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Introduction: Artificial intelligence (AI) systems increasingly rely on complex, multi-
layered software supply chains, creating substantial challenges for reproducibility, 
transparency, and security assurance. Existing software bills of materials inadequately 
capture AI-specific artefacts such as model lineage, training provenance, and 
disclosure metadata, limiting verifiable lifecycle governance.

Methods: This study proposes an Artificial Intelligence Bill of Materials (AIBOM) 
schema that extends the CycloneDX standard through structured schema 
engineering. The framework integrates cryptographic validation and agent-driven 
automation to enable machine-verifiable provenance. An autonomous AI pipeline 
was implemented to conduct continuous environment inspection, vulnerability 
enrichment, and reproducibility auditing across containerised analytic workflows.

Results: Empirical evaluation demonstrates 98.7% reproducibility fidelity 
across replicated executions, 96.2% precision in vulnerability matching against 
reference datasets, and a 63% reduction in manual oversight compared with 
conventional documentation-based approaches.

Discussion: The results demonstrate the feasibility of automated provenance 
assurance and reproducible AI lifecycle validation at scale. The proposed 
AIBOM framework strengthens software supply chain transparency, enhances 
provenance integrity, and provides a generalisable methodology for securing AI 
systems. It further supports alignment with international information security and 
compliance standards, advancing the scientific foundations of reproducibility 
engineering in AI-enabled systems.
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1 Introduction

Trusted Research Environments (TREs) (DARE UK, 2025) are increasingly relied upon 
for the secure analysis of sensitive data (O’Sullivan et al., n.d.), particularly in health, finance, 
and national security domains (EGI TRE Working Group, 2024). These environments are 
governed by strict audit, reproducibility, and disclosure control requirements (DARE UK, 
2023), yet they often lack formal mechanisms to record and validate the software assets used 
in analytic workflows. This gap introduces risks related to software provenance, versioning 
ambiguity, and vulnerability exposure, particularly when workflows incorporate artificial 
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intelligence (AI) models and dependencies that evolve rapidly. To 
address this gap, we propose a methodology for operationalising the 
Artificial Intelligence Bill of Materials (AIBOM) (OWASP, 2025; 
Oakley, 2024), extending conventional SBOM schemas (Garcia et al., 
2025; Lemay and Katiyar, 2025) to explicitly capture the unique 
lifecycle, dependencies, and governance requirements of AI-based 
components deployed within TREs.

An AIBOM represents a structured, machine-readable inventory of 
all AI-relevant assets within an analytic pipeline. These include but are 
not limited to: model artefacts (architecture, version, training data 
lineage), pre- and post-processing code, software dependencies (e.g., 
TensorFlow, PyTorch, Hugging Face Transformers), compute 
infrastructure (e.g., CUDA, GPU acceleration libraries), and 
configuration metadata (e.g., model hyperparameters, quantisation 
levels, floating point precision). In contrast to traditional SBOMs, which 
focus on static binaries and packages, an AIBOM must track dynamic 
components such as retrained models, parameter drift, runtime API 
calls, and agentic decision flows, especially when large language models 
or reinforcement learning agents are embedded within analytic systems.

In this work, we develop a SACRO-aligned AIBOM schema 
tailored for use in TREs Figure 1.

This schema detailed in Figure 1, includes TRE-specific extensions to 
capture software environment isolation metadata (e.g., container hashes, 
base image signatures), disclosure control methods (e.g., suppression, 
rounding, differential privacy), and cryptographically bound output 
artefacts. The automated pipeline we present is agent-driven and designed 
to execute inside a containerised TRE job. It performs three-stage model 
state capture (pre-load, runtime, and post-execution), integrates runtime 
dependency tracking, performs real-time CVE matching (MITRE, 2022) 
through OSV and NVD (NIST, 2022) APIs, and cryptographically binds 
analytic outputs to the AIBOM artefact.

This introduction frames a broader agenda: ensuring that AI 
assets in research environments are not only reproducible, but also 
transparent, verifiable, and securely integrated into regulatory audit 
pipelines. By embedding AIBOM into SACRO-compliant 
infrastructure (DARE UK, 2023), we provide a scalable method for 
tracking AI provenance, enforcing model trust boundaries, and 
supporting federated validation of analytic outputs. The remainder of 
this paper details the AIBOM schema design, describes the automation 
process, and evaluates the system’s operational feasibility in a real-
world TRE deployment.

2 Literature review

Establishing transparent, reproducible, and verifiable AI pipelines 
has become an operational requirement in TREs, especially as software 
supply chains become increasingly modular, decentralised, and 
opaque. The traditional SBOM framework has been critical in 
supporting supply chain transparency; however, it remains insufficient 
for representing the full lifecycle (Can¨ozkan et al., 2024) and 
operational semantics of AI components within regulated data 
environments (Takahashi and Kadobayashi, 2015). To address this 
gap, the concept of an AIBOM is gaining traction, expanding the 
SBOM paradigm to include model training data, configuration states, 
execution contexts, and reproducibility metadata (Beninger et 
al., 2024).

Modern TRE infrastructures require provenance tracking for data 
inputs and analysis outputs but also for software and computational 
artefacts deployed during processing. Provenance capture in TREs is 
typically limited to audit logs and workflow metadata, lacking 
structured artefact traceability across federated systems. This 
deficiency has been highlighted in landscape assessments of federated 
analytics environments, which identify a lack of standardised 
mechanisms for software traceability and software-provenance audits 
(EGI TRE Working Group, 2024). Integrating AIBOMs into TRE 
pipelines offers a mechanism for encoding, validating, and verifying 
the software lineage necessary for high-integrity analytics.

An AIBOM extends the SBOM by embedding AI-specific metadata 
such as model weights, training data references, learning rates, 
environment configurations, and data preprocessing steps. These 
attributes are essential to ensuring semantic equivalence across 
deployments, particularly in federated TRE architectures where 
reproducibility must be guaranteed across isolated compute environments. 
Recent government-issued guidance advocates for harmonisation of AI 
transparency schema with existing standards like CycloneDX (2023) and 
SPDX (2023), while introducing additional fields specific to AI lifecycle 
management, such as cryptographic hashes of model artefacts and 
timestamps for training events (BSI, 2025).

Automation is a key enabler of effective AIBOM integration. 
Without automation, the process of collecting, validating, and 
maintaining accurate software provenance quickly becomes infeasible 
in dynamic environments. Tooling for automated SBOM generation has 
improved, but studies show that current SBOM generators often produce 

FIGURE 1

Machine-readable artificial intelligence bill of materials (AIBOM) schema. This figure presents the structure of a CycloneDX-compatible AIBOM, 
illustrating how AI-specific provenance metadata, including model artefacts, software dependencies, execution context, and cryptographic identifiers, 
are encoded into a standardised, machine-verifiable representation that supports reproducibility, auditability, and supply-chain analysis.
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divergent results for the same input artefacts, depending on their parsing 
heuristics and dependency resolution algorithms (O’Donoghue et al., 
2024). This inconsistency presents a risk for regulated environments 
where the integrity and completeness of provenance records must be 
auditable. As such, schema validation, cryptographic verification, and 
integration of reproducible build mechanisms are essential to ensure 
trustworthiness in the generated AIBOMs (Beninger et al., 2024).

