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Security of drivers in intelligent
transportation systemes:
privacy-preserving federated
transfer learning for driver
drowsiness detection

Khubab Ahmad, Poh Ping Em* and Nor Azlina Ab Aziz

Faculty of Engineering and Technology, Multimedia University Malacca, Melaka (Malacca), Malaysia

Driver drowsiness is a serious concern for road safety within intelligent transportation
systems, and it can undermine the safety and dependability of critical transport
infrastructure. As modern vehicles become more connected and data-focused,
centralized learning systems that share driver and vehicle information can expose
private details and raise privacy and security concerns. This study presents a
privacy-preserving framework that enables secure learning among multiple
vehicles without sharing raw data. It uses the On-Board Diagnostic-Il sensor
data, combined with transfer learning, to detect driver drowsiness in real time
within a federated learning framework. Signals such as speed, engine revolutions,
throttle position, and steering torque are extracted from cars and then converted
into image representations using Mel-Frequency Cepstral Coefficients so the
model can identify changes in driving behavior. These image features are used
to train a pretrained ResNet50 network; this trained model can classify driver
states as drowsy or normal. Each vehicle trains on its own data while the central
server updates the shared model weights through a client-weighted averaging
strategy that keeps learning balanced for all clients. This process keeps data
private while the model trained on different driving pattern. Using client weights
DrowsyXnet achieved 98.29% accuracy, which is nearly matched the centralized
baseline of 98.67%. The latent feature graph showed a clear separation between
drowsy and normal states, indicating that the model learns the underlying signals
rather than merely incidental correlations. The proposed framework improves
intelligent transportation systems while preventing leakage of private data. The
use of driver drowsiness detection system into vehicles can prevent drowsiness
related accidents and enhance overall road safety.

KEYWORDS

driver drowsiness, federated learning, intelligent transportation, Mel-Frequency
Cepstral Coefficients, On-Board Diagnostic-ll, privacy preservation

1 Introduction

Transportation systems are a major part of modern infrastructure to keep societies
connected by the movement of people and goods. These transportation systems still encounter
challenges related to human reliability and road safety. Despite many other causes, driver
drowsiness is the most common and dangerous cause of accidents. It threatens both lives and
the stability of intelligent transport networks that require drivers to be focused. Every year,
1.35 million people die in road crashes, averaging 3,700 daily fatalities. Beyond the human life
loss these incidents causes massive economic costs to families and nations. In 2018, the

01 frontiersin.org


https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2026.1723711&domain=pdf&date_stamp=2026-01-30
https://www.frontiersin.org/articles/10.3389/fcomp.2026.1723711/full
https://www.frontiersin.org/articles/10.3389/fcomp.2026.1723711/full
https://www.frontiersin.org/articles/10.3389/fcomp.2026.1723711/full
https://www.frontiersin.org/articles/10.3389/fcomp.2026.1723711/full
https://www.frontiersin.org/articles/10.3389/fcomp.2026.1723711/full
mailto:ppem@mmu.edu.my
https://doi.org/10.3389/fcomp.2026.1723711
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2026.1723711

Ahmad et al.

Malaysian government figured that every road death caused a loss of
around 3.12 million, according to the Value of Statistical Life (Ministry
of Transport Malaysia, 2020). Figure 1 shows a graph illustrating the
number of road accidents and deaths in Malaysia from 2010 to 2024.
Road accidents generally increased over the years and reached a top
in 2019 but decreased during the pandemic in 2020 and 2021. In 2023,
both accidents and fatalities increased and deaths jumped to over
12,000 Accidents decreased in 2024 but the death rate was still
alarmingly high. The sources for this data include the Ministry of
Transport Malaysia, as well as The Star and Paultan.org (Ministry of
Transport Malaysia, 2021; Paultan.org, 2022; The Star, 2023, 2024).
Drowsiness causes serious risks for driver response time and
lapses in awareness, which increases accidents globally. This affects
thousands of drivers daily including long-haul truckers so there is
need for solution. Artificial intelligence offers a solution to prevent
accidents by detecting drowsiness in drivers. Recognizing that sleep
issues and impaired driving performance emphasize the urgency of
addressing drowsiness for road safety (Khan et al., 2022). According
to Sharma et al. (2021), machine learning is a subset of artificial
intelligence (AI) that learns from features through algorithms. It uses
statistical learning to improve detection. Conversely, deep learning
relies on extensive data for learning and involves multiple layers in the
neural network. Artificial intelligence aims for human-like results and
uses machine learning and deep learning algorithms because it
requires a lot of data to train and boost performance. Many researchers
are using machine learning and deep learning to solve complex
problems in various fields (Umair et al., 2021; Ahmad et al., 2023;
Umair et al., 2024). Using deep learning and machine learning
techniques, researchers have provided solutions for detecting and
preventing accidents caused by driver drowsiness. Advancements in
understanding and identifying driver drowsiness are facing ongoing
challenges, despite efforts to develop more effective measurement
methods. However, Lenné and Jacobs (2016) reviewed research
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methods for predicting drowsiness-related driving events and
discussed future opportunities for enhancing detection techniques.
The authors identify the challenges of driver drowsiness detection,
which hinders the development of more effective measurement
methods. A survey by Arceda et al. (2020) stated that most drowsiness
detection methods still have to be tested in real driving conditions.
Most testing is done in simulated environments that do not reflect real
road conditions. De Naurois et al. (2019) investigate the challenge of
incorporating contextual information into drowsiness detection.
Factors such as traffic flow and time of day strongly influence how
drivers respond. Most driver drowsiness detection systems have not
utilized these elements due to data limitations, privacy concerns, and
the unpredictable nature of real driving. Recent artificial intelligence
methods show promising results in detecting driver drowsiness
through physiological and behavioral signals, and machine learning
models are increasingly used in vehicle safety systems to identify early
signs of fatigue from sensor data. Traditional centralized methods still
face serious limitations, as sending driving data to external servers
increases privacy and security risks in connected vehicles. Federated
learning offers a possible solution by training models locally on each
vehicle or monitoring unit without exposing personal information.
This study introduces a privacy-preserving framework to detect
driver drowsiness using On-Board Diagnostics IT (OBD-II) data and
transfer learning within a Class-Weighted Federated Averaging
(CW-FedAvg) setup. OBD-II sensor data, such as speed, engine
revolutions per minute (RPM), throttle position, and steering torque,
are converted into Mel-Frequency Cepstral Coeflicient (MFCC)
images. This transformation allows the model to predict temporal
changes and visual patterns. A pretrained ResNet50 network is fine-
tuned to classify driver states on each client, and the server applies a
CW-FedAvg strategy to keep learning balanced across different client
cars. Model behavior is further analyzed through t-Distributed
Stochastic Neighbor Embedding (t-SNE), Uniform Manifold

