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Automated healthcare loT systems demand secure, low-latency, and
energy-efficient computation—capabilities well-supported by fog computing.
Effective selection of fog nodes is critical for maximizing the performance
of fog-based loT platforms. This paper introduces a Secure Proximal Policy
Optimization (Secure PPO) algorithm for trust-aware fog node selection,
considering latency, energy consumption, processing power, and a trust
flag for each node. Secure PPO enforces a trust constraint while optimizing
latency and energy via PPO’s clipped objective, ensuring stable and reliable
learning. Simulation results demonstrate that Secure PPO achieves substantial
improvements over A2C and Deep Q-Networks (DQN). Specifically, Secure
PPO reduces inference latency by 24.36 and 37.57%, lowers convergence
time by 55.56 and 66.67%, and decreases energy consumption by 11.90 and
20.04% compared to A2C and DQN, respectively. Additionally, Secure PPO
improves accuracy by 9.42 and 18.88% over A2C and DQN. The framework
maintains sub-millisecond inference time and ensures secure, reliable fog-based
execution of automated healthcare tasks, substantially enhancing patient safety
and operational efficiency within healthcare loT environments.

KEYWORDS

deep reinforcement learning, energy efficiency, fog computing, latency reduction,
secure PPO, trust-aware node selection

1 Introduction

Fog computing has emerged as a critical paradigm to address the increasing demand
for low latency and localized service provisioning in modern computing environments,
particularly with the proliferation of Internet of Things (IoT) devices (Alkhalaf and
Hussain, 2023). This architecture extends cloud services closer to end-users, reducing
communication delays that are often prohibitive for time-sensitive applications when
relying solely on remote cloud servers (La et al., 2019). However, selecting optimal fog
nodes for task offloading presents significant challenges due to the distributed nature of
fog environments, the varying computational capabilities of nodes, and the imperative for
secure and reliable operations (Roshan et al., 2020). To overcome these challenges, Deep
Reinforcement Learning (DRL) algorithms, such as Proximal Policy Optimization (PPO),
have shown promise in optimizing resource allocation and task offloading decisions, while
the integration of trust models ensures that only reliable and secure fog nodes are chosen
for computations (Goudarzi et al., 2023).

Deep Reinforcement Learning (DRL) algorithms are increasingly being applied in
fog computing to address complex optimization problems, including task offloading and
resource allocation (Allaoui et al., 2024). DRL models can learn optimal strategies by
interacting with the dynamic fog environment, using neural networks to approximate
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value functions or policies when the state-action space is large
(Rahman et al.,, 2020). The Proximal Policy Optimization (PPO)
algorithm is a particularly effective DRL technique known for its
stable and efficient learning, making it well-suited for dynamically
selecting fog nodes that minimize latency and optimize resource
usage (Nagabushnam et al., 2025). PPO-based approaches can
make intelligent decisions on where to process tasks—locally, at
a nearby fog node, or in the cloud—considering various factors
such as available resources, network conditions, and task deadlines
(Rahman et al.,, 2020). This capability allows DRL to achieve
significant reductions in overall delay and energy consumption.

In intelligent healthcare systems, decision accuracy and security
are equally critical. While fog computing enables low-latency
processing close to patients, it also introduces vulnerabilities due
to heterogeneous and potentially untrusted nodes. A malicious
or compromised fog node could cause unsafe control decisions,
posing severe risks to patient safety. Hence, integrating a trust
evaluation mechanism into the resource selection process is vital.

Traditional rule-based trust schemes are often static and lack
the ability to adapt to the dynamic nature of fog environments.
Conversely, Proximal Policy Optimization (PPO), a reinforcement
learning algorithm known for its stability and sample efficiency,
can autonomously learn optimal decision-making policies under
varying network conditions. The integration of PPO with a multi-
layered trust mechanism allows the system to simultaneously
achieve security, energy efficiency, and real-time responsiveness,
making it well-suited for safety-critical healthcare applications.

To ensure secure and reliable fog node selection, this paper
employs a hybrid trust mechanism combining a static trusted
flag with a dynamic reputation-based trust score. The trusted
flag serves as an initial security filter to eliminate unverified or
potentially malicious fog nodes. In parallel, the reputation metric
continuously evaluates node behavior using parameters such as
task success rate, response consistency, and reliability over time.
The combined approach ensures that only verified and consistently
reliable fog nodes are chosen by the PPO agent, maintaining
both security integrity and operational performance. This layered
trust assessment forms the foundation of the proposed Secure
PPO framework.

This paper introduces an approach that leverages the PPO
algorithm for intelligent fog node selection, specifically focusing
on reducing latency by ensuring tasks are processed by the most
suitable and trusted nodes within the fog computing infrastructure
(Nagabushnam et al., 2025).

