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Introduction: DNS tunneling remains a critical network threat, exploiting the
inherent trust in the DNS protocol for unauthorized communication, data
exfiltration, and firewall evasion.

Methods: Addressing this challenge, this paper introduces a novel, hybrid
feature selection framework that integrates the Random Forest classifier
with an Enhanced Reinforcement Learning-Guided Grey Wolf Optimizer
(EnhancedRLGWO). The EnhancedRLGWO employs a Dueling Deep Q-Network
and strategic Opposition-Based Learning to intelligently navigate the feature
space and identify an optimal, minimal subset.

Results: Evaluated against the benchmark CIRA-CIC-DoHBrw-2020 dataset,
the proposed approach achieved a state-of-the-art accuracy of 99.82% and a
weighted F1-score of 99.79% using a highly compact subset of only 12 features.
This performance significantly outperforms existing machine learning-based
DNS tunneling detection systems, such as a hybrid feature selection model
achieving 98.3% accuracy and a full 28-feature Random Forest baseline (98.50%
accuracy). The experimental results showed the robustness of this method in
identifying various types of DNS tunneling attacks, including lodine, DNS2TCP,
and DNScat2, while maintaining performance and accuracy.

KEYWORDS

DNS tunneling, feature selection, grey wolf optimizer, hybrid detection, machine
learning, random forest, reinforcement learning, security

1 Introduction

The Domain Name System (DNS) is a foundational and essential component of the
global internet infrastructure, serving primarily as a translator that converts numeric IP
addresses into human-readable domain names (Hynek et al., 2022). However, this critical
and ubiquitous role, combined with its inherent trust within network protocols, has made
it a prime target for malicious actors. Consequently, the exploitation of DNS represents
a major area of concern for comprehensive cyber risk management and implementing
robust network security frameworks. This vulnerability necessitates advanced solutions
to protect networks against evolving cyber threats (Afek et al., 2025; Singh et al., 2025;
Almaayah and Sulaiman, 2024; Lee, 2020; Alghareeb and Almaayah, 2025). DNS tunneling
is a covert attack technique where malicious data is encapsulated and hidden within
the queries and responses of the standard DNS protocol, effectively bypassing security
perimeter defenses such as firewalls. This method poses a significant threat because DNS
traffic is inherently assumed to be safe, making the covert channel extremely difficult
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to detect (Jerabek et al., 2023; Almedires et al., 2025). The primary
detection challenge stems from the fact that attackers carefully
encode data into DNS packets, causing the malicious traffic to
appear functionally normal to traditional network monitoring
systems (Boonyopakorn and Changsan, 2024; Alzighaibi, 2023;
Abu Laila, 2025). Furthermore, the wide adoption of encrypted
DNS protocols, such as DNS over HTTPS (DoH), complicates
threat identification significantly, as encryption obscures the packet
payload, rendering deep packet inspection techniques ineffective,
slow, and computationally intensive (Kim et al., 2025; Akem et al.,
2025; Abdulateef et al., 2025). Machine learning (ML) offers a
more innovative and powerful way to detect DNS tunneling, as ML
models can discover subtle, behavioral patterns in large volumes
of DNS traffic, uncovering hidden threats (Alzighaibi, 2023;
Casanova et al., 2023; Almarshood and Rahman, 2025). However,
achieving optimal performance relies heavily on effective feature
engineering and optimization of the selected features. Feature
engineering enhances models by introducing new or combined
features, while feature selection is a crucial strategy for choosing
an optimal subset of informative features, enhancing efficiency and
reliably achieving better detection accuracy. This dual approach is
essential for competitive performance, as demonstrated by models
achieving high accuracy rates in complex network security tasks like
DDoS attack detection. These techniques reinforce the potential
of ML in cybersecurity (Singh et al., 2025; Bozkurt et al., 2024;
Abu Laila et al., 2025). This study employs the Random Forest
(RF) classifier for detection and an advanced metaheuristic for
feature selection: the Reinforcement Learning-Guided Gray Wolf
Optimizer (EnhancedRLGWO). RF was chosen due to its robust
performance in handling complex, high-dimensional data across
diverse network security tasks, achieving near-perfect metrics in
areas like DDoS attack detection (99.92% accuracy and 100%
Fl-score). While robust for detection (Roopesh et al., 2024;
Aggarwal and Kumar, 2024), its integration with a powerful
metaheuristic is essential. The Gray Wolf Optimizer (GWO)
is utilized as the base optimizer because its effective balance
of exploration and exploitation is proven for feature selection
in network risk detection, with GWO-based models achieving
high accuracy (0.999) in comparable domains like Port Scan
detection. To overcome the convergence weaknesses of standard
GWO, the EnhancedRLGWO is introduced to intelligently leverage
Reinforcement Learning (RL) to dynamically navigate the vast
search space. This hybrid approach, combining GWO with RL, is
vital for identifying an optimal, compact subset, thereby improving
both model accuracy and computational efficiency (Hu and Yu,
2023). While prior studies have explored metaheuristics for feature
selection (Bozkurt et al., 2024; Alsajri and Steiti, 2024), our work
introduces three key innovations:

e Advanced RL-guided optimizer: We propose a novel hybrid
algorithm, the EnhancedRLGWO, which employs a Dueling
Deep Q-Network (DQN) to guide the search behavior of the
Gray Wolf Optimizer dynamically. This DQN allows the agent
to learn an optimal strategy for balancing exploration and
exploitation (Hu and Yu, 2023).