FIGURE 1
Road traffic accidents and fatalities in Malaysia (2010-2024).
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Approximation Projection (UMAP) and SHapley Additive
exPlanations (SHAP). These techniques are used to evaluate the model
and its ability to learned correctly. Statistical metrics, such as the
Matthews Correlation Coefficient (MCC), Cohen’s kappa (), and the
95% Confidence Interval (95% CI), are also used to analyze the
stability and reliability of the results. This framework improves
detection accuracy and privacy within intelligent transportation
infrastructure. The main contributions of this study are as follows:

« Use of OBD-II sensor data combined with MFCC for converting
time-series signals into image representations.

Integration of a pretrained ResNet50 model within a federated
learning framework for improved accuracy and privacy
preservation.

o A CW-FedAvg scheme mitigates class imbalance and stabilizes
convergence under non-independent and identically distributed
(non-IID) data.

« Comparative experiments with FedAvg, FedProx, and lightweight

CNN backbones confirm near-centralized accuracy while

maintaining privacy.

Interpretability analyses (t-SNE, UMAP, SHAP) and statistical

validation (MCC, k, 95% CI) confirm model reliability.

Driver monitoring within intelligent transportation plays an
important role in improving the safety and resilience of mobility
systems. The proposed framework strengthens reliability and privacy
in assessing driver alertness while protecting road transportation as a
vital part of modern infrastructure. Altogether, this study supports the
development of safer and more secure transport networks through
practical means. Section 2 provides an overview of existing research
on driver drowsiness detection methods through the literature review.
Section 3, Materials and Methods, describes the workflow in detail,
including the collection of OBD-II sensor data, preprocessing of time-
series signals, conversion into image representations using MFCCs,
and training of the pretrained ResNet50 model within a federated
transfer learning framework. In Section 4, the study’s results are
presented, followed by a discussion of the results and limitations in
Section 5. Section 6 concludes the paper and outlines future directions.

2 Literature review

In recent years, researchers have made steady progress in creating
and improving methods that can detect driver’s drowsiness with
greater accuracy and reliability. Different detection methods for driver
drowsiness have been developed in recent studies, including image-
based, biological-based, vehicle-based, and hybrid. Reddy et al. (2017)
divide driver monitoring methods into three groups, with the first
analyzing vehicle behavior, such as acceleration, braking, and steering.
The second method uses physiological signal inputs like heart rate and
brain signals to check for drowsiness. The third method covers
computer vision to study facial expressions and eye movements in
real-time. In a recent study, Dua et al. (2021) suggest that combining
vehicle data with physiological and behavioral features can improve
the accuracy of drowsiness detection in intelligent transportation.
Behavioral features include head face and eye movements while
(EOG),
Electroencephalograms (EEG), Electrocardiograms (ECG) and heart

physiological measures include Electrooculography
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rate. Vehicle sensors data collected through OBD-II port include
speed, RPM, throttle position and steering behavior which can
provide detection data for driver drowsiness. In a recent systematic
review Shaik (2023) studied methods for detecting and predicting
driver drowsiness using machine learning, computer vision and
physiological data. These hybrid detection techniques are grouped
using physiological signals, behavioral features, and vehicle sensors to
highlight research trends and ongoing challenges in driver drowsiness
detection.

In recent studies, researchers have utilized different approaches to
detect driver drowsiness using machine learning and deep learning
with data from driver behavior, physiological signals, and vehicle
sensors. But in the domain of vehicle behavior, mainly OBD-II
sensors, such as steering angle, throttle position, and speed sensors,
are key to early detection of driver drowsiness. Other sources of
vehicle behavior, such as the global positioning system (GPS),
gyroscopes, lane position, and engine RPM, play an important role in
identifying the driving patterns that lead to driver drowsiness. Studies
by various researchers show that continuous vehicle data can be used
to train models to prevent risky driving events. Physiological
indicators, including EEG, ECG, EOG, EMG, and wearable sensor
data, have also proven useful in classifying drowsy states (Harkous and
Artail, 2019; Malik and Nandal, 2023; Arefnezhad et al., 2019). Also,
recent studies by Kundinger et al. (2020) and Nasri et al. (2022)
showed that models built on physiological and behavioral signals can
reach high accuracy in detecting drowsiness. Martins et al. (2021)
examined wearable systems for fatigue monitoring and noted their
promise for real-time use although data stability and model
generalization remain weak points, also visual indicators such as facial
expressions and eye movement have also become a focus since they
tend to shift noticeably as fatigue develops. Many studies have shown
that visual patterns provide reliable indicators of driver drowsiness,
while newer hybrid methods that combine vehicle data with
physiological and behavioral cues are improving detection accuracy
and adaptability (Ed-Doughmi et al., 2020; Vu et al., 2019; Zhao et al.,
2020). Studies such as Omerustaoglu et al. (2020) and Gwak et al.
(2020) show that blending multiple data sources leads to better
accuracy and safer driving outcomes.

