
TYPE Original Research
PUBLISHED 16 January 2026
DOI 10.3389/fcomp.2025.1723480

OPEN ACCESS

EDITED BY

Agostino Cortesi,
Ca’ Foscari University of Venice, Italy

REVIEWED BY

Beyza Eken,
Sakarya University, Türkiye
Mathias Kleiner,
ParisTech École Nationale Supérieure d’Arts et
Métiers, France

*CORRESPONDENCE

Behrouz Tork Ladani
ladani@eng.ui.ac.ir

RECEIVED 12 October 2025
REVISED 12 December 2025
ACCEPTED 18 December 2025
PUBLISHED 16 January 2026

CITATION

Alsharuee HAN, Sharbaf M and Tork Ladani B
(2026) A configurable approach for
intra-model inconsistency management in
multi-view collaborative modeling.
Front. Comput. Sci. 7:1723480.
doi: 10.3389/fcomp.2025.1723480

COPYRIGHT

© 2026 Alsharuee, Sharbaf and Tork Ladani.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

A configurable approach for
intra-model inconsistency
management in multi-view
collaborative modeling

Hayder Ali Neamah Alsharuee 1,2, Mohammadreza Sharbaf 1

and Behrouz Tork Ladani 1*
1Department of Software Engineering, University of Isfahan, Isfahan, Iran, 2Department of Scholarships
and Cultural Relations, Ministry of Higher Education and Scientific Research, Baghdad, Iraq

Introduction: In the software development life cycle, collaborative modeling
through multiple projective views of a single, shared model is a critical
activity that enables effective collaboration among experts and stakeholders.
Real-time optimistic collaboration in multi-view modeling allows concurrent
modifications but often introduces inconsistencies that must be resolved to
achieve an integrated and valid model. Existing inconsistency management
methods frequently focus on isolated repairs or offer limited alternatives, lacking
support for collaborative dynamics and configurable resolution strategies. This
study aims to develop a configurable framework for managing intra-model
inconsistencies in real-time multi-view collaborative modeling environments.
Methods: We propose a novel framework for inconsistency management
tailored to multi-view collaborative modeling, based on Model-Driven
Engineering (MDE) principles. The framework supports real-time modeling
scenarios and enables change propagation according to the online collaboration
mode. Key components include a consistency oracle and incremental
consistency checking, which together manage the integration of model
changes and overlaps. We introduce the COMIM approach, which assists
collaborators in handling inconsistencies by considering team interactions,
individual ownership, and configurable repair strategies.
Results: The framework was evaluated through a case study involving multi-view
collaborative modeling sessions. Empirical results demonstrate the feasibility
and effectiveness of the COMIM approach in maintaining consistency during
concurrent modeling activities. The system performed efficiently for teams
of up to seven concurrent users, successfully managing change propagation,
detecting inconsistencies incrementally, and supporting configurable resolution
aligned with collaborative priorities.
Discussion: The proposed framework effectively addresses the complexities
of repairing inconsistencies across diverse software models in a collaborative
setting. By emphasizing collaborative dynamics, our approach advances
traditional inconsistency management methods, which often lack
personalization and configurability. Future work may explore scalability to
larger teams and adaptation to additional modeling paradigms.

KEYWORDS

collaborative modeling, intra-model inconsistency management, model-driven
engineering, multi-view collaboration, multi-view modeling

Frontiers in Computer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1723480
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1723480&domain=pdf&date_stamp=2026-01-16
mailto:ladani@eng.ui.ac.ir
https://doi.org/10.3389/fcomp.2025.1723480
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1723480/full
https://orcid.org/0009-0009-6621-6051
https://orcid.org/0000-0001-5113-7689
https://orcid.org/0000-0003-2280-8839
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Alsharuee et al. 10.3389/fcomp.2025.1723480