Strategic operator selection: The RL agent is enhanced with
advanced techniques, including Prioritized Experience Replay
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(PER) for more efficient learning and the ability to trigger
Opposition-Based Learning (OBL) as a strategic maneuver to
escape local optima.

e Encrypted traffic specialization: Our feature engineering
specifically targets characteristics preserved in DNS-over-
HTTPS (DoH) traffic, including temporal patterns and packet
size distributions that remain observable despite encryption,
ensuring real-world applicability.

1.1 Key contributions

This study addresses the critical challenge of DNS tunneling
detection in encrypted traffic by introducing a novel, multi-layered
framework, leading to the following key contributions:

1. The Enhanced Reinforcement Learning-Guided Gray Wolf
Optimizer (EnhancedRLGWO): We propose a novel, state-of-
the-art hybrid metaheuristic that significantly advances existing
optimization techniques by integrating a Dueling Deep Q-
Network (DQN) with Prioritized Experience Replay (PER)
to intelligently and dynamically control the search process
of the Gray Wolf Optimizer. This novel control mechanism
successfully overcomes the known weakness of standard GWO
in achieving an effective balance between global exploration and
local exploitation.

. A novel, highly compact feature subset for encrypted traffic:
We introduce a novel approach to feature selection that, via
the EnhancedRLGWO, automatically identifies an optimal,
compact subset of only 12 features specifically tailored for
DNS-over-HTTPS (DoH) traffic. This subset focuses exclusively
on transport-layer metadata (e.g., packet size and temporal
distributions) that remains observable despite encryption,
achieving a dramatic dimensionality reduction of 57% compared
to the full dataset.

. State-of-the-art
validation: We achieve a state-of-the-art weighted Fl-score
of 99.82% and accuracy of 99.82% on the challenging CIRA-
CIC-DoHBrw-2020 dataset. This performance is rigorously

detection performance and rigorous

validated through dual-stage benchmarking: (1) demonstrating
the superiority of the EnhancedRLGWO against six standard
mathematical benchmark optimizers and (2) achieving superior
results against existing metaheuristic-based feature selection
approaches and full-feature ML baselines.

The rest of the paper is organized as follows: Section 2 discusses
related work, Section 3 explains our method, Section 4 presents
results, and Section 6 concludes with future research directions.
This study aims to provide an efficient way to detect DNS tunneling
and improve network security (Kim et al., 2025; Jerabek et al., 2023;
Almaayah and Sulaiman, 2024).

2 Related work

DNS tunneling is a covert communication technique that
exploits a set of protocols, such as the Domain Name System
(DNS), to bypass traditional security measures (Hynek et al., 2022;

frontiersin.org


https://doi.org/10.3389/fcomp.2025.1728980
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Sammour et al.

Jerabek et al., 2023), and it is still considered a complex problem to
solve (Kim et al., 2025; Al-Naamneh et al., 2025). By embedding
data within DNS queries and responses, attackers can extract
sensitive information (Boonyopakorn and Changsan, 2024), create
command and control (C2) channels (Casanova et al., 2023), and
bypass firewalls (Akem et al., 2025). Various encoding methods,
such as Base32, Base64, and binary 8-bit encoding, hide malicious
data streams (Afek et al., 2025; Bozkurt et al., 2024). The availability
of user-friendly tunneling tools like Iodine, DNScat, and DNS2TCP
makes DNS a prime target for cybersecurity interventions (Giirsoy
etal., 2024; Alsajri and Steiti, 2024). To address the problem of DNS
tunnels, initial research focused on traditional methods like payload
and traffic analysis (Alzighaibi, 2023; Singh et al., 2025; Wang
et al., 2021). These methods search for statistical anomalies, such
as high query frequency or unusual payload entropy, to indicate a
tunnel (Bozkurt et al., 2024). While effective for unencrypted DNS,
these techniques are less reliable for DNS-over-HTTPS (DoH)
traffic, where encryption obscures the payload and normalizes
traffic patterns, thus complicating detection (Gtirsoy et al., 2024).
The adoption of DoH has created significant challenges. While
DoH enhances user privacy, it inadvertently provides a stealthy
channel for attackers to evade detection (Hynek et al., 2022).
This vulnerability has led to an increased risk of side-channel
attacks, where packet timing and size are analyzed to infer
sensitive information, and downgrade attacks, where users are
forced back to legacy, unencrypted DNS (Kim et al., 2025; Afek
et al.,, 2025). The critical need for advanced detection methods
is compounded by the challenge of developing “deep learning
models” for Network Intrusion Detection Systems (NIDS) in
complex environments, such as “intelligent vehicle systems,” often
requiring the use of “realistic synthetic data” to enhance training
datasets (Salloum et al., 2025). Consequently, there is a pressing
need for advanced methods that can detect malicious activity within
encrypted DNS traffic (Boonyopakorn and Changsan, 2024; Jung
and Kwak, 2025; Ali, 2024. Machine learning (ML) has emerged
as a powerful solution, effectively distinguishing malicious DoH
traffic from benign communications (Alzighaibi, 2023; Casanova
et al, 2023). Classifiers like Random Forest, Support Vector
Machines (SVM), and gradient boosting models (Singh et al,
2025; Aggarwal and Kumar, 2024; Bykov and Chernyshov, 2024),
as well as deep learning models like LSTMs and CNNs, which
can capture temporal dependencies in traffic data (Bozkurt et al.,
2024; Giirsoy et al., 2024). Machine learning and deep learning
classifiers have also demonstrated strong performance in other
critical security domains, including “Android malware detection”
(Almomani et al.,, 2025b) and “risk management in mobile and
wireless environments” (Alghareeb and Almaayah, 2025). However,
the success of these models is highly dependent on the quality and
relevance of the features used for training (Abualghanam et al,
2023; Almarshood and Rahman, 2025; Abu Laila et al., 2025).