Ping and Shie (2022) investigated how a hybrid strategy could
identify driver drowsiness in Malaysia. Their method integrates
vehicle diagnostics, physiological signs, and remote sensing data to
collect data by driving a specially outfitted car along the North-South
Motorway to compare various detection systems. Albadawi et al.
(2022) examined a wide range of drowsiness detection methods,
focusing on physiological and sensory cues. The authors discussed
how machine learning appears to shape the next phase of progress in
this field. The paper highlights both the potential and the remaining
gaps in current systems and suggests that a stronger link between
technology and real-world use may be needed. Ahmad et al. (2023)
conducted a systematic review of recent machine learning and deep
learning techniques for detecting drowsiness using several data
sources. Their findings show that machine learning may continue to
improve road safety and reduce fatigue-related accidents. Even so,
vehicle-based behavioral and physiological systems face challenges
such as privacy issues, setup difficulty, and limited data availability.
The evidence so far suggests that vehicle-based systems that rely on
OBD-II data may offer a practical and effective way to identify driver
fatigue while improving overall safety and efficiency.

frontiersin.org
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Recent work in time series analysis and feature extraction shows
how effective Mel spectrograms and MFCCs can be across many
applications. Gupta et al. (2013) used MFCCs for hand gesture
recognition, whereas Alves et al. (2021) applied high-dimensional arrays
of features such as MFCCs and Tempograms to capture the structure of
sound data. In existing research, Mel spectrograms combined with
convolutional neural networks are used for many fields, including
sound and time-domain signals. Another study developed a respiratory
condition identification system that processed time signals using CNN
models. These results show that converting time series into Mel
spectrograms improves feature extraction and classification accuracy
(Stankovic et al., 2024; Purkovic et al., 2024). Using deep learning and
MFCC, Mohammed et al. (2023) transformed radio frequency signals
into Mel spectrograms and used a pre-trained YAMNet model for drone
classification. In the recent work, Bacanin et al. (2024) applied CNNs
and optimization techniques to respiratory sounds. The results indicate
that Mel spectrograms improve detection accuracy and improve
strength of CNN models feature extraction. These studies suggest that
Mel spectrograms and MFCCs are effective techniques for feature
extraction and temporal pattern analysis. Similarly, transforming
OBD-II time-series data into MFCC images is a strong baseline for
CNN s to use visual patterns in detecting driver drowsiness. These
techniques improve the accuracy and reliability of driver drowsiness
detection by allowing models to process temporal signals as images.

In recent studies, researchers have explored the use of vehicle
sensors and OBD-II data in decentralized learning approaches to detect
driver drowsiness. These sensors measure RPM vehicle speed throttle
position and steering torque and these signals fluctuate according to
fatigue or drowsiness during driving. Michailidis et al. (2025) work on
these signals, which capture behavioral patterns without relying on
video-based or physiological measurements that can be intrusive.
Converting OBD-II readings into higher-level representations offers a
lightweight and privacy-friendly input for deep learning models. The
studies by Albadawi et al. (2023) and Safarov et al. (2023) showed
promising results in detecting driver drowsiness using visual features.
The use of centralized data collection raises privacy risks and affects the
utilization of these systems in real cars on the road today. A federated
transfer learning framework using OBD-II data provides a practical
solution to this problem. Each vehicle can contribute to global model
updates while keeping its local data safe and private. This introduced
privacy and effective learning across distributed vehicle sources. Using
client-weighted federated averaging with OBD-II signals offers a
comparison between accuracy and data protection by equal bias of each
client with protection of raw data (McMahan et al., 2017; Hong et al.,
2022; Zeng et al., 2023; Michailidis et al., 2025). In model evaluation,
t-SNE is used to visualize latent features with accurate prediction and
interpretability. In their research Xu et al. (2020) used t-SNE that can
find clustering patterns in microbiome data which helps to understand
complex relationships and better evaluation of classification
performance. Furthermore, SHAP values of each feature are important
for individual predictions. This visualization explains how inputs drive
the final model output results (Zhang et al., 2023).

3 Materials and methods

The proposed methodology utilized a structured approach to
detect driver drowsiness by combining OBD-II sensor data with
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camera-based labeling. Vehicle parameters such as speed, RPM,
throttle position, and steering torque were collected through the
OBD-II port. Also, a camera detected facial features to determine the
driver’s state. Python scripts synchronized the two data sources using
timestamps, ensuring each sensor reading corresponded to the correct
facial label. This automatic labeling groups the final data as drowsy or
normal producing a dataset for supervised training of model. OBD-II
data is gathered as time-series signals and later converted into
two-dimensional images using MFCC. The images are split into
training and testing sets for model development, for training a
pretrained ResNet50 model is using transfer learning setup and is fine-
tuned to classify drowsiness based on the MFCC images. Each client
vehicle trains the model locally within a federated learning framework
and then global model is updated through CW-FedAvg which
preserves data privacy while balancing updates from all clients. The
final model known as DrowsyXnet learns patterns linked to driver
drowsiness without any direct sharing of vehicle data. Model
performance is evaluated on the test set and the results are saved with
best model for evaluation and comparison. This approach presents a
privacy-aware and efficient method for detecting driver drowsiness in
real time using OBD-II data, as illustrated in Figure 2.

3.1 Data collection

The data collection process was developed to record vehicle
behavior and driver drowsiness in a synchronized and privacy-aware
way. Data was collected from several drivers using two linked sources:
OBD-II telemetry from the vehicle’s diagnostic port and facial video
recordings used only for labeling. The OBD-II stream provided real-
time measurements such as speed, engine RPM, throttle position, and
steering torque. These readings were retrieved through an OBD2CAN
interface connected to a laptop running a custom Python script. The
raw hexadecimal outputs were translated into numerical values using
predefined formulas and stored as timestamped CSV files so each
entry reflected the vehicle’s exact operating condition. To obtain
reliable ground truth for drowsiness, a camera placed in front of the
driver continuously recorded facial video during data collection. A
pre-trained transfer learning model for facial drowsiness detection
analyzed the frames and classified the driver’s state as Drowsy or
Normal. The predictions with their timestamps were aligned with the
OBD-II data so that every sequence of telemetry corresponded to the
correct driver condition at that moment. Visual data were not used for
model training but only for labeling the OBD-II data, which became
the sole input for later stages. This setup maintains driver privacy
while still producing accurate labels from visual evidence. The
resulting dataset containing time-aligned OBD-II readings and
drowsiness labels forms a strong base for feature extraction
augmentation and federated transfer learning, as shown in Figure 3.

