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Security of drivers in intelligent 
transportation systems: 
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Driver drowsiness is a serious concern for road safety within intelligent transportation 
systems, and it can undermine the safety and dependability of critical transport 
infrastructure. As modern vehicles become more connected and data-focused, 
centralized learning systems that share driver and vehicle information can expose 
private details and raise privacy and security concerns. This study presents a 
privacy-preserving framework that enables secure learning among multiple 
vehicles without sharing raw data. It uses the On-Board Diagnostic-II sensor 
data, combined with transfer learning, to detect driver drowsiness in real time 
within a federated learning framework. Signals such as speed, engine revolutions, 
throttle position, and steering torque are extracted from cars and then converted 
into image representations using Mel-Frequency Cepstral Coefficients so the 
model can identify changes in driving behavior. These image features are used 
to train a pretrained ResNet50 network; this trained model can classify driver 
states as drowsy or normal. Each vehicle trains on its own data while the central 
server updates the shared model weights through a client-weighted averaging 
strategy that keeps learning balanced for all clients. This process keeps data 
private while the model trained on different driving pattern. Using client weights 
DrowsyXnet achieved 98.29% accuracy, which is nearly matched the centralized 
baseline of 98.67%. The latent feature graph showed a clear separation between 
drowsy and normal states, indicating that the model learns the underlying signals 
rather than merely incidental correlations. The proposed framework improves 
intelligent transportation systems while preventing leakage of private data. The 
use of driver drowsiness detection system into vehicles can prevent drowsiness 
related accidents and enhance overall road safety.
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1 Introduction

Transportation systems are a major part of modern infrastructure to keep societies 
connected by the movement of people and goods. These transportation systems still encounter 
challenges related to human reliability and road safety. Despite many other causes, driver 
drowsiness is the most common and dangerous cause of accidents. It threatens both lives and 
the stability of intelligent transport networks that require drivers to be focused. Every year, 
1.35 million people die in road crashes, averaging 3,700 daily fatalities. Beyond the human life 
loss these incidents causes massive economic costs to families and nations. In 2018, the 
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Malaysian government figured that every road death caused a loss of 
around 3.12 million, according to the Value of Statistical Life (Ministry 
of Transport Malaysia, 2020). Figure 1 shows a graph illustrating the 
number of road accidents and deaths in Malaysia from 2010 to 2024. 
Road accidents generally increased over the years and reached a top 
in 2019 but decreased during the pandemic in 2020 and 2021. In 2023, 
both accidents and fatalities increased and deaths jumped to over 
12,000 Accidents decreased in 2024 but the death rate was still 
alarmingly high. The sources for this data include the Ministry of 
Transport Malaysia, as well as The Star and Paultan.org (Ministry of 
Transport Malaysia, 2021; Paultan.org, 2022; The Star, 2023, 2024).

Drowsiness causes serious risks for driver response time and 
lapses in awareness, which increases accidents globally. This affects 
thousands of drivers daily including long-haul truckers so there is 
need for solution. Artificial intelligence offers a solution to prevent 
accidents by detecting drowsiness in drivers. Recognizing that sleep 
issues and impaired driving performance emphasize the urgency of 
addressing drowsiness for road safety (Khan et al., 2022). According 
to Sharma et al. (2021), machine learning is a subset of artificial 
intelligence (AI) that learns from features through algorithms. It uses 
statistical learning to improve detection. Conversely, deep learning 
relies on extensive data for learning and involves multiple layers in the 
neural network. Artificial intelligence aims for human-like results and 
uses machine learning and deep learning algorithms because it 
requires a lot of data to train and boost performance. Many researchers 
are using machine learning and deep learning to solve complex 
problems in various fields (Umair et al., 2021; Ahmad et al., 2023; 
Umair et al., 2024). Using deep learning and machine learning 
techniques, researchers have provided solutions for detecting and 
preventing accidents caused by driver drowsiness. Advancements in 
understanding and identifying driver drowsiness are facing ongoing 
challenges, despite efforts to develop more effective measurement 
methods. However, Lenné and Jacobs (2016) reviewed research 

methods for predicting drowsiness-related driving events and 
discussed future opportunities for enhancing detection techniques. 
The authors identify the challenges of driver drowsiness detection, 
which hinders the development of more effective measurement 
methods. A survey by Arceda et al. (2020) stated that most drowsiness 
detection methods still have to be tested in real driving conditions. 
Most testing is done in simulated environments that do not reflect real 
road conditions. De Naurois et al. (2019) investigate the challenge of 
incorporating contextual information into drowsiness detection. 
Factors such as traffic flow and time of day strongly influence how 
drivers respond. Most driver drowsiness detection systems have not 
utilized these elements due to data limitations, privacy concerns, and 
the unpredictable nature of real driving. Recent artificial intelligence 
methods show promising results in detecting driver drowsiness 
through physiological and behavioral signals, and machine learning 
models are increasingly used in vehicle safety systems to identify early 
signs of fatigue from sensor data. Traditional centralized methods still 
face serious limitations, as sending driving data to external servers 
increases privacy and security risks in connected vehicles. Federated 
learning offers a possible solution by training models locally on each 
vehicle or monitoring unit without exposing personal information.

This study introduces a privacy-preserving framework to detect 
driver drowsiness using On-Board Diagnostics II (OBD-II) data and 
transfer learning within a Class-Weighted Federated Averaging 
(CW-FedAvg) setup. OBD-II sensor data, such as speed, engine 
revolutions per minute (RPM), throttle position, and steering torque, 
are converted into Mel-Frequency Cepstral Coefficient (MFCC) 
images. This transformation allows the model to predict temporal 
changes and visual patterns. A pretrained ResNet50 network is fine-
tuned to classify driver states on each client, and the server applies a 
CW-FedAvg strategy to keep learning balanced across different client 
cars. Model behavior is further analyzed through t-Distributed 
Stochastic Neighbor Embedding (t-SNE), Uniform Manifold 

FIGURE 1

Road traffic accidents and fatalities in Malaysia (2010–2024).
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Approximation Projection (UMAP) and SHapley Additive 
exPlanations (SHAP). These techniques are used to evaluate the model 
and its ability to learned correctly. Statistical metrics, such as the 
Matthews Correlation Coefficient (MCC), Cohen’s kappa (κ), and the 
95% Confidence Interval (95% CI), are also used to analyze the 
stability and reliability of the results. This framework improves 
detection accuracy and privacy within intelligent transportation 
infrastructure. The main contributions of this study are as follows:

	•	 Use of OBD-II sensor data combined with MFCC for converting 
time-series signals into image representations.