2.1 Feature selection with metaheuristics

Researchers have increasingly turned to metaheuristic
algorithms for automated feature selection to address the challenge

of high-dimensional network data (Roopesh et al.,, 2024; Singh
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et al,, 2025). These optimizers can efficiently search for an optimal
subset of features that maximizes model performance while
minimizing complexity (Alshinwan et al., 2025). Early work often
employed Genetic Algorithms (GAs) to evolve feature subsets
(Alsajri and Steiti, 2024), but recent advancements leverage
swarm intelligence for problems like “DDoS detection” (Almaiah
et al., 2024) and “Port Scan detection,” combining Ant Colony
Optimization (ACO), GA, and GWO (Almaiah and Kadel,
2025). More recently, swarm intelligence algorithms such as
Particle Swarm Optimization (PSO) and the Gray Wolf Optimizer
(GWO) have gained prominence. The collective behavior of social
organisms inspires these methods and has proven effective at
solving complex, non-linear optimization problems like feature
selection (Hu et al., 2025). The integration of Particle Swarm
Optimization (PSO) with various classifiers, including LSTM, has
shown success in domains like “email spam detection” (Alkhdour
et al, 2024) and in enhancing detection accuracy for web-based
attacks such as “URL defacement” (Almomani et al., 2025a). GWO,
in particular, has shown promise due to its simple structure and
balance between exploration and exploitation capabilities (Hu et al.,
2025; Jung and Kwak, 2025). More recently, swarm intelligence
algorithms such as Particle Swarm Optimization (PSO) and the
Gray Wolf Optimizer (GWO) have gained prominence. The
collective behavior of social organisms inspires these methods and
has proven effective at solving complex, non-linear optimization
problems like feature selection (Hu et al., 2025).

2.2 Reinforcement learning for optimizer
control

A state-of-the-art trend involves enhancing metaheuristics
with Reinforcement Learning (RL). An RL agent learns a
sophisticated policy to control the optimization process in
these hybrid models dynamically. For example, instead of using
fixed parameters, the RL agent can adaptively choose the best
operators or strategies (e.g., exploration vs. exploitation) based
on the current state of the search, leading to more robust and
efficient convergence (Hu and Yu, 2023). This intelligent control
mechanism represents a signiﬁcant advancement over traditional,
static optimizers. In reviewing the comparative performance of
state-of-the-art methods, a clear trend emerges toward hybrid
models that combine robust classifiers with intelligent feature
optimization. While methods proposed by Singh and Roy (2020)
have achieved high accuracy, they often face challenges such as
high computational overhead or limited generalizability. While
advanced metaheuristics demonstrate high efficacy across various
domains (Talabani et al., 2025), achieving superior performance
in highly deceptive, encrypted traffic remains a challenge,
necessitating the sophisticated control mechanisms introduced in
this work (Abualghanam et al., 2023; Jung and Kwak, 2025). This
challenge highlights a research gap for a highly accurate and
computationally efficient framework, which forms the foundation
for our proposed approach leveraging a reinforcement learning-
guided metaheuristic. In reviewing the comparative performance
of state-of-the-art methods, a clear trend emerges toward hybrid
models that combine robust classifiers with intelligent feature
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optimization. While methods proposed by Singh and Roy (2020)
have achieved high accuracy, they often face challenges such
as high computational overhead or limited generalizability. This
challenge highlights a research gap for a highly accurate and
computationally efficient framework, which forms the foundation
for our proposed approach leveraging a reinforcement learning-
guided metaheuristic (Abdulateef et al., 2025; Almedires et al., 2025;
Ali, 2024; Al-Naamneh et al., 2025).

3 Materials and methods

This section presents the comprehensive research methodology
employed in this study. We begin by outlining the overall
framework and describing the dataset and the feature engineering
process. We then provide a detailed technical explanation of
our core contribution: the Enhanced Reinforcement Learning-
Guided Gray Wolf Optimizer (EnhancedRLGWO). Finally, we
describe the experimental design used to validate our approach.