3.2 Data preprocessing and transformation

The preprocessing stage played a key role in preparing the
collected OBD-II data for analyzing driver drowsiness. The continuous
stream of time-series signals from the vehicle sensors were cleaned
and segmented to a structured format. The continuous stream data
were then split into segments of 3,500 samples, with each segment
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Framework of the proposed driver drowsiness detection system using OBD-Il data and federated transfer learning.
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representing about 3 s of driving. Segments that are shorter than the
target length were padded with zeros to keep a consistent structure
across all samples. This step ensured that every input segment had the
same dimensions. Each segment including speed, engine RPM,
throttle position and steering torque was aligned with its
corresponding drowsiness label. Synchronization involved matching
each sensor segment with the ground truth labels so both referred to
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the same three-second time window. This process ensures that each
data segment reflects the driver’s state. Each driver’s dataset was
balanced to address the imbalance between normal and drowsy
samples. The drowsiness class had fewer entries so for balancing
samples were recreated using time-stretching and expansion
techniques. This process not only recreated new but realistic variations
in the signals also preserved the original temporal relationships. This
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dataset is class-balanced and more reflective of real driving conditions.
An illustration of the up-sampling signal using data augmentation is
shown in Figure 4. After balancing, a two-stage augmentation strategy
was utilized to increase the dataset while preserving stability across
both classes during training. This approach introduced realistic
variations to signals and MFCCs while preserving the critical patterns
in the dataset. The two stages are as follows:

« Signal-level transformations included scaling, permutation,
flipping, noise addition, magnitude warping, and slicing. These
steps increased natural variation while keeping the temporal
feature of the signal.

o Spectro-temporal transformations on the MFCC images used
time-shift and spectral scaling to handle small alignment slips
and sensor noise that often appear during driving.

Recent studies on sensor and audio-based data show that multi-
stage augmentation strategies can significantly improve model
performance. Liang et al. (2023) and Yu et al. (2023) stated that such
augmentation enhances generalization across datasets and also
stabilizes model performance. Signal-level augmentation was applied,
including amplitude scaling, random permutation, signal flipping,
Gaussian noise injection, magnitude warping, and window slicing.
These steps are illustrated in Figure 5.

After completing time-domain augmentation, each OBD-II signal
was transformed into a spectral representation using MFCCs. This step
captured frequency features that represent driver drowsiness behavior
patterns during driving. MFCCs were computed with 55 coefficients,
FFT window size of 2048, a hop length of 64, and a sampling rate of

10.3389/fcomp.2026.1723711

16 kHz as summarized in Table 1. Each OBD-II parameter was
processed individually, and the resulting coefficients were stacked to
create four-channel MFCC images. The overall process of converting
time-series signals into MFCC-based images is illustrated in Figure 6.

A final augmentation step was applied to the MFCC representations
to further enhance variety of features in dataset. This step involved small
temporal shifts, spatial scaling and time-stretching techniques which
generated variations in spectral patterns. The process expanded each
dataset by a factor of 4, producing final sizes of (23,184, 55, 55, 4) for
Driver 1, (22,400, 55, 55, 4) for Driver 2, and (12,936, 55, 55, 4) for Driver
3. Figure 7 illustrates the MFCC augmentation process for each sensor’s
spectral image. This multistage preprocessing and transformation
created a detailed dataset that captured both temporal and spectral
aspects of driver behavior. This provided a strong foundation for
federated learning experiments for detecting driver drowsiness.

The number of samples for the data balancing and augmentation
process is summarized in Table 2. The dataset was first balanced by
up-sampling the drowsy class to match the number of normal samples
for each driver. Then, signal-level augmentation expanded the dataset
about sevenfold, yielding 5,796, 5,600, and 3,234 samples for drivers 1,
2, and 3, respectively. Following this, MFCC-level augmentation added
temporal and spectral variations, further expanding the dataset by about
fourfold to 23,184, 22,400, and 12,936 samples for the same drivers.

3.3 Data split

A stratified data split was applied to the MFCC-augmented
OBD-II data to ensure balanced and reliable evaluation of the model

FIGURE 4

Upsampling Drowsy Class using Augmentation

—— Original ---- Augmented
Speed x102 RPM
i -
53 4 20.0 1‘:}
II 1\‘
§52 i Ss e =
© © i
=91 : > 15.0 L:L
L
501H h
E 12.5 t
00 05 10 15 20 25 30 00 05 10 15 20 25 3.0
Time (s) Time (s)
Throttle Position Steering Torque
[ ] H
10 - ; - : 10.0 . :
1 1 1
(] () SR I
E k 2 75 FUh i i
© S = © ’ | i
> : > i tif i I
h 5.0 Hr A
. L I -l U W ]
0 . 2.5 I
00 05 10 15 20 25 30 00 05 1.0 15 20 25 3.0
Time (s) Time (s)

Up-sampling the drowsy class using signal-level augmentation to balance the dataset.

Frontiers in Computer Science

06

frontiersin.org


https://doi.org/10.3389/fcomp.2026.1723711
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ahmad et al. 10.3389/fcomp.2026.1723711

Data Augmentation
Speed: Original Speed: Amplitude Scaled X102 RPM: Original %102 RPM: Random Permuted
—
£30 36 2 12,5 2125
> 3 =1 3
£ 29 £ IE £
o =3 [ [
£ €34 £ 12.0 € 12.0
< 28 < I<C <
27
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
Time (s) Time (s) Time (s) Time (s)
Throttle Position: Original Throttle Position: Flipped Steering Torque: Original Steering Torque: Noisy
6
2 @ 2 [ [} 6
T © k=] T
= 2 24 24
=l a1 = -
£ £ £2 £2
< < < <
0 { 0 0 0
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
Time (s) Time (s) Time (s) Time (s)
Speed: Original a5 Speed: Magnitude Warped Steering Torque: Original Steering Torque: Sliced
6 6
o 30 ) [ o
g Sa0 R S
=29 p=) = S
o o o o
£ £25 £2 £2
<28 < < <
27 20 0 0
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
Time (s) Time (s) Time (s) Time (s)
FIGURE 5
Signal-based data augmentation methods include scaling, permutation, flipping, adding noise, magnitude wrapping, and slicing

TABLE 1 Key parameters used for MFCC feature extraction. combined test set was then used to evaluate both the aggregated global
model and each client’s locally trained model based on their respective
Parameter Value Purpose . . . . .
weight updates. This approach provided a uniform and consistent
MECC coefficients 55 Rich spectral evaluation framework by testing every model on the same global test
representation dataset. That allowed direct performance comparison for clients and
FFT window size 2048 Balance time/frequency global model accuracy using identical evaluation conditions. This
resolution approach minimized the impact of local data biases by evaluating the
Hop length 64 samples Smooth temporal aggregated model on a combined global test set. In addition, the figure
continuity shows that the global model can handle the diversity of driving
behaviors across different drivers. The overall data split and the
Sampling rate 16 kHz Preserve signal detail N K K
composition of the global test set are summarized in Table 3.
Channels stacked 4 (Speed, RPM, Multi-sensor fusion
Throttle, Steering
Torque) 3.4 Federated transfer learning
MFCC image size 55x55x4 CNN input dimension

