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Introduction: Artificial intelligence (Al) systems increasingly rely on complex, multi-
layered software supply chains, creating substantial challenges for reproducibility,
transparency, and security assurance. Existing software bills of materials inadequately
capture Al-specific artefacts such as model lineage, training provenance, and
disclosure metadata, limiting verifiable lifecycle governance.

Methods: This study proposes an Artificial Intelligence Bill of Materials (AIBOM)
schema that extends the CycloneDX standard through structured schema
engineering. The framework integrates cryptographic validation and agent-driven
automation to enable machine-verifiable provenance. An autonomous Al pipeline
was implemented to conduct continuous environment inspection, vulnerability
enrichment, and reproducibility auditing across containerised analytic workflows.

Results: Empirical evaluation demonstrates 98.7% reproducibility fidelity
across replicated executions, 96.2% precision in vulnerability matching against
reference datasets, and a 63% reduction in manual oversight compared with
conventional documentation-based approaches.

Discussion: The results demonstrate the feasibility of automated provenance
assurance and reproducible Al lifecycle validation at scale. The proposed
AIBOM framework strengthens software supply chain transparency, enhances
provenance integrity, and provides a generalisable methodology for securing Al
systems. It further supports alignment with international information security and
compliance standards, advancing the scientific foundations of reproducibility
engineering in Al-enabled systems.

KEYWORDS

agentic Al, Al bill of materials (AIBOM), CVE automation, CycloneDX, federated
analytics, reproducibility, schema validation, secure data pipelines

1 Introduction

Trusted Research Environments (TREs) (DARE UK, 2025) are increasingly relied upon
for the secure analysis of sensitive data (O’Sullivan et al., n.d.), particularly in health, finance,
and national security domains (EGI TRE Working Group, 2024). These environments are
governed by strict audit, reproducibility, and disclosure control requirements (DARE UK,
2023), yet they often lack formal mechanisms to record and validate the software assets used
in analytic workflows. This gap introduces risks related to software provenance, versioning
ambiguity, and vulnerability exposure, particularly when workflows incorporate artificial
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intelligence (AI) models and dependencies that evolve rapidly. To
address this gap, we propose a methodology for operationalising the
Artificial Intelligence Bill of Materials (AIBOM) (OWASP, 2025;
Oakley, 2024), extending conventional SBOM schemas (Garcia et al.,
2025; Lemay and Katiyar, 2025) to explicitly capture the unique
lifecycle, dependencies, and governance requirements of Al-based
components deployed within TREs.

An AIBOM represents a structured, machine-readable inventory of
all Al-relevant assets within an analytic pipeline. These include but are
not limited to: model artefacts (architecture, version, training data
lineage), pre- and post-processing code, software dependencies (e.g.,
TensorFlow, PyTorch, Hugging Face Transformers), compute
infrastructure (e.g, CUDA, GPU acceleration libraries), and
configuration metadata (e.g., model hyperparameters, quantisation
levels, floating point precision). In contrast to traditional SBOMs, which
focus on static binaries and packages, an AIBOM must track dynamic
components such as retrained models, parameter drift, runtime API
calls, and agentic decision flows, especially when large language models
or reinforcement learning agents are embedded within analytic systems.

In this work, we develop a SACRO-aligned AIBOM schema
tailored for use in TREs Figure 1.

This schema detailed in Figure 1, includes TRE-specific extensions to
capture software environment isolation metadata (e.g., container hashes,
base image signatures), disclosure control methods (e.g., suppression,
rounding, differential privacy), and cryptographically bound output
artefacts. The automated pipeline we present is agent-driven and designed
to execute inside a containerised TRE job. It performs three-stage model
state capture (pre-load, runtime, and post-execution), integrates runtime
dependency tracking, performs real-time CVE matching (MITRE, 2022)
through OSV and NVD (NIST, 2022) APIs, and cryptographically binds
analytic outputs to the AIBOM artefact.

This introduction frames a broader agenda: ensuring that Al
assets in research environments are not only reproducible, but also
transparent, verifiable, and securely integrated into regulatory audit
pipelines. By embedding AIBOM into SACRO-compliant
infrastructure (DARE UK, 2023), we provide a scalable method for
tracking Al provenance, enforcing model trust boundaries, and
supporting federated validation of analytic outputs. The remainder of
this paper details the AIBOM schema design, describes the automation
process, and evaluates the system’s operational feasibility in a real-
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2 Literature review

Establishing transparent, reproducible, and verifiable AI pipelines
has become an operational requirement in TREs, especially as software
supply chains become increasingly modular, decentralised, and
opaque. The traditional SBOM framework has been critical in
supporting supply chain transparency; however, it remains insufficient
for representing the full lifecycle (Can“ozkan et al., 2024) and
operational semantics of AI components within regulated data
environments (Takahashi and Kadobayashi, 2015). To address this
gap, the concept of an AIBOM is gaining traction, expanding the
SBOM paradigm to include model training data, configuration states,
execution contexts, and reproducibility metadata (Beninger et
al., 2024).

Modern TRE infrastructures require provenance tracking for data
inputs and analysis outputs but also for software and computational
artefacts deployed during processing. Provenance capture in TREs is
typically limited to audit logs and workflow metadata, lacking
structured artefact traceability across federated systems. This
deficiency has been highlighted in landscape assessments of federated
analytics environments, which identify a lack of standardised
mechanisms for software traceability and software-provenance audits
(EGI TRE Working Group, 2024). Integrating AIBOMs into TRE
pipelines offers a mechanism for encoding, validating, and verifying
the software lineage necessary for high-integrity analytics.

An AIBOM extends the SBOM by embedding Al-specific metadata
such as model weights, training data references, learning rates,
environment configurations, and data preprocessing steps. These
attributes are essential to ensuring semantic equivalence across
deployments, particularly in federated TRE architectures where
reproducibility must be guaranteed across isolated compute environments.
Recent government-issued guidance advocates for harmonisation of Al
transparency schema with existing standards like CycloneDX (2023) and
SPDX (2023), while introducing additional fields specific to Al lifecycle
management, such as cryptographic hashes of model artefacts and
timestamps for training events (BSI, 2025).

Automation is a key enabler of effective AIBOM integration.
Without automation, the process of collecting, validating, and
maintaining accurate software provenance quickly becomes infeasible
in dynamic environments. Tooling for automated SBOM generation has

world TRE deployment. improved, but studies show that current SBOM generators often produce
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Machine-readable artificial intelligence bill of materials (AIBOM) schema. This figure presents the structure of a CycloneDX-compatible AIBOM,
illustrating how Al-specific provenance metadata, including model artefacts, software dependencies, execution context, and cryptographic identifiers,
are encoded into a standardised, machine-verifiable representation that supports reproducibility, auditability, and supply-chain analysis.
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divergent results for the same input artefacts, depending on their parsing
heuristics and dependency resolution algorithms (O’Donoghue et al.,
2024). This inconsistency presents a risk for regulated environments
where the integrity and completeness of provenance records must be
auditable. As such, schema validation, cryptographic verification, and
integration of reproducible build mechanisms are essential to ensure
trustworthiness in the generated AIBOMs (Beninger et al., 2024).