Security risks associated with falsified or tampered SBOM 
artefacts are a growing concern. If AIBOMs are not cryptographically 
signed or linked to an immutable ledger, adversaries can spoof 
component manifests or insert malicious dependencies without 
detection. Mitigations such as digital signatures, hash verification, and 
append-only logs have been proposed to enforce the integrity and 
non-repudiation of SBOM records, and these mechanisms are being 
adapted for AI-specific supply chain artefacts (Ozkan-Okay et al., 
2024). Within TREs, such safeguards are vital due to the highly 
sensitive nature of the data and analytics being performed.

As AI models become increasingly composable and parameterised, 
the reproducibility of results depends on code, data, and on the full 
orchestration environment in which they were executed (Can¨ozkan 
et al., 2024). Systems like the Atlas framework (Spoczynski et al., 2025) 
have demonstrated the feasibility of capturing full-stack reproducibility 
metadata, including environment variables, container state, and 
package-level dependencies. Similar methodologies can be extended 
into the AIBOM schema to ensure that federated TREs can reconstruct 
analytic environments with fidelity.

Moreover, semantic provenance encoding formats such as JSON-LD 
and RO-Crate have proven effective in enabling machine-readable audit 
trails that support validation, versioning, and re-execution of complex 
research pipelines (O’Sullivan et al., n.d.). These technologies offer a 
foundation for encoding AIBOM artefacts in a way that is interoperable 
with existing research metadata infrastructures.

The integration of AIBOMs into TREs addresses multiple long-
standing challenges around reproducibility, security, and transparency. 
The literature underscores the need for structured, automated, and 
validated schema extensions that capture the full provenance of AI 
systems in secure research environments. This paper contributes a 
SACRO-aligned schema and pipeline for operationalising AIBOMs in 
TRE contexts, enabling federated reproducibility and agentic 
automation across secure data infrastructures.

2.1 Positioning AIBOM within the emerging 
AI supply chain ecosystem

The concept of an AIBOM is rapidly evolving across open-source 
communities, standards bodies, and policy forums, reflecting a 
broader recognition that conventional SBOM constructs are 
insufficient for capturing the lifecycle complexity of AI systems. 
Current ecosystem activity increasingly emphasises that AIBOMs 
must move beyond static component inventories and explicitly encode 
model artefacts, training and inference contexts, configuration state, 
and cryptographic provenance. Within initiatives such as the OWASP 
AIBOM project and ongoing extensions to CycloneDX and SPDX, 
there is a clear pivot towards representing AI systems as dynamic, 
stateful entities whose behaviour depends on data lineage, 
parameterisation, execution environment, and temporal factors.

A notable trend in the ecosystem is the shift towards machine-
verifiable and automation-friendly AIBOMs. Rather than relying on 

manually curated documentation, emerging approaches prioritise 
automated discovery of dependencies, runtime introspection of model 
loading and execution, and cryptographic binding of artefacts to their 
execution context. This shift aligns AIBOM development with parallel 
advances in reproducible computing, software supply chain security, and 
vulnerability intelligence, where continuous validation and integrity 
assurance are now viewed as baseline requirements. In this context, 
AIBOMs are increasingly positioned as active control artefacts that 
support verification, replay, and risk assessment, rather than passive 
compliance records.

In parallel, ecosystem discussions are converging on tighter 
integration between AIBOMs and vulnerability disclosure 
mechanisms, including SBOM-VEX and CSAF-aligned workflows. 
The prevailing direction is to enable fine-grained vulnerability 
attribution at the level of AI-specific components, such as model 
frameworks, runtime libraries, and acceleration stacks, while 
accounting for configuration-dependent exploitability. This evolution 
reflects growing awareness that AI systems introduce new forms of 
supply-chain risk that cannot be adequately assessed without 
contextual metadata captured directly within the AIBOM.

The AIBOM approach presented in this paper is consistent with 
these ecosystem trajectories, while contributing a concrete, 
technically grounded instantiation of them. By structuring 
AI-specific provenance, model metadata, and execution context 
within a standard-compatible schema, the work aligns with the 
broader pivot towards lifecycle-aware, verifiable, and automation-
ready AIBOMs. Rather than proposing a competing standard, the 
contribution is positioned as an operational realisation of emerging 
consensus across the AIBOM ecosystem regarding what information 
must be captured to meaningfully support AI transparency, security, 
and reproducibility.

3 Research methodology

This study adopts a systems engineering and applied software 
security methodology to design, implement, and evaluate an 
operational pipeline for generating and managing AIBOMs within 
TREs. The methodology combines secure software lifecycle modelling, 
provenance engineering, and automated vulnerability scanning, with 
a focus on reproducibility, traceability, and compliance in federated 
analytics. The study is structured around three primary components: 
schema design, agent-based automation, and functional evaluation.

The complete implementation of the AIBOM generation and 
validation tools described in this manuscript has been released as an 
open-source repository, aibom-toolkit, and is publicly available at: 
https://github.com/radanliev/aibom-toolkit

3.1 Research design

The research follows a design science paradigm, where the 
AIBOM schema and supporting automation pipeline is iteratively 
developed and tested in a controlled TRE environment. The system is 
implemented using containerised job runners and instrumented with 
autonomous AI agents designed to perform discrete roles in the 
AIBOM generation lifecycle. These agents operate under strict 
sandboxing and follow pre-defined logic encoded in state machines, 
ensuring deterministic behaviour and auditability.
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FIGURE 2

Conceptual artificial intelligence bill of materials (AIBOM) framework. The figure depicts the core domains captured by an AIBOM, including data 
components, model components, software dependencies, hardware context, human and organizational factors, and deployment and operational 
metadata. Together, these domains provide a holistic provenance model for documenting, governing, and auditing AI systems across their lifecycle.

3.2 Schema engineering and extension 
model

The AIBOM schema is modelled as an extension of the CycloneDX 
1.5 JSON standard, augmented with custom SACRO-specific fields to 
reflect the needs of TRE-based secure research analytics. These 
extensions include:

	•	 modelReference: SHA-256 hash of the AI model binary or 
ONNX/TorchScript export

	•	 trainingDataSource: structured metadata referencing source 
datasets and access conditions

	•	 inferenceContext: runtime parameters including batch size, 
quantisation, device (CPU/GPU)

	•	 treContainerHash: full cryptographic hash of the job 
container image

	•	 disclosureControlType: classification of the applied disclosure 
control (e.g., cell suppression, differential privacy)

	•	 outputDigest: SHA-256 digest of output artefacts (tables, plots, 
model predictions)

This schema design was evaluated against common AI lifecycle 
management use cases in federated analytic workflows, and validated for 
compatibility with CycloneDX validators and TRE audit requirements.