The federated learning framework worked as the primary training

strategy for developing the driver drowsiness detection system. This

for driver drowsiness detection. Stratified sampling maintained  framework contains the DrowsyXnet model, which was proposed to
proportional representation for normal and drowsy classes within all ~ capture both temporal and spectral patterns from MFCC-transformed
data subsets. Each driver’s dataset was split using 80:20 ratio with 80%  OBD-II data. Training was done locally on each client’s car using its
of the samples used for training and the remaining 20% for testing. ~ own dataset. Then, the updated weights were aggregated through the
This approach provided the model with enough data to learn each  secure CW-FedAvg method and updated a global model. The
driver’s behavioral patterns while reserving a portion for testing  DrowsyXnet global model protects privacy while still performing
performance on unseen data. During federated learning, each client  reliably across all drivers. To speed up learning and trained on relevant
used its own training data to update its local model weights based on  features DrowsyXnet used transfer learning with a pretrained
the driver’s data distribution. These locally updated weights were then ~ ResNet-50 backbone. As the MFCC inputs had four channels, an extra
communicated to the central server and aggregated to update the  convolutional layer with three filters and a 3 x 3 kernel was added to
global model using CW-FedAvg. Instead of testing models separately, ~ convert them into a three-channel format compatible with ResNet-50.
the evaluation phase grouped all tests. Therefore, the testing subsets ~ Using this layer kept the main MFCC structure. The pretrained
from all drivers were combined into a single global test set. This ~ ResNet-50 initially trained on ImageNet, which served as a feature
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Samples showing conversion of OBD-II time series into MFCC-based image representations.
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Visualization of augmented MFCC images showing spectral and temporal diversity.

extractor identifying key features in the signals. Transfer learning
adapted these general visual patterns for the specific task of detecting
driver drowsiness. Feature extraction outputs were passed through a
Global Average Pooling layer to condense activation maps and
preserve significant spatial information for training. A dense layer
with 256 neurons and ReLU activation followed, introducing
nonlinearity to learn complex feature interactions. To reduce
overfitting, Dropout (rate 0.2) and L2 regularization were applied. The
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final dense layer, equipped with a sigmoid activation function,
performed binary classification between Drowsy and Normal states.
The model was trained using the Adam optimizer with a learning rate
of 0.0001 and binary cross-entropy loss. The architecture of
DrowsyXnet is illustrated in Figure 8.

The federated learning process followed multiple communication
rounds using the CW-FedAvg approach. The server began by sending
the global model to all clients, each holding the same model
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TABLE 2 Summary of data balancing and augmentation effects on OBD-Il data for driver drowsiness detection.

10.3389/fcomp.2026.1723711

Driver ID Class balancing (samples per class) Dataset size Dataset size after Dataset size after

cl Bef Aft after balancing signal-level MFCC-level
ass SRl & augmentation augmentation

Normal 414 414 5,796 samples 23,184 samples

Driver 1 828 samples (7 x increase from balanced (4 x increase from signal-
Drowsy 1t a4 set — 828 X 7 = 5,796) level — 5,796 x 4 = 23,184)
Normal 400 400 5,600 samples 22,400 samples

Driver 2 800 samples (7 x increase from balanced (4 x increase from signal-
Drowsy 87 400

set = 800 x 7 = 5,600) level — 5,600 x 4 = 22,400)

Normal 231 231 3,234 samples 12,936 samples

Driver 3 462 samples (7 x increase from balanced (4 x increase from signal-
Drowsy 66 231 set — 462 x 7 = 3,234) level — 3,234 x 4 = 12,936)

TABLE 3 Data split distribution for the dataset.

Driver ID Total samples Training Testing set

(after MFCC set (80%) (20%)
augmentation)

Driver 1 23,184 18,547 4,637

Driver 2 22,400 17,920 4,480

Driver 3 12,936 10,348 2,588

Global test - - 11,705

set (Combined)

architecture locally. Every client trained its model on its own OBD-II
and MFCC data for one epoch in each round and kept the best weights
based on test accuracy. After training, the clients sent only their
updated weights, sample counts, and class distribution information to
the server. No raw data or model structure was shared, which
maintained data privacy. The server merged the received weights
using CW-FedAvg, adjusting each client’s contribution based on its
dataset size and class balance to keep the aggregation fair. The global
model was evaluated after each training round, and the best-
performing version was saved on the server as the final model after 60
rounds. This process allowed the global model to improve
continuously while preserving complete data privacy for all client cars.

3.5 Global model evaluation

The evaluation of the global model provides insight into the
understanding and effectiveness of the federated transfer learning
framework for driver drowsiness detection. Over 60 communication
rounds, performance metrics were monitored for both the global and
local models. After every round, client cars delivered updated weights
to the central server where the testing of global model has to be done.
Each local model was evaluated on the combined global test set using
its own weights, and the results were saved for comparison. The server
also evaluated the aggregated global model and saved a checkpoint of
the best-performing model weights based on test accuracy. Figure 9a
shows that global accuracy increased across rounds, and Figure 9b
shows a steady decline in loss. This trend suggests effective learning
and coordination among clients. The final global model achieved a test
accuracy of 98.29% on the global test set, which included data from
all drivers. Conversely, the local model showed some fluctuation due
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to differences in individual datasets. This pattern proves that
CW-FedAvg can increase consistency by weighting client
contributions according to data size and class balance metrics. Global
model checkpointing ensured the best configuration was saved,
reducing the risk of overfitting during training and making it ready
for deployment.