Security risks associated with falsified or tampered SBOM
artefacts are a growing concern. If AIBOM:s are not cryptographically
signed or linked to an immutable ledger, adversaries can spoof
component manifests or insert malicious dependencies without
detection. Mitigations such as digital signatures, hash verification, and
append-only logs have been proposed to enforce the integrity and
non-repudiation of SBOM records, and these mechanisms are being
adapted for Al-specific supply chain artefacts (Ozkan-Okay et al.,
2024). Within TREs, such safeguards are vital due to the highly
sensitive nature of the data and analytics being performed.

As AT models become increasingly composable and parameterised,
the reproducibility of results depends on code, data, and on the full
orchestration environment in which they were executed (Can”ozkan
etal, 2024). Systems like the Atlas framework (Spoczynski et al., 2025)
have demonstrated the feasibility of capturing full-stack reproducibility
metadata, including environment variables, container state, and
package-level dependencies. Similar methodologies can be extended
into the AIBOM schema to ensure that federated TREs can reconstruct
analytic environments with fidelity.

Moreover, semantic provenance encoding formats such as JSON-LD
and RO-Crate have proven effective in enabling machine-readable audit
trails that support validation, versioning, and re-execution of complex
research pipelines (O’Sullivan et al,, n.d.). These technologies offer a
foundation for encoding AIBOM artefacts in a way that is interoperable
with existing research metadata infrastructures.

The integration of AIBOMs into TREs addresses multiple long-
standing challenges around reproducibility, security, and transparency.
The literature underscores the need for structured, automated, and
validated schema extensions that capture the full provenance of AI
systems in secure research environments. This paper contributes a
SACRO-aligned schema and pipeline for operationalising AIBOMs in
TRE contexts, enabling federated reproducibility and agentic
automation across secure data infrastructures.

2.1 Positioning AIBOM within the emerging
Al supply chain ecosystem

The concept of an AIBOM is rapidly evolving across open-source
communities, standards bodies, and policy forums, reflecting a
broader recognition that conventional SBOM constructs are
insufficient for capturing the lifecycle complexity of AI systems.
Current ecosystem activity increasingly emphasises that AIBOMs
must move beyond static component inventories and explicitly encode
model artefacts, training and inference contexts, configuration state,
and cryptographic provenance. Within initiatives such as the OWASP
AIBOM project and ongoing extensions to CycloneDX and SPDX,
there is a clear pivot towards representing Al systems as dynamic,
stateful entities whose behaviour depends on data lineage,
parameterisation, execution environment, and temporal factors.

A notable trend in the ecosystem is the shift towards machine-
verifiable and automation-friendly AIBOMs. Rather than relying on
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manually curated documentation, emerging approaches prioritise
automated discovery of dependencies, runtime introspection of model
loading and execution, and cryptographic binding of artefacts to their
execution context. This shift aligns AIBOM development with parallel
advances in reproducible computing, software supply chain security, and
vulnerability intelligence, where continuous validation and integrity
assurance are now viewed as baseline requirements. In this context,
AIBOMs are increasingly positioned as active control artefacts that
support verification, replay, and risk assessment, rather than passive
compliance records.

In parallel, ecosystem discussions are converging on tighter
integration between AIBOMs and vulnerability disclosure
mechanisms, including SBOM-VEX and CSAF-aligned workflows.
The prevailing direction is to enable fine-grained vulnerability
attribution at the level of Al-specific components, such as model
frameworks, runtime libraries, and acceleration stacks, while
accounting for configuration-dependent exploitability. This evolution
reflects growing awareness that Al systems introduce new forms of
supply-chain risk that cannot be adequately assessed without
contextual metadata captured directly within the AIBOM.

The AIBOM approach presented in this paper is consistent with
these ecosystem trajectories, while contributing a concrete,
technically grounded instantiation of them. By structuring
Al-specific provenance, model metadata, and execution context
within a standard-compatible schema, the work aligns with the
broader pivot towards lifecycle-aware, verifiable, and automation-
ready AIBOMs. Rather than proposing a competing standard, the
contribution is positioned as an operational realisation of emerging
consensus across the AIBOM ecosystem regarding what information
must be captured to meaningfully support Al transparency, security,
and reproducibility.

3 Research methodology

This study adopts a systems engineering and applied software
security methodology to design, implement, and evaluate an
operational pipeline for generating and managing AIBOMs within
TREs. The methodology combines secure software lifecycle modelling,
provenance engineering, and automated vulnerability scanning, with
a focus on reproducibility, traceability, and compliance in federated
analytics. The study is structured around three primary components:
schema design, agent-based automation, and functional evaluation.

The complete implementation of the AIBOM generation and
validation tools described in this manuscript has been released as an
open-source repository, aibom-toolkit, and is publicly available at:
https://github.com/radanliev/aibom-toolkit

3.1 Research design

The research follows a design science paradigm, where the
AIBOM schema and supporting automation pipeline is iteratively
developed and tested in a controlled TRE environment. The system is
implemented using containerised job runners and instrumented with
autonomous Al agents designed to perform discrete roles in the
AIBOM generation lifecycle. These agents operate under strict
sandboxing and follow pre-defined logic encoded in state machines,
ensuring deterministic behaviour and auditability.
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3.2 Schema engineering and extension
model

The AIBOM schema is modelled as an extension of the CycloneDX
1.5 JSON standard, augmented with custom SACRO-specific fields to
reflect the needs of TRE-based secure research analytics. These
extensions include:

» modelReference: SHA-256 hash of the AI model binary or
ONNX/TorchScript export
trainingDataSource: structured metadata referencing source

datasets and access conditions

inferenceContext: runtime parameters including batch size,
quantisation, device (CPU/GPU)

o treContainerHash: full cryptographic hash of the job
container image

disclosureControlType: classification of the applied disclosure

control (e.g., cell suppression, differential privacy)

10.3389/fcomp.2026.1735919

« outputDigest: SHA-256 digest of output artefacts (tables, plots,
model predictions)

This schema design was evaluated against common Al lifecycle
management use cases in federated analytic workflows, and validated for
compatibility with CycloneDX validators and TRE audit requirements.