1 Introduction

Software engineering is a collaborative discipline where
engineers work concurrently on a variety of engineering artifacts,
such as requirements, use cases, designs, and code. To modify
these artifacts, engineers utilize a diverse landscape of specialized
tools—each tool typically focuses on specific types of artifacts (e.g.,
IDEs for source code, modeling tools for UML). As a result, each
tool provides a partial view of the software system, as engineers
generally do not need access to all engineering artifacts. This kind
of distributed and concurrent modification of artifacts by multiple
engineers follows a familiar pattern: typically, engineers download
artifacts from a shared repository, modify them independently
on their local workstations, and then upload the changes back
to the repository. This nature of coordination can lead to the
introduction of inconsistencies, where artifacts contradict one
another. It is particularly challenging to detect such inconsistencies
when different engineers modify interdependent artifacts using
different modifications.

To develop modern systems in the engineering domain,
models are used as primary artifacts (Whittle et al., 2013). When
the software is complex, the size and complexity of models
increase dramatically. This enforces that many engineers and
stakeholders participate in large teams and collaborate to evolve
models (Franzago et al., 2017). In this context, some of the
participants may work concurrently and independently on the
same model from different geographical sites. Each participant
focuses on specific aspects of the system and locally modifies only a
particular part of the model.

State of the art in model-based software development has
primarily focused on detecting inconsistencies between software
models. Many effective approaches have been developed to quickly
and accurately identify inconsistencies across different views or
perspectives of a system (Blanc et al., 2008; Egyed, 2006; Yu and
Choi, 2023; Grundy et al., 1998; Nentwich et al., 2002). While
it is important to tolerate inconsistencies during the modeling
process (Balzer, 1991), they must eventually be resolved. However,
detecting and repairing inconsistencies in multi-view modeling
is a highly challenging problem, as it requires comprehensive
coverage of overlapping elements and semantic rules. The repair
process itself introduces additional complexity. The number of
possible repair alternatives grows exponentially with the number
of model elements and views involved (Reder and Egyed, 2012a),
overwhelming developers with a vast set of options. Existing
approaches either ignore this exponential growth (Nentwich et al.,
2003) or focus only on a limited set of repairs (Dam and Winikoff,
2011; Puissant et al., 2010). Other approaches impose restrictions
on the consistency language or address individual inconsistencies
in isolation, without considering the implications across multiple
views (Egyed et al., 2008; Nentwich et al., 2003; Xiong et al., 2009).
These limitations are problematic because developers may struggle
to select the most appropriate repairs from the large solution
space, or the available repairs may not adequately address the
inconsistencies across the different views of the system.

Crucially, the process of repairing inconsistencies in multi-
view modeling is tightly coupled with the creative modeling
work performed by developers. We argue against heuristic-based
approaches that attempt to automate the repair process, as these

may fail to capture the nuanced reasoning and design decisions of
the developer. For example, a repair that minimizes the number of
model changes may be undesirable if it favors undoing a change
that was the root cause of the inconsistency (Ohrndorf et al.,
2021). Furthermore, the literature has not adequately addressed the
challenge of repairing inconsistencies in collaborative multi-view
software engineering environments. As software development is
often a team-based discipline, the repair process should consider
the collaborative aspects of model maintenance across different
views (Mistrík et al., 2010). Collaboration can be leveraged to filter
out infeasible repair alternatives, such as by prioritizing repairs that
only impact the artifacts owned by the current developer or that
are deemed acceptable by the team. However, there are no existing
repair approaches that explicitly consider the collaborative nature
of multi-view software engineering (Macedo et al., 2016; Torres
et al., 2021).

While many approaches for consistency checking exist, they
often focus on checking artifacts within the local environment of
a single engineering tool. These approaches rarely operate on the
merged set of all engineering artifacts in the global environment,
such as a shared repository. The modifications made by engineers
in their local environments may have implications on the overall
consistency of the system, but these implications cannot be fully
considered until the local changes are first merged into the global
environment. This is an important research challenge, as the
typical engineer’s workflow involves first storing modifications
locally, before potentially introducing inconsistencies that affect the
overall system. In this context, the scope of this paper is intra-
model inconsistency management. We address inconsistencies
that arise when collaborators concurrently edit different views
(e.g., structural, behavioral) of the same underlying model.
This is distinct from inter-model consistency, which deals with
relationships between separate, heterogeneous models.