	•	 Integration of a pretrained ResNet50 model within a federated 
learning framework for improved accuracy and privacy 
preservation.

	•	 A CW-FedAvg scheme mitigates class imbalance and stabilizes 
convergence under non-independent and identically distributed 
(non-IID) data.

	•	 Comparative experiments with FedAvg, FedProx, and lightweight 
CNN backbones confirm near-centralized accuracy while 
maintaining privacy.

	•	 Interpretability analyses (t-SNE, UMAP, SHAP) and statistical 
validation (MCC, κ, 95% CI) confirm model reliability.

Driver monitoring within intelligent transportation plays an 
important role in improving the safety and resilience of mobility 
systems. The proposed framework strengthens reliability and privacy 
in assessing driver alertness while protecting road transportation as a 
vital part of modern infrastructure. Altogether, this study supports the 
development of safer and more secure transport networks through 
practical means. Section 2 provides an overview of existing research 
on driver drowsiness detection methods through the literature review. 
Section 3, Materials and Methods, describes the workflow in detail, 
including the collection of OBD-II sensor data, preprocessing of time-
series signals, conversion into image representations using MFCCs, 
and training of the pretrained ResNet50 model within a federated 
transfer learning framework. In Section 4, the study’s results are 
presented, followed by a discussion of the results and limitations in 
Section 5. Section 6 concludes the paper and outlines future directions.

2 Literature review

In recent years, researchers have made steady progress in creating 
and improving methods that can detect driver’s drowsiness with 
greater accuracy and reliability. Different detection methods for driver 
drowsiness have been developed in recent studies, including image-
based, biological-based, vehicle-based, and hybrid. Reddy et al. (2017) 
divide driver monitoring methods into three groups, with the first 
analyzing vehicle behavior, such as acceleration, braking, and steering. 
The second method uses physiological signal inputs like heart rate and 
brain signals to check for drowsiness. The third method covers 
computer vision to study facial expressions and eye movements in 
real-time. In a recent study, Dua et al. (2021) suggest that combining 
vehicle data with physiological and behavioral features can improve 
the accuracy of drowsiness detection in intelligent transportation. 
Behavioral features include head face and eye movements while 
physiological measures include Electrooculography (EOG), 
Electroencephalograms (EEG), Electrocardiograms (ECG) and heart 

rate. Vehicle sensors data collected through OBD-II port include 
speed, RPM, throttle position and steering behavior which can 
provide detection data for driver drowsiness. In a recent systematic 
review Shaik (2023) studied methods for detecting and predicting 
driver drowsiness using machine learning, computer vision and 
physiological data. These hybrid detection techniques are grouped 
using physiological signals, behavioral features, and vehicle sensors to 
highlight research trends and ongoing challenges in driver drowsiness 
detection.

In recent studies, researchers have utilized different approaches to 
detect driver drowsiness using machine learning and deep learning 
with data from driver behavior, physiological signals, and vehicle 
sensors. But in the domain of vehicle behavior, mainly OBD-II 
sensors, such as steering angle, throttle position, and speed sensors, 
are key to early detection of driver drowsiness. Other sources of 
vehicle behavior, such as the global positioning system (GPS), 
gyroscopes, lane position, and engine RPM, play an important role in 
identifying the driving patterns that lead to driver drowsiness. Studies 
by various researchers show that continuous vehicle data can be used 
to train models to prevent risky driving events. Physiological 
indicators, including EEG, ECG, EOG, EMG, and wearable sensor 
data, have also proven useful in classifying drowsy states (Harkous and 
Artail, 2019; Malik and Nandal, 2023; Arefnezhad et al., 2019). Also, 
recent studies by Kundinger et al. (2020) and Nasri et al. (2022) 
showed that models built on physiological and behavioral signals can 
reach high accuracy in detecting drowsiness. Martins et al. (2021) 
examined wearable systems for fatigue monitoring and noted their 
promise for real-time use although data stability and model 
generalization remain weak points, also visual indicators such as facial 
expressions and eye movement have also become a focus since they 
tend to shift noticeably as fatigue develops. Many studies have shown 
that visual patterns provide reliable indicators of driver drowsiness, 
while newer hybrid methods that combine vehicle data with 
physiological and behavioral cues are improving detection accuracy 
and adaptability (Ed-Doughmi et al., 2020; Vu et al., 2019; Zhao et al., 
2020). Studies such as Omerustaoglu et al. (2020) and Gwak et al. 
(2020) show that blending multiple data sources leads to better 
accuracy and safer driving outcomes.

Ping and Shie (2022) investigated how a hybrid strategy could 
identify driver drowsiness in Malaysia. Their method integrates 
vehicle diagnostics, physiological signs, and remote sensing data to 
collect data by driving a specially outfitted car along the North–South 
Motorway to compare various detection systems. Albadawi et al. 
(2022) examined a wide range of drowsiness detection methods, 
focusing on physiological and sensory cues. The authors discussed 
how machine learning appears to shape the next phase of progress in 
this field. The paper highlights both the potential and the remaining 
gaps in current systems and suggests that a stronger link between 
technology and real-world use may be needed. Ahmad et al. (2023) 
conducted a systematic review of recent machine learning and deep 
learning techniques for detecting drowsiness using several data 
sources. Their findings show that machine learning may continue to 
improve road safety and reduce fatigue-related accidents. Even so, 
vehicle-based behavioral and physiological systems face challenges 
such as privacy issues, setup difficulty, and limited data availability. 
The evidence so far suggests that vehicle-based systems that rely on 
OBD-II data may offer a practical and effective way to identify driver 
fatigue while improving overall safety and efficiency.
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Recent work in time series analysis and feature extraction shows 
how effective Mel spectrograms and MFCCs can be across many 
applications. Gupta et al. (2013) used MFCCs for hand gesture 
recognition, whereas Alves et al. (2021) applied high-dimensional arrays 
of features such as MFCCs and Tempograms to capture the structure of 
sound data. In existing research, Mel spectrograms combined with 
convolutional neural networks are used for many fields, including 
sound and time-domain signals. Another study developed a respiratory 
condition identification system that processed time signals using CNN 
models. These results show that converting time series into Mel 
spectrograms improves feature extraction and classification accuracy 
(Stankovic et al., 2024; Purkovic et al., 2024). Using deep learning and 
MFCC, Mohammed et al. (2023) transformed radio frequency signals 
into Mel spectrograms and used a pre-trained YAMNet model for drone 
classification. In the recent work, Bacanin et al. (2024) applied CNNs 
and optimization techniques to respiratory sounds. The results indicate 
that Mel spectrograms improve detection accuracy and improve 
strength of CNN model’s feature extraction. These studies suggest that 
Mel spectrograms and MFCCs are effective techniques for feature 
extraction and temporal pattern analysis. Similarly, transforming 
OBD-II time-series data into MFCC images is a strong baseline for 
CNNs to use visual patterns in detecting driver drowsiness. These 
techniques improve the accuracy and reliability of driver drowsiness 
detection by allowing models to process temporal signals as images.