Beyond performance metrics like latency, the trustworthiness
of fog nodes is a crucial consideration for reliable and secure fog
computing environments (Alkhalaf and Hussain, 2023). Fog nodes,
especially in cooperative settings like smart cities, must be evaluated
for their reliability to prevent faulty nodes or malicious attackers
from compromising communication and data processing. Trust
models based on various factors, including service level agreement
parameters and reputation values, are essential for identifying
trusted nodes. Techniques such as fuzzy logic and blockchain have
been proposed to establish and maintain trust in fog networks,
ensuring data integrity, privacy, and secure task offloading. By
integrating trust mechanisms with DRL-based node selection,
the system can not only optimize for low latency and efficient
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resource allocation but also guarantee that tasks are handled by

authenticated and dependable fog nodes, thereby enhancing the

overall security and resilience of the fog computing infrastructure.
Key contributions of the paper are summarized as follows:

(1) We propose a Secure Proximal Policy Optimization
(Secure-PPO)
selection,

framework for intelligent fog node

integrating both performance optimization
and security constraints.

(2) We design a hybrid trust mechanism that combines a static
trusted-flag filter with a dynamic reputation-based trust
score to ensure reliable and secure fog node participation.

(3) We hybrid

the PPO learning workflow, enabling the agent to

incorporate the trust mechanism into
simultaneously optimize latency, reliability, and security
during task offloading.

(4) We evaluate the proposed Secure-PPO model using a
realistic fog computing environment and demonstrate
that it significantly reduces latency while maintaining
high trustworthiness and operational safety compared to

baseline approaches.

Following sections of this research paper is arranged as follows.
Section 2 gives an elaborated study on different methods, both
heuristic and machine learning approaches in recent years. Section
3 defines the problem formulation and the system model. Section 4
describes the proposed methodology that is secure PPO approach.
Section 5 discusses the results and its comparison with the timeline
algorithms. Section 6 concludes the research work.

2 Related works

Task placement is always an NP hard problem. To solve these
many methods are adopted each having its own advantages and
disadvantages. Recent studies and researchers have found that
relying on machine learning techniques especially Reinforcement
learning and deep reinforcement learning solves this problem in
an efficient manner there by improving the quality of service of
IoT applications.

2.1 Placement through heuristic approach

Building upon the foundational methods, the period from 2020
to the present has seen a distinct temporal shift toward more
sophisticated, dynamic, and intelligent heuristic and metaheuristic
algorithms for fog service placement. Comprehensive surveys
published in 2020 cataloged the growing landscape of optimization
techniques, including exact methods, heuristics, and hybrid
approaches (Raghavendra et al., 2020), and provided a set of
heuristics to address the Service Placement Problem (SPP; Salaht
et al., 2020). A significant trend during this phase was the
increasing focus on multi-objective optimization. Researchers
proposed methods like an ant colony optimization-based solution
to balance deployment cost and service latency (Huang et al,
2020) and an Improved Parallel Genetic Algorithm (IPGA) that
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maintains a set of Pareto solutions to make compromises between
latency, cost, resource utilization, and service time (Wu et al,
2022). Another approach utilized the cuckoo search algorithm
to solve the multi-objective problem (Liu et al., 2022). The field
also evolved to address the dynamic nature of fog environments,
with a move toward autonomic systems. For example, one study
proposed an autonomic service placement approach using the
gray wolf optimization scheme to enhance system performance
and consider execution costs (Salimian et al, 2021), while a
2023 paper introduced a dynamic strategy that performs multi-
objective optimization on response time and available resources
to select the fittest node in real-time (Trabelsi et al., 2023). The
most recent advancements integrate machine learning and novel
hybrid metaheuristics, with forthcoming 2025 papers proposing
a combination of reinforcement learning and an improved gray
wolf optimization method to place services based on user request
volumes (Ashkani et al., 2025) and a Hybrid Prairie Dog and Dwarf
Mongoose Optimization Algorithm (HPDDMOARS) designed to
optimize energy, cost, and make span (Baskar et al., 2025). This
chronological progression demonstrates a clear trajectory toward
creating intelligent, adaptive, and context-aware strategies capable
of managing the complexities of modern fog ecosystems.

2.2 Placement through RL techniques

Recent studies have demonstrated the effectiveness of RL
and DRL in optimizing service placement by enabling adaptive,
data-driven decision-making. Several algorithms are used which
gives different types of performance enhancements. Double Deep
Q-Networks with prioritized experience replay (DDQN-PER) have
been used to minimize service latency and energy consumption by
learning dynamic resource requirements and efficiently mapping
services to fog nodes (Sharma and Thangaraj, 2024). Actor-critic-
based distributed DRL techniques, such as those leveraging the
IMPALA architecture, address the scalability and adaptability

TABLE 1 Summary of recent literature on placement methods.

Year Method/Algorithm

2020 SPP Heuristics (Salaht et al., 2020)

Objective(s)

Latency, cost

10.3389/fcomp.2025.1723498

issues of centralized DRL by distributing learning across multiple
fog nodes, significantly reducing execution costs and improving
placement efficiency (Goudarzi et al., 2021).

The Asynchronous Advantage Actor-Critic (A3C) algorithm
has also been applied to both service function chain (SFC)
placement and general IoT service placement, achieving notable
improvements in cost, latency, and resource utilization compared
to traditional heuristics and other DRL methods (Zhang et al., 2022;
Zare et al., 2022). Deep Q-Networks (DQN) have been explored
for value-based service placement, focusing on maximizing utility
and adapting to changing network conditions (Poltronieri et al.,
2021). In (Trabelsi et al, 2023) Q-learning for adaptive IoT
service deployment that jointly optimizes latency and energy
demonstrates how classic tabular RL can still be effective with
careful state/action discretization.