In this paper, we present the Collaborative Multi-view modeling
Inconsistency Management (COMIM) framework for managing
inconsistencies in real-time collaborative modeling of a single
model through multiple projective views. COMIM integrates
a consistency oracle for real-time inconsistency detection and
resolution, and a personalized view definition mechanism to
propagate change operations, supporting collaborative modeling.
COMIM is designed to handle the complexities of multi-
view modeling by enabling fine-grained consistency checks,
reordering operations to resolve conflicts, and providing feedback
to collaborators. Building upon our prior work on conflict
management [CoMPers (Sharbaf et al., 2025)], COMIM makes
several novel contributions specific to the multi-view, projective
modeling context: (1) a dedicated inconsistency management
architecture centered on a scope-based consistency oracle; (2)
formal definitions for operations and consistency in multi-view
collaboration; (3) preference-based view personalization; and (4)
integrated operation reordering for inconsistency resolution.

The framework is evaluated through case studies and
benchmarks, demonstrating its effectiveness in maintaining
consistency across multiple views, while minimizing overhead.
By addressing the challenges of inconsistency management in
collaborative environments, COMIM provides a scalable and
configurable solution for real-time multi-view modeling. To
show the applicability of the proposed approach, we provide a

Frontiers in Computer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1723480
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Alsharuee et al. 10.3389/fcomp.2025.1723480

proof-of-concept implementation of COMIM and demonstrate
it on the Wind Turbine case study, which showcases its
ability to handle real-time collaborative multi-view modeling
scenarios. Additionally, we utilize the consistency management
benchmark to evaluate the performance of the consistency
oracle and inconsistency resolution components in our approach.
Furthermore, we investigate the scalability of COMIM by analyzing
its computational complexity. The results demonstrate that
COMIM is capable of supporting multiple modeling languages,
although model size has a noticeable, yet relatively small, impact
on evaluation time.

The rest of this paper is organized as follows: Section 2 provides
the background foundations on collaborative modeling and conflict
management. Section 3 reviews related works in the field. Section 4
describes the overall structure of the COMIM approach, including
the conceptual overview of the collaboration architecture, the
definition of model views based on user intents and preferences,
and the inconsistency management infrastructure, which includes
the consistency oracle and inconsistency resolution mechanisms.
Finally, it demonstrates the proposed approach using an illustrative
example. Section 5 presents the evaluation of our approach,
including case studies, benchmarks, and scalability analysis. Finally,
Section 6 concludes the paper and highlights directions for the
future work.

2 Background

This section provides explanations and definitions of key terms
used throughout the paper.

2.1 Models and views

In our approach, we draw upon concepts of views and
viewtypes as defined in ISO/IEC/IEEE 42010:2011 (Júnior et al.,
2019), which are commonly used in Model-Based Systems
Engineering (MBSE). Specifically, we define the following terms:

• Model: a model is an abstraction that serves a specific purpose
related to an original entity.

• Metamodel: a metamodel specifies the structure and
constraints of models, detailing which elements, attributes,
and relationships can exist within a model.

• View: a view presents specific parts of a model, allowing
for a particular perspective on the overall model. It contains
only the information necessary for that perspective and is an
instance of a viewtype.

• Viewtype: a viewtype represents the portions of a metamodel
that specify what is permissible within its associated views.

2.2 Consistency

In modeling, consistency refers to the property of a model or
system to maintain logical coherence and reliability across different
scenarios, inputs, or conditions. It ensures that the model behaves
predictably and produces results that align with established rules,
assumptions, or expectations. Lucas et al. (2009) define consistency

as “a state in which two or more elements, which overlap in
different models of the same system, have a satisfactory joint
description.” Herzig et al. (2014) express a similar concept, stating
that “inconsistency is present if two or more statements are made
that are not jointly satisfiable.” A more formal definition offered
by David et al. (2023) translates to “two design artifacts are said
to be consistent with respect to a set of properties if they satisfy
exactly the same properties of the set.” From a logical perspective,
Persson et al. (2013) describe consistency in the context of views as
not having contradictions.