In recent studies, researchers have explored the use of vehicle 
sensors and OBD-II data in decentralized learning approaches to detect 
driver drowsiness. These sensors measure RPM vehicle speed throttle 
position and steering torque and these signals fluctuate according to 
fatigue or drowsiness during driving. Michailidis et al. (2025) work on 
these signals, which capture behavioral patterns without relying on 
video-based or physiological measurements that can be intrusive. 
Converting OBD-II readings into higher-level representations offers a 
lightweight and privacy-friendly input for deep learning models. The 
studies by Albadawi et al. (2023) and Safarov et al. (2023) showed 
promising results in detecting driver drowsiness using visual features. 
The use of centralized data collection raises privacy risks and affects the 
utilization of these systems in real cars on the road today. A federated 
transfer learning framework using OBD-II data provides a practical 
solution to this problem. Each vehicle can contribute to global model 
updates while keeping its local data safe and private. This introduced 
privacy and effective learning across distributed vehicle sources. Using 
client-weighted federated averaging with OBD-II signals offers a 
comparison between accuracy and data protection by equal bias of each 
client with protection of raw data (McMahan et al., 2017; Hong et al., 
2022; Zeng et al., 2023; Michailidis et al., 2025). In model evaluation, 
t-SNE is used to visualize latent features with accurate prediction and 
interpretability. In their research Xu et al. (2020) used t-SNE that can 
find clustering patterns in microbiome data which helps to understand 
complex relationships and better evaluation of classification 
performance. Furthermore, SHAP values of each feature are important 
for individual predictions. This visualization explains how inputs drive 
the final model output results (Zhang et al., 2023).

3 Materials and methods

The proposed methodology utilized a structured approach to 
detect driver drowsiness by combining OBD-II sensor data with 

camera-based labeling. Vehicle parameters such as speed, RPM, 
throttle position, and steering torque were collected through the 
OBD-II port. Also, a camera detected facial features to determine the 
driver’s state. Python scripts synchronized the two data sources using 
timestamps, ensuring each sensor reading corresponded to the correct 
facial label. This automatic labeling groups the final data as drowsy or 
normal producing a dataset for supervised training of model. OBD-II 
data is gathered as time-series signals and later converted into 
two-dimensional images using MFCC. The images are split into 
training and testing sets for model development, for training a 
pretrained ResNet50 model is using transfer learning setup and is fine-
tuned to classify drowsiness based on the MFCC images. Each client 
vehicle trains the model locally within a federated learning framework 
and then global model is updated through CW-FedAvg which 
preserves data privacy while balancing updates from all clients. The 
final model known as DrowsyXnet learns patterns linked to driver 
drowsiness without any direct sharing of vehicle data. Model 
performance is evaluated on the test set and the results are saved with 
best model for evaluation and comparison. This approach presents a 
privacy-aware and efficient method for detecting driver drowsiness in 
real time using OBD-II data, as illustrated in Figure 2.

3.1 Data collection

The data collection process was developed to record vehicle 
behavior and driver drowsiness in a synchronized and privacy-aware 
way. Data was collected from several drivers using two linked sources: 
OBD-II telemetry from the vehicle’s diagnostic port and facial video 
recordings used only for labeling. The OBD-II stream provided real-
time measurements such as speed, engine RPM, throttle position, and 
steering torque. These readings were retrieved through an OBD2CAN 
interface connected to a laptop running a custom Python script. The 
raw hexadecimal outputs were translated into numerical values using 
predefined formulas and stored as timestamped CSV files so each 
entry reflected the vehicle’s exact operating condition. To obtain 
reliable ground truth for drowsiness, a camera placed in front of the 
driver continuously recorded facial video during data collection. A 
pre-trained transfer learning model for facial drowsiness detection 
analyzed the frames and classified the driver’s state as Drowsy or 
Normal. The predictions with their timestamps were aligned with the 
OBD-II data so that every sequence of telemetry corresponded to the 
correct driver condition at that moment. Visual data were not used for 
model training but only for labeling the OBD-II data, which became 
the sole input for later stages. This setup maintains driver privacy 
while still producing accurate labels from visual evidence. The 
resulting dataset containing time-aligned OBD-II readings and 
drowsiness labels forms a strong base for feature extraction 
augmentation and federated transfer learning, as shown in Figure 3.

3.2 Data preprocessing and transformation

The preprocessing stage played a key role in preparing the 
collected OBD-II data for analyzing driver drowsiness. The continuous 
stream of time-series signals from the vehicle sensors were cleaned 
and segmented to a structured format. The continuous stream data 
were then split into segments of 3,500 samples, with each segment 
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representing about 3 s of driving. Segments that are shorter than the 
target length were padded with zeros to keep a consistent structure 
across all samples. This step ensured that every input segment had the 
same dimensions. Each segment including speed, engine RPM, 
throttle position and steering torque was aligned with its 
corresponding drowsiness label. Synchronization involved matching 
each sensor segment with the ground truth labels so both referred to 

the same three-second time window. This process ensures that each 
data segment reflects the driver’s state. Each driver’s dataset was 
balanced to address the imbalance between normal and drowsy 
samples. The drowsiness class had fewer entries so for balancing 
samples were recreated using time-stretching and expansion 
techniques. This process not only recreated new but realistic variations 
in the signals also preserved the original temporal relationships. This 

FIGURE 2

Framework of the proposed driver drowsiness detection system using OBD-II data and federated transfer learning.