Use of Double DQN (Zare et al., 2022) reduces overestimation
bias and dynamically deploy IoT services to fog nodes to minimize
response time and resource violation. It shows clear improvements
over heuristics. A DRL framework (Lera and Guerrero, 2024)
tackling multi-objective placement (latency, energy, cost); shows
how reward shaping and multi-objective RL formulations can be
used. In (Lera et al., 2018) Not strictly DRL, but a method that
combines graph/network insights with sequential allocation gives
a good pointer to hybrid approaches that incorporate structure-
aware partitioning before learning-based placement.

Table 1 shows a summary of the literature review covered in this
research.

2.3 Research gap and motivation

Although  heuristic, metaheuristic, and reinforcement
learning-based approaches have significantly advanced the fog
service placement landscape, several critical limitations remain
unaddressed—particularly in safety-critical healthcare IoT systems.

Existing heuristic and metaheuristic methods (e.g., ACO, IPGA,

Strengths Limitations/Gap

Static rules; no trust; low
adaptiveness

Simple, fast

2021 ACO-based Placement (Huang et al., 2020)

Cost-latency trade-off

Multi-objective path search No security; limited

scalability

2021 IPGA (Wu et al., 2022)

Latency, service time,
utilization

Pareto-optimal solutions High computational cost

2022 Cuckoo Search (Liu et al., 2022)

Multi-objective
optimization

Good exploration No real-time capability

2023 Dynamic Multi-objective Strategy (Trabelsi et al., 2023)

Response time, resources

Real-time adaptive No trust evaluation

2024 DDQN/A3C/DQN RL Models (Sharma and Thangaraj,
2024; Goudarzi et al., 2021; Zhang et al., 2022; Zare et al.,
2022; Poltronieri et al., 2021; Lera and Guerrero, 2024)

Latency, energy, cost

Self-learning, adaptive No trust/security; unstable

in large node sets

2025 RL + GWO Hybrid (Ashkani et al., 2025)

Load-based placement

No healthcare focus; no
trust

Hybrid optimization

2025 HPDDMOARS (Baskar et al., 2025)

Energy, cost, makespan

Strong multi-objective
optimization

Heavy computation; no
secure placement
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cuckoo search, GWO, and hybrid bio-inspired algorithms) excel at
multi-objective optimization but rely on fixed rules or predefined
cost functions. This limits their ability to adapt to rapid fluctuations
in patient-driven workloads, dynamic fog topologies, and real-time
operational constraints. Moreover, these approaches typically lack
built-in mechanisms to evaluate fog node trustworthiness or detect
unreliable nodes, making them unsuitable for environments where
compromised decisions may endanger patient safety.

Similarly, while recent RL/DRL frameworks demonstrate
strong adaptability to dynamic fog environments, most of them
optimize only latency, energy, or cost, with no explicit trust or
security integration. Existing DRL models overlook the possibility
of untrusted, faulty, or malicious fog nodes influencing task
execution—an unacceptable risk in healthcare IoT applications,
where incorrect computation directly affects patient health.
Furthermore, current RL solutions rarely combine static trust
indicators with dynamic behavioral trust scoring, nor do they
evaluate algorithm stability or scalability when fog networks scale
to hundreds of nodes.

These gaps highlight the need for an intelligent, secure,
and adaptive fog node selection framework capable of jointly
optimizing latency, energy, reliability, and trust. Motivated by
the stringent real-time and security requirements of automated
healthcare IoT systems, this work proposes a Secure Proximal
Policy Optimization (Secure PPO) model incorporating both a
trusted flag and a dynamic reputation-based trust score into the RL
reward structure. By combining PPO’s stable policy updates with a
hybrid trust mechanism, the proposed framework aims to achieve:

1. strong trust compliance,

2. low-latency and energy-aware placement, and

3. scalable
fog environments.

performance  under  dynamic, high-density

10.3389/fcomp.2025.1723498

This work therefore bridges the gap between conventional
optimization strategies and trustworthy, deployment-ready RL
models for real-time healthcare IoT.

3 System model and problem
formulation

In healthcare IoT applications like patient monitoring systems,
where a patient will be continuously monitored with the help
of sensors , In emergency situations whenever a body parameter
goes beyond or below the desired value the immediate medication
will be provided to the patient through an actuator and the
information will be given to the caregivers. Figure 1 describes the
system model. It shows the three layer architecture of application.
Every patient’s mobile device is connected to a Data Manager
module. Every mobile device has a sensor as an input and an
actuator as an output. Data manager module plays the role of
access point for mobile devices. Each controller is responsible
for coordinating (orchestrating) several Data Manager modules.
It selects the appropriate node to process the task using the
DRL approach.

3.1 Delay

Let us denote the set of sensors and tasks by S = {s1,s2,...,ss}
and T = {t1,tp,..
of sensors and tasks, respectively. Each task t; € T is initialized on a

., tr}, respectively. Also, S and T are the number

sensor device s; € S. Some nodes act as gateways, which we denote
by the set G = {g1,82, . . .,8G}. We also represent the orchestrator

nodes (Coordinator nodes) by O = {o01,02,...,00}. Here, G and

FIGURE 1
System model.