Figure 2 provides a detailed schematic representation of the Al
BOM, a structured documentation framework that enumerates and
categorises all elements used in the development and operation of
artificial intelligence systems. At the centre of the diagram is the “AI
System,” from which six distinct categories radiate: Data Components,
Model Components, Software Components, Hardware Components,
Human and Organisational Components, and Deployment and
Operational Components. Each category is colour-coded and
subdivided into specific technical elements, for instance, the Data
Components section includes Training Data, Validation Data, and
Test Data, while the Model Components section addresses Model
Architecture and Training Details. The layout is designed to facilitate

Data Component:

S
| T—

Tralning Data
Validation Data

Test Data

Hardware Components

Operating Systern
and Environment

Specialized Hardware -

FIGURE 2

Development ;b Al System — )
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Conceptual artificial intelligence bill of materials (AIBOM) framework. The figure depicts the core domains captured by an AIBOM, including data
components, model components, software dependencies, hardware context, human and organizational factors, and deployment and operational
metadata. Together, these domains provide a holistic provenance model for documenting, governing, and auditing Al systems across their lifecycle.
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traceability, support reproducibility, and enable systematic auditing of
Al systems across their lifecycle.

The AI BOM diagram in Figure 2 captures the full scope of technical
and operational dependencies that define the construction and
deployment of an AI model. The Data Components branch identifies
data sources, formats, preprocessing steps, annotation methods, and
associated ethical and bias assessments, ensuring that the data lineage
and quality controls are explicitly recorded. The Model Components
section specifies the type of model used (e.g., CNN, Transformer), the
PyTorch),
hyperparameters, version control, training environment (including

underlying frameworks (such as TensorFlow or
GPU/TPU usage), and convergence criteria. Software Components
enumerate the exact libraries (e.g., NumPy, Pandas, Scikit-learn) and
operating system specifications (e.g., Ubuntu 20.04 LTS), while
including containerisation details such as Docker images and
Kubernetes orchestration. Hardware Components distinguish between
development and inference environments, documenting CPU/GPU
configurations and any use of specialised accelerators. The Human and
Organisational Components track roles of system developers, domain
experts, ethical review boards, and link to governance documentation.
Finally, Deployment and Operational Components record the
deployment topology (e.g., RESTful API, edge deployment), monitoring
frameworks for model drift or bias (e.g., Prometheus, Grafana),
patching and retraining cycles, incident response protocols, and
quantified risk assessments. Collectively, the diagram operationalises
the AT BOM concept into a practical tool for system assurance,
regulatory alignment (e.g., ISO/IEC 42001), and adversarial resilience.

3.3 Agent-based system architecture

The automation pipeline is implemented using a multi-agent
orchestration model. Each agent is written in Python and executed as
a lightweight subprocess within the TRE job container. The agents are
responsible for:

o Pre-execution inspection: Static dependency enumeration using
pip, conda, and system package managers

Runtime tracking: Interception of dynamic imports and model

loading using ptrace-based hooks and logging middleware

o Model state capture: Extraction of architecture, parameter count,
file checksum, and hyperparameter set

o CVE matching: Real-time query of NVD and OSV databases
using PURL and CPE identifiers for each dependency

 Output binding: Hashing of analytic outputs and binding to

AIBOM using a Merkle tree structure

This system architecture ensures deterministic execution, isolation
of responsibility, and traceable operation within each agent role.

3.4 Evaluation model

To validate the effectiveness of the proposed pipeline, we
conducted a controlled deployment within a simulated TRE
environment based on Kubernetes-managed container orchestration.
A standardised data science workflow involving a federated cancer
outcome prediction model (XGBoost with SHAP interpretability) was
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executed across three scenarios: (i) manual logging of dependencies;
(ii) traditional SBOM generation; and (iii) full AIBOM automation
using agentic AL

Metrics used in evaluation included:

« Completeness of provenance: percentage of dependencies and
model metadata captured

Vulnerability visibility: number and severity of detected CVEs

Reproducibility integrity: byte-level congruence of recomputed
AIBOM and analytic outputs in cross-TRE replay

« Automation overhead: additional execution time and system
resource consumption introduced by AIBOM instrumentation

Sensitivity analysis was performed on different model types
(linear models, tree ensembles, deep learning frameworks) to assess
schema adaptability and instrumentation reliability.

4 Schema engineering and extension
model

The schema engineering process extends the baseline CycloneDX
specification to support Al-relevant artefacts, including model
checkpoints, training provenance, environment fingerprints, and
federated execution states. These extensions are embedded into the
schema using a nested modular structure to maintain compatibility
with existing TRE audit and validation pipelines. In particular, the
schema formalises dependencies across Al pipelines by introducing
fields for containerised runtime descriptors, reproducibility hashes,
and temporal metadata for model training and tuning events. The
engineering process incorporates reproducibility constraints derived
from prior TRE audits, and integrates validation hooks compatible
with SACRO’s semi-automated output verification routines. Each stage
in the schema’s development was validated using deterministic test data
and simulation-driven lineage propagation. The reproducible steps
underpinning this engineering model are summarised in Table 1,
which delineates the discrete design phases, schema control operations,
and testable validation checkpoints implemented to ensure alignment
with SACRO?’s auditability and provenance integrity requirements.

Following the structured schema engineering process presented
in Table 1, the next step involves encoding these reproducible
artefacts into a machine-readable, TRE-compatible schema. The
JSON SACRO-specific AIBOM
representation, operationalising each engineered component as a

template formalises the
verifiable object with explicit fields for model artefact identifiers,
dependency checksums, container signatures, and federated lineage
anchors. This structured encoding enables automated ingestion into
TRE data pipelines and supports integrity validation during runtime.
The JSON format has been selected for its compatibility with existing
schema validation libraries, cryptographic signature frameworks, and
interoperability with existing SBOM tooling ecosystems. The
resulting AIBOM schema captures provenance across execution
contexts, incorporating both static software libraries and dynamically
constructed runtime states, which are critical for reproducibility in
semi-automated checking workflows within SACRO. This template
forms the basis for downstream automation scripts that perform
schema conformance checks, provenance audits, and integrity
enforcement at pipeline boundaries.

frontiersin.org


https://doi.org/10.3389/fcomp.2026.1735919
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Radanliev et al.

TABLE 1 Reproducible steps for engineering the SACRO-specific AIBOM schema.

10.3389/fcomp.2026.1735919

Step Task Detailed description Reproducibility notes

1 Base Schema Start with the CycloneDX 1.5 JSON schema as the Ensure the CycloneDX schema is imported using its validated schema URI
Selection foundational structure for SSOM compatibility. (https://cyclonedx.org/schema/bom-1.5.schema.json). Use schema validators

such as cyclonedx-python-lib for structural compliance.

2 Model Artefact | Introduce a new modelReference field containing a SHA- Use Python’s hashlib to generate the hash at model save time. Store file path and
Hashing 256 hash of the serialised AT model (e.g., .pt., .pb, .onnx). hash in BOM under “components”: [{“type”: “ai-model,” ...}].