Latent features were extracted from the test dataset by passing
inputs through all layers except the final output layer to analyze how
the global model represents and classifies driver states. These features
offered a compressed view of the patterns in the data, which were
analyzed using dimensionality reduction techniques like t-SNE and
UMAP. Both methods reduced the complex latent space to two
dimensions, making it easier to observe differences between Drowsy
and Normal states. In the t-SNE visualization, each point was colored
according to its true label—the warm reds representing drowsy states
and cooler blues representing normal ones. As shown in Figure 10, the
DrowsyXnet model appears to separate the two groups reasonably
well and form clusters that show distinct driving patterns. UMAP
provided a second view and showed a similar cluster pattern,
supporting the model’s ability to successfully identify differences
between drowsy and normal driving as presented in Figure 11. The
separation is generally clear with few overlapping points due to natural
variability in driver behavior, underscoring that the model performs
perfectly.

The overall evaluation suggested that the federated learning
approach provides stable global convergence and performs better than
models trained singly on local data sets. Observing performance
across multiple communication rounds provided clear insight into
how learning evolved at both local and global levels effectively. The
DrowsyXnet global model achieved high accuracy and showed
resilience across different drivers. Also, keeping raw data private and
allowing effective collaboration among client teams.

4 Results and discussion

The performance of the proposed DrowsyXnet global model is
evaluated using classification metrics derived from the confusion
matrix and classification report. These metrics assess the model’s
ability to distinguish between Drowsy and Normal driver states on the
global test set. The confusion matrix consists of true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN),
which are used to calculate precision, recall, and F1-score.
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ACCumcy - sr ey
TP +FP+TN +FN
Recall = T—P
TP+ FN
Precision = TP
TP + FP
F1-Score =ZXM
Recall + Precision

The values used in the above equations, i.e., TP, FP, TN, and FN
values, were obtained from the confusion matrices of the proposed
DrowsyXnet model. Figure 12 presents the confusion matrix for the
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model DrowsyXnet global model in this proposed federated transfer
learning framework. The confusion matrix shows the true and false
predictions across both classes. Out of a total of 11,705 test samples,
only 113 false negatives (drowsy samples incorrectly classified as
normal) and 87 false positives (normal samples misclassified as
drowsy) were observed. This low misclassification rate highlights the
model’s strong discriminative ability and generalization across varying
driver behaviors and sensor readings. Furthermore, the parameters
extracted from this confusion matrix are shown in Table 4.

Table 4 presents a detailed breakdown of performance metrics for
the proposed CW-FedAvg-based DrowsyXnet model, classifying
samples into “Drowsy” and “Normal” driver states. Each row of the
table corresponds to a class, while the columns show precision, recall,
F1-score, and support (the number of instances per class). For the
Drowsy class, the model achieved a precision of 98.51% conforming
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that predictions of drowsiness are usually correct. The recall of 98.07%
indicates that most actual drowsy cases are detected, though a few
samples are misclassified. Achieving an F1 score of 98.29 percent
proves a close balance between precision and recall, so the model
manages detection very well. These results show that the model is
identifying patterns in OBD-II signals such as RPM, vehicle speed,
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throttle position, and steering torque that detect early fatigue or lapses
in attention.

For the Normal class, precision reached 98.08%, showing the
model correctly identifies typical driving states with few false positives.
Recall was slightly higher at 98.51%; nearly all normal instances were
captured. The Fl-score was again 98.29%, reflecting consistent
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Confusion matrix of the proposed Global DrowsyXnet model on the
global test set.

TABLE 4 Class-wise performance metrics of the proposed CW-FedAvg
DrowsyXnet model.

Class Precision Recall F1- Support
Score

Drowsy 0.9851 0.9807 0.9829 5,853

Normal 0.9808 0.9851 0.9829 5,852

Macro Avg 0.9829 0.9829 0.9829 11,705

Weighted 0.9829 0.9829 0.9829 11,705

Avg

performance across metrics. Both the macro and weighted averages
were 98.29%, indicating that the model maintains fairly uniform
accuracy across classes. Overall, these results stated that the
CW-FedAvg-based DrowsyXnet model performs reliably and
consistently. It offered a balance between accuracy and privacy and
provided a deployable solution for real-world driving scenarios.

4.1 Client and global model comparison

The comparison of client-level and aggregated global model
accuracies over 60 communication rounds using the global test set, as
shown in Figure 13. Each client represents a different driver dataset
collected under varying conditions. During federated training, all
clients performed local updates, which were then aggregated on the
central server using the CW-FedAvg strategy. The figure suggests
accuracy improved continuously across all clients, which appears to
reflect stable convergence over time. Client car 2 reached high
accuracy faster, likely because its dataset was more balanced. Client
car 1 followed a similar trend, while client car 3 showed slightly more
fluctuation due to less data as compared to other client cars. The
aggregated global model tended to outperform individual clients and
showed smoother convergence across rounds. Accuracy increased
during early rounds and appeared to level off near the fortieth round.
By the end of training, the global model reached 98.29% on the global
test set, showing strong generalization. Overall, the rising trend in the
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global curve indicates that federated learning successfully integrated
knowledge from all clients into a global model. The weighting strategy
in CW-FedAvg can balance contributions from each client, preventing
any single dataset from dominating the learning process. The global
test results further confirmed that the aggregated model generalized
well to unseen data from all clients. Evaluating each local model on
the server-side global test set showed that local accuracies changed
across rounds, and the global model consistently performed better.
Aggregating class-weighted updates appears to improve learning
stability and reduce the impact of non-identical data distributions
across clients.

4.2 Comparative model performance

To benchmark the proposed framework, its performance was
compared with several previous machine learning and deep learning
models trained under similar conditions. Conventional classifiers such
as Logistic Regression (LR) with accuracy 60.90% and Support Vector
Machines (SVM) achieved 72.18% accuracy which conclude that these
models appeared to struggle. Time-series-oriented models such as
long short-term memory (LSTM) achieved approximately 81.95%
accuracy, and the One-Dimensional Convolutional Neural Network
(1D-CNN) reached 88.35%, which improved performance compared
to conventional classifiers. But these models cannot fully predict the
complex spectral-temporal patterns present in MFCC representations.
Modern deep architectures that leverage visual representations
showed much stronger results. EfficientNetBO reached 97.63%,
DenseNet201 achieved 97.45%, and ConvNeXtTiny scored 96.81%
accuracy. Overall, the comparison demonstrated that using MFCC-
based visual representations in combination with deep learning yields
an advantage over traditional and simpler time-series models. The
DDD-GC-ViT model also achieved 97.90%, confirming the advantage
of attention-based mechanisms. However, the DrowsyXnet model
using CW-FedAvg achieved the highest accuracy of 98.29% while
preserving data privacy, as shown in Table 5.