Figure 2 provides a detailed schematic representation of the AI 
BOM, a structured documentation framework that enumerates and 
categorises all elements used in the development and operation of 
artificial intelligence systems. At the centre of the diagram is the “AI 
System,” from which six distinct categories radiate: Data Components, 
Model Components, Software Components, Hardware Components, 
Human and Organisational Components, and Deployment and 
Operational Components. Each category is colour-coded and 
subdivided into specific technical elements, for instance, the Data 
Components section includes Training Data, Validation Data, and 
Test Data, while the Model Components section addresses Model 
Architecture and Training Details. The layout is designed to facilitate 
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traceability, support reproducibility, and enable systematic auditing of 
AI systems across their lifecycle.

The AI BOM diagram in Figure 2 captures the full scope of technical 
and operational dependencies that define the construction and 
deployment of an AI model. The Data Components branch identifies 
data sources, formats, preprocessing steps, annotation methods, and 
associated ethical and bias assessments, ensuring that the data lineage 
and quality controls are explicitly recorded. The Model Components 
section specifies the type of model used (e.g., CNN, Transformer), the 
underlying frameworks (such as TensorFlow or PyTorch), 
hyperparameters, version control, training environment (including 
GPU/TPU usage), and convergence criteria. Software Components 
enumerate the exact libraries (e.g., NumPy, Pandas, Scikit-learn) and 
operating system specifications (e.g., Ubuntu 20.04 LTS), while 
including containerisation details such as Docker images and 
Kubernetes orchestration. Hardware Components distinguish between 
development and inference environments, documenting CPU/GPU 
configurations and any use of specialised accelerators. The Human and 
Organisational Components track roles of system developers, domain 
experts, ethical review boards, and link to governance documentation. 
Finally, Deployment and Operational Components record the 
deployment topology (e.g., RESTful API, edge deployment), monitoring 
frameworks for model drift or bias (e.g., Prometheus, Grafana), 
patching and retraining cycles, incident response protocols, and 
quantified risk assessments. Collectively, the diagram operationalises 
the AI BOM concept into a practical tool for system assurance, 
regulatory alignment (e.g., ISO/IEC 42001), and adversarial resilience.

3.3 Agent-based system architecture

The automation pipeline is implemented using a multi-agent 
orchestration model. Each agent is written in Python and executed as 
a lightweight subprocess within the TRE job container. The agents are 
responsible for:

	•	 Pre-execution inspection: Static dependency enumeration using 
pip, conda, and system package managers

	•	 Runtime tracking: Interception of dynamic imports and model 
loading using ptrace-based hooks and logging middleware

	•	 Model state capture: Extraction of architecture, parameter count, 
file checksum, and hyperparameter set

	•	 CVE matching: Real-time query of NVD and OSV databases 
using PURL and CPE identifiers for each dependency

	•	 Output binding: Hashing of analytic outputs and binding to 
AIBOM using a Merkle tree structure

This system architecture ensures deterministic execution, isolation 
of responsibility, and traceable operation within each agent role.

3.4 Evaluation model

To validate the effectiveness of the proposed pipeline, we 
conducted a controlled deployment within a simulated TRE 
environment based on Kubernetes-managed container orchestration. 
A standardised data science workflow involving a federated cancer 
outcome prediction model (XGBoost with SHAP interpretability) was 

executed across three scenarios: (i) manual logging of dependencies; 
(ii) traditional SBOM generation; and (iii) full AIBOM automation 
using agentic AI.

Metrics used in evaluation included:

	•	 Completeness of provenance: percentage of dependencies and 
model metadata captured

	•	 Vulnerability visibility: number and severity of detected CVEs
	•	 Reproducibility integrity: byte-level congruence of recomputed 

AIBOM and analytic outputs in cross-TRE replay
	•	 Automation overhead: additional execution time and system 

resource consumption introduced by AIBOM instrumentation

Sensitivity analysis was performed on different model types 
(linear models, tree ensembles, deep learning frameworks) to assess 
schema adaptability and instrumentation reliability.

4 Schema engineering and extension 
model

The schema engineering process extends the baseline CycloneDX 
specification to support AI-relevant artefacts, including model 
checkpoints, training provenance, environment fingerprints, and 
federated execution states. These extensions are embedded into the 
schema using a nested modular structure to maintain compatibility 
with existing TRE audit and validation pipelines. In particular, the 
schema formalises dependencies across AI pipelines by introducing 
fields for containerised runtime descriptors, reproducibility hashes, 
and temporal metadata for model training and tuning events. The 
engineering process incorporates reproducibility constraints derived 
from prior TRE audits, and integrates validation hooks compatible 
with SACRO’s semi-automated output verification routines. Each stage 
in the schema’s development was validated using deterministic test data 
and simulation-driven lineage propagation. The reproducible steps 
underpinning this engineering model are summarised in Table 1, 
which delineates the discrete design phases, schema control operations, 
and testable validation checkpoints implemented to ensure alignment 
with SACRO’s auditability and provenance integrity requirements.

Following the structured schema engineering process presented 
in Table 1, the next step involves encoding these reproducible 
artefacts into a machine-readable, TRE-compatible schema. The 
JSON template formalises the SACRO-specific AIBOM 
representation, operationalising each engineered component as a 
verifiable object with explicit fields for model artefact identifiers, 
dependency checksums, container signatures, and federated lineage 
anchors. This structured encoding enables automated ingestion into 
TRE data pipelines and supports integrity validation during runtime. 
The JSON format has been selected for its compatibility with existing 
schema validation libraries, cryptographic signature frameworks, and 
interoperability with existing SBOM tooling ecosystems. The 
resulting AIBOM schema captures provenance across execution 
contexts, incorporating both static software libraries and dynamically 
constructed runtime states, which are critical for reproducibility in 
semi-automated checking workflows within SACRO. This template 
forms the basis for downstream automation scripts that perform 
schema conformance checks, provenance audits, and integrity 
enforcement at pipeline boundaries.
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TABLE 1  Reproducible steps for engineering the SACRO-specific AIBOM schema.

Step Task Detailed description Reproducibility notes

1 Base Schema 

Selection

Start with the CycloneDX 1.5 JSON schema as the 

foundational structure for SBOM compatibility.

Ensure the CycloneDX schema is imported using its validated schema URI 

(https://cyclonedx.org/schema/bom-1.5.schema.json). Use schema validators 

such as cyclonedx-python-lib for structural compliance.

2 Model Artefact 

Hashing

Introduce a new modelReference field containing a SHA-

256 hash of the serialised AI model (e.g., .pt., .pb, .onnx).

Use Python’s hashlib to generate the hash at model save time. Store file path and 

hash in BOM under “components”: [{“type”: “ai-model,” …}].

3 Training Data 

Lineage

Add trainingDataSource as a structured metadata object 

capturing dataset name, access mode, data steward, and 

Data Use Agreement ID.

Use UUIDs to track dataset versions; align fields with TRE data catalog formats 

such as DDI or FAIR Data Points. Validate that data access policies are recorded.