3 Training Data Add trainingDataSource as a structured metadata object Use UUID:s to track dataset versions; align fields with TRE data catalog formats
Lineage capturing dataset name, access mode, data steward, and such as DDI or FAIR Data Points. Validate that data access policies are recorded.

Data Use Agreement ID.

4 Inference Define a nested inferenceContext object to capture model Collect values during execution via instrumentation hooks or framework
Context runtime parameters: hardware type, batch size, introspection (e.g., PyTorch torch.cuda.get_device_properties, TensorFlow
Tracking quantisation, floating point precision. tf.config.experimental.list_physical_devices).

5 Container Insert treContainerHash field to represent full Extract the image ID from the container runtime (docker inspect, crictl image,
Lineage cryptographic hash of the job container, including base or kubectl describe pod) and hash with SHA-256. Log registry and tag.

Capture image and layers.

6 Disclosure Define a disclosureControlType field indicating the Use a controlled vocabulary (e.g., “cell-suppression,” “diff-privacy-laplace,” “top-
Method statistical disclosure control technique applied to the coding”). This value should be programmatically derived from the applied SDC
Encoding analytic output. configuration.

7 Output Binding | Create an outputDigest field that contains a SHA-256 hash Apply canonical sorting and hashing (e.g., normalised CSV, pickled DataFrame,

of the output artefacts generated by the analytic job. PDF chart exports). Include file name, byte size, and MIME type for
reproducibility.

8 Schema Run schema validation including custom field extension Use jsonschema library to extend CycloneDX and validate the enriched schema.
Extension support to ensure backward compatibility and internal Ensure all custom fields are prefixed with x-sacrospec- if strict compliance is
Validation consistency. required.

9 Schema Binding | Bind the enriched schema to the SACRO audit registry Final AIBOM must be timestamped, digitally signed (e.g., Ed25519 or ECDSA),
and Export using Merkle tree digest or HMAC with job UUID and and pushed to secure object storage for future audit, replication, and validation.

researcher credentials.

. #!/usr/bin/env python3

. import json

. from jsonschema import validate
. from jsonschema.exceptions import ValidationError

1
2
3
4. import argparse
5
6
7

8. # Define the SACRO-specific AIBOM schema
9. aibom_schema = {

10.

"type": "object", 11.

"enum": ["CycloneDX"]},
"specVersion": {"type": "string", "pattern": "~1\.5%$"},

13.
14.
15.
16.
17.
18.
19.
20.
21.
23.
24.

"version": {"type": "integer"},
"metadata": {
"type": "object",
"properties": {

"timestamp": {"type": "string", "format":

"tools": {
"type": "array",
"items": { 22.
"properties": {

"properties": { 12.

"bomFormat": {"type": "string",

"date-time"},

"type": "object",

"vendor": {"type": "string"},
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25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
a47.
48.
49.
50.
52.
53.
54.
55.
56.
57.
58.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.

"name": {"type": "string"},
"version": {"type": "string"}
3

"required": ["vendor", "name", "version"

}J
"component": {
"type": "object",
"properties": {
"type": {"type": "string"},
"name": {"type": "string"},
"version": {"type": "string"},

"hashes": {
"type": "array",
"items": {

"type": "object",
"properties": {
"alg": {"type": "string"},
"content": {"type": "string"}
}J

"required": ["alg", "content"]

}s

"required": ["type", "name", "version", "hashes"]

} 51. ¥

"required": ["timestamp", "tools", "component"]

"components": {
"type": "array",
"items": {

"type": "object",

"properties": { 59. "type": {"type":

"name": {"type": "string"},
"version": {"type": "string"},
"hashes": {
"type": "array",
"items": {
"type": "object",
"properties": {
"alg": {"type": "string"},
"content": {"type": "string"}

"string"},

}, 70. "required": ["alg", "content"]

1
"properties": {
"type": "array",
"items": {
"type": "object",
"properties": {
"name": {"type": "string"},
"value": {"type": "string"}
¥

"required": ["name", "value"]
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84. }s

85. "required": ["type", "name", "version", "hashes", "properties"]
86. }

87. } 88. }s

89. "required": ["bomFormat", "specVersion", "version", "metadata", "components"]
9. }

91.

92. # Command-line interface

93. def main():

94. parser = argparse.ArgumentParser(description="Validate a SACRO-specific AIBOM JSON file.")
95. parser.add_argument("json_file", help="Path to the AIBOM JSON file")
96. args = parser.parse_args()
97. 98.
99. with open(args.json_file, "r") as f:
100. data = json.load(f)
101. validate(instance=data, schema=aibom_schema)
102. print(" Validation successful: AIBOM conforms to SACRO-specific schema.")
103. except ValidationError as ve:
104. print(f" Validation failed: {ve.message}")
105. except Exception as e:
106. print(f" Error: {str(e)}")
107.
108. if __name__ == "_main__":
109. main()
110.

Notes about the schema: with open(‘aibom_output.jsor’) as f:

« All properties fields represent SACRO-specific extensions.

« hashes are calculated using SHA-256 to verify artefact integrity. 1. aibom = json.load(f)

« externalReferences include CVE records relevant to

software components. 3 Define SACRO-Specific AIBOM Schema
« The signature block ensures non-repudiation and integrity of the ~ (Use the schema provided above.)
entire SBOM artefact.

4 Run Validation

4.1 Integration into a pipeline notebook 1. validate(instance=aibom, schema=aibom_schema)
2. print(“AIBOM schema validation successful.”)
This schema can be integrated (for the validation process) into a

Jupyter or Google Colab notebook for use in a SACRO-compliant except ValidationError as ve:

Trusted Research Environment (TRE) pipeline as follows:
1. print(f”Schema validation failed: {ve.message}”)

4.1.1 Pipeline Steps for AIBOM Validation

5 Output Log or Store Result
1 Environment Setup: « Stored in a pipeline results directory.
Install necessary Python packages: « Signed and archived for reproducibility.
« Passed to downstream audit or VEX/CSAF modules.

1.!pip install jsonschema
Here is the command-line version:

2 Import Modules and Load AIBOM JSON:

1. python3 sacro_aibom_validator.py path/to/your/aibom_
1. import json file.json

2. from jsonschema import validate
3. from jsonschema.exceptions import ValidationError This tool can be executed via terminal as:
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1. JSON template for a SACRO-specific AIBOM schema

2.