To assess real-time feasibility, two lightweight models,
EfficientNet-B0 and MobileNet V3-Small, were compared with the
main backbone (ResNet-50). Results were generated using the same
MEFCC inputs and training configuration. To ensure reproducibility,
all inference time benchmarks were conducted on a Google Colab
environment equipped with an NVIDIA T4 Tensor Core (16GB
GDDR6) GPU. The results show that ResNet-50 achieves the highest
accuracy but lightweight models offer 2 times faster inference with
minimal performance loss as stated in Table 6.

A comparison of the training setups in Table 7. The centralized
baseline marks the upper limit because it trains on all data at once
reaching 98.67% accuracy, an Fl-score of 98.65%, an MCC of 0.968
and a Cohen’s k of 0.967. FedAvg drops slightly on every metric
settling at 97.89% accuracy, 97.74% F1, 0.955 MCC and 0.953 k while
FedProx achieved 98.05% accuracy, 98.00% F1, 0.960 MCC and 0.959
k. The proposed CW-FedAvg model achieved the best accuracy 98.29,
98.29% F1, an MCC of 0.966, and a k of 0.965 and narrowing the gap
with the centralized setup still preserving data privacy.

These trends show that CW-FedAvg provides more stable
performance across all evaluation metrics by giving balanced influence
on clients with small or uneven datasets. The close match between the
centralized and federated results confirms that high-quality
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TABLE 5 Comparative model performance on driver drowsiness detection.

Baseline approaches Model Accuracy Precision Recall F1-score
Baseline model LR 60.90% 60.95% 60.90% 60.88%
Baseline model SVM 72.18% 73.06% 72.25% 71.95%
Ahmad et al. (2024a) LSTM 81.95% 82.21% 81.98% 81.92%
Ahmad et al. (2024b) 1D-CNN 88.35% 88.35% 88.35% 88.35%
Ahmad et al. (2025b) EfficientNetBO 97.63% 97.64% 97.63% 97.63%
DenseNet201 97.45% 97.45% 97.45% 97.45%
ConvNeXtTiny 96.81% 96.82% 96.81% 96.81%
Ahmad et al. (2025a) DDD-GC-ViT 97.90% 97.91% 97.90% 97.90%
Proposed study DrowsyXnet (CW-FedAvg) 98.29% 98.29% 98.29% 98.29%

performance can be achieved without data sharing. This provides
privacy-preserving deployment in real-world settings.

4.3 Federated learning under
heterogeneous client conditions

The dataset was used to run three non-IID scenarios to evaluate
the federated framework’s handling of inter-client differences. The first
introduced a strong class imbalance by limiting one client to a 1:20
drowsy-normal ratio. The second mimicked missing information by
randomly masking either the RPM or throttle channel for a client. The
third combined both imbalance and channel masking to create a more
challenging scenario. The tests examined whether FedAvg, FedProx,
and the proposed CW-FedAvg can deal with uneven and incomplete
client data. Across all scenarios CW-FedAvg appeared more resilient
keeping accuracy within about 0.6% of the balanced baseline. Fed Avg
showed a larger drop under strong class skew and feature removal
while FedProx remained more stable as shown in Table 8. These results
recommend that weighting clients according to data volume and class
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distribution helps reduce bias and keeps the model fairly reliable. Even
though individual clients differ significantly in data quality or class
availability. The patterns also suggest CW-FedAvg fits real-world
deployments where client datasets are rarely uniform.

4.4 Robustness and statistical significance

All experiments were repeated across three random seeds to check
consistency and reduce the effect of random initialization. The model’s
performance stayed stable across the runs. Metric variance remained
below 0.3%, which shows consistent convergence and effect from seed
choice. McNemar tests were applied to determine the performance
differences and statistical evaluation. Comparison between the
centralized model and FedAvg provide a p-value of 0.018 which
showing a statistically significant difference. The gap between the
centralized model and CW-FedAvg was not significant, with a p-value
of 0.12. CW-FedAvg remained close to the centralized model
performance while addressing privacy concerns. The comparison
between FedAvg and CW-FedAvg yielded a p-value of 0.037,
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TABLE 6 Lightweight backbone model comparison.

10.3389/fcomp.2026.1723711

Model Params (M) Inference time (ms/ Accuracy (%) Suitability
sample)

ResNet-50 23.5 4.9 98.29 Best accuracy

EfficientNet-B0 5.3 3.1 97.9 Balanced

MobileNet V3-Small 2.9 24 96.4 Edge devices
TABLE 7 Performance of DrowsyXnet under different training approaches.

Method Test accuracy (%) F1-score (%) MCC Cohen's k

Centralized (pooled) 98.67 98.65 0.968 0.967

FedAvg 97.89 97.74 0.955 0.953

FedProx (u =0.1) 98.05 98.00 0.960 0.959

CW-FedAvg (proposed) 98.29 98.29 0.966 0.965

TABLE 8 Heterogeneous client simulation results.

Condition FedAvg (%) FedProx (%) CW-FedAvg (%)  Observation

Balanced clients 98.0 98.1 98.3 Reference

Skewed 1:20 class ratio 96.8 97.4 97.8 CW-FedAvg mitigates imbalance
Masked channels 96.9 97.5 97.9 Robust with missing features
Skew + mask 96.4 97.2 97.7 Most challenging case

TABLE 9 Confidence intervals and significance tests.

Comparison Accuracy (%) 95% ClI p-value Interpretation
Centralized vs. FedAvg 98.67/97.80 [98.4-98.9] / [97.5-98.1] 0.018 Statistically significant
Centralized vs. CW-FedAvg 98.67/98.29 [98.4-98.9] / [98.0-98.5] 0.12 Not significant
FedAvg vs. CW-FedAvg 97.80/98.29 [97.5-98.1] / [98.0-98.5] 0.037 Statistically significant

indicating that CW-FedAvg is better than standard FedAvg. Overall,
the findings indicate that the proposed CW-Fed Avg approach provides
performance that is stable and reproducible across different runs and
experiments. At the same time, it appears effective at reducing the
performance gap between centralized training and federated training
and maintaining results close to the upper bound even under varied
client conditions, as demonstrated in Table 9. Minor fluctuations
observed across different random seeds highlight the inherent
variability in model behavior. The results confirm that CW-FedAvg
provides a significant improvement over FedAvg, and the performance
difference compared to the centralized model is not statistically
significant.