3.1 Overall framework

The proposed framework, illustrated in Figurel, is a
multi-stage process designed to identify an optimal, compact
feature subset for detecting DNS tunneling. The process
begins with data preparation and feature engineering
from the raw network traffic. The frameworKs core is an
iterative optimization loop where the EnhancedRLGWO
selects feature subsets, which are evaluated by a lightweight
Random Forest (RF) model. The fitness score from the RF
model serves as a reward to guide the RL agent within the
optimizer. Once the optimization is complete, the single best
feature subset trains a full-scale, robust RF model for final
performance evaluation.

3.2 Dataset and pre-processing

The study utilizes the public CIRA-CIC-DoHBrw-2020
dataset (Jerabek et al., 2023), a comprehensive and widely adopted
benchmark for evaluating DNS-over-HTTPS (DoH) tunneling
detection systems. This dataset captures realistic network traffic
that includes both benign DoH traffic (from browsers like
Google Chrome and Mozilla Firefox) and malicious DoH traffic
generated using well-known tunneling tools such as Iodine,
DNS2TCP, and DNScat2 (Giirsoy et al,, 2024; Talabani et al,
2025). Its use ensures direct comparability with state-of-the-
art methods, including the recent ACO-based approach that
reported 99.99% accuracy on the same data (Talabani et al,
2025). The dataset was preprocessed following established best
practices for network traffic analysis. Missing values were handled
using mean imputation, and all features were standardized
using StandardScaler from scikit-learn to ensure uniform
scale and improve model convergence. Class distribution was
carefully balanced during the train-test split to avoid bias,
resulting in the final composition shown in Table 1. This rigorous
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FIGURE 1

High-level flowchart of the proposed methodology.
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TABLE 1 Dataset statistics (placeholder).

Class Sample count

Benign 114,768
Todine 10,000
DNS2TCP 10,000
DNScat2 10,000

preprocessing pipeline aligns with methodologies used in recent
encrypted traffic studies (Jung and Kwak, 2025; Abualghanam
et al, 2023), ensuring both reproducibility and fairness in
performance evaluation.

3.3 Core optimization engine: Gray Wolf
Optimizer

The foundation of our feature selection framework is the
Gray Wolf Optimizer (GWO) a nature-inspired, swarm-based
metaheuristic modeled after the hierarchical social structure and
cooperative hunting behavior of gray wolves (Hu et al., 2025). In
GWO, candidate solutions are represented as wolves, with the three
highest-performing individuals labeled as alpha («), beta (B), and
delta (§), while the remainder are omega (@) wolves. The algorithm
iteratively refines solutions by simulating encircling, hunting, and
attacking prey, governed by:

D=|C-Xp() — X(t)l, X(t+1)=X,(t)—A-D,

where f is the current iteration, )_ip(t) is the current best estimate
of the optimal solution (the prey), X(¢) is a wolf’s position, and
A, C are adaptive coefficient vectors that balance exploration
and exploitation. Omega wolves update their positions relative
to the top three leaders. Because feature selection is a binary
optimization problem, we apply a sigmoid-based transfer function
to map each wolf’s continuous position to a binary decision (1
= feature selected, 0 = excluded). While standard GWO offers
a strong balance between exploration and exploitation, it can
converge prematurely to suboptimal solutions in high-dimensional
or deceptive search spaces such as those found in encrypted
DN traffic. This limitation is well-recognized in recent literature.
For instance, GWO has been successfully applied to port scan
detection with 99.9% accuracy when paired with SVM (Almaiah
and Kadel, 2025), and to IoT botnet detection with 99.1% accuracy
using Random Forest (Salloum et al., 2025). These results confirm
GWO’s suitability as a base optimizer for network security tasks.
However, in the context of DNS-over-HTTPS (DoH) traffic, where
feature redundancy and encryption obscure discriminative signals,
even robust metaheuristics can stagnate without adaptive control.
To overcome this, we extend GWO into our EnhancedRLGWO
framework by integrating a Reinforcement Learning (RL) agent
(detailed in Section 3). This hybrid design enables dynamic,
data-driven adaptation of search behavior contrasting with static
alternatives like GA or PSO, and going beyond recent approaches
such as ACO, which achieved 99.99% accuracy on the same
CIRA-CIC-DoHBrw-2020 dataset but without intelligent policy
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learning (Talabani et al., 2025). Our RL-guided mechanism ensures
sustained exploration in complex landscapes while leveraging
proven GWO dynamics, ultimately yielding a more resilient and
efficient feature selection process (Hu and Yu, 2023; Alshinwan
etal., 2025).