3. {

4. "bomFormat": "CycloneDX",

5. "specVersion": "1.5",

6. "version": 1,

7. "metadata": {

8. "timestamp": "2025-06-20T14:30:00Z",

9. "tools": [

10. {

11. "vendor": "SACRO",

12. "name": "AIBOM Generator",

13. "version": "1.0.0"

14. }

15. 1,

16. "component": {

17. "type": "application”,

18. "name": "Cancer Risk Prediction Pipeline",

19. "version": "3.2.1",

20. "hashes": [

21. {

22. "alg": "SHA-256",

23. "content": "8fl4e45fceeal67a5a36dedd4bea2543eaa0d5e5ac4f6dcOfabefb2c73d153a3"

24. }

25. ]

26. }

27. 1,

28. "components": [

29. {

30. "type": "ai-model",

31. "name": "XGBoost_Cancer_Predictor",

32. "version": "1.4.2",

33. "hashes": [

34. {

35, "alg": "SHA-256",

36. "content": "27e52e8e2bc6d7814e212f3f334b2e7184c87e993a6c9e712b02cPed47bb8alcl”

37. }

38. 1,39. "properties": [

40. {

41. "name": "trainingDataSource",

42. "value": "Cancer Registry Dataset v5 (UUID:
123e4567-e89b-12d3-a456-426614174000)"

43. 1,

44, {

45, "name": "inferenceContext",

46. "value": "{ \"batchSize\": 128, \"precision\": \"fp32\", \"hardware\": \"NVIDIA
A100 GPU\", \"quantisation\": \"none\" }"

47. },

48. {

49. "name": "treContainerHash",

50. "value": "sha256:c9d02c39b5f2129e9f3a91d680e7e99909b7719e12e71029f1c2ae38
e8cPal2eo"

51. },

52. {

53. "name": "disclosureControlType",
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54. "value": "diff-privacy-laplace”
55. 1,
56. {
57. "name": "outputDigest",
58. "value": "sha256:b4b147bc522828731f1a016bfa72c073e5c57c3blebc2cfb64ccda3lcbed8f4c”
59. }
60. ]
61. }
62. 1,
63. "externalReferences": [
64. {
65. "type": "vulnerability",
66. "url": "https://osv.dev/vulnerability/CVE-2023-2953"
67. }
68. 1,
69. "signature": {
70. "alg": "ECDSA",
71. "publicKey": "MFYWEAYHKo0ZIzjOCAQYFK4EEAAODQgAEEZkYwBq...",
72. "signature": "MEUCIQDrIk6SNmzo9Vi7...",
73. "timestamp": "2025-06-20T14:31:00Z"
74. }
75. }
76.
( {
Job Container ‘model_artifacts':[...],
« Environment isolation :depengiencies':['...],
* Disclosure control Sgﬂ;gégfrﬁh%h :
(& Secure output binding * fed_line;gé' urn:uid-"
}
Y T
AIBOM Capture JSON Template
Pipeline
¢ Pre-load observatlj
¢ Runtime state
o Post-execution provenance
Schema Valldatlon
« Digital signature
* Runtime conformance
FIGURE 3
End-to-end AIBOM generation, validation, and attestation pipeline. The figure illustrates how execution of an Al workload triggers automated capture
of model artefacts, software dependencies, and execution context, which are consolidated into a machine-readable AIBOM. The pipeline records
pre-execution, runtime, and post-execution provenance, validates the resulting AIBOM against a formal schema, and cryptographically binds the
artefact to the execution environment, enabling reproducibility, traceability, and downstream vulnerability analysis.

The process map in Figure 3 captures the technical workflow  post-execution phases. These observations populate a structured

for embedding and validating SACRO-specific AIBOMs within
TRE-compatible systems. It begins with a Data Processor, which
executes analytical tasks inside a Job Container that enforces
environment isolation, disclosure control, and secure output
binding. During execution, the AIBOM Capture Pipeline records
and

system state and provenance at pre-load, runtime,

Frontiers in Computer Science

JSON Template, which encodes critical metadata such as model
artefacts, dependency graphs, container-level hashes, and federated
lineage. The final Schema Validation module verifies integrity
through digital signatures and runtime conformance, ensuring full
with  SACRO and
reproducibility requirements.

alignment schema  definitions
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Initialize job

Pre-SBOM
capture

Crypto hash
binding

Composite
SBOM
generation

Mid-of-job
SBOM capture

Mid-SBOM
snapshot

FIGURE 4

Automated lifecycle management of AIBOM artefacts using agentic processes. This figure shows how AIBOMs are continuously generated, enriched,
validated, and updated through automated inspection and analysis of Al execution environments. The process supports ongoing provenance tracking,
vulnerability correlation, and integrity assurance across evolving Al software supply chains.

Provenance
enrichment

Immutable
archiving &
audit log

REEE {
access &

federation

| rebuild

‘model_artifacts’[..],
‘dependencles::[..],
‘container_hash":
‘fed_lineage':urn:uid-"

Continuous

CVE monitoring JSON Template

To enable operational scalability and reduce manual overhead, the
Integration Pipeline for Machine-Readable SACRO-Specific AIBOMs
can be fully automated using agentic Al systems embedded within the
TRE orchestration layer. These autonomous agents perform
continuous environment inspection, dependency detection, and
cryptographic binding of runtime artefacts without direct human
input. Through scheduled triggers and event-driven monitoring,
agents can initiate AIBOM captures at key execution checkpoints,
validate schema conformity, and update federated registries with
minimal latency. Integration with external CVE databases and policy
engines allows agentic Al to perform risk triage, notify stakeholders,
and enforce disclosure governance automatically. This automation
guarantees schema consistency and traceability but also supports self-
healing infrastructure that reconstitutes analytic containers with
validated reproducibility, advancing SACRO’s goals of secure,
auditable, and autonomous research pipelines.

5 Results

The results are derived from empirical validation, automated
provenance tracking, and reproducibility audits conducted across
multiple containerised analytics workflows (Figure 4).

The first step was the schema validation for accuracy and coverage.
Using a controlled set of 25 synthetic and real-world AIBOM files, the
schema validation engine achieved a 100% success rate in detecting
structural and semantic non-conformance. Errors ranged from
missing cryptographic hash entries and invalid timestamp formats to
incorrect component typing and CycloneDX base format violations.
The schema extensions ensured compatibility with CycloneDX v1.5
while enforcing SACRO-mandated metadata fields such as pipeline
agent, TRE environment fingerprint, and federated execution lineage.

The AIBOM-enhanced pipeline enabled full reconstruction of
software execution environments across four isolated TREs with
different security baselines. By leveraging the recorded environment
hashes, image digests, and dependency trees, identical software stacks

Frontiers in Computer Science

were instantiated and verified using side-by-side component hashing.
Reproducibility fidelity reached 98.7%, with minor deviations due to
version-drift in dynamically retrieved OS libraries not included in the
original SBOM trace.

The next step was the CVE resolution and risk propagation
analysis. When integrating live CVE feeds from NVD and OSV, the
system matched 181 unique vulnerabilities to 6,520 software
components captured in 17 SACRO-wrapped data science
workflows. The matching engine triggered 51 critical alerts (CVSS >
8.9) and proposed 21 automated mitigation actions, including
dependency freezing, container patching, and environment forking.
This demonstrates the feasibility of automating continuous
vulnerability management from AIBOM inventories with
agentic orchestration.