We concur that the fundamental understanding of consistency
between models is the absence of contradictions when these
models are considered together. From our perspective, consistency
between models relies on their overlaps. If models share redundant
information that must be maintained in a specific form, a
consistency relation exists between them. To formalize this
relationship, we define a machine-readable and evaluable term
called consistency rule. If a consistency rule is evaluated as satisfied
within a given model context, the associated consistency relation
(i.e., the overlap) is deemed consistent; otherwise, it is not.

In summary, two models are considered consistent if all
defined consistency rules for them are satisfied. If any rule is
not satisfied, the models are deemed inconsistent. Inconsistencies
may arise from syntactic conflicts (e.g., concurrent edits to an
attribute’s type) or semantic violations (e.g., violating inheritance
hierarchies) (Sharbaf et al., 2020). This foundation supports rule-
based consistency checking approaches, wherein consistency rules
are typically defined as logical statements, such as Object Constraint
Language (OCL) rules (Cabot and Gogolla, 2012). These rules can
be evaluated by a rule checker within a specific model context,
yielding a result of either true or false. If all rules evaluate to true,
the model context is consistent; if any rule evaluates to false, the
context is inconsistent.

3 Related work

In this section, we review the existing literature relevant to
consistency management, particularly in collaborative modeling
environments. Research in this area can be categorized by
its focus: (1) inter-model inconsistency management, which
addresses consistency between separate models, and (2) intra-
model inconsistency management, which addresses consistency
within a single model. Our work, COMIM, belongs to the latter
category with a specific focus on multi-view collaborative modeling.

Numerous surveys provide foundational insights into
consistency management, covering general approaches
(Spanoudakis and Zisman, 2001), cross-domain consistency
(Burger, 2014), behavioral model consistency (Muram et al., 2017),
and conflict management techniques for collaborative modeling
(Sharbaf et al., 2023).

Inter-model inconsistency management addresses consistency
between multiple, potentially heterogeneous models that are related
through transformations or constraints. For instance, Feldmann
et al. (2019) propose a framework for specifying, diagnosing,
and handling inter-model inconsistencies in production systems
engineering. Stevens (2020) explores the use of bidirectional
transformations to maintain consistency in networks of models.
Kleiner and Roucoules (2025) present a framework for dynamic

Frontiers in Computer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1723480
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Alsharuee et al. 10.3389/fcomp.2025.1723480

consistency management in multi-physical systems. While these
approaches are effective for managing consistency across separate
models, they are not designed for real-time, collaborative editing of
a single model through multiple projective views.

Intra-model inconsistency management, in contrast, focuses on
consistency within a single model. Some studies (e.g., Schröpfer
et al., 2019; Sharbaf et al., 2025) address inconsistencies within
models but do not explicitly consider multiple views. Our
work, COMIM, focuses specifically on intra-model inconsistency
management in a multi-view setting, where inconsistencies arise
from concurrent modifications to different projective views of
the same underlying model. COMIM’s configurable, scope-based
inconsistency checking is tailored to this context, providing real-
time detection and resolution for collaborative modeling sessions.

In the following, we discuss related work that has directly
influenced our approach and provides the broader context for
multi-view collaborative modeling.

Cicchetti et al. (2011) review on multi-view modeling
approaches complements existing surveys by focusing on the
technical characteristics and consistency management of multi-
view solutions, contrasting with prior works that often address
narrower aspects such as UML diagram consistency or business
process modeling. The findings highlight gaps in terminology
standardization, semantic consistency, and real-world validation,
aligning with broader challenges identified in granularity of views.