4 Inference 

Context 

Tracking

Define a nested inferenceContext object to capture model 

runtime parameters: hardware type, batch size, 

quantisation, floating point precision.

Collect values during execution via instrumentation hooks or framework 

introspection (e.g., PyTorch torch.cuda.get_device_properties, TensorFlow 

tf.config.experimental.list_physical_devices).

5 Container 

Lineage 

Capture

Insert treContainerHash field to represent full 

cryptographic hash of the job container, including base 

image and layers.

Extract the image ID from the container runtime (docker inspect, crictl image, 

or kubectl describe pod) and hash with SHA-256. Log registry and tag.

6 Disclosure 

Method 

Encoding

Define a disclosureControlType field indicating the 

statistical disclosure control technique applied to the 

analytic output.

Use a controlled vocabulary (e.g., “cell-suppression,” “diff-privacy-laplace,” “top-

coding”). This value should be programmatically derived from the applied SDC 

configuration.

7 Output Binding Create an outputDigest field that contains a SHA-256 hash 

of the output artefacts generated by the analytic job.

Apply canonical sorting and hashing (e.g., normalised CSV, pickled DataFrame, 

PDF chart exports). Include file name, byte size, and MIME type for 

reproducibility.

8 Schema 

Extension 

Validation

Run schema validation including custom field extension 

support to ensure backward compatibility and internal 

consistency.

Use jsonschema library to extend CycloneDX and validate the enriched schema. 

Ensure all custom fields are prefixed with x-sacrospec- if strict compliance is 

required.

9 Schema Binding 

and Export

Bind the enriched schema to the SACRO audit registry 

using Merkle tree digest or HMAC with job UUID and 

researcher credentials.

Final AIBOM must be timestamped, digitally signed (e.g., Ed25519 or ECDSA), 

and pushed to secure object storage for future audit, replication, and validation.

1. #!/usr/bin/env python3  
2.  
3. import json  
4. import argparse  
5. from jsonschema import validate  
6. from jsonschema.exceptions import ValidationError  
7.  
8. # Define the SACRO-specific AIBOM schema  
9. aibom_schema = { 
10.     "type": "object", 11.     "properties": { 12.         "bomFormat": {"type": "string", 

"enum": ["CycloneDX"]}, 
13.         "specVersion": {"type": "string", "pattern": "^1\.5$"}, 
14.         "version": {"type": "integer"}, 
15.         "metadata": { 
16.             "type": "object", 
17.             "properties": { 
18.                 "timestamp": {"type": "string", "format": "date-time"}, 
19.                 "tools": { 
20.                     "type": "array", 
21.                     "items": { 22.                         "type": "object", 
23.                         "properties": { 
24.                             "vendor": {"type": "string"}, 
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25.                             "name": {"type": "string"}, 
26.                             "version": {"type": "string"} 
27.                         }, 
28.                         "required": ["vendor", "name", "version"] 
29.                     } 
30.                 }, 
31.                 "component": { 
32.                     "type": "object", 
33.                     "properties": { 
34.                         "type": {"type": "string"}, 
35.                         "name": {"type": "string"}, 
36.                         "version": {"type": "string"}, 
37.                         "hashes": { 
38.                             "type": "array", 
39.                             "items": { 
40.                                 "type": "object", 
41.                                 "properties": { 
42.                                     "alg": {"type": "string"}, 
43.                                     "content": {"type": "string"} 
44.                                 }, 
45.                                 "required": ["alg", "content"] 
46.                             } 
47.                         } 
48.                     }, 
49.                     "required": ["type", "name", "version", "hashes"] 
50.                 } 51.             }, 
52.             "required": ["timestamp", "tools", "component"] 
53.         }, 
54.         "components": { 
55.             "type": "array", 
56.             "items": { 
57.                 "type": "object", 
58.                 "properties": { 59.                     "type": {"type": "string"}, 
60.                     "name": {"type": "string"}, 
61.                     "version": {"type": "string"}, 
62.                     "hashes": { 
63.                         "type": "array", 
64.                         "items": { 
65.                             "type": "object", 
66.                             "properties": { 
67.                                 "alg": {"type": "string"}, 
68.                                 "content": {"type": "string"} 
69.                             }, 70.                             "required": ["alg", "content"] 
71.                         } 
72.                     }, 
73.                     "properties": { 
74.                         "type": "array", 
75.                         "items": { 
76.                             "type": "object", 
77.                             "properties": { 
78.                                 "name": {"type": "string"}, 
79.                                 "value": {"type": "string"} 
80.                             }, 
81.                             "required": ["name", "value"] 
82.                         } 
83.                     } 
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Notes about the schema:
	•	 All properties fields represent SACRO-specific extensions.
	•	 hashes are calculated using SHA-256 to verify artefact integrity.
	•	 externalReferences include CVE records relevant to 

software components.
	•	 The signature block ensures non-repudiation and integrity of the 

entire SBOM artefact.

4.1 Integration into a pipeline notebook

This schema can be integrated (for the validation process) into a 
Jupyter or Google Colab notebook for use in a SACRO-compliant 
Trusted Research Environment (TRE) pipeline as follows:

4.1.1 Pipeline Steps for AIBOM Validation

	 1	 Environment Setup:
Install necessary Python packages:

2  Import Modules and Load AIBOM JSON:

with open(‘aibom_output.json’) as f:

	 3	 Define SACRO-Specific AIBOM Schema
(Use the schema provided above.)

	 4	 Run Validation

except ValidationError as ve:

	 5	 Output Log or Store Result
	•	 Stored in a pipeline results directory.
	•	 Signed and archived for reproducibility.
	•	 Passed to downstream audit or VEX/CSAF modules.

Here is the command-line version:

This tool can be executed via terminal as:

84.                 }, 
85.                 "required": ["type", "name", "version", "hashes", "properties"] 
86.             } 
87.         } 88.     }, 
89.     "required": ["bomFormat", "specVersion", "version", "metadata", "components"] 
90. } 
91. 
92. # Command-line interface 
93. def main(): 
94.     parser = argparse.ArgumentParser(description="Validate a SACRO-specific AIBOM JSON file.") 
95.     parser.add_argument("json_file", help="Path to the AIBOM JSON file") 
96.     args = parser.parse_args() 
97. 98. 
99.         with open(args.json_file, "r") as f:
100.             data = json.load(f)
101.             validate(instance=data, schema=aibom_schema)
102.             print(" Validation successful: AIBOM conforms to SACRO-specific schema.")
103.     except ValidationError as ve:
104.         print(f" Validation failed: {ve.message}")
105.     except Exception as e:
106.         print(f" Error: {str(e)}")
107.
108. if __name__ == "__main__":
109.     main()
110.

1.!pip install jsonschema

1. import json
2. from jsonschema import validate
3. from jsonschema.exceptions import ValidationError

1.  aibom = json.load(f)

1.  validate(instance=aibom, schema=aibom_schema)
2.  print(“AIBOM schema validation successful.”)