In terms of human oversight reduction, the comparative
operational metrics showed a 63% reduction in human analyst time
per validation cycle (from 110 to 41 min on average), as the AIBOM
system handled automatic format checking, dependency diffing,
and CVE enrichment. This aligns with the SACRO principle of
secure, auditable research with minimal human intervention,
supporting ~ machine-verifiable ~ compliance  in  high-
assurance environments.

To ensure auditability and provenance traceability, each generated
AIBOM

chain covering:

instance included a digitally signed provenance

« Component source repositories

« Container build context (e.g., Dockerfile hash)

o Execution agent and timestamp

o Transformation lineage for federated replication

Audit logs showed end-to-end traceability for all critical software
components across eight data pipelines in SACRO-compatible TREs.
Each step was cryptographically verifiable and human-inspectable,
fulfilling audit requirements under ISO/IEC 27001 and aligning with
NIST SP 800-218 software supply chain security controls.
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6 Evaluation

This section assesses the effectiveness, robustness, and operational
utility of the SACRO-specific AIBOM framework across multiple
technical and governance dimensions. The evaluation focuses on schema
integrity, system scalability, reproducibility performance, CVE matching
precision, and integration with existing TRE governance models.

The first step in the evaluation process focused on the schema
robustness and extensibility. To assess the extensibility of the SACRO-
specific AIBOM schema, we subjected it to multiple schema stress
tests involving synthetic AIBOM documents with:

« Deeply nested dependency trees (up to 12 levels)

« High component cardinality (over 10,000 components)

» Mixed deterministic and probabilistic hashes

« Hybrid tooling provenance (Al agents + traditional build systems)

The schema validation mechanism handled all test cases without
failure, confirming both the structural resilience of the design and its
compatibility ~with  high-complexity, container-based data
science pipelines.

The next step was performed to evaluate the reproducibility audit.
Reproducibility was evaluated using a two-phase test across
geographically distributed TREs, including NHS TRE nodes and a
simulated secure enclave at the Turing Institute. AIBOM-tracked
pipelines were re-instantiated using hash-locked container images and
scriptable environment profiles. The audit confirmed:

« Bit-identical container rehydration in 3/4 sites

o Reconstructable  dependency sets via  pip/npm/apt
provenance replays
o Auto-verification of runtime environments via agentic signatures

embedded in the AIBOM

Deviations occurred only where remote TREs blocked outbound
hash resolution services, a finding which led to the proposal of an
internal hash mirror service in future SACRO implementations.

Next, we evaluated the CVE match precision and recall. The
AIBOM-integrated CVE matching engine was benchmarked against
the OWASP Dependency-Track and Google’s OSV-Scanner. Results
across 17 workflows showed:

o Precision: 96.2%
o Recall: 91.4%
o F1 score: 93.7%

Misses were primarily due to undocumented transient
dependencies or version ambiguity in older Debian-based containers.
By integrating SHA256 verification against the AIBOM and
reinforcing semantic versioning constraints, these edge cases can be
programmatically resolved.

The evaluation process continued with scalability and
performance under load. Scalability testing simulated batch processing
0f 1,000 SBOMs per hour, each with ~300 components. The validation
pipeline sustained:

» Median schema check latency: 47 ms
o Mean CVE enrichment time: 2.3 s per SBOM
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o Peak memory: 128 MB
o Max CPU: <1 core (single-threaded)

These figures demonstrate operational feasibility of deploying the
AIBOM validation framework at scale within national TRE-level
infrastructures or across cross-institutional federated nodes.

The final step was the governance and integration evaluation.
Qualitative evaluation was conducted with domain leads from the
SACRO and GRAIMatter projects, focusing on compliance,
auditability, and usability:

« Full alignment with SACRO’s Software Provenance Chain of
Trust (SPCoT) model

« Ease of integration with existing FAIR data metadata repositories

o Support for machine-verifiable disclosures under the Five Safes
governance model

« Sufficient metadata fidelity for ISO/IEC 27001 and GDPR-
compliant audit logs

The stakeholders confirmed that embedding the AIBOM process
into SACRO-compatible TREs would reduce the overhead of manual
validation while improving software supply chain visibility,
particularly in sensitive health, finance, and defence analytics.

6.1 Evaluation scope and external validity

The evaluation presented in this study focuses on validating
the
reproducibility properties of the proposed AIBOM framework

structural soundness, automation reliability, and
under controlled and replay-based conditions. While real-world,
multi-institution deployments can provide valuable operational
insights, such deployments are often constrained by legal,
that

experimental modification, instrumentation, and disclosure of AI

contractual, and governance requirements restrict
pipelines. These constraints make systematic, comparative
evaluation across institutions difficult to conduct in a scientifically
controlled manner.

Accordingly, this study adopts a methodology-driven evaluation
strategy that prioritises internal validity, repeatability, and stress-
testing of the AIBOM schema and automation mechanisms across
heterogeneous execution contexts. By replaying representative Al
workflows under varying dependency configurations and execution
environments, the evaluation isolates the core properties that an
AIBOM must satisfy to be deployable across organisational
boundaries: schema completeness, reproducibility fidelity,
vulnerability attribution accuracy, and automation scalability.

The proposed AIBOM framework is intentionally infrastructure-
agnostic and does not assume a shared execution environment or
common governance model. As such, the results should be interpreted
as demonstrating the portability and adoptability of the approach
rather than performance characteristics tied to a specific institutional
deployment. This design enables incremental adoption by individual
organisations and supports future multi-institution integration
without requiring coordinated infrastructure changes.

Future work will focus on observational studies of AIBOM
adoption across independent organisational settings, complementing

the controlled evaluation presented here with longitudinal evidence
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of operational use. However, the current evaluation establishes the
necessary technical foundations for such deployments by
demonstrating that AIBOM artefacts can be generated, validated, and
replayed with high fidelity under realistic and varied conditions.

7 Discussion

Operationalising AIBOMs within TREs introduces a fundamental
shift in how software provenance, vulnerability management, and
reproducibility are enforced in secure data science workflows. While
regulatory requirements, particularly those concerning data privacy
and output disclosure, are essential in TREs, they often receive less
operational priority than computational throughput or analytic
delivery schedules. This creates a tension where security risks arising
from software dependencies, model components, or orchestration
layers remain insufficiently visible to researchers or governance
officers (Deloitte, 2018).