FIGURE 3

OBD-II data collection and synchronization with camera-based drowsiness labeling.
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dataset is class-balanced and more reflective of real driving conditions. 
An illustration of the up-sampling signal using data augmentation is 
shown in Figure 4. After balancing, a two-stage augmentation strategy 
was utilized to increase the dataset while preserving stability across 
both classes during training. This approach introduced realistic 
variations to signals and MFCCs while preserving the critical patterns 
in the dataset. The two stages are as follows:

	•	 Signal-level transformations included scaling, permutation, 
flipping, noise addition, magnitude warping, and slicing. These 
steps increased natural variation while keeping the temporal 
feature of the signal.

	•	 Spectro-temporal transformations on the MFCC images used 
time-shift and spectral scaling to handle small alignment slips 
and sensor noise that often appear during driving.

Recent studies on sensor and audio-based data show that multi-
stage augmentation strategies can significantly improve model 
performance. Liang et al. (2023) and Yu et al. (2023) stated that such 
augmentation enhances generalization across datasets and also 
stabilizes model performance. Signal-level augmentation was applied, 
including amplitude scaling, random permutation, signal flipping, 
Gaussian noise injection, magnitude warping, and window slicing. 
These steps are illustrated in Figure 5.

After completing time-domain augmentation, each OBD-II signal 
was transformed into a spectral representation using MFCCs. This step 
captured frequency features that represent driver drowsiness behavior 
patterns during driving. MFCCs were computed with 55 coefficients, 
FFT window size of 2048, a hop length of 64, and a sampling rate of 

16 kHz as summarized in Table 1. Each OBD-II parameter was 
processed individually, and the resulting coefficients were stacked to 
create four-channel MFCC images. The overall process of converting 
time-series signals into MFCC-based images is illustrated in Figure 6.

A final augmentation step was applied to the MFCC representations 
to further enhance variety of features in dataset. This step involved small 
temporal shifts, spatial scaling and time-stretching techniques which 
generated variations in spectral patterns. The process expanded each 
dataset by a factor of 4, producing final sizes of (23,184, 55, 55, 4) for 
Driver 1, (22,400, 55, 55, 4) for Driver 2, and (12,936, 55, 55, 4) for Driver 
3. Figure 7 illustrates the MFCC augmentation process for each sensor’s 
spectral image. This multistage preprocessing and transformation 
created a detailed dataset that captured both temporal and spectral 
aspects of driver behavior. This provided a strong foundation for 
federated learning experiments for detecting driver drowsiness.

The number of samples for the data balancing and augmentation 
process is summarized in Table 2. The dataset was first balanced by 
up-sampling the drowsy class to match the number of normal samples 
for each driver. Then, signal-level augmentation expanded the dataset 
about sevenfold, yielding 5,796, 5,600, and 3,234 samples for drivers 1, 
2, and 3, respectively. Following this, MFCC-level augmentation added 
temporal and spectral variations, further expanding the dataset by about 
fourfold to 23,184, 22,400, and 12,936 samples for the same drivers.

3.3 Data split

A stratified data split was applied to the MFCC-augmented 
OBD-II data to ensure balanced and reliable evaluation of the model 

FIGURE 4

Up-sampling the drowsy class using signal-level augmentation to balance the dataset.
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for driver drowsiness detection. Stratified sampling maintained 
proportional representation for normal and drowsy classes within all 
data subsets. Each driver’s dataset was split using 80:20 ratio with 80% 
of the samples used for training and the remaining 20% for testing. 
This approach provided the model with enough data to learn each 
driver’s behavioral patterns while reserving a portion for testing 
performance on unseen data. During federated learning, each client 
used its own training data to update its local model weights based on 
the driver’s data distribution. These locally updated weights were then 
communicated to the central server and aggregated to update the 
global model using CW-FedAvg. Instead of testing models separately, 
the evaluation phase grouped all tests. Therefore, the testing subsets 
from all drivers were combined into a single global test set. This 

combined test set was then used to evaluate both the aggregated global 
model and each client’s locally trained model based on their respective 
weight updates. This approach provided a uniform and consistent 
evaluation framework by testing every model on the same global test 
dataset. That allowed direct performance comparison for clients and 
global model accuracy using identical evaluation conditions. This 
approach minimized the impact of local data biases by evaluating the 
aggregated model on a combined global test set. In addition, the figure 
shows that the global model can handle the diversity of driving 
behaviors across different drivers. The overall data split and the 
composition of the global test set are summarized in Table 3.

3.4 Federated transfer learning

The federated learning framework worked as the primary training 
strategy for developing the driver drowsiness detection system. This 
framework contains the DrowsyXnet model, which was proposed to 
capture both temporal and spectral patterns from MFCC-transformed 
OBD-II data. Training was done locally on each client’s car using its 
own dataset. Then, the updated weights were aggregated through the 
secure CW-FedAvg method and updated a global model. The 
DrowsyXnet global model protects privacy while still performing 
reliably across all drivers. To speed up learning and trained on relevant 
features DrowsyXnet used transfer learning with a pretrained 
ResNet-50 backbone. As the MFCC inputs had four channels, an extra 
convolutional layer with three filters and a 3 × 3 kernel was added to 
convert them into a three-channel format compatible with ResNet-50. 
Using this layer kept the main MFCC structure. The pretrained 
ResNet-50 initially trained on ImageNet, which served as a feature 

FIGURE 5

Signal-based data augmentation methods include scaling, permutation, flipping, adding noise, magnitude wrapping, and slicing.

TABLE 1  Key parameters used for MFCC feature extraction.

