval from heel
strike to heel strike. Once gait cycle boundaries are established,
the temporal indices (i_start, i_end) are recorded and applied
consistently to extract corresponding segments from the gyroscope
and magnetometer magnitude signals. This index-based mapping
ensures precise temporal alignment across all three sensor
modalities, so that features from each sensor capture the same
physical walking period. In total, 57 features are extracted
to provide a well-rounded representation of gait dynamics.
These features are evenly distributed across the three sensor
modalities. The feature set includes statistical measures, temporal
characteristics, and frequency-domain descriptors, each designed
to capture different aspects of how a person walks. A detailed
explanation of each feature category is provided in the following
sub-sections

5.1 Per-sensor statistical and frequency
features

An identical set of 12 features was extracted from each
sensor’s magnitude signal, yielding 36 features in total.
These included statistical measures (mean, median, variance,
skewness, kurtosis, 25th percentile), frequency-domain
characteristics (dominant frequency via FFT, mid-frequency
power ratio), signal complexity metrics (Hjorth activity,
mobility, and complexity), and area under the curve (AUC)

(Andersson et al., 2024; Al-Mahadeen et al., 2023). Features
were named following the pattern sensor_number_name
(e.g., acc_1_mean, gy_7_dominant_freq, and
mag_10_hjorth_complexity), and so on.

5.2 Temporal and regularity features

Temporal dynamics were captured using jerk (first derivative)
features, with the mean and standard deviation computed for each
sensor (six features: acc_jerk_mean, acc_jerk_std,
gy_jerk_mean, gy_jerk_std, mag_jerk_mean,
and mag_jerk_std). Gait regularity was assessed using
autocorrelation at lag-3 and lag-5 for all three sensors (six features),
along with zero-crossing counts for the accelerometer and
gyroscope (two features), for a total of 14 temporal and regularity
features (Al-Mahadeen et al., 2023).

5.3 Multi-sensor fusion features

Cross-sensor relationships produced seven features: Pearson
correlations between sensor pairs (acc_gy_correlation,
acc_mag_correlation, and gy_mag_correlation),
energy ratios between sensors (acc_gy_ratio,
acc_mag_ratio, and gy_mag_ratio), and total motion
energy integrating all three sensors (total_motion_energy),
totaling seven multi sensors fusion features.

6 Conclusion

This data article presented a new gait-based recognition dataset
within unconditional and large number of participants. Since, the
total number of participants is 390 and their walking provide
natural patterns as individuals simply carry their smartphone in
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their hand. In addition to that, during walking, the participants held
the smartphone without any restrictive mounts or attachments.
This authentic methodology supports the creation of human gait
recognition that function during typical smartphone use and
aids in health-focused applications. The application might be
as identifying fall hazards and movement difficulties in aging
populations.

In another side, the inclusion of data from multiple sensors
allows researchers to determine the most useful metrics for specific
tasks, guiding the design of optimized recognition solutions.
Releasing this dataset publicly tackles a major obstacle in biometric
studies including: the scarcity of standard, shareable data that
has historically prevented consistent validation, and comparison
between research efforts.

The dataset proves that large-scale, real-world behavioral data
is feasible to gather, effectively connecting academic research with
practical implementation. Expanding the dataset to include long-
term tracking, diverse settings, and a wider range of participants
will increase its utility for advancing both mobile security
technologies and digital health tools.
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