1.  print(f ”Schema validation failed: {ve.message}”)

1. � python3 sacro_aibom_validator.py path/to/your/aibom_
file.json
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1. JSON template for a SACRO-specific AIBOM schema 
2. 
3. { 
4.   "bomFormat": "CycloneDX", 
5.   "specVersion": "1.5", 
6.   "version": 1, 
7.   "metadata": { 
8.     "timestamp": "2025-06-20T14:30:00Z", 
9.     "tools": [
10.       {
11.         "vendor": "SACRO",
12.         "name": "AIBOM Generator",
13.         "version": "1.0.0"
14.       }
15.     ],
16.     "component": {
17.       "type": "application",
18.       "name": "Cancer Risk Prediction Pipeline",
19.       "version": "3.2.1",
20.       "hashes": [
21.         {
22.           "alg": "SHA-256",
23.           "content": "8f14e45fceea167a5a36dedd4bea2543eaa0d5e5ac4f6dc0fa6efb2c73d153a3"
24.         }
25.       ]
26.     }
27.   },
28.   "components": [
29.     {
30.       "type": "ai-model",
31.       "name": "XGBoost_Cancer_Predictor",
32.       "version": "1.4.2",
33.       "hashes": [
34.         {
35.           "alg": "SHA-256",
36.           "content": "27e52e8e2bc6d7814e212f3f334b2e7184c87e993a6c9e712b02c0e47bb8a1c1"
37.         }
38.       ],39.       "properties": [
40.         {
41.           "name": "trainingDataSource",
42.           "value": "Cancer Registry Dataset v5 (UUID: 

123e4567-e89b-12d3-a456-426614174000)"
43.         },
44.         {
45.           "name": "inferenceContext",
46.           "value": "{ \"batchSize\": 128, \"precision\": \"fp32\", \"hardware\": \"NVIDIA 

A100 GPU\", \"quantisation\": \"none\" }"
47.         },
48.         {
49.           "name": "treContainerHash",
50.           "value": "sha256:c9d02c39b5f2129e9f3a9fd680e7e99909b77f9e12e71029f1c2ae38

e8c0a120"
51.         },
52.         {
53.           "name": "disclosureControlType",
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The process map in Figure 3 captures the technical workflow 
for embedding and validating SACRO-specific AIBOMs within 
TRE-compatible systems. It begins with a Data Processor, which 
executes analytical tasks inside a Job Container that enforces 
environment isolation, disclosure control, and secure output 
binding. During execution, the AIBOM Capture Pipeline records 
system state and provenance at pre-load, runtime, and 

post-execution phases. These observations populate a structured 
JSON Template, which encodes critical metadata such as model 
artefacts, dependency graphs, container-level hashes, and federated 
lineage. The final Schema Validation module verifies integrity 
through digital signatures and runtime conformance, ensuring full 
alignment with SACRO schema definitions and 
reproducibility requirements.

54.           "value": "diff-privacy-laplace"
55.         },
56.         {
57.           "name": "outputDigest",
58.           "value": "sha256:b4b147bc522828731f1a016bfa72c073e5c57c3b0e6c2cfb64ccda31cbe48f4c"
59.         }
60.       ]
61.     }
62.   ],
63.   "externalReferences": [
64.     {
65.       "type": "vulnerability",
66.       "url": "https://osv.dev/vulnerability/CVE-2023-2953"
67.     }
68.   ],
69.   "signature": {
70.     "alg": "ECDSA",
71.     "publicKey": "MFYwEAYHKoZIzj0CAQYFK4EEAAoDQgAEEZkYwBq...",
72.     "signature": "MEUCIQDrIk6SNmz9Vi7...",
73.     "timestamp": "2025-06-20T14:31:00Z"
74.   }
75. }
76.

FIGURE 3

End-to-end AIBOM generation, validation, and attestation pipeline. The figure illustrates how execution of an AI workload triggers automated capture 
of model artefacts, software dependencies, and execution context, which are consolidated into a machine-readable AIBOM. The pipeline records 
pre-execution, runtime, and post-execution provenance, validates the resulting AIBOM against a formal schema, and cryptographically binds the 
artefact to the execution environment, enabling reproducibility, traceability, and downstream vulnerability analysis.
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To enable operational scalability and reduce manual overhead, the 
Integration Pipeline for Machine-Readable SACRO-Specific AIBOMs 
can be fully automated using agentic AI systems embedded within the 
TRE orchestration layer. These autonomous agents perform 
continuous environment inspection, dependency detection, and 
cryptographic binding of runtime artefacts without direct human 
input. Through scheduled triggers and event-driven monitoring, 
agents can initiate AIBOM captures at key execution checkpoints, 
validate schema conformity, and update federated registries with 
minimal latency. Integration with external CVE databases and policy 
engines allows agentic AI to perform risk triage, notify stakeholders, 
and enforce disclosure governance automatically. This automation 
guarantees schema consistency and traceability but also supports self-
healing infrastructure that reconstitutes analytic containers with 
validated reproducibility, advancing SACRO’s goals of secure, 
auditable, and autonomous research pipelines.

5 Results

The results are derived from empirical validation, automated 
provenance tracking, and reproducibility audits conducted across 
multiple containerised analytics workflows (Figure 4).

The first step was the schema validation for accuracy and coverage. 
Using a controlled set of 25 synthetic and real-world AIBOM files, the 
schema validation engine achieved a 100% success rate in detecting 
structural and semantic non-conformance. Errors ranged from 
missing cryptographic hash entries and invalid timestamp formats to 
incorrect component typing and CycloneDX base format violations. 
The schema extensions ensured compatibility with CycloneDX v1.5 
while enforcing SACRO-mandated metadata fields such as pipeline 
agent, TRE environment fingerprint, and federated execution lineage.

The AIBOM-enhanced pipeline enabled full reconstruction of 
software execution environments across four isolated TREs with 
different security baselines. By leveraging the recorded environment 
hashes, image digests, and dependency trees, identical software stacks 

were instantiated and verified using side-by-side component hashing. 
Reproducibility fidelity reached 98.7%, with minor deviations due to 
version-drift in dynamically retrieved OS libraries not included in the 
original SBOM trace.

The next step was the CVE resolution and risk propagation 
analysis. When integrating live CVE feeds from NVD and OSV, the 
system matched 181 unique vulnerabilities to 6,520 software 
components captured in 17 SACRO-wrapped data science 
workflows. The matching engine triggered 51 critical alerts (CVSS > 
8.9) and proposed 21 automated mitigation actions, including 
dependency freezing, container patching, and environment forking. 
This demonstrates the feasibility of automating continuous 
vulnerability management from AIBOM inventories with 
agentic orchestration.

In terms of human oversight reduction, the comparative 
operational metrics showed a 63% reduction in human analyst time 
per validation cycle (from 110 to 41 min on average), as the AIBOM 
system handled automatic format checking, dependency diffing, 
and CVE enrichment. This aligns with the SACRO principle of 
secure, auditable research with minimal human intervention, 
supporting machine-verifiable compliance in high-
assurance environments.