Parameter Value Purpose

MFCC coefficients 55 Rich spectral 

representation

FFT window size 2048 Balance time/frequency 

resolution

Hop length 64 samples Smooth temporal 

continuity

Sampling rate 16 kHz Preserve signal detail

Channels stacked 4 (Speed, RPM, 

Throttle, Steering 

Torque)

Multi-sensor fusion

MFCC image size 55 × 55 × 4 CNN input dimension
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extractor identifying key features in the signals. Transfer learning 
adapted these general visual patterns for the specific task of detecting 
driver drowsiness. Feature extraction outputs were passed through a 
Global Average Pooling layer to condense activation maps and 
preserve significant spatial information for training. A dense layer 
with 256 neurons and ReLU activation followed, introducing 
nonlinearity to learn complex feature interactions. To reduce 
overfitting, Dropout (rate 0.2) and L2 regularization were applied. The 

final dense layer, equipped with a sigmoid activation function, 
performed binary classification between Drowsy and Normal states. 
The model was trained using the Adam optimizer with a learning rate 
of 0.0001 and binary cross-entropy loss. The architecture of 
DrowsyXnet is illustrated in Figure 8.

The federated learning process followed multiple communication 
rounds using the CW-FedAvg approach. The server began by sending 
the global model to all clients, each holding the same model 

FIGURE 6

Samples showing conversion of OBD-II time series into MFCC-based image representations.

FIGURE 7

Visualization of augmented MFCC images showing spectral and temporal diversity.
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architecture locally. Every client trained its model on its own OBD-II 
and MFCC data for one epoch in each round and kept the best weights 
based on test accuracy. After training, the clients sent only their 
updated weights, sample counts, and class distribution information to 
the server. No raw data or model structure was shared, which 
maintained data privacy. The server merged the received weights 
using CW-FedAvg, adjusting each client’s contribution based on its 
dataset size and class balance to keep the aggregation fair. The global 
model was evaluated after each training round, and the best-
performing version was saved on the server as the final model after 60 
rounds. This process allowed the global model to improve 
continuously while preserving complete data privacy for all client cars.

3.5 Global model evaluation

The evaluation of the global model provides insight into the 
understanding and effectiveness of the federated transfer learning 
framework for driver drowsiness detection. Over 60 communication 
rounds, performance metrics were monitored for both the global and 
local models. After every round, client cars delivered updated weights 
to the central server where the testing of global model has to be done. 
Each local model was evaluated on the combined global test set using 
its own weights, and the results were saved for comparison. The server 
also evaluated the aggregated global model and saved a checkpoint of 
the best-performing model weights based on test accuracy. Figure 9a 
shows that global accuracy increased across rounds, and Figure 9b 
shows a steady decline in loss. This trend suggests effective learning 
and coordination among clients. The final global model achieved a test 
accuracy of 98.29% on the global test set, which included data from 
all drivers. Conversely, the local model showed some fluctuation due 

to differences in individual datasets. This pattern proves that 
CW-FedAvg can increase consistency by weighting client 
contributions according to data size and class balance metrics. Global 
model checkpointing ensured the best configuration was saved, 
reducing the risk of overfitting during training and making it ready 
for deployment.

Latent features were extracted from the test dataset by passing 
inputs through all layers except the final output layer to analyze how 
the global model represents and classifies driver states. These features 
offered a compressed view of the patterns in the data, which were 
analyzed using dimensionality reduction techniques like t-SNE and 
UMAP. Both methods reduced the complex latent space to two 
dimensions, making it easier to observe differences between Drowsy 
and Normal states. In the t-SNE visualization, each point was colored 
according to its true label—the warm reds representing drowsy states 
and cooler blues representing normal ones. As shown in Figure 10, the 
DrowsyXnet model appears to separate the two groups reasonably 
well and form clusters that show distinct driving patterns. UMAP 
provided a second view and showed a similar cluster pattern, 
supporting the model’s ability to successfully identify differences 
between drowsy and normal driving as presented in Figure 11. The 
separation is generally clear with few overlapping points due to natural 
variability in driver behavior, underscoring that the model performs 
perfectly.

The overall evaluation suggested that the federated learning 
approach provides stable global convergence and performs better than 
models trained singly on local data sets. Observing performance 
across multiple communication rounds provided clear insight into 
how learning evolved at both local and global levels effectively. The 
DrowsyXnet global model achieved high accuracy and showed 
resilience across different drivers. Also, keeping raw data private and 
allowing effective collaboration among client teams.

4 Results and discussion

The performance of the proposed DrowsyXnet global model is 
evaluated using classification metrics derived from the confusion 
matrix and classification report. These metrics assess the model’s 
ability to distinguish between Drowsy and Normal driver states on the 
global test set. The confusion matrix consists of true positives (TP), 
true negatives (TN), false positives (FP), and false negatives (FN), 
which are used to calculate precision, recall, and F1-score.

TABLE 2  Summary of data balancing and augmentation effects on OBD-II data for driver drowsiness detection.

Driver ID Class balancing (samples per class) Dataset size 
after balancing

Dataset size after 
signal-level 
augmentation

Dataset size after 
MFCC-level 
augmentationClass Before After

Driver 1

Normal 414 414

828 samples

5,796 samples

(7 × increase from balanced 

set → 828 × 7 = 5,796)

23,184 samples

(4 × increase from signal-

level → 5,796 × 4 = 23,184)
Drowsy 111 414

Driver 2

Normal 400 400

800 samples

5,600 samples

(7 × increase from balanced 

set → 800 × 7 = 5,600)

22,400 samples

(4 × increase from signal-

level → 5,600 × 4 = 22,400)
Drowsy 87 400

Driver 3

Normal 231 231

462 samples

3,234 samples

(7 × increase from balanced 

set → 462 × 7 = 3,234)

12,936 samples

(4 × increase from signal-

level → 3,234 × 4 = 12,936)
Drowsy 66 231

TABLE 3  Data split distribution for the dataset.