4.5 Interpretation of MFCC features

The evaluation shows that DrowsyXnet reliably predicts both
drowsy and normal driver states. SHAP (SHapley Additive
exPlanations) was used to make the model more interpretable and to
illustrate the contribution of individual features to each prediction.
Each input including speed, RPM, throttle position and steering
torque represented as MFCC-based images and given a value showing
its influence on the final output. The SHAP summary and dependence
plots in Figure 14 show patterns of feature importance and
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interactions, providing insight into the model’s sensitivity. Using
SHAP makes the model more transparent and builds trust while
showing which behavioral indicators are most important for detecting
driver drowsiness in safety-critical situations.

4.6 Discussion and limitations

The results suggest that the DrowsyXnet model trained with the
CW-FedAvg strategy performs reliably even under strict data privacy
constraints. The global accuracy of 98.29% comes close to the 98.67%
achieved with centralized training. This shows that federated learning
can capture most of the predictive power of pooled-data systems
without sharing raw data. Comparing local and global models shows
the effect of federated collaboration. Clients with limited or
imbalanced data gain from the knowledge shared across all clients.
Client 3 had fewer data points and exhibited lower accuracy. The data
distribution was skewed, and performance variance was higher. The
local models gradually aligned with the global trend as communication
rounds progressed. Overall, the results indicated that CW-FedAvg
strategy preserve privacy and offer a consistent and performance
across diverse client datasets. FedAvg showed a noticeable drop in
accuracy, F1-score, MCC, and Cohen’s k. FedProx reduced some of the
negative effects caused by non-IID data. The proposed CW-FedAvg
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achieved the best balance across all metrics. Weighting updates
according to class distribution prevents clients with dominant data
from having excessive influence on global learning. Testing with
clients who have different data conditions gives more insight into the
model's performance. With class imbalance or missing sensor
channels and combined non-IID distortions, CW-Fed Avg maintained
accuracy within about 0.6% of the balanced baseline. In comparison,
FedAvg dropped more sharply, and FedProx provided only
intermediate resilience. SHAP-based interpretability analysis offers
additional confidence in the frameworK’s reliability in real-world
applications. The visualizations highlighted meaningful spectral
patterns in the MFCC representations of speed, RPM, throttle, and
steering position.

Comparing lightweight backbones provides useful information
for real-time deployment, and ResNet-50 remains the most accurate
architecture. EfficientNet-B0 and MobileNet V3-Small performed
competitively while running about twice as fast and using far fewer
parameters. The framework could be adapted for embedded
automotive hardware. It allows a balance between accuracy and
latency depending on the application. Statistical checks add further
context to these findings. McNemar tests show that CW-FedAvg
performs better than Fed Avg while showing no significant difference
from the centralized upper bound. This provides confidence for
practical deployment in real-world driving scenarios. Despite the
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strengths, several limitations are worth noting. The dataset includes a
relatively small group of drivers and mostly controlled driving
conditions. The findings are limited in their application to more
diverse real-world scenarios such as night driving, heavy traffic, or
adverse weather. Collecting data from different regions, vehicle types,
and driver populations could improve robustness. MFCC-based
feature extraction improves performance but adds computational
overhead. This can be challenging for ultra-low-power edge devices,
especially with deep convolutional backbones. Future work could
explore more eflicient spectral encoders or hardware-aware neural
architectures. These approaches would help reduce the computational
load. Adding temporal attention mechanisms or sequence-level
federated models could help address this limitation.

Finally, federated learning improves privacy and practical
deployment still faces hurdles such as device availability,
communication delays and client dropout and limited bandwidth.
Addressing these system-level challenges is important for smooth
operation in commercial intelligent transportation systems. Future
studies will need to carefully consider these real-world factors.
Overall, the findings show that combining federated learning with
data-aware aggregation and spectral representations and explainable
Al provides a practical and privacy-conscious way to detect driver
drowsiness. The CW-FedAvg framework provides high accuracy and
handles non-IID conditions well. It also makes the decision process
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more transparent. These qualities make it a useful foundation for real-
world applications. Safety, scalability, and privacy are all critical
considerations.

5 Conclusion

The study proposed a framework for detecting driver drowsiness
using OBD-II sensor data and MFCC transformations with federated
deep learning. The DrowsyXnet model used a pretrained ResNet-50
backbone and fine-tuned for MFCC image of OBD-II data. The
DrowsyXnet model predicts drowsy and normal driver states effectively.
In federated deep learning model is trained within a CW-FedAvg
framework, it achieved an overall accuracy of 98.29% on the global test
set. The achieved performance is consistent and promising across
multiple drivers while keeping raw data private. In the centralized
approaches model, a single client car data, the federated setup trains
models locally and aggregates updates securely on the server. This
reduces the impact of non-IID data and class imbalance in different
client car data. The model maintained high precision, recall, and
F1-scores for both classes. This global model can detect inconsistencies
in driver behavior and vehicle dynamics that indicate drowsiness.
Compared with other models, traditional classifiers such as Logistic
Regression and SVM struggled with OBD-II signals, achieving
accuracies of 60.90 and 72.18%. Time-series favorable models such as
LSTM and 1D-CNN performed better but had difficulty capturing useful
features for drowsiness detection. Modern deep learning architectures,
including  EfficientNetB0, DenseNet201, ConvNeXtTiny, and
DDD-GC-ViT, achieved accuracies exceeding 96%, underscoring the
advantage of deeper networks for the task. Overall, transforming time-
series OBD-II signals into MFCC images and using transfer learning
improves feature extraction. Furthermore, combining privacy-
preserving federated learning with explainable AI provides the best
solution for real-world driver safety and reliability for drowsiness
detection in vehicles. Future work will focus on expanding the dataset to
cover a wider range of drivers, road types, and environmental conditions.
It will also investigate lighter transformer-based or hybrid architectures
to enhance inference efficiency and reduce computational load in safer
and more reliable vehicles. This framework provides a solution for secure
driving and reducing drowsiness-related accidents. It can contribute to
improved road safety and privacy-based intelligent transportation
systems.
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