To ensure auditability and provenance traceability, each generated 
AIBOM instance included a digitally signed provenance 
chain covering:

	•	 Component source repositories
	•	 Container build context (e.g., Dockerfile hash)
	•	 Execution agent and timestamp
	•	 Transformation lineage for federated replication

Audit logs showed end-to-end traceability for all critical software 
components across eight data pipelines in SACRO-compatible TREs. 
Each step was cryptographically verifiable and human-inspectable, 
fulfilling audit requirements under ISO/IEC 27001 and aligning with 
NIST SP 800–218 software supply chain security controls.

FIGURE 4

Automated lifecycle management of AIBOM artefacts using agentic processes. This figure shows how AIBOMs are continuously generated, enriched, 
validated, and updated through automated inspection and analysis of AI execution environments. The process supports ongoing provenance tracking, 
vulnerability correlation, and integrity assurance across evolving AI software supply chains.
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6 Evaluation

This section assesses the effectiveness, robustness, and operational 
utility of the SACRO-specific AIBOM framework across multiple 
technical and governance dimensions. The evaluation focuses on schema 
integrity, system scalability, reproducibility performance, CVE matching 
precision, and integration with existing TRE governance models.

The first step in the evaluation process focused on the schema 
robustness and extensibility. To assess the extensibility of the SACRO-
specific AIBOM schema, we subjected it to multiple schema stress 
tests involving synthetic AIBOM documents with:

	•	 Deeply nested dependency trees (up to 12 levels)
	•	 High component cardinality (over 10,000 components)
	•	 Mixed deterministic and probabilistic hashes
	•	 Hybrid tooling provenance (AI agents + traditional build systems)

The schema validation mechanism handled all test cases without 
failure, confirming both the structural resilience of the design and its 
compatibility with high-complexity, container-based data 
science pipelines.

The next step was performed to evaluate the reproducibility audit. 
Reproducibility was evaluated using a two-phase test across 
geographically distributed TREs, including NHS TRE nodes and a 
simulated secure enclave at the Turing Institute. AIBOM-tracked 
pipelines were re-instantiated using hash-locked container images and 
scriptable environment profiles. The audit confirmed:

	•	 Bit-identical container rehydration in 3/4 sites
	•	 Reconstructable dependency sets via pip/npm/apt 

provenance replays
	•	 Auto-verification of runtime environments via agentic signatures 

embedded in the AIBOM

Deviations occurred only where remote TREs blocked outbound 
hash resolution services, a finding which led to the proposal of an 
internal hash mirror service in future SACRO implementations.

Next, we evaluated the CVE match precision and recall. The 
AIBOM-integrated CVE matching engine was benchmarked against 
the OWASP Dependency-Track and Google’s OSV-Scanner. Results 
across 17 workflows showed:

	•	 Precision: 96.2%
	•	 Recall: 91.4%
	•	 F1 score: 93.7%

Misses were primarily due to undocumented transient 
dependencies or version ambiguity in older Debian-based containers. 
By integrating SHA256 verification against the AIBOM and 
reinforcing semantic versioning constraints, these edge cases can be 
programmatically resolved.

The evaluation process continued with scalability and 
performance under load. Scalability testing simulated batch processing 
of 1,000 SBOMs per hour, each with ~300 components. The validation 
pipeline sustained:

	•	 Median schema check latency: 47 ms
	•	 Mean CVE enrichment time: 2.3 s per SBOM

	•	 Peak memory: 128 MB
	•	 Max CPU: <1 core (single-threaded)

These figures demonstrate operational feasibility of deploying the 
AIBOM validation framework at scale within national TRE-level 
infrastructures or across cross-institutional federated nodes.

The final step was the governance and integration evaluation. 
Qualitative evaluation was conducted with domain leads from the 
SACRO and GRAIMatter projects, focusing on compliance, 
auditability, and usability:

	•	 Full alignment with SACRO’s Software Provenance Chain of 
Trust (SPCoT) model

	•	 Ease of integration with existing FAIR data metadata repositories
	•	 Support for machine-verifiable disclosures under the Five Safes 

governance model
	•	 Sufficient metadata fidelity for ISO/IEC 27001 and GDPR-

compliant audit logs

The stakeholders confirmed that embedding the AIBOM process 
into SACRO-compatible TREs would reduce the overhead of manual 
validation while improving software supply chain visibility, 
particularly in sensitive health, finance, and defence analytics.

6.1 Evaluation scope and external validity

The evaluation presented in this study focuses on validating 
the structural soundness, automation reliability, and 
reproducibility properties of the proposed AIBOM framework 
under controlled and replay-based conditions. While real-world, 
multi-institution deployments can provide valuable operational 
insights, such deployments are often constrained by legal, 
contractual, and governance requirements that restrict 
experimental modification, instrumentation, and disclosure of AI 
pipelines. These constraints make systematic, comparative 
evaluation across institutions difficult to conduct in a scientifically 
controlled manner.

Accordingly, this study adopts a methodology-driven evaluation 
strategy that prioritises internal validity, repeatability, and stress-
testing of the AIBOM schema and automation mechanisms across 
heterogeneous execution contexts. By replaying representative AI 
workflows under varying dependency configurations and execution 
environments, the evaluation isolates the core properties that an 
AIBOM must satisfy to be deployable across organisational 
boundaries: schema completeness, reproducibility fidelity, 
vulnerability attribution accuracy, and automation scalability.

The proposed AIBOM framework is intentionally infrastructure-
agnostic and does not assume a shared execution environment or 
common governance model. As such, the results should be interpreted 
as demonstrating the portability and adoptability of the approach 
rather than performance characteristics tied to a specific institutional 
deployment. This design enables incremental adoption by individual 
organisations and supports future multi-institution integration 
without requiring coordinated infrastructure changes.

Future work will focus on observational studies of AIBOM 
adoption across independent organisational settings, complementing 
the controlled evaluation presented here with longitudinal evidence 
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of operational use. However, the current evaluation establishes the 
necessary technical foundations for such deployments by 
demonstrating that AIBOM artefacts can be generated, validated, and 
replayed with high fidelity under realistic and varied conditions.

7 Discussion

Operationalising AIBOMs within TREs introduces a fundamental 
shift in how software provenance, vulnerability management, and 
reproducibility are enforced in secure data science workflows. While 
regulatory requirements, particularly those concerning data privacy 
and output disclosure, are essential in TREs, they often receive less 
operational priority than computational throughput or analytic 
delivery schedules. This creates a tension where security risks arising 
from software dependencies, model components, or orchestration 
layers remain insufficiently visible to researchers or governance 
officers (Deloitte, 2018).

The integration of AIBOM into the SACRO framework addresses 
this gap by embedding agentic automation into the discovery, 
documentation, and audit of software supply chains. However, as 
shown by existing vulnerability scoring debates (Wiesner, 2022; NIST, 
2022; Manion, 2020), simple heuristics such as static CVSS thresholds 
do not suffice in contexts where multi-layered containers, opaque 
dependency chains, and rapid upstream changes are routine. The 
limitations of current vulnerability reporting are compounded by 
blind spots in the National Vulnerability Database (NVD), particularly 
where components are modified without corresponding CVE entries 
(Manion, 2020). These gaps are particularly dangerous in federated 
research environments where uncoordinated software use could 
introduce systemic risk.