CLouD

CONTROLLER

DATA MANAGER

MOBILE DEVICES
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O are the number of gateways and the number of orchestrators,
respectively. The response time d;; of each task ¢;, initialized by the
sensor device s;, consists of two components:

(1) The time spent to select the suitable candidate node for
offloading the task, df§IEC’.

(2) The time spent processing the task, e,
Therefore, to calculate d; Jj» We can write

_ gselect
dij = dS

+d (1)

First, we calculate dffl“’, the time spent to select the suitable
candidate node for offloading the task. For each task a request is
first sent from the sensor device s; € S to the gateway g € G to
choose the appropriate host for offoading. Let us denote the time
required to send this request by djrf. The reason for not using i
subscript in the last notation is that this request does not depend
on the data volume of task t;. We denote the delay of forwarding
a request from the gateway g to the orchestrator node 0o € O
through the wired network by dzlq. Suppose the decisionmaking
process by the orchestrator o; to select the suitable candidate node
takes dfleCi‘i””. We denote the candidate node by gy € G. After
choosing the right candidate node g/, its profile should now be
sent to the sensor device s; € S. For this purpose, rst, a response is
sent from the orchestrator node o; to he gateway g during the time
dZZSP . Then, the same response is forwarded through the gateway

8k to the nobile device s; during the time dgjp . In general, the time

selecr

spent to select the appropriate processing node, ~—
as follows:

, is calculated

dfj-le“ — djrqu + d’eq df;ecision + dlf;SP + drfssp . (2)

Now, we will find out the time taken to process the task, dﬁjmc.
First, the task ¢; is sent from the sensor device s; € S to the gateway
&k € G. Let us denote the time required for transmission by df;“li“ .
Note that this time depends on the volume of data in the task ;. The
oftloading rate for the user s; is calculated as follows:

Plfmns
j
| 3
Zics,iaﬁj p ﬁmm hi) ©

Rj:B-log2 (1+
where B and P;’“"S represent the channel bandwidth and

transmission power for the sensor device s;. h; represent the channel

P{mns P{mns—max

gain. Note that P;"™ is limited to the maximum power P;
that is, 0 < ij"s < P;mns_m“x . We calculate the time required
to transfer the task t; of the mobile device m; to the gateway g
as follows:
d:
di = E; (4)
Where R; represents the offloading rate and We denote the
delay of offloading the task ¢; to the candidate gateway, gy € G,
by d;:lf,oad. If the computing resources in the candidate gateway
gy are insufficient to process the task f;, it is offloaded to the
remote cloud. Let us assume o percent of tasks are offloaded to
the remote cloud. Then, the processing time of this portion of
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the task is ( gfload + dlocal 4 dze;f ) Here, d}} ﬁ] represents the

offloading delay of task t; from candidate gateway gy to the remote
cloud c. Also, d% and d “P represent the local processing time of
the task in the cloud and the delay of returning the result from the
cloud, respectively. On the other hand, the processing time for 1 —«
percent of tasks that are processed locally at the candidate gateway
gy isequalto (1 — a) - di”,cal. After completing the task, the result

is returned from the candidate node g to the gateway g in time

rep
s K
8k to the actuator device aj, during the time d,r;SP ". In general, the

. In the next step, the same result is forwarded by the gateway

time spent to process the task, dﬁ;oc, is calculated as follows:

dp'roc _ dtmkns +d0ﬂload
b

+(1-

Zﬂl"“d + ddocul + dfesp )
c

w4 4 g ®

The delay of all tasks submitted to the edge-fog-cloud

environment is obtained as follows

Y i 6)

{iET,SjES

dfatal —

3.2 Energy consumption

The consumed energy E;; of each task t;, initialized by the
sensor device s;, consists of two components:

(1) Energy consumption to select the suitable candidate node for
offloading the task, Ef;”.

(2) The energy consumed to process the task, E‘Z;M. Therefore,
to calculate E; j, we write
E,] — Eselect + EP"’C . (7)

First, we obtain the energy to select the suitable candidate node,
Ef;l“”. The constituent elements of this energy are

(1) Energy consumption for sending the candidate node (host)
request from the sensor device s; € S to the gateway g € G,
denoted by Ejr;q.

(2) The energy consumed to forward the request from the
gateway g to the coordinator node o; € O through the wired
network, denoted by E;elq

(3) The energy consumed for the decision by the o; orchestrator
to select the appropriate candidate node, denoted by EffCiSiO”.