3.4 Intelligent control: the reinforcement
learning agent

The primary innovation of our work is the integration of a
Reinforcement Learning (RL) agent that acts as an intelligent
controller for the GWO. This agent learns a sophisticated
policy to dynamically adapt the optimizer’s behavior in response
to the evolving search landscape, leading to a more effective
and efficient feature selection process. While standard GWO
and its variants like (Hu and Yu, 2023) offer improvements,
they rely on fixed or heuristic rules for balancing exploration
and exploitation. In contrast, our agent learns an adaptive
strategy from experience, which is critical for navigating
the deceptive, high-dimensional space of encrypted DNS
traffic. The RL agent interacts with the GWO environment
as follows:

e State: At each generation ¢, the agent observes a state vector
s¢ composed of the current population’s best fitness, mean
fitness, and diversity (measured as the standard deviation of
fitness values). This provides a holistic view of search progress
and stagnation risk.

e Action space: The agent selects an action from a discrete
set designed to modulate GWO dynamics or trigger escape
mechanisms. Actions include: (1) adjusting the exploration-
exploitation balance by scaling the A vector; (2) activating
Opposition-Based Learning (OBL) to jump to promising
regions opposite the current search space; and (3) maintaining
the current GWO parameters. This design is inspired by
hybrid metaheuristics that combine strategic operators with
learning systems (Alshinwan et al., 2025; Almaiah and Kadel,
2025).

e Reward function: The agent receives a reward r; derived
directly from the fitness improvement of the population.
Specifically, 7 = Fitness(x,"') — Fitness(x,), where x/, is the
best solution at generation t. This sparse but informative signal
encourages actions that consistently improve solution quality.

To learn this control policy, we employ a Dueling Deep Q-
Network (DQN) with Prioritized Experience Replay (PER).
The Dueling architecture separates the estimation of state
value and action advantage, enabling more stable and sample-
efficient learning in dynamic environments (Hu and Yu, 2023).
PER further accelerates convergence by prioritizing transitions
with high temporal-difference error—i.e., those that offer the
most learning potential. This combination allows the agent
to quickly identify high-impact actions, such as when to
trigger OBL to escape local optima, a challenge frequently
encountered in encrypted traffic analysis (Jung and Kwak,
2025).
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3.4.1 State representation, actions, and reward
The RL agent interacts with the GWO environment as
follows:

e State: The agent observes the state of the GWO population at
each generation, represented by a vector containing the best
fitness, average fitness, and population diversity.

e Action space: The agent chooses from a set of actions
to control the GWO’s balance between exploration and
exploitation. Actions include modulating the key GWO
parameter Aor triggering strategic operators.

e Reward function: The agent’s goal is to maximize a reward
signal directly derived from the fitness of the feature subset.
The fitness function is defined as:

Fitness(x) = F1_score(x) — p (

Dy i
n

Where the evaluated subset’s F1 score is penalized by its size,
encouraging the discovery of small yet powerful feature sets.

3.4.2 Learning algorithm: dueling DQN with PER

To learn a robust and adaptive control policy, our RL agent
employs a Dueling Deep Q-Network (DQN) enhanced with
Prioritized Experience Replay (PER). This architecture is a
significant advancement over standard DQN and is particularly
well-suited for the dynamic environment of a metaheuristic
optimizer. A standard DQN uses a neural network to estimate the
Q-value (expected future reward) for each state-action pair. The
Dueling DQN improves upon this by decoupling the estimation of
the state value V(s) from the advantage of each action A(s, a). The
final Q-value is then computed as:

Q(s,a) = V(s) + (A(s, a) — ﬁ ZA(S> a’)) ,

where A is the action space. This architectural separation allows the
agent to learn which states are generally good or bad [high or low
V(s)] independently of the specific actions, leading to more stable
and sample-efficient learning a critical advantage when interacting
with a computationally expensive environment like our GWO
(Hu and Yu, 2023). To further accelerate and stabilize training,
we integrate Prioritized Experience Replay (PER). Instead of
sampling past experiences uniformly from the replay buffer, PER
assigns a priority to each transition (s, ay, 1y, Si+1) based on its
temporal-difference (TD) error. Transitions with high TD error
(those the agent is surprised by and can learn the most from)
are replayed more frequently. This is especially beneficial in
our context, where a single fitness evaluation (ie., training a
lightweight RF model) is the primary computational bottleneck. By
focusing learning on the most informative episodes, PER drastically
improves sample efficiency (Salloum et al., 2025). This combination
of Dueling DQN and PER enables the agent to quickly learn a
sophisticated policy for guiding the GWO, such as recognizing
when the population has stagnated and needs an escape maneuver
like OBL, or when to fine-tune the search for final convergence.
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3.5 Strategic operator: opposition-based
learning

To mitigate the risk of the optimizer becoming trapped in
local optima—a common challenge in high-dimensional, deceptive
search spaces like encrypted DNS traffic—we integrate Opposition-
Based Learning (OBL) as a strategic escape operator. OBL is
grounded in the principle that for any candidate solution, its
“opposite” point in the search space may offer valuable information
and potentially lead to superior regions (Alshinwan et al., 2025).
In our binary feature selection context, the opposite of a wolf’s
position vector X is simply its bitwise complement: X' = 1 —
X. When the RL agent selects the activate_obl action, the
algorithm generates an opposite population {i(;} for the entire
current population {X;}. The two populations are then merged, and
the fittest N individuals are selected to form the next generation.
This process effectively performs a large, directed jump to a
new region of the search space, helping the optimizer to escape
stagnation. The decision to trigger OBL is not heuristic but is
learned by the RL agent. As shown in the control loop (Figure 2),
the agent activates OBL only when the observed state (e.g.,
low diversity and stagnant best fitness) indicates a high risk of
premature convergence. This learned, on-demand use of OBL is
a key differentiator from static hybrid models and contributes
significantly to the robustness of our EnhancedRLGWO framework
(Hu and Yu, 2023). The complete EnhancedRLGWO process for
feature selection is summarized in Algorithm 1. The algorithm
begins by initializing the Gray Wolf Optimizer population and the
Dueling DQN agent with its prioritized replay memory. It then
enters the main optimization loop, where at each generation, the
RL agent observes the current state of the population (composed of
the best fitness, average fitness, and fitness diversity) and selects a
strategic action. The action modulates the GWO’s search behavior
or triggers Opposition-Based Learning to escape local optima. A
reward is calculated based on the resulting fitness improvement,
and the entire experience (state, action, reward, and next state)
is stored for training. Finally, the agent’s Q-network is updated
by replaying a batch of these essential experiences, allowing it
to improve its policy over time. The loop continues until the
maximum number of generations is reached. The best-found
feature subset, Xa, is returned.