While SBOMs offer machine-readable inventories of software 
components relationships (CISA, 2018; NTIA NT and IA, 2021) their 
utility in TREs depends on the ability to securely exchange, enrich, 
and validate them. The SACRO-specific AIBOM schema proposed in 
this work improves upon existing SBOM tooling by linking 
component hashes, runtime container states, and agent-generated 
environment records to FAIR metadata and reproducible output 
policies. This goes beyond what standard SBOM–VEX coordination 
offers today, especially since empirical studies show a lack of tooling 
that can ingest and action vulnerability disclosures across 
heterogeneous analytic pipelines (Alrich, 2022; Dependency-
Track, 2022).

For AIBOM to scale in practice, automation must extend beyond 
SBOM creation. The full lifecycle, provenance tracking, CVE 
matching, agent verification, and federated reproducibility, must be 
orchestrated without human bottlenecks. The use of signed JSON 
artefacts (akin to CSAF recommendations) ensures tamper-evident 
traceability, while agentic validators reduce operator exposure to fake 
or unauthorised advisories (CISA, n.d.). This directly supports 
SACRO’s goal of semi-automating research output checks while 
preserving the auditability of all software components.

The evolution of standardised operational ontologies (Takahashi 
and Kadobayashi, 2015), including the CYBEX framework for 
cybersecurity exchange (Rutkowski et al., 2010), underscores the 
importance of aligning TRE tooling with globally recognised metadata 
and verification structures. Yet, bibliometric reviews indicate that 
integration of these standards with SBOM/VEX artefacts remains 

sparse (Schmidt, 2022). Although the concept of a bill of materials has 
long been adopted in physical supply chains (Jackson, 2014) and 
reinforced by several legislative efforts (Royce, 2014; Howard, 2017; 
Biden, 2021), their direct application in secure research environments 
is still emergent bill of materials (Carmody et al., 2021; Foster et al., 
2021; NTIA, 2021).

Our work responds to this gap by adapting AIBOM for 
reproducible scientific computing, offering a scalable and standards-
aligned blueprint for adoption across healthcare, government, and 
academic TRE infrastructures.

In sum, the SACRO-AIBOM framework presented here builds 
upon and extends existing SBOM theory and infrastructure with 
reproducibility, automation, and agentic oversight as first-class design 
requirements. This positions it not merely as a passive inventory tool, 
but as an active and federated enforcement mechanism for software 
provenance, aligned with the governance and operational needs of 
modern TREs.

7.1 Data provenance as a first-class 
component of AIBOM

Data provenance is a foundational requirement for meaningful 
AIBOMs, as the behaviour, reliability, and risk profile of AI systems 
are inseparable from the data on which they are trained and evaluated. 
Unlike conventional software components, AI models encode 
statistical properties of their training data, making provenance 
information essential for reproducibility, bias assessment, regulatory 
compliance, and downstream risk analysis. From an AIBOM 
perspective, data provenance must therefore be treated as a first-class 
artefact rather than as auxiliary documentation.

An AIBOM-oriented view of data provenance differs from 
traditional dataset cataloguing by emphasising binding rather than 
exposure. In many regulated and sensitive contexts, it is neither feasible 
nor desirable to embed raw datasets within a bill of materials. Instead, 
an AIBOM captures verifiable references to data assets through 
immutable identifiers, cryptographic digests, versioned metadata, and 
declared access constraints. This includes dataset identifiers (e.g., 
UUIDs or persistent DOIs), dataset version hashes, preprocessing 
transformations, sampling strategies, and temporal validity windows. 
Such representations enable reproducibility and auditability without 
violating confidentiality or data minimisation principles.

Current ecosystem discussions increasingly recognise that AI data 
provenance must be encoded in a machine-readable, schema-aligned 
manner to support automated validation and lifecycle governance. 
Emerging AIBOM practices therefore incorporate structured fields for 
training, validation, and test data lineage, alongside metadata 
describing annotation processes, known biases, licensing terms, and 
permitted use conditions. When combined with model artefact hashes 
and configuration metadata, these data provenance descriptors allow 
downstream users and auditors to reason about model equivalence, 
dataset drift, and potential sources of error or harm.

From a supply chain security perspective, data provenance within 
AIBOMs also plays a critical role in risk attribution. Compromised, 
poisoned, or unrepresentative datasets can introduce vulnerabilities 
that are not detectable through software dependency analysis alone. 
Encoding dataset provenance within the AIBOM enables traceability 
across retraining cycles, supports post-incident forensics, and allows 
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vulnerability or compliance assessments to account for data-
dependent attack surfaces. This is particularly relevant for foundation 
models and composite AI systems, where training data may aggregate 
multiple upstream sources with heterogeneous trust guarantees.

While this paper focuses primarily on schema design and 
automated capture of AI system artefacts, the AIBOM structure 
presented is intentionally designed to accommodate rich data 
provenance metadata. By formalising dataset references, 
transformation descriptors, and cryptographic bindings within the 
same bill of materials as model and software components, the AIBOM 
framework provides a coherent mechanism for integrating data 
provenance into AI lifecycle documentation. This positions AIBOM 
not merely as a software inventory, but as a holistic provenance 
construct capable of supporting reproducibility, accountability, and 
trustworthy AI deployment at scale.

7.2 Failure modes and mitigation strategies 
in AIBOM-centric pipelines

While automated AIBOM generation enables fine-grained 
provenance capture and reproducibility assurance, it is subject to a 
range of runtime failure modes that must be explicitly addressed to 
ensure robustness. These failure scenarios typically arise from the 
dynamic nature of AI execution environments rather than from 
schema design itself, and therefore require mitigation strategies that 
are embedded within the AIBOM lifecycle.

One common failure mode is dependency resolution drift, where 
dynamically retrieved libraries or transient runtime components differ 
between executions despite identical source specifications. From an 
AIBOM perspective, this risk is mitigated by binding dependency 
declarations to cryptographic digests rather than semantic version 
identifiers alone, enabling post-hoc detection of divergence even when 
execution succeeds nominally. In cases where full dependency capture 
is incomplete, conservative fallback strategies can be applied, such as 
flagging unverifiable components and marking the resulting AIBOM 
instance as partially attested.

A second class of failure arises from non-deterministic execution 
artefacts, particularly in AI workflows involving parallelism, hardware 
acceleration, or stochastic training procedures. Rather than enforcing 
strict determinism at runtime, the AIBOM approach mitigates this by 
explicitly encoding execution context, configuration state, and 
randomness sources (e.g., seeds, precision modes) within the bill of 
materials. This allows deviations to be explained, bounded, and 
reproduced analytically, even when bit-identical replay is not feasible.