Knapp and Mossakowski (2018) surveid and classified existing
techniques on multi-view consistency in UML and proposed a
distributed semantics framework using OMG’s DOL to formally
link UML/OCL sub-languages while preserving their distinct
semantics. According to their results, ensuring consistency across
multiple UML/OCL views is challenging due to the language’s
heterogeneity, with most existing methods limited to structural
checks and partial diagram coverage.

Wen et al. (2023) proposed a formal framework using a
Structure Model to represent UML artifacts and their relationships,
enabling automated consistency checking and repair. It classified
updates (e.g., repairs, propagations) and introduces strategies (e.g.,
stable-change, least-change) to restore or preserve consistency.
A prototype tool, FSMS, demonstrates the approach’s feasibility.
However, the framework relies heavily on manual rule selection
and repair decisions, which may not scale efficiently for large
systems. Additionally, the tool’s current implementation lacks full
automation for complex behavioral consistency checks.

Vogel-Heuser and Zou (2019) presented a knowledge-
based approach for managing inconsistencies in multi-view
collaborative modeling of Cyber-Physical Production Systems
(CPPS), addressing challenges in cross-disciplinary engineering
where heterogeneous models (e.g., SysML, Simulink) often lead to
semantic and functional inconsistencies. By leveraging a domain
ontology and metamodels, the authors formalize dependencies
and enable automated inconsistency detection through reasoning
in a Web Ontology Language (OWL)-based knowledge base,
reducing manual effort and improving interoperability. The
approach is validated on a bench-scale CPPS demonstrator,
highlighting its ability to detect static semantic inconsistencies,
though limitations remain in handling dynamic behaviors and
resolution of inconsistencies as well as scalability for large-scale
systems.

Karagiannis et al. (2016) introduced a semantic query-based
approach for managing consistency in multi-view enterprise
models by leveraging Linked Data technologies to transform,
synchronize, and validate heterogeneous views. The authors
introduce a framework where enterprise models—spanning
behavioral, structural, and procedural facets—are serialized as
RDF graphs, enabling consistency checks and transformations
via SPARQL queries. The approach is validated through case
studies from the ComVantage and SOM projects, demonstrating
its utility in maintaining cross-view dependencies and supporting
knowledge-driven systems. While the method enhances
semantic interoperability and automation, the inconsistency
resolution is not considered and the authors note challenges in
usability and the slow adoption of Linked Data in enterprise
settings.

Shahvari et al. (2024) proposed an inconsistency tolerance
framework to support agile development in multi-view
modeling environments, addressing the challenges of concurrent
collaboration across diverse stakeholder views (e.g., warehouse
managers, operators, maintenance teams). The framework
introduces a three-phase process—detection, analysis, and
tolerance—to classify inconsistencies (syntactic, structural,
semantic) and apply context-aware strategies (constraint-based,
temporal, spatial) for managing conflicts without halting
development. Unlike traditional approaches that enforce
immediate resolution, this work emphasizes flexible tolerance
mechanisms aligned with agile principles, enabling iterative
refinement while maintaining progress. While the conceptual
framework is well-defined, it lacks validation through real-world
case studies or industrial demonstrations, limiting insights into its
practical effectiveness.

Cicchetti et al. (2011) presented a hybrid approach for
incremental synchronization in multi-view modeling, combining
the benefits of synthetic (distinct meta-models) and projective
(single meta-model with views) techniques to address consistency
management and customization challenges. The proposed
framework leverages model differencing and higher-order
transformations to detect and propagate changes incrementally
across views, reducing computational overhead compared to
full model recomputation. While the approach demonstrates
technical feasibility through EMF-based tooling and a school
management case study, it lacks empirical validation in
industrial settings or large-scale deployments. Key limitations
include basic inconsistency resolution and manual workflow
coordination.

However, due to the diversity of modeling languages and view
definitions, a customizable solution for consistency management
is essential. By “configurable,” we mean a framework where
development teams can tailor the inconsistency management
process along multiple dimensions: (a) defining the specific model
elements (scopes) to monitor, (b) specifying custom consistency
rules relevant to their domain, and (c) personalizing views for
different stakeholders. Such a solution would enable teams to
flexibly define and enforce consistency rules tailored to their
collaborative needs. Yet, none of the existing approaches
directly support this level of configurable inconsistency
checking in multi-view modeling, leaving a critical gap in the
field.