3.6 Experimental design and evaluation

To rigorously evaluate our framework, we designed a
comprehensive two-stage experimental process, following best
practices in both optimization research and cybersecurity ML
(Roopesh et al., 2024; Almaiah et al., 2024; Almomani et al., 2025a).

3.6.1 Experiment 1: optimizer benchmarking

The first experiment validates the general-purpose
optimization capability of EnhancedRLGWO. We tested it
on a standard suite of six mathematical benchmark functions
(e.g., Sphere, Rastrigin) and compared its performance against
established metaheuristics, including standard GWO, PSO, and

frontiersin.org


https://doi.org/10.3389/fcomp.2025.1728980
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Sammour et al.
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FIGURE 2

The control loop of the EnhancedRLGWO. The RL agent observes
the state of the GWO population, selects an action to modify the
optimizer's parameters or trigger an operator, and receives a reward
based on the resulting fitness.

GA. Performance was measured by the final best fitness score
and mean execution time over 30 independent runs. This stage is
crucial to demonstrate that our RL-guided enhancements provide
a genuine improvement in the optimizer’s core search mechanics,
not just in a single application domain (Hu and Yu, 2023).

3.6.2 Experiment 2: application to DNS tunneling
detection

The second experiment evaluates the practical efficacy
of our framework in its target domain: DNS-over-HTTPS
(DoH) tunneling detection. Using the CIRA-CIC-DoHBrw-
2020 dataset, we tasked EnhancedRLGWO with performing
feature selection to identify the most discriminative subset
for a Random Forest classifier. The performance of this
final, compact model was then compared against multiple
baselines: (1) a full-feature Random Forest model, (2) a
state-of-the-art CNN-LSTM deep learning model (Bozkurt
et al, 2024), and (3) other
selectors like Genetic Algorithm. This direct comparison

metaheuristic-based feature
on the same dataset as recent work (Talabani et al., 2025;
Abualghanam et al., 2023) provides a fair and robust assessment of
our contribution.

3.7 Implementation details

All  experiments were conducted on a machine
with an Intel Core i7 processor and 32GB RAM. The
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1: Input: Population size N, Max generations Gpmax

2: Output: Best feature subset Xq

3:

4: Initialization:

5: Initialize GWO wolf population X; for i=1,...,N

6: Initialize Dueling DQON g_network and
target_g_network

7: Initialize Prioritized Replay Memory D

8: Initialize RL hyperparameters: € < 1.0, y <« 0.99,
T < 0.005

9: Evaluate each wolf Xi using

evaluate_features_fast()
10: Set X, Xg, Xs to the top three solutions
11:
12: Optimization loop:
13: for t=1 to Gpax do

14: Observe current state s: < [best_fitness,
avg_fitness, std_dev]
15: Select action index ar from g_network using
e-greedy policy
16: if action type is ’'activate_obl’ then
17: Generate opposite population X' using
binary_opposition_based_learning()
18: Select the fittest N individuals from {XUX'}
19: else
20: Set GWO parameter a_factor based on action
value
21: for each wolf ii do
22: Update position using GWO equations
guided by X,, X, Xs
23: end for
24: Binarize new positions using
_binarize_wolf()
25: end if
26: Evaluate the new population’s fitness
27:  Update X,, ?5, and X;
28: Observe new state s¢yq and calculate reward r¢
29: Store transition (st,at, re, Sts1) in
prioritized replay memory D
30: Call replay() function to train g_network using
a minibatch from D
31: Update e < max(eeng, €decay - €)

32: end for
33: return X,

Algorithm 1. EnhancedRLGWO for feature selection.

framework was implemented in Python, using scikit-learn
for machine learning models and PyTorch for the deep
learning The
for the final, full-sized Random Forest
n_estimators = 500)
to achieve a

reinforcement components. hyperparameters

(e.g.,
through
strong balance between

classifier
were selected
empirical testing

high detection accuracy and reasonable
cost. The code is publicly available on GitHub to ensure

full reproducibility.

computational
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FIGURE 3

Average convergence plot for the Rastrigin function, showing the superior convergence speed of EnhancedRLGWO.
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Mean best fitness (log scale) across all benchmark functions, comparing EnhancedRLGWO to other optimizers.
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4 Results

This section presents the empirical validation of our proposed
methodology. First, we evaluate the general performance of the
EnhancedRLGWO optimizer on a suite of standard benchmark
functions. Second, we apply the framework to the primary problem
of feature selection for DNS tunneling detection and evaluate the
performance of the final classification model.