Driver ID Total samples 
(after MFCC 

augmentation)

Training 
set (80%)

Testing set 
(20%)

Driver 1 23,184 18,547 4,637

Driver 2 22,400 17,920 4,480

Driver 3 12,936 10,348 2,588

Global test 

set

– – 11,705 

(Combined)
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The values used in the above equations, i.e., TP, FP, TN, and FN 
values, were obtained from the confusion matrices of the proposed 
DrowsyXnet model. Figure 12 presents the confusion matrix for the 

model DrowsyXnet global model in this proposed federated transfer 
learning framework. The confusion matrix shows the true and false 
predictions across both classes. Out of a total of 11,705 test samples, 
only 113 false negatives (drowsy samples incorrectly classified as 
normal) and 87 false positives (normal samples misclassified as 
drowsy) were observed. This low misclassification rate highlights the 
model’s strong discriminative ability and generalization across varying 
driver behaviors and sensor readings. Furthermore, the parameters 
extracted from this confusion matrix are shown in Table 4.

Table 4 presents a detailed breakdown of performance metrics for 
the proposed CW-FedAvg–based DrowsyXnet model, classifying 
samples into “Drowsy” and “Normal” driver states. Each row of the 
table corresponds to a class, while the columns show precision, recall, 
F1-score, and support (the number of instances per class). For the 
Drowsy class, the model achieved a precision of 98.51% conforming 

FIGURE 8

Architecture of DrowsyXnet model based on transfer learning with ResNet-50.

FIGURE 9

Global model evaluation on global test set over 60 federated communication rounds: (a) global model accuracy and (b) global model loss.
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that predictions of drowsiness are usually correct. The recall of 98.07% 
indicates that most actual drowsy cases are detected, though a few 
samples are misclassified. Achieving an F1 score of 98.29 percent 
proves a close balance between precision and recall, so the model 
manages detection very well. These results show that the model is 
identifying patterns in OBD-II signals such as RPM, vehicle speed, 

throttle position, and steering torque that detect early fatigue or lapses 
in attention.

For the Normal class, precision reached 98.08%, showing the 
model correctly identifies typical driving states with few false positives. 
Recall was slightly higher at 98.51%; nearly all normal instances were 
captured. The F1-score was again 98.29%, reflecting consistent 

FIGURE 10

t-SNE latent space visualization for DrowsyXnet model evaluation.

FIGURE 11

UMAP latent space visualization for DrowsyXnet model evaluation.
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performance across metrics. Both the macro and weighted averages 
were 98.29%, indicating that the model maintains fairly uniform 
accuracy across classes. Overall, these results stated that the 
CW-FedAvg–based DrowsyXnet model performs reliably and 
consistently. It offered a balance between accuracy and privacy and 
provided a deployable solution for real-world driving scenarios.

4.1 Client and global model comparison

The comparison of client-level and aggregated global model 
accuracies over 60 communication rounds using the global test set, as 
shown in Figure 13. Each client represents a different driver dataset 
collected under varying conditions. During federated training, all 
clients performed local updates, which were then aggregated on the 
central server using the CW-FedAvg strategy. The figure suggests 
accuracy improved continuously across all clients, which appears to 
reflect stable convergence over time. Client car 2 reached high 
accuracy faster, likely because its dataset was more balanced. Client 
car 1 followed a similar trend, while client car 3 showed slightly more 
fluctuation due to less data as compared to other client cars. The 
aggregated global model tended to outperform individual clients and 
showed smoother convergence across rounds. Accuracy increased 
during early rounds and appeared to level off near the fortieth round. 
By the end of training, the global model reached 98.29% on the global 
test set, showing strong generalization. Overall, the rising trend in the 

global curve indicates that federated learning successfully integrated 
knowledge from all clients into a global model. The weighting strategy 
in CW-FedAvg can balance contributions from each client, preventing 
any single dataset from dominating the learning process. The global 
test results further confirmed that the aggregated model generalized 
well to unseen data from all clients. Evaluating each local model on 
the server-side global test set showed that local accuracies changed 
across rounds, and the global model consistently performed better. 
Aggregating class-weighted updates appears to improve learning 
stability and reduce the impact of non-identical data distributions 
across clients.

4.2 Comparative model performance

To benchmark the proposed framework, its performance was 
compared with several previous machine learning and deep learning 
models trained under similar conditions. Conventional classifiers such 
as Logistic Regression (LR) with accuracy 60.90% and Support Vector 
Machines (SVM) achieved 72.18% accuracy which conclude that these 
models appeared to struggle. Time-series-oriented models such as 
long short-term memory (LSTM) achieved approximately 81.95% 
accuracy, and the One-Dimensional Convolutional Neural Network 
(1D-CNN) reached 88.35%, which improved performance compared 
to conventional classifiers. But these models cannot fully predict the 
complex spectral–temporal patterns present in MFCC representations. 
Modern deep architectures that leverage visual representations 
showed much stronger results. EfficientNetB0 reached 97.63%, 
DenseNet201 achieved 97.45%, and ConvNeXtTiny scored 96.81% 
accuracy. Overall, the comparison demonstrated that using MFCC-
based visual representations in combination with deep learning yields 
an advantage over traditional and simpler time-series models. The 
DDD-GC-ViT model also achieved 97.90%, confirming the advantage 
of attention-based mechanisms. However, the DrowsyXnet model 
using CW-FedAvg achieved the highest accuracy of 98.29% while 
preserving data privacy, as shown in Table 5.

To assess real-time feasibility, two lightweight models, 
EfficientNet-B0 and MobileNet V3-Small, were compared with the 
main backbone (ResNet-50). Results were generated using the same 
MFCC inputs and training configuration. To ensure reproducibility, 
all inference time benchmarks were conducted on a Google Colab 
environment equipped with an NVIDIA T4 Tensor Core (16GB 
GDDR6) GPU. The results show that ResNet-50 achieves the highest 
accuracy but lightweight models offer 2 times faster inference with 
minimal performance loss as stated in Table 6.

A comparison of the training setups in Table 7. The centralized 
baseline marks the upper limit because it trains on all data at once 
reaching 98.67% accuracy, an F1-score of 98.65%, an MCC of 0.968 
and a Cohen’s κ of 0.967. FedAvg drops slightly on every metric 
settling at 97.89% accuracy, 97.74% F1, 0.955 MCC and 0.953 κ while 
FedProx achieved 98.05% accuracy, 98.00% F1, 0.960 MCC and 0.959 
κ. The proposed CW-FedAvg model achieved the best accuracy 98.29, 
98.29% F1, an MCC of 0.966, and a κ of 0.965 and narrowing the gap 
with the centralized setup still preserving data privacy.