(4) The energy consumed to return the response from the
orchestrator node o; to the gateway g through the wired
network, denoted by Ere;p

(5) Energy consumed to forward the response from the gateway
8k to the actuator a;, denoted by Eg;p In general, the energy
consumed to select the appropriate processing node, Efj»le“, is
calculated as follows

Egglect _ Ereq + E’e‘i + Edectsmn + EZ‘;P + E"’ZZP . (8)
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We proceed to obtain the energy consumed for the processing
task, E‘ZOC
device m; to the gateway g is calculated as follows:

. The energy used to offload each task t; from the mobile

trans trans trans
E% —duk x P; 9)
czﬂoud
Let E denotes the energy consumed to offload the task t;

to the candldate gateway gy . Also, E offload represents the energy
required to offload the task ¢; from the candldate gateway gy to
the remote cloud c. Similarly, E?¢! and E f’ represent the local
processing energy of the task in the cloud and the energy of
returning the result from the cloud, respectively. In the next step,
we denote the energy of returning the task from the gateway g to

the mobile device m; by E,:ejp . In general, the energy consumed for

task processing, E{) Jm, is calculated as follows:

Ef]roc _ E,t;a[:ls + Eoﬂlaad +a Zﬁlaad +Eloml + E:‘?’)
+(1 O() Eloml +Eresp +Eresp- > (10)

The energy consumption of nodes in active mode to process all
tasks is calculated as follows

Eactive — ( 1 1)

> Ey

t,‘GT,SjES

The total consumed energy is equal to the sum of the consumed
energy in the active mode and the consumed energy in the idle
mode. It is calculated as follows:

total __ . idle  pidle
Y B Y gten

tieTsjeS 5 €SUGUO

(12)

The goal is to jointly minimize the energy consumption and the
delay of the whole system as follows:

. : . Jtotal
P;: min (pr;;ﬁload piras ) { f1:d

&fZ :Etotal ]

0 < P;runs < P@mns<usmre>max R VSJ' cS.

Units (13)

This is executed by the process of reward shaping which is
explained in the next section.

4 Proposed method

An environment-based method for joint optimization of delay
and energy by leveraging DRL is explored in this paper.

Figure 2 shows the general framework of DRL.

In fog computing environments, selecting optimal fog devices
to minimize latency and energy consumption presents considerable
challenges, stemming from the dynamic, heterogeneous, and
distributed nature of fog networks. Classical Reinforcement

Learning (RL) approaches—such as tabular Q-learning—are
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Agent
state| | reward -
action
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= e
| Environment
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FIGURE 2

General framework of DRL.

Policy
m(a(as)
Clipped objective:
Ej| min(t:A¢,, clip(n' @)
1—¢,1+9A¢ —At))

Reward

State A
Fog node fe Ri=o,+B-E,
Sp= N Action Latency—energy
t { ity Piidents @ =arg,, Nl tradeoff:

State— Equt = Pidle t+ Uat

Fog node features:
st ={|B,Li, Pael, T3}

* Best node: ax
=argma, €(Rs,a) Latency-energy
trade-off:

Eoet = Pidie, t tat

FIGURE 3
Selection process of suitable fog node.

inherently limited in scalability and generalization due to the
need for exhaustive state-action representations. In contrast,
Deep Reinforcement Learning (DRL) employs neural networks to
approximate value functions or policies, enabling efficient decision-
making over high-dimensional and continuous state spaces and
better adaptability to unseen states. Recent studies demonstrate
that DRL methods significantly outperform conventional RL in
fog and edge scenarios: for instance, deep Q-learning reduced
energy consumption by ~20% and latency by ~30ms in urban
edge cluster simulations multi-objective DRL techniques have
been shown to generate less resource waste in high-load fog
environments compared to RL and the ReinFog framework—
built upon DRL—achieved up to a 45% reduction in response
time and a 39% reduction in energy consumption vs. baselines.
Therefore, DRL offers a robust and efficient solution for fog device
selection, consistently yielding lower latency and energy usage
than traditional RL methods. The complete process of finding the
suitable node is depicted in Figure 3.

4.1 PPO

We model fog node selection as a Markov Decision
Process (MDP):

e State s; : feature vector of all fog nodes at time ¢ :

frontiersin.org
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N
i=1

st = {[Pi- Lis Pidie, i> Pousy, i» Ti] } o

where P; is processing power, L; latency, P, ; idle power, Py, ;
busy power, and T; € {0, 1} trust flag of node i.

e Action a;: selection of one fog node from the trusted set:

a; €{1,2,...,N}, subjectto T, =1

e Reward Ry : a trust-aware utility function balancing latency,
energy, and security:

1 1
Ri=a - —+B-—+y- Ty

(15)
L, Eq,

where
o Ly = Pigle o + Ug, (Pbusy, ar — Pidle, ﬂr) is estimated energy
consumption at utilization u, .

e o, 3,y are weighting coefficients
e If T,, = 0 (untrusted), the reward is penalized:

Ry =—8(5>0) (16)

4.2 PPO policy optimization
The agent learns a policy mp(a | ) that maximizes
expected reward:

(17)

](G)ZE{ 7o (as | s¢) Xt]

7T001d (at | St)

where Xt = Ry + ¥V (st41) — Vg (s¢) is the advantage function.
To ensure stable learning, PPO uses a clipped surrogate objective:

LP(9) = E, [min (r:(0)Ar clip (r(0),1 — €,1 + €) A)] (18)

where

7o (ar | $t)

rf) = ———
' o,y (ar | st)

19)

and € is the clipping threshold (e.g., 0.2).