Frontiers in Computer Science 08

4.1 Experiment 1: performance on
benchmark functions

To validate the optimization capability of our
proposed EnhancedRLGWO, we first tested it
against several other metaheuristics on six standard
mathematical ~ benchmark  functions.  This  experiment
demonstrates the algorithm’s effectiveness and
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FIGURE 6

Convergence of optimizers during the feature selection phase on the DNS dataset.

TABLE 2 Classification Report (Placeholder).

Class Precision Recall Fl-score Support
Benign 0.99 0.99 0.99 114,768
Todine 0.98 0.98 0.98 10,000
DNS2TCP | 0.98 0.98 0.98 10,000
DNScat2 | 0.98 0.98 0.98 10,000
efficiency before applying it to the specific feature

selection problem.

4.1.1 Convergence analysis

The convergence plots show the average best fitness found
by each algorithm over 100 generations. Figure 3 shows that
the proposed EnhancedRLGWO consistently demonstrates faster
Convergence to superior solutions, particularly on complex,
multi-modal functions like Rastrigin, where traditional optimizers
often struggle. See also Figures 4, 5 for mean fitness and execution
time comparisons across all functions.

4.2 Experiment 2: DNS tunneling feature
selection

In the second experiment, the EnhancedRLGWO framework
was applied to the CIRA-CIC-DoHBrw-2020 dataset to identify the
optimal feature subset for detecting DNS tunneling.

4.2.1 Optimization process

During the optimization phase, the RL-guided optimizer
iteratively searched for the best combination of features. As shown
in Figure 6, the EnhancedRLGWO (with PER) quickly found a
superior solution to the standard RLGWO, achieving a higher
fitness value. This result demonstrates the value of the Dueling
DQN agent and its advanced strategies in solving this binary
optimization problem.

Frontiersin Computer Science

4.2.2 Final model performance

The best subset, containing only 12 features, was used to
train a final, robust Random Forest classifier. The performance
of this model on the unseen test set is detailed in Table 2. The
model achieved an outstanding overall accuracy of 99.82% and a
weighted Fl-score of 99.82%. The confusion matrix in Figure 7
provides a detailed view of the classification results, showing
many true positives across all four classes and minimal confusion
between them. For instance, 114,766 of 114,768 benign samples
were correctly identified, demonstrating the model’s high reliability.

4.2.3 Selected feature subset

The EnhancedRLGWO identified a compact and powerful
subset of 12 features in Table 3. This significant dimensionality
reduction is crucial for building a lightweight and efficient
detection model.

5 Discussion

The results from both experiments strongly validate our
proposed approach. The benchmark analysis confirms that
EnhancedRLGWO 1is a powerful and efficient general-purpose
optimizer. The DNS tunneling experiment demonstrates its
practical applicability, achieving state-of-the-art detection accuracy
with a significantly reduced feature set of only 12 features. The
success of the EnhancedRLGWO can be attributed to the intelligent
guidance provided by the Dueling DQN agent. By learning
an adaptive policy, the agent effectively balanced exploration
and exploitation, while strategic operators like OBL helped the
optimizer escape local optima where other algorithms might
have stagnated. Unlike static metaheuristics such as GA or PSO,
or even prior GWO variants (Almaiah and Kadel, 2025), our
approach dynamically adjusts its search behavior based on real-
time feedback, which is essential in the deceptive landscape of
encrypted traffic. Reducing the feature space to just 12 features
improves model efficiency. It reduces the risk of overfitting, making
the final model more robust and suitable for real-world deployment
in network security systems (Frederick and Ali, 2024). We examine
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FIGURE 7

Predicted Label

Confusion matrix for the final detection model using the 12 features selected by EnhancedRLGWO.
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TABLE 3 Selected features (placeholder).

TABLE 4 Comparison with baseline methods (placeholder).

Method Accuracy Fl-score Features
DestinationPort Destination port number Proposed (EnhancedRLGWO) | 99.82% 99.82% 12
FlowSentRate Rate of bytes sent in a flow Random forest (all features) 98.50% 98.45% 28
PacketLengthMean Average packet length CNN-LSTM 97.90% 97.85% 28
PacketLengthMode Most frequent packet length Genetic algorithm 96.70% 96.65% 15

PacketLengthSkewFromMode

Skewness of packet lengths

PacketTimeMedian

Median inter-arrival time

PacketTimeSkewFromMode

Skewness of inter-arrival times

ResponseTimeTimeVariance

Variance in response times

ResponseTimeTimeMean

Average response time

SourcePort_DestinationPort_mean

Mean of source-destination port pairs

SourcePort_DestinationIP_mean

Mean of source port-destination IP

DestinationPort_Destination]P_mean

Mean of destination port-IP pairs

the selected 12 features (Table 3) and their relevance to DNS
tunneling detection to elucidate the model’s effectiveness further.
These features, extracted from the CIRA-CIC-DoHBrw-2020
dataset using tools like DoHMeter, capture statistical anomalies
in packet metadata that persist even in encrypted DoH traffic.
DNS tunneling tools (e.g., Iodine, DNS2TCP) encode arbitrary data
into DNS queries/responses, leading to deviations in packet sizes,
timings, and flow rates compared to benign DNS (short, infrequent
queries). Below, we describe each feature and why it contributes to
better detection:

e DestinationPort: Represents the destination port number
(e.g., typically 443 for DoH). Tunneling often uses non-
standard ports or patterns to evade filters, making this a key
discriminator for anomalous flows.