Incomplete or inconsistent metadata capture represents another 
potential failure scenario, especially when AI components are loaded 
dynamically or generated at runtime. Schema-level validation and 
mandatory field constraints act as a first-line defence, while fallback 
architectures rely on incremental provenance enrichment, whereby 
missing metadata can be appended or reconciled post-execution 
without invalidating the entire AIBOM artefact. This preserves 
continuity of provenance while maintaining explicit visibility 
of uncertainty.

Finally, version ambiguity and identifier mismatch across software 
and model components can lead to false confidence in provenance 
integrity. To mitigate this, AIBOM-centric pipelines prioritise hash-
based identification and provenance binding over name-based 

resolution, ensuring that fallback mechanisms err towards under-
claiming equivalence rather than overstating reproducibility.

Collectively, these mitigation strategies position AIBOMs as 
resilient provenance artefacts capable of tolerating partial failures 
without collapsing trust guarantees. By treating failure handling as a 
schema- and lifecycle-level concern rather than an infrastructure-
specific exception, the AIBOM framework supports robust 
deployment across heterogeneous and evolving AI 
execution environments.

7.3 CVE matching limitations and 
dependency completeness in AIBOMs

While the reported CVE matching precision demonstrates the 
effectiveness of AIBOM-based vulnerability attribution, it is important 
to characterise the sources of residual false negatives and version 
ambiguity. These limitations arise primarily from structural properties 
of contemporary software ecosystems rather than from deficiencies in 
the AIBOM model itself.

One major source of false negatives is the presence of undocumented 
transient dependencies, particularly system-level libraries and 
dynamically loaded modules that are not declared in package manifests. 
Such components may be present at runtime yet remain invisible to 
static dependency enumeration. From an AIBOM perspective, this 
motivates the integration of runtime dependency capture and post-
execution reconciliation, allowing the bill of materials to reflect the 
effective execution state rather than declared intent alone.

A second contributor to ambiguity is semantic version mismatch 
across packaging ecosystems. Vulnerability databases frequently rely 
on name- and version-based identifiers that may not align consistently 
across language-specific package managers, operating system 
distributions, or vendor-patched builds. This can lead to both false 
negatives and false positives when version strings do not map cleanly 
to vulnerability records. AIBOM-centric pipelines mitigate this risk 
by prioritising cryptographic hashes and provenance bindings over 
nominal version identifiers, enabling vulnerability assessments to be 
grounded in artefact identity rather than naming conventions.

Dependency completeness is further affected by container base 
image opacity, where inherited layers introduce components outside 
the scope of application-level manifests. Addressing this requires 
treating container images and their layers as first-class components 
within the AIBOM, ensuring that vulnerability matching encompasses 
application and execution substrates.

Rather than assuming perfect coverage, the AIBOM approach adopts 
conservative matching strategies that explicitly surface uncertainty. 
Components that cannot be unambiguously resolved to known 
vulnerability records are flagged as unverifiable rather than silently 
excluded. This design choice preserves auditability and prevents 
overstatement of security posture, while enabling incremental 
improvement as vulnerability databases and component metadata mature.

By explicitly accounting for these limitations, the AIBOM 
framework supports realistic and transparent vulnerability analysis in 
complex AI software supply chains. Improving dependency 
completeness is framed not as a one-time engineering task, but as an 
iterative provenance enrichment process that benefits from tighter 
integration between AIBOM artefacts, runtime observation, and 
evolving vulnerability intelligence ecosystems.
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7.4 Positioning AIBOM relative to SBOM, 
VEX, and CSAF frameworks

SBOM, VEX, and CSAF standards play complementary but 
distinct roles in contemporary software supply chain security. 
Clarifying their relationship to AIBOMs is essential for understanding 
the unique contribution of the proposed framework.

Traditional SBOMs provide a static inventory of software 
components and dependencies, enabling baseline transparency and 
vulnerability lookup. VEX extends this model by communicating 
exploitability context, indicating whether specific vulnerabilities are 
applicable in a given deployment scenario. CSAF further structures 
the dissemination of vulnerability advisories, remediation guidance, 
and impact assessments across organisational boundaries. 
Collectively, SBOM+VEX and CSAF focus on communicating security 
posture and coordinating response to known vulnerabilities.

In contrast, AIBOMs address a different but complementary 
problem space. Rather than centring on vulnerability notification, an 
AIBOM encodes the provenance, composition, and execution 
semantics of AI systems. This includes model artefacts, training and 
inference data references, runtime configuration, execution 
environment fingerprints, and cryptographic bindings. These 
attributes are critical for AI systems, whose behaviour and risk profile 
are not determined solely by software dependencies, but also by data 
lineage, parameterisation, and execution context.

From this perspective, AIBOMs function as context-providing 
artefacts that enhance the effectiveness of SBOM, VEX, and CSAF 
workflows. By supplying precise provenance and configuration 
metadata, AIBOMs enable more accurate vulnerability applicability 
assessments, reduce ambiguity in exploitability determination, and 
support reproducible verification of advisory impact. Importantly, 
AIBOMs are lifecycle-oriented, capturing dynamic changes such as 
retraining, configuration drift, and environment evolution, which are 
outside the scope of conventional SBOM-based approaches.

The framework presented in this paper is therefore positioned 
not as a replacement for SBOM, VEX, or CSAF, but as a foundational 
provenance layer tailored to AI systems. When combined, these 
standards form a coherent supply chain transparency stack: AIBOMs 
describe what an AI system is and how it was executed, SBOMs 
enumerate what software components are present, and VEX/CSAF 
communicate how vulnerabilities affect those components in practice. 
This layered interpretation clarifies the manuscript’s unique 
contribution and situates AIBOM as an enabling construct for 
trustworthy, auditable, and secure AI lifecycle management.

8 Conclusion

This study presents a reproducible and scientifically validated 
framework for operationalising Artificial Intelligence Bills of Materials 
(AIBOMs) as a foundation for machine-verifiable software provenance 
and AI lifecycle assurance. By extending the CycloneDX schema with 
AI-specific provenance, model lineage, and disclosure metadata, the 
research establishes a formalised approach for encoding the structural 
and behavioural dependencies that underpin modern AI systems.

The proposed AIBOM schema enables fine-grained traceability 
of software components, runtime environments, and agentic AI 

contributions, providing a transparent and auditable representation 
of computational workflows. The accompanying automation pipeline 
demonstrates that integrating agent-based validation and 
cryptographic provenance binding can achieve 98.7% reproducibility 
fidelity, 96.2% vulnerability match precision, and a 63% reduction in 
manual oversight, confirming both the accuracy and operational 
scalability of the approach.

The principal contribution of this research lies in advancing a 
replicable methodology for secure, transparent, and standardised AI 
software provenance. The framework offers a portable foundation that 
other researchers can adopt to enhance reproducibility, vulnerability 
intelligence, and compliance in diverse computational settings. Future 
investigations should extend this work towards automated CSAF/VEX 
integration, dynamic threat intelligence correlation, and self-verifying 
AI pipelines, further strengthening the scientific foundations of AI 
supply chain security and reproducibility science.
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