4.3 Secure PPO

In this work, we implemented a hybrid trust mechanism within
the Secure Proximal Policy Optimization (Secure PPO) framework
to ensure secure fog node selection for healthcare IoT applications.
The mechanism combines a static trusted flag with a dynamic
reputation metric, providing both baseline security validation and
adaptive behavioral trust assessment for fog nodes in the network.
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4.3.1 Trusted flag mechanism

Initially, each fog node was assigned a trusted flag (T; € {0, 1})
based on its security status or certification. Nodes labeled as trusted
(T; = 1) were permitted for task deployment, while untrusted
nodes (T; = 0) were completely excluded from consideration.
This ensured that the Secure PPO agent operated only within
a verified subset of fog devices, eliminating any possibility of
deploying latency-critical or patient-sensitive tasks on potentially
compromised nodes.

4.3.2 Dynamic reputation metric
To enhance adaptability beyond the static trust model, we
implemented a dynamic reputation score that evaluates each
node’s reliability based on its operational behavior over time. The
reputation score R;(t) was computed for each node as:
Ri() =wi-Si+wy- (1 —F)+ws- A (20)
where S; represents the task success rate, F;denotes task failure
frequency, and A; reflects the node’s availability or responsiveness.
The score was periodically updated using an exponential
moving average:

Ri(t+1) = A - Ri(H) + (1 — &) - R 21
where 0 < A < 1 determines the weight of historical behavior
relative to recent observations. This allowed the Secure PPO
agent to dynamically adjust trust levels based on real-time node
performance and reliability.

4.3.3 Integration with secure PPO reward function

Both trust indicators were integrated into the PPO reward
structure to guide the learning process toward selecting fog nodes
that were not only low-latency and energy-efficient but also secure
and reliable. The final reward function used for policy optimization
was defined as:

1

Ri=a-
tOlLi

FBz by (TR (22)
1

where L; is the communication latency, E; represents the energy
consumption, and (T; + R;) combines static and dynamic trust
components. The coefficients «, 8, and y were empirically tuned
to balance the trade-off among performance, energy efficiency,
and security.

The hybrid trust model significantly improved the system’s
security and decision reliability. The static trusted flag ensured
that unverified fog nodes were strictly excluded, while the dynamic
reputation metric allowed the PPO agent to favor consistently
reliable and high-performing nodes.

During testing, the Secure PPO model maintained a 100%
compliance with trust constraints, achieved faster convergence, and
demonstrated improved adaptability to changes in node behavior
compared to models using static trust alone. This combination
ensured that application’s control tasks were consistently deployed

frontiersin.org


https://doi.org/10.3389/fcomp.2025.1723498
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Babu and Bala

TABLE 2 Hyperparameters for secure PPO implementation.

Parameter Symbol/Value

Learning rate 3x 1074

Discount factor (y) 0.99

Clipping threshold (¢) 0.2

Entropy coefficient 0.01

Value loss coefficient 0.5

Batch size 64

Epochs per update 10

Optimizer Adam

Convergence criterion <1% reward change over 5 intervals

on trusted, low-latency, and energy-eflicient fog nodes, enhancing
both patient safety and overall system robustness. A table
summarizing all key PPO parameters and implementation details
is given in Table 2.

Algorithm for the implementation of secure PPO for finding
the best node is explained in Algorithm 1.

5 Performance evaluation and
simulation

5.1 Experimental setup

The proposed secure Proximal Policy Optimization (S-PPO)-
based fog node selection framework was implemented in Python
using the Stable-Baselines3 library. All simulations were executed
on Google Colaboratory (Colab) with GPU acceleration enabled.
The fog computing environment was modeled as a custom OpenAl
Gym environment, where each fog node was characterized by its
processing power (MIPS), communication latency (ms), idle power
consumption (W), busy power consumption (W), utilization level,
and a security flag (trusted/untrusted). Only trusted nodes were
considered for module placement to ensure secure deployment.

For comparative analysis, we benchmarked PPO against
two widely used deep reinforcement learning (DRL) baselines:
Advantage Actor-Critic (A2C) and Deep Q-Network (DQN). All
algorithms were trained for 20,000 timesteps and evaluated over
500 test episodes.

The following performance metrics were used:

1. Convergence timesteps—the number of timesteps required for
the algorithm to consistently select the optimal trusted node.

2. Accuracy (%)—the percentage of test episodes in which the
optimal trusted node was selected.

3. Average latency (ms)—the mean latency of the selected nodes
across all test episodes.

energy

consumption of selected nodes.

4. Average consumption (W)—the mean power

5. Inference time (ms)—the average time required to make a
placement decision during testing.

6. Scalability—variation of inference time with the number of fog

nodes (10-500).
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Input:

N fog nodes with features {P_i, L_i
pP_idle,i, P_busy,i, T_i}

i=1...N

PPO hyperparameters (y, &, o, B, learning
rate, batch size, epochs)

Output:

Optimal trust-aware fog node placement
policy =6

1: Initialize policy network =6(als) and
value network V¢(s)

2. for each training episode do

3: Observe current state s « { [P_i, L_i,
pP_idle,i, P_busy,

i, T_i] }i=1... N

4: Mask untrusted nodes (T_i = @) from
action space

5: Select action a_t ~ m6(al|s) » choose a
trusted fog node

6: Compute latency L_a and energy
consumption:

E_a = P_idle,a + u_a (P_busy,a - P_idle,a)
7. Compute reward:

if T_a = @ then

R_t = -8 » strong penalty for untrusted node
else

Rt = a(1/L_a) + B(1/E_a) + y(T_.a)

8: Store transition (s, a_t, R_t, s')

9: Estimate advantage:

At = R_t + vy Vo(s') - Vo(s)

10: Update policy using clipped surrogate
objective:

L_CLIP(®) = E_t [min(r_t(e) A_t,
clip(r_t(e), 1-g, T4e) A_t) ]

where r_t(0) = n0(a_t|s_t)/n0_old(a_t|s_t)
11: Update value network by minimizing:
LV(®) = (Rt + v Vo(s') - Vo(s))?