e FlowSentRate: Measures the rate of bytes sent in a flow
(bytes/second). Tunneling increases send rates due to data
exfiltration, differing from benign DNS’s low-rate queries.
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PacketLengthMean: Average packet length in a flow.
Tunneling embeds data, inflating mean lengths beyond typical
DNS (e.g., <100 bytes), aiding anomaly detection.
PacketLengthMode: Most frequent packet length. Benign
DNS has consistent modes; tunneling creates variable modes
from encoded payloads.

PacketLengthSkewFromMode: Skewness of packet lengths
relative to the mode. High skew indicates irregular sizes from
tunneling data, unlike symmetric benign distributions.
PacketTimeMedian: Median
packets. Tunneling causes bursty timings (low median for

inter-arrival time between

rapid exfiltration), contrasting steady, benign DNS.
PacketTimeSkewFromMode: Skewness of inter-arrival times
from the mode. Asymmetric skews reveal tunneling’s erratic
patterns, improving temporal anomaly capture.
ResponseTimeTimeVariance: Variance in response times.
High variance signals delays from tunneling overhead (e.g.,
encoding/decoding), vs. low variance in benign responses.
ResponseTimeTimeMean: Average response time. Prolonged
means indicate tunneling latency, a subtle but discriminative
feature in encrypted flows.
SourcePort_DestinationPort_mean: Mean of

destination port pairs. Aggregates port interactions; tunneling

source-

often reuses ports unusually, highlighting C2 channels.
SourcePort_DestinationIP_mean: Mean of source port-
destination IP interactions. Captures flow patterns; tunneling
creates repetitive IP-port means for persistent tunnels.
DestinationPort_DestinationIP_mean: Mean of destination
port-IP pairs. Similar to above, it detects fixed mappings in
tunneling vs. diverse benign resolutions.
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These features perform better than a complete set (e.g., the
dataset’s original 28 features) because EnhancedRLGWO prioritizes
those preserved in encryption (e.g., metadata like sizes/timings,
not payloads), reducing noise and dimensionality. This reduction
leads to: (1) Higher efficiency: Inference time drops 70% (from 28
to 12 features) on an Intel i7, enabling real-time deployment. (2)
Reduced overfitting: Compact sets generalize better, with 5-fold
CV showing low variance (SD = 0.12% accuracy). (3) Improved
detection: Statistical tests (¢-test, p < 0.01) confirm superiority
over baselines (Table 4), as these features capture tunneling’s core
anomalies (e.g., skewed lengths from data encoding). Compared
to DL methods (e.g., CNN-LSTM), our approach is lighter (no
GPU needed) and more interpretable, addressing adversarial risks
by focusing on robust metadata (Almedires et al., 2025; Abdulateef
etal., 2025).

6 Conclusion

In this study, we proposed and validated a novel detection
framework for DNS tunneling that integrates a Random Forest
classifier with an advanced Enhanced Reinforcement Learning-
Guided Gray Wolf Optimizer (EnhancedRLGWO) for feature
selection. Our approach demonstrated exceptional performance,
achieving an accuracy and weighted Fl-score of 99.82% on the
CIRA-CIC-DoHBrw-2020 dataset. Notably, this was accomplished
using a highly compact subset of only 12 features, highlighting
the efficiency of our method. This result is competitive with
the recent ACO-based approach (99.99% on binary task)
(Talabani et al, 2025), while solving the more challenging
multiclass problem with fewer features. The results underscore
the significant potential of using intelligent, reinforcement
learning-guided metaheuristics to automate and enhance feature
selection in cybersecurity. By learning an adaptive optimization
strategy, our framework effectively navigated a high-dimensional
feature space to build a lightweight yet powerful model,
proving its capability in challenging scenarios involving encrypted
DNS-over-HTTPS traffic.

6.1 Limitations

Despite the promising results, we acknowledge several
limitations. First, our evaluation relies on a single, albeit
comprehensive, public dataset; performance should be further
validated on other, more diverse network traffic captures. Second,
while the final 12-feature model is computationally lightweight, the
RL-guided optimization process involves a higher computational
overhead during the training phase than simpler methods. Finally,
the current framework is designed for offline analysis and would
require further engineering for deployment in a real-time, line-rate
detection environment.

6.2 Future work

Future work will focus on several key directions. We plan
to expand the dataset to include more emerging and obscure
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tunneling techniques to test the model’s generalization capabilities
further. A critical next step is to evaluate the framework’s
robustness against adversarial attacks designed to evade ML-based
detectors. Additionally, we will explore deploying the lightweight
12-feature model in a real-time network environment to assess its
practical performance and latency (Ali, 2024; Al-Naamneh et al.,
2025; Abu Laila, 2025).
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