The integration of AIBOM into the SACRO framework addresses
this gap by embedding agentic automation into the discovery,
documentation, and audit of software supply chains. However, as
shown by existing vulnerability scoring debates (Wiesner, 2022; NIST,
2022; Manion, 2020), simple heuristics such as static CVSS thresholds
do not suffice in contexts where multi-layered containers, opaque
dependency chains, and rapid upstream changes are routine. The
limitations of current vulnerability reporting are compounded by
blind spots in the National Vulnerability Database (NVD), particularly
where components are modified without corresponding CVE entries
(Manion, 2020). These gaps are particularly dangerous in federated
research environments where uncoordinated software use could
introduce systemic risk.

While SBOMs offer machine-readable inventories of software
components relationships (CISA, 2018; NTIA N'T and IA, 2021) their
utility in TREs depends on the ability to securely exchange, enrich,
and validate them. The SACRO-specific AIBOM schema proposed in
this work improves upon existing SBOM tooling by linking
component hashes, runtime container states, and agent-generated
environment records to FAIR metadata and reproducible output
policies. This goes beyond what standard SBOM-VEX coordination
offers today, especially since empirical studies show a lack of tooling
that can ingest and action vulnerability disclosures across
heterogeneous analytic pipelines (Alrich, 2022; Dependency-
Track, 2022).

For AIBOM to scale in practice, automation must extend beyond
SBOM creation. The full lifecycle, provenance tracking, CVE
matching, agent verification, and federated reproducibility, must be
orchestrated without human bottlenecks. The use of signed JSON
artefacts (akin to CSAF recommendations) ensures tamper-evident
traceability, while agentic validators reduce operator exposure to fake
or unauthorised advisories (CISA, n.d.). This directly supports
SACRO’s goal of semi-automating research output checks while
preserving the auditability of all software components.

The evolution of standardised operational ontologies (Takahashi
and Kadobayashi, 2015), including the CYBEX framework for
cybersecurity exchange (Rutkowski et al.,, 2010), underscores the
importance of aligning TRE tooling with globally recognised metadata
and verification structures. Yet, bibliometric reviews indicate that
integration of these standards with SBOM/VEX artefacts remains
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sparse (Schmidt, 2022). Although the concept of a bill of materials has
long been adopted in physical supply chains (Jackson, 2014) and
reinforced by several legislative efforts (Royce, 2014; Howard, 2017;
Biden, 2021), their direct application in secure research environments
is still emergent bill of materials (Carmody et al., 2021; Foster et al.,
2021; NTIA, 2021).

Our work responds to this gap by adapting AIBOM for
reproducible scientific computing, offering a scalable and standards-
aligned blueprint for adoption across healthcare, government, and
academic TRE infrastructures.

In sum, the SACRO-AIBOM framework presented here builds
upon and extends existing SBOM theory and infrastructure with
reproducibility, automation, and agentic oversight as first-class design
requirements. This positions it not merely as a passive inventory tool,
but as an active and federated enforcement mechanism for software
provenance, aligned with the governance and operational needs of
modern TREs.

7.1 Data provenance as a first-class
component of AIBOM

Data provenance is a foundational requirement for meaningful
AIBOMs, as the behaviour, reliability, and risk profile of AI systems
are inseparable from the data on which they are trained and evaluated.
Unlike conventional software components, AI models encode
statistical properties of their training data, making provenance
information essential for reproducibility, bias assessment, regulatory
compliance, and downstream risk analysis. From an AIBOM
perspective, data provenance must therefore be treated as a first-class
artefact rather than as auxiliary documentation.

An AIBOM-oriented view of data provenance differs from
traditional dataset cataloguing by emphasising binding rather than
exposure. In many regulated and sensitive contexts, it is neither feasible
nor desirable to embed raw datasets within a bill of materials. Instead,
an AIBOM captures verifiable references to data assets through
immutable identifiers, cryptographic digests, versioned metadata, and
declared access constraints. This includes dataset identifiers (e.g.,
UUIDs or persistent DOIs), dataset version hashes, preprocessing
transformations, sampling strategies, and temporal validity windows.
Such representations enable reproducibility and auditability without
violating confidentiality or data minimisation principles.

Current ecosystem discussions increasingly recognise that AI data
provenance must be encoded in a machine-readable, schema-aligned
manner to support automated validation and lifecycle governance.
Emerging AIBOM practices therefore incorporate structured fields for
training, validation, and test data lineage, alongside metadata
describing annotation processes, known biases, licensing terms, and
permitted use conditions. When combined with model artefact hashes
and configuration metadata, these data provenance descriptors allow
downstream users and auditors to reason about model equivalence,
dataset drift, and potential sources of error or harm.

From a supply chain security perspective, data provenance within
AIBOMs also plays a critical role in risk attribution. Compromised,
poisoned, or unrepresentative datasets can introduce vulnerabilities
that are not detectable through software dependency analysis alone.
Encoding dataset provenance within the AIBOM enables traceability
across retraining cycles, supports post-incident forensics, and allows
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vulnerability or compliance assessments to account for data-
dependent attack surfaces. This is particularly relevant for foundation
models and composite Al systems, where training data may aggregate
multiple upstream sources with heterogeneous trust guarantees.
While this paper focuses primarily on schema design and
automated capture of Al system artefacts, the AIBOM structure
presented is intentionally designed to accommodate rich data
provenance metadata. By formalising dataset references,
transformation descriptors, and cryptographic bindings within the
same bill of materials as model and software components, the AIBOM
framework provides a coherent mechanism for integrating data
provenance into Al lifecycle documentation. This positions AIBOM
not merely as a software inventory, but as a holistic provenance
construct capable of supporting reproducibility, accountability, and

trustworthy AI deployment at scale.

7.2 Failure modes and mitigation strategies
in AIBOM-centric pipelines

While automated AIBOM generation enables fine-grained
provenance capture and reproducibility assurance, it is subject to a
range of runtime failure modes that must be explicitly addressed to
ensure robustness. These failure scenarios typically arise from the
dynamic nature of Al execution environments rather than from
schema design itself, and therefore require mitigation strategies that
are embedded within the AIBOM lifecycle.

One common failure mode is dependency resolution drift, where
dynamically retrieved libraries or transient runtime components differ
between executions despite identical source specifications. From an
AIBOM perspective, this risk is mitigated by binding dependency
declarations to cryptographic digests rather than semantic version
identifiers alone, enabling post-hoc detection of divergence even when
execution succeeds nominally. In cases where full dependency capture
is incomplete, conservative fallback strategies can be applied, such as
flagging unverifiable components and marking the resulting AIBOM
instance as partially attested.

A second class of failure arises from non-deterministic execution
artefacts, particularly in AT workflows involving parallelism, hardware
acceleration, or stochastic training procedures. Rather than enforcing
strict determinism at runtime, the AIBOM approach mitigates this by
explicitly encoding execution context, configuration state, and
randomness sources (e.g., seeds, precision modes) within the bill of
materials. This allows deviations to be explained, bounded, and
reproduced analytically, even when bit-identical replay is not feasible.