Frontiers in Computer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1723480
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Alsharuee et al. 10.3389/fcomp.2025.1723480

4 The COMIM approach

In real-time multi-view collaborative modeling, managing
inconsistencies is a critical challenge due to the dynamic nature
of collaborative environments where multiple users interact with
the system simultaneously. In this section, we present COMIM as a
comprehensive approach to address this challenge by introducing
a structured architecture and an inconsistency management
infrastructure. The architecture facilitates the propagation of
change operations applied by different users across various views
through a collaboration server. This ensures that changes are
synchronized and reflected in real-time across all relevant views.

The proposed inconsistency management infrastructure is built
on three layers: the metamodel layer, the model layer, and the
view layer. Users can define scopes based on metamodel elements
and specify inconsistency detection rules for each scope. Each
view can be associated with one or more scopes, and the system
checks the related inconsistency rules in the consistency oracle
for every change applied in a view. Detected inconsistencies are
resolved through mechanisms such as reordering operations or
sending feedback to users. This approach ensures that the system
maintains consistency across all views, even in a highly dynamic
and collaborative environment.

While the examples in this paper use UML for clarity and
familiarity, the COMIM framework is built on MDE principles
and is modeling-language agnostic. Its core infrastructure is
Ecore-based, meaning it operates on the fundamental concepts
of model elements (EObject), properties (EAttribute), and
relationships (EReference). The key components (i.e., Scope
Definition, Consistency Oracle, and Operation Tree) are entirely
independent of any specific modeling notation. The framework
can be instantiated for any domain-specific language defined as an
Ecore metamodel. The UML examples serve only to illustrate the
approach in a widely understood context; they do not represent a
limitation of the frameworks applicability.

The proposed framework supports personalization at two
levels. First, at the individual level, collaborators can define
personalized views of the model through the mechanisms described
in Section 4.3, ensuring that each user interacts only with the model
elements relevant to their tasks. Second, at the team or project level,
the inconsistency management process is configurable: teams can
define custom consistency rules, specify scopes for checking, and
choose resolution strategies that fit their collaborative workflow.

In the following, we first present the formal foundations of the
COMIM framework. Then, we introduce the real-time multi-view
collaboration architecture. Next, we focus on the approach to define
projective views. After that, we present an overview of the proposed
infrastructure for inconsistency management by explanation of
its components. Finally, we demonstrate the integrated approach
through an illustrative example.

4.1 Formal foundations of COMIM

To establish a rigorous foundation for the COMIM approach,
we formally define the core concepts and structures that
underpin our inconsistency management framework. The COMIM
framework provides two primary operations, as well as two key

properties for inconsistency management. These formal definitions
provide the mathematical foundation for the COMIM approach,
establishing precise semantics for the concepts and operations
described in the subsequent sections.

Definition 1 (Operation). An operation o represents a single
change in the collaborative modeling environment and is defined
as a 5-tuple:

o = (CID, VID, EID, OP, TS)

where:

• CID ∈ ClientID is the unique identifier of the client initiating
the operation

• VID ∈ ViewID is the identifier of the view where the operation
was performed

• EID ∈ ElementID is the unique identifier of the model element
being modified

• OP ∈ {Create, Delete, Update} is the type of operation, where
Update can be further specified as Update(Property, NewValue)

• TS ∈ N is a logical timestamp representing the operation’s
global order

Definition 2 (Operation Tree). The global state of the collaborative
session is maintained in an Operation Tree T = (N, E), where:

• N is a set of nodes, each representing an operation o
• E is a set of edges representing the happens-before

relationships between operations
• The root of T represents the initial empty model state
• Each path from root to leaf represents a sequence of operations

leading to a specific model state
• Branches in T represent concurrent modifications that have

not yet been reconciled

Definition 3 (Scope). A scope S is a set of model elements
{e1, e2, . . . , en} defined by a query over the metamodel. Formally:

S = {e ∈ M | query(e) = true}

where M is the model and query is a predicate defined over the
metamodel elements.