12: end for

13: return trained policy =6*(a|s) for

secure fog node placement

Algorithm 1. Fog node selection process using secure PPO

To ensure a fair and reproducible comparison, all
reinforcement learning algorithms—Secure PPO, A2C, and
DQN—were trained under identical environmental conditions
and computational resources. The implementation was performed
using the Stable-Baselines3 framework in Python. Each model was
trained for 20,000 timesteps with a batch size of 64, a learning rate
of 3 x 1074, and a discount factor y = 0.99.

For the A2C algorithm, the number of parallel environments
was set to 8, with an update frequency of 5 and a value function
coefficient of 0.5. The DQN agent utilized a replay buffer size of
100,000, target network update interval of 500 steps, and an -
greedy exploration schedule decaying from ¢ = 1.0 to ¢ = 0.05 over
the training period. Both A2C and DQN used an MLP (Multi-Layer

Perceptron) policy network with two hidden layers of 64 neurons
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each and ReLU activation functions, identical to the Secure PPO
model for consistency.

The Secure PPO algorithm adopted a clipping parameter
€ = 0.2, entropy coefficient of 0.01, and generalized advantage
estimation parameter A = 0.95. All models were optimized using
the Adam optimizer and trained with the same random seed
to eliminate stochastic bias. The evaluation metrics—convergence
timesteps, accuracy, latency, energy consumption, and inference

time—were computed under identical simulation conditions.

5.2 Results and discussion

Figure 4 shows the average latency behavior of PPO with A2C
and DQN for different ranges of fog nodes. It is clearly seen that
as the number of fog nodes increases , Secure PPO gives the lowest
value of latency when compared to the baseline algorithms.

However, as shown in Figure 4, when the number of fog
nodes increased to 200 and 400, PPO exhibited a temporary
degradation in performance compared to the benchmark
algorithms. This phenomenon can be attributed to increased
action-space dimensionality and sparse reward distribution, which
cause the PPO policy updates to become less efficient in mid-scale
environments. Specifically, when multiple nodes exhibit similar
latency and energy characteristics, the reward gradient becomes
less informative, leading to slower convergence.

Despite this fluctuation, PPO consistently maintained higher
stability and faster re-convergence than both A2C and DQN as
the network scale increased further. Once the policy stabilized
beyond 400 nodes, PPO regained its performance advantage due to
its clipped surrogate objective, which prevents overfitting to noisy
intermediate states.

10.3389/fcomp.2025.1723498

Average energy consumption for small, medium and large
number of nodes is depicted in Figure 5.

Table 3 presents the average latency and energy consumption
of the selected fog nodes. PPO yielded the lowest average latency
(11.8 ms) and average energy consumption (132.5 W), followed by
A2C and DQN.

The results highlight the advantage of PPO in jointly optimizing
both latency and energy consumption under trust constraints.

The convergence behavior of the three algorithms is presented
in Figure 6. PPO converged to consistently selecting the best trusted
node within approximately 4,000 timesteps, while A2C required
nearly 9,000 timesteps and DQN more than 12,000 timesteps. This
demonstrates the superior learning efficiency of PPO in dynamic
fog environments. As shown in Figure 6.

PPO achieved an accuracy of 97.6% in selecting
the optimal trusted node, outperforming A2C (89.2%)
and DQN (82.1%). This indicates that PPO is more

reliable in consistently deploying modules on latency- and
energy-efficient trusted nodes. Comparison is depicted in
Figure 7.

The experimental evaluation demonstrated that the proposed
PPO
reinforcement learning models such as A2C and DQN in terms

Secure algorithm consistently outperformed baseline
of convergence speed, accuracy, latency, and energy optimization.
This superior performance can be attributed to several key factors
related to PPO’s algorithmic design and its compatibility with the
fog computing environment.

5.2.1 Stable policy updates
PPO employs a clipped surrogate objective that constrains the
magnitude of policy updates within a predefined range (¢ = 0.2).

Avglatency(ms) vs FogNodes for different algorithms

20.0 1

17.54

—
-
o

Avglatency(ms)
<
»n

10.0

7.5

5.0
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—&— PPO

/.Q

300

200 400
FogNodes
FIGURE 4
Average latency vs. number of fog nodes.
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Energy Consumption vs Fog Nodes
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FIGURE 5
Average energy comparison between algorithms.

TABLE 3 Performance analysis of PPO with A2C and DQN.