Incomplete or inconsistent metadata capture represents another
potential failure scenario, especially when AI components are loaded
dynamically or generated at runtime. Schema-level validation and
mandatory field constraints act as a first-line defence, while fallback
architectures rely on incremental provenance enrichment, whereby
missing metadata can be appended or reconciled post-execution
without invalidating the entire AIBOM artefact. This preserves
continuity of provenance while maintaining explicit visibility
of uncertainty.

Finally, version ambiguity and identifier mismatch across software
and model components can lead to false confidence in provenance
integrity. To mitigate this, AIBOM-centric pipelines prioritise hash-
based identification and provenance binding over name-based
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resolution, ensuring that fallback mechanisms err towards under-
claiming equivalence rather than overstating reproducibility.
Collectively, these mitigation strategies position AIBOMs as
resilient provenance artefacts capable of tolerating partial failures
without collapsing trust guarantees. By treating failure handling as a
schema- and lifecycle-level concern rather than an infrastructure-
specific exception, the AIBOM framework supports robust
deployment  across and Al

heterogeneous evolving

execution environments.

7.3 CVE matching limitations and
dependency completeness in AIBOMs

While the reported CVE matching precision demonstrates the
effectiveness of AIBOM-based vulnerability attribution, it is important
to characterise the sources of residual false negatives and version
ambiguity. These limitations arise primarily from structural properties
of contemporary software ecosystems rather than from deficiencies in
the AIBOM model itself.

One major source of false negatives is the presence of undocumented
transient  dependencies, particularly system-level libraries and
dynamically loaded modules that are not declared in package manifests.
Such components may be present at runtime yet remain invisible to
static dependency enumeration. From an AIBOM perspective, this
motivates the integration of runtime dependency capture and post-
execution reconciliation, allowing the bill of materials to reflect the
effective execution state rather than declared intent alone.

A second contributor to ambiguity is semantic version mismatch
across packaging ecosystems. Vulnerability databases frequently rely
on name- and version-based identifiers that may not align consistently
across language-specific package managers, operating system
distributions, or vendor-patched builds. This can lead to both false
negatives and false positives when version strings do not map cleanly
to vulnerability records. AIBOM-centric pipelines mitigate this risk
by prioritising cryptographic hashes and provenance bindings over
nominal version identifiers, enabling vulnerability assessments to be
grounded in artefact identity rather than naming conventions.

Dependency completeness is further affected by container base
image opacity, where inherited layers introduce components outside
the scope of application-level manifests. Addressing this requires
treating container images and their layers as first-class components
within the AIBOM, ensuring that vulnerability matching encompasses
application and execution substrates.

Rather than assuming perfect coverage, the AIBOM approach adopts
conservative matching strategies that explicitly surface uncertainty.
Components that cannot be unambiguously resolved to known
vulnerability records are flagged as unverifiable rather than silently
excluded. This design choice preserves auditability and prevents
overstatement of security posture, while enabling incremental
improvement as vulnerability databases and component metadata mature.

By explicitly accounting for these limitations, the AIBOM
framework supports realistic and transparent vulnerability analysis in
complex AI software supply chains. Improving dependency
completeness is framed not as a one-time engineering task, but as an
iterative provenance enrichment process that benefits from tighter
integration between AIBOM artefacts, runtime observation, and
evolving vulnerability intelligence ecosystems.
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7.4 Positioning AIBOM relative to SBOM,
VEX, and CSAF frameworks

SBOM, VEX, and CSAF standards play complementary but
distinct roles in contemporary software supply chain security.
Clarifying their relationship to AIBOMs is essential for understanding
the unique contribution of the proposed framework.

Traditional SBOMs provide a static inventory of software
components and dependencies, enabling baseline transparency and
vulnerability lookup. VEX extends this model by communicating
exploitability context, indicating whether specific vulnerabilities are
applicable in a given deployment scenario. CSAF further structures
the dissemination of vulnerability advisories, remediation guidance,
and impact assessments across organisational boundaries.
Collectively, SBOM+VEX and CSAF focus on communicating security
posture and coordinating response to known vulnerabilities.

In contrast, AIBOMs address a different but complementary
problem space. Rather than centring on vulnerability notification, an
AIBOM encodes the provenance, composition, and execution
semantics of Al systems. This includes model artefacts, training and
inference data references, runtime configuration, execution
environment fingerprints, and cryptographic bindings. These
attributes are critical for Al systems, whose behaviour and risk profile
are not determined solely by software dependencies, but also by data
lineage, parameterisation, and execution context.

From this perspective, AIBOMs function as context-providing
artefacts that enhance the effectiveness of SBOM, VEX, and CSAF
workflows. By supplying precise provenance and configuration
metadata, AIBOM:s enable more accurate vulnerability applicability
assessments, reduce ambiguity in exploitability determination, and
support reproducible verification of advisory impact. Importantly,
AIBOMs are lifecycle-oriented, capturing dynamic changes such as
retraining, configuration drift, and environment evolution, which are
outside the scope of conventional SBOM-based approaches.

The framework presented in this paper is therefore positioned
not as a replacement for SBOM, VEX, or CSAF, but as a foundational
provenance layer tailored to AI systems. When combined, these
standards form a coherent supply chain transparency stack: AIBOMs
describe what an Al system is and how it was executed, SBOMs
enumerate what software components are present, and VEX/CSAF
communicate how vulnerabilities affect those components in practice.
This layered interpretation clarifies the manuscript's unique
contribution and situates AIBOM as an enabling construct for
trustworthy, auditable, and secure Al lifecycle management.

8 Conclusion

This study presents a reproducible and scientifically validated
framework for operationalising Artificial Intelligence Bills of Materials
(AIBOMs) as a foundation for machine-verifiable software provenance
and Al lifecycle assurance. By extending the CycloneDX schema with
Al-specific provenance, model lineage, and disclosure metadata, the
research establishes a formalised approach for encoding the structural
and behavioural dependencies that underpin modern Al systems.

The proposed AIBOM schema enables fine-grained traceability
of software components, runtime environments, and agentic Al
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contributions, providing a transparent and auditable representation
of computational workflows. The accompanying automation pipeline
that
cryptographic provenance binding can achieve 98.7% reproducibility

demonstrates integrating agent-based validation and
fidelity, 96.2% vulnerability match precision, and a 63% reduction in
manual oversight, confirming both the accuracy and operational
scalability of the approach.

The principal contribution of this research lies in advancing a
replicable methodology for secure, transparent, and standardised Al
software provenance. The framework offers a portable foundation that
other researchers can adopt to enhance reproducibility, vulnerability
intelligence, and compliance in diverse computational settings. Future
investigations should extend this work towards automated CSAF/VEX
integration, dynamic threat intelligence correlation, and self-verifying
Al pipelines, further strengthening the scientific foundations of AI
supply chain security and reproducibility science.
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