These trends show that CW-FedAvg provides more stable 
performance across all evaluation metrics by giving balanced influence 
on clients with small or uneven datasets. The close match between the 
centralized and federated results confirms that high-quality 

FIGURE 12

Confusion matrix of the proposed Global DrowsyXnet model on the 
global test set.

TABLE 4  Class-wise performance metrics of the proposed CW-FedAvg 
DrowsyXnet model.

Class Precision Recall F1-
Score

Support

Drowsy 0.9851 0.9807 0.9829 5,853

Normal 0.9808 0.9851 0.9829 5,852

Macro Avg 0.9829 0.9829 0.9829 11,705

Weighted 

Avg

0.9829 0.9829 0.9829 11,705
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performance can be achieved without data sharing. This provides 
privacy-preserving deployment in real-world settings.

4.3 Federated learning under 
heterogeneous client conditions

The dataset was used to run three non-IID scenarios to evaluate 
the federated framework’s handling of inter-client differences. The first 
introduced a strong class imbalance by limiting one client to a 1:20 
drowsy–normal ratio. The second mimicked missing information by 
randomly masking either the RPM or throttle channel for a client. The 
third combined both imbalance and channel masking to create a more 
challenging scenario. The tests examined whether FedAvg, FedProx, 
and the proposed CW-FedAvg can deal with uneven and incomplete 
client data. Across all scenarios CW-FedAvg appeared more resilient 
keeping accuracy within about 0.6% of the balanced baseline. FedAvg 
showed a larger drop under strong class skew and feature removal 
while FedProx remained more stable as shown in Table 8. These results 
recommend that weighting clients according to data volume and class 

distribution helps reduce bias and keeps the model fairly reliable. Even 
though individual clients differ significantly in data quality or class 
availability. The patterns also suggest CW-FedAvg fits real-world 
deployments where client datasets are rarely uniform.

4.4 Robustness and statistical significance

All experiments were repeated across three random seeds to check 
consistency and reduce the effect of random initialization. The model’s 
performance stayed stable across the runs. Metric variance remained 
below 0.3%, which shows consistent convergence and effect from seed 
choice. McNemar tests were applied to determine the performance 
differences and statistical evaluation. Comparison between the 
centralized model and FedAvg provide a p-value of 0.018 which 
showing a statistically significant difference. The gap between the 
centralized model and CW-FedAvg was not significant, with a p-value 
of 0.12. CW-FedAvg remained close to the centralized model 
performance while addressing privacy concerns. The comparison 
between FedAvg and CW-FedAvg yielded a p-value of 0.037, 

FIGURE 13

Comparison of local client and global model accuracies on the global test set.

TABLE 5  Comparative model performance on driver drowsiness detection.

Baseline approaches Model Accuracy Precision Recall F1-score

Baseline model LR 60.90% 60.95% 60.90% 60.88%

Baseline model SVM 72.18% 73.06% 72.25% 71.95%

Ahmad et al. (2024a) LSTM 81.95% 82.21% 81.98% 81.92%

Ahmad et al. (2024b) 1D-CNN 88.35% 88.35% 88.35% 88.35%

Ahmad et al. (2025b) EfficientNetB0 97.63% 97.64% 97.63% 97.63%

DenseNet201 97.45% 97.45% 97.45% 97.45%

ConvNeXtTiny 96.81% 96.82% 96.81% 96.81%

Ahmad et al. (2025a) DDD-GC-ViT 97.90% 97.91% 97.90% 97.90%

Proposed study DrowsyXnet (CW-FedAvg) 98.29% 98.29% 98.29% 98.29%
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indicating that CW-FedAvg is better than standard FedAvg. Overall, 
the findings indicate that the proposed CW-FedAvg approach provides 
performance that is stable and reproducible across different runs and 
experiments. At the same time, it appears effective at reducing the 
performance gap between centralized training and federated training 
and maintaining results close to the upper bound even under varied 
client conditions, as demonstrated in Table 9. Minor fluctuations 
observed across different random seeds highlight the inherent 
variability in model behavior. The results confirm that CW-FedAvg 
provides a significant improvement over FedAvg, and the performance 
difference compared to the centralized model is not statistically 
significant.

4.5 Interpretation of MFCC features

The evaluation shows that DrowsyXnet reliably predicts both 
drowsy and normal driver states. SHAP (SHapley Additive 
exPlanations) was used to make the model more interpretable and to 
illustrate the contribution of individual features to each prediction. 
Each input including speed, RPM, throttle position and steering 
torque represented as MFCC-based images and given a value showing 
its influence on the final output. The SHAP summary and dependence 
plots in Figure 14 show patterns of feature importance and 

interactions, providing insight into the model’s sensitivity. Using 
SHAP makes the model more transparent and builds trust while 
showing which behavioral indicators are most important for detecting 
driver drowsiness in safety-critical situations.

4.6 Discussion and limitations

The results suggest that the DrowsyXnet model trained with the 
CW-FedAvg strategy performs reliably even under strict data privacy 
constraints. The global accuracy of 98.29% comes close to the 98.67% 
achieved with centralized training. This shows that federated learning 
can capture most of the predictive power of pooled-data systems 
without sharing raw data. Comparing local and global models shows 
the effect of federated collaboration. Clients with limited or 
imbalanced data gain from the knowledge shared across all clients. 
Client 3 had fewer data points and exhibited lower accuracy. The data 
distribution was skewed, and performance variance was higher. The 
local models gradually aligned with the global trend as communication 
rounds progressed. Overall, the results indicated that CW-FedAvg 
strategy preserve privacy and offer a consistent and performance 
across diverse client datasets. FedAvg showed a noticeable drop in 
accuracy, F1-score, MCC, and Cohen’s κ. FedProx reduced some of the 
negative effects caused by non-IID data. The proposed CW-FedAvg 

TABLE 9  Confidence intervals and significance tests.

Comparison Accuracy (%) 95% CI p-value Interpretation

Centralized vs. FedAvg 98.67/97.80 [98.4–98.9] / [97.5–98.1] 0.018 Statistically significant

Centralized vs. CW-FedAvg 98.67/98.29 [98.4–98.9] / [98.0–98.5] 0.12 Not significant

FedAvg vs. CW-FedAvg 97.80/98.29 [97.5–98.1] / [98.0–98.5] 0.037 Statistically significant

TABLE 6  Lightweight backbone model comparison.