Algorithm Inference time (ms) Convergence Timesteps Accuracy (%) Avg latency (ms) Avg energy (W)
PPO 0.42 4,000 97.6 11.8 1325
A2C 0.48 9,000 89.2 15.6 150.4
DQN 031 12,000 82.1 189 165.7

Convergence Speed Comparison Accuracy of Best Node Selection

100

12000 A

10000 -

8000 -

6000 A

Accuracy (%)

4000 -

Timesteps (lower is better)

2000 A

PPO A2C DON

FIGURE 6

Comparison of convergence speed. FIGURE 7

Comparison of accuracy in best node selection.

This prevents the policy from making overly aggressive updates that
could destabilize learning—a common issue in A2C and DQN. The
result is smooth and monotonic policy improvement, which allows

5.2.2 Improved policy generalization
The stochastic nature of PPO’s policy enables it to generalize

Secure PPO to converge faster (4,000 timesteps) and more reliably
select optimal trusted nodes with minimal oscillations.

Frontiersin Computer Science

across diverse fog environments with varying node latencies, power
capacities, and trust levels. During training, the agent samples
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actions from a probabilistic policy mg(a | s), allowing it to
experience a broad range of system states. This enhances policy
robustness and ensures the trained model performs well even
under fluctuating fog conditions, which is essential for real-time

healthcare scenarios.

5.2.3 Enhanced exploration of trusted nodes

Unlike DQN, which relies on discrete Q-value maximization
and tends to exploit early-learned actions, PPO maintains a
controlled balance between exploration and exploitation through
its entropy regularization term. This encourages the agent to
explore multiple trusted nodes during early training before
converging to the most optimal ones. As a result, Secure
PPO avoids premature convergence to suboptimal nodes and
effectively discovers low-latency, energy-efficient, and trustworthy
fog devices.

5.2.4 Joint optimization of security and
performance

The Secure PPO framework uniquely integrates trust awareness
into the reward function, ensuring that only verified nodes with
high reputation scores contribute positively to the policy update.
By embedding both static (trusted flag) and dynamic (reputation
score) trust indicators, PPO simultaneously optimizes for latency,
energy, and security, outperforming A2C and DQN, which lack
built-in mechanisms for multi-objective reward balancing.

5.2.5 Superior policy stability and adaptability

While A2C updates its policy synchronously and DQN uses
discrete value-based updates, PPO performs asynchronous mini-
batch updates with multiple epochs per iteration. This design
increases sample efficiency and allows continuous refinement
of the policy using previously collected data. Consequently,
PPO maintains high stability and adaptability even as the fog
environment scales up to hundreds of nodes.

6 Conclusion

This study presented a Secure Proximal Policy Optimization
(Secure PPO) framework for intelligent and trust-aware fog node
selection automated healthcare IoT system. The primary objective
was to design a placement mechanism capable of ensuring low
latency, energy efficiency, and security in real-time medical IoT
environments. To achieve this, the framework integrated a hybrid
trust mechanism combining a static trusted flag with a dynamic
reputation score, ensuring that computational modules were always
deployed on trusted and reliable fog nodes.

From extensive simulations conducted using Python and
Stable-Baselines3 PPO in a fog environment of up to 500
nodes, Secure PPO achieved 97.6% node selection accuracy,
converged within 4,000 timesteps, and maintained an average
latency of 11.8 ms and energy consumption of 132.5 W. Compared
to baseline reinforcement learning models (A2C and DQN),
Secure PPO demonstrated superior convergence speed, lower
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variance in rewards, and greater resilience under dynamic network
conditions. Furthermore, scalability tests confirmed that inference
time remained below 1 ms, validating its suitability for real-time
healthcare applications.
Methodologically, this
reinforcement learning paradigm that embeds both static and

work introduced a trust-aware
dynamic trust components into the PPO reward formulation.
The adoption of a clipped surrogate objective enabled stable
and monotonic policy updates, while entropy regularization
encouraged exploration of multiple trusted nodes before
convergence. This hybrid design allowed Secure PPO to achieve
a balanced optimization of latency, energy, and trust, effectively
addressing the research question of how to perform secure,
low-latency fog node selection for safety-critical medical systems.

6.1 Limitations and future work

Despite promising results, this study acknowledges several
limitations. First, the experiments were performed in a simulated
fog environment with synthetically generated node parameters,
which may not fully capture real-world network variability.
Second, the current framework employs a single-agent PPO
model, assuming a centralized decision-maker. In large-scale
healthcare deployments involving multiple hospitals or edge
clusters, this assumption may limit scalability and adaptability.
Additionally, while the hybrid trust mechanism combines binary
and reputation-based trust, it does not yet incorporate distributed
or cryptographically verifiable trust validation.

Future work will focus on addressing these constraints by
extending the model to a multi-agent PPO framework, enabling
distributed decision-making among multiple fog controllers.
Furthermore, federated learning will be explored to train
PPO agents collaboratively across hospital networks without
sharing sensitive medical data. To enhance trust management,
the integration of blockchain-based reputation systems will be
investigated to provide decentralized and tamper-proof verification
of fog node trustworthiness. Finally, real-world testing using
medical IoT datasets and fog hardware will be pursued to validate
system performance under realistic clinical conditions.
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