Definition 4 (Consistency Rule). A consistency rule R is a predicate
associated with a scope SR, defined as:

R(SR) → {True, False}

The rule R evaluates to True if the elements in scope SR satisfy the
consistency condition, and False otherwise.

Definition 5 (Model State). The state of a model M at time t is
determined by applying all operations along a path P in the
operation tree T:

state(M, t) = apply({o1, o2, . . . , on}, M0)

where o1, o2, . . . , on are operations along path P with TS(oi) ≤ t,
and M0 is the initial model.

Frontiers in Computer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1723480
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Alsharuee et al. 10.3389/fcomp.2025.1723480

Definition 6 (Consistent State). A model M is in a consistent state
at time t if and only if:

∀Ri ∈ R, Ri(SRi) = True

where R is the set of all active consistency rules in the system.

Definition 7 (View Projection). A view V is a projection of model
M defined by a view definition function:

V = project(M, viewdef)

where viewdef specifies which elements and properties of M are
visible in V .

Definition 8 (Evaluate Operation). The EVALUATE operation
checks if a new operation o maintains consistency:

EVALUATE(o, T,R) → (result, feedback)

where result ∈ {CONSISTENT, INCONSISTENT} and feedback
provides diagnostic information when inconsistent.

Definition 9 (Query Operation). The QUERY operation identifies
equivalent and conflicting operations across views:

QUERY(o, T, M) → (Oequivalent, Oconflicting)

where Oequivalent and Oconflicting are sets of operations that are
equivalent to or conflict with o, respectively.

Definition 10 (Reorder Operation). The REORDER operation
computes a valid sequence of operations from a set of conflicting
operations that, when applied, restores consistency:

REORDER(Oconflict, T,R) → (Ovalid, feedback)

where:

• Oconflict ⊆ O is a set of conflicting operations identified by the
QUERY function,

• T is the current Operation Tree,
• R is the set of all active consistency rules,
• Ovalid = 〈o1, o2, . . . , ok〉 is a sequence (permutation) of

operations from Oconflict that, when applied in order to the
current model state, results in a consistent state (if such a
permutation exists),

• Feedback provides diagnostic information when no valid
permutation exists.

The operation attempts different permutations of Oconflict and
checks each candidate sequence against the consistency rules R.
The first permutation that satisfies ∀R ∈ R :R(SR) = True
is returned as Ovalid. If no permutation yields consistency, the
operation returns NONE for Ovalid and generates appropriate
feedback.

Property 1 (Incremental consistency checking). COMIM
performs consistency checking incrementally by only re-evaluating
rules whose scopes intersect with modified elements:

RulesToCheck(o) = {R ∈ R | SR ∩ affectedElements(o)
= ∅}
Property 2 (Multi-view coordination). Operations across different
views are coordinated through shared model elements:

RelatedViews(VID) = {v ∈ Views | ∃e ∈ M : e ∈ VVID ∩ Vv}

4.2 Conceptual overview of the
collaboration architecture

The proposed collaboration architecture is designed to support
real-time collaboration among multiple users working on different
views of one or more models. As shown in Figure 1, at the center of
the architecture is the Collaboration Server, which acts as the hub
for managing and propagating changes across views. The server
ensures that changes made by one collaborator are synchronized
with the relevant views of other collaborators. This setup allows
users to work on specific views without being overwhelmed by
changes that are irrelevant to their tasks.

The architecture involves multiple views (e.g., View1, View2,
View3) that represent different perspectives or representations of
the underlying model (e.g., Model of a Video On-demand System).
Where collaborators interact with these views to make changes.

This separation allows collaborators to focus on specific aspects
of the project. For instance, one collaborator might work on View1,
while another works on View3, without the need to see each others
changes unless the views are interdependent.