Model Params (M) Inference time (ms/
sample)

Accuracy (%) Suitability

ResNet-50 23.5 4.9 98.29 Best accuracy

EfficientNet-B0 5.3 3.1 97.9 Balanced

MobileNet V3-Small 2.9 2.4 96.4 Edge devices

TABLE 7  Performance of DrowsyXnet under different training approaches.

Method Test accuracy (%) F1-score (%) MCC Cohen’s κ
Centralized (pooled) 98.67 98.65 0.968 0.967

FedAvg 97.89 97.74 0.955 0.953

FedProx (μ = 0.1) 98.05 98.00 0.960 0.959

CW-FedAvg (proposed) 98.29 98.29 0.966 0.965

TABLE 8  Heterogeneous client simulation results.

Condition FedAvg (%) FedProx (%) CW-FedAvg (%) Observation

Balanced clients 98.0 98.1 98.3 Reference

Skewed 1:20 class ratio 96.8 97.4 97.8 CW-FedAvg mitigates imbalance

Masked channels 96.9 97.5 97.9 Robust with missing features

Skew + mask 96.4 97.2 97.7 Most challenging case
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achieved the best balance across all metrics. Weighting updates 
according to class distribution prevents clients with dominant data 
from having excessive influence on global learning. Testing with 
clients who have different data conditions gives more insight into the 
model’s performance. With class imbalance or missing sensor 
channels and combined non-IID distortions, CW-FedAvg maintained 
accuracy within about 0.6% of the balanced baseline. In comparison, 
FedAvg dropped more sharply, and FedProx provided only 
intermediate resilience. SHAP-based interpretability analysis offers 
additional confidence in the framework’s reliability in real-world 
applications. The visualizations highlighted meaningful spectral 
patterns in the MFCC representations of speed, RPM, throttle, and 
steering position.

Comparing lightweight backbones provides useful information 
for real-time deployment, and ResNet-50 remains the most accurate 
architecture. EfficientNet-B0 and MobileNet V3-Small performed 
competitively while running about twice as fast and using far fewer 
parameters. The framework could be adapted for embedded 
automotive hardware. It allows a balance between accuracy and 
latency depending on the application. Statistical checks add further 
context to these findings. McNemar tests show that CW-FedAvg 
performs better than FedAvg while showing no significant difference 
from the centralized upper bound. This provides confidence for 
practical deployment in real-world driving scenarios. Despite the 

strengths, several limitations are worth noting. The dataset includes a 
relatively small group of drivers and mostly controlled driving 
conditions. The findings are limited in their application to more 
diverse real-world scenarios such as night driving, heavy traffic, or 
adverse weather. Collecting data from different regions, vehicle types, 
and driver populations could improve robustness. MFCC-based 
feature extraction improves performance but adds computational 
overhead. This can be challenging for ultra-low-power edge devices, 
especially with deep convolutional backbones. Future work could 
explore more efficient spectral encoders or hardware-aware neural 
architectures. These approaches would help reduce the computational 
load. Adding temporal attention mechanisms or sequence-level 
federated models could help address this limitation.

Finally, federated learning improves privacy and practical 
deployment still faces hurdles such as device availability, 
communication delays and client dropout and limited bandwidth. 
Addressing these system-level challenges is important for smooth 
operation in commercial intelligent transportation systems. Future 
studies will need to carefully consider these real-world factors. 
Overall, the findings show that combining federated learning with 
data-aware aggregation and spectral representations and explainable 
AI provides a practical and privacy-conscious way to detect driver 
drowsiness. The CW-FedAvg framework provides high accuracy and 
handles non-IID conditions well. It also makes the decision process 

FIGURE 14

Original MFCC and corresponding SHAP value maps for (a) drowsy and (b) normal predictions across the four input features: speed, RPM, throttle and 
steering.
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more transparent. These qualities make it a useful foundation for real-
world applications. Safety, scalability, and privacy are all critical 
considerations.

5 Conclusion

The study proposed a framework for detecting driver drowsiness 
using OBD-II sensor data and MFCC transformations with federated 
deep learning. The DrowsyXnet model used a pretrained ResNet-50 
backbone and fine-tuned for MFCC image of OBD-II data. The 
DrowsyXnet model predicts drowsy and normal driver states effectively. 
In federated deep learning model is trained within a CW-FedAvg 
framework, it achieved an overall accuracy of 98.29% on the global test 
set. The achieved performance is consistent and promising across 
multiple drivers while keeping raw data private. In the centralized 
approaches model, a single client car data, the federated setup trains 
models locally and aggregates updates securely on the server. This 
reduces the impact of non-IID data and class imbalance in different 
client car data. The model maintained high precision, recall, and 
F1-scores for both classes. This global model can detect inconsistencies 
in driver behavior and vehicle dynamics that indicate drowsiness. 
Compared with other models, traditional classifiers such as Logistic 
Regression and SVM struggled with OBD-II signals, achieving 
accuracies of 60.90 and 72.18%. Time-series favorable models such as 
LSTM and 1D-CNN performed better but had difficulty capturing useful 
features for drowsiness detection. Modern deep learning architectures, 
including EfficientNetB0, DenseNet201, ConvNeXtTiny, and 
DDD-GC-ViT, achieved accuracies exceeding 96%, underscoring the 
advantage of deeper networks for the task. Overall, transforming time-
series OBD-II signals into MFCC images and using transfer learning 
improves feature extraction. Furthermore, combining privacy-
preserving federated learning with explainable AI provides the best 
solution for real-world driver safety and reliability for drowsiness 
detection in vehicles. Future work will focus on expanding the dataset to 
cover a wider range of drivers, road types, and environmental conditions. 
It will also investigate lighter transformer-based or hybrid architectures 
to enhance inference efficiency and reduce computational load in safer 
and more reliable vehicles. This framework provides a solution for secure 
driving and reducing drowsiness-related accidents. It can contribute to 
improved road safety and privacy-based intelligent transportation 
systems.
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