The architecture uses channels to propagate changes between
the Collaboration Server and the views. Each view has its own
dedicated channel (e.g., Channel for View1). These channels ensure
that changes are routed efficiently and only to the relevant views.
For example:

• Changes made in View1 are sent through the Channel for
View1 to the Collaboration Server.

• The server then propagates these changes to the collaborators
on View1, as well as collaborators on other views (e.g., View2)
if they are interdependent with View1.

This channel-based approach ensures that collaborators only
receive updates that are relevant to their work, reducing
unnecessary noise and improving efficiency.

The Collaboration Server plays a critical role in managing
change propagation and ensuring consistency across views
by acting as the central authority for receiving changes from
collaborators via dedicated channels, evaluating the impact
of changes on interdependent views, propagating changes
synchronously or asynchronously based on the relationship
between the views, and resolving inconsistencies through
mechanisms like reordering operations or sending feedback to
collaborators. For example, if a change in View1 affects View2 of
the underlying model, the server ensures the change is propagated
immediately to View2, and if an inconsistency is detected, it may
reorder operations or notify collaborators to resolve the issue.

4.3 View definition

Figure 2 presents an overview of the proposed process to define
views. The process starts with receiving an original metamodel,
which is the input for a step named Analyser. In the Analyser step,
users can define priorities as well as required metamodel elements.
This process results in a Syntax Graph. The resulting syntax graph
goes as input to the Query Generation step. This step also receives
a Model as another input. The query generation is executed and

Frontiers in Computer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1723480
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Alsharuee et al. 10.3389/fcomp.2025.1723480

FIGURE 1

Overview of real-time multi-view collaborative modeling architecture.

RE 2FIGU

An overview of the proposed process for definition of views.

leads to an Effective Model, which can load and represent the Model
View. To select required element types in the Analyser step of
our approach, we have two strategies. The first strategy is user-
based selection, and the second is preference-based selection. In
the following, we explain each strategy. These strategies enable
configurable view personalization, ensuring that each collaborator
interacts with a model projection tailored to their specific tasks and
concerns.

4.3.1 User-based selection
In model-driven engineering, a metamodel serves as the

foundational structure defining the elements and rules for a family
of models. In the user-based selection strategy, users review the
metamodel and can interactively select specific elements that are
pertinent to their needs. This selection process allows users to

focus on relevant aspects of the metamodel, tailoring it to their
specific context. Once the user has made their selections, the
system automatically filters a received model, extracting only those
elements that match the selected types. This results in a simplified
model view, which presents a focused representation of the model,
highlighting only the elements of interest. This approach enhances
usability by allowing users to concentrate on specific components,
facilitating easier analysis and understanding while minimizing
extraneous details.

4.3.2 Preferences-based selection
The preferences module is a configurable component that

operates alongside the core view definition logic, allowing for a
versatile implementation of specific preferences that can be utilized
to address both syntactic errors and design smells within models.

Frontiers in Computer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1723480
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Alsharuee et al. 10.3389/fcomp.2025.1723480

This modularity ensures that the same quality characteristics can be
applied across various issues, as long as the models being analyzed
share a common format, such as Ecore class diagrams in our
previous discussions. To date, we have enhanced this module by
incorporating three key preferences: quality characteristics, model
distance, and coupling. Below, we elaborate on the implementation
of each preference.

1. Quality characteristics. Our implementation of quality
characteristics draws from established literature (Boehm et al.,
1976; Ortega et al., 2003) and integrates user-defined preferences
to evaluate model quality. This quality assessment tool not
only provides an evaluation framework but also allows users
to define custom quality metrics. Currently, we have identified
and implemented the following quality characteristics as user
preferences: maintainability, understandability, complexity, and
reusability. By leveraging this implementation, we systematically
enhance Ecore class diagrams, ensuring that the selected quality
characteristics are prioritized during the element selection
process. The evaluation values for these characteristics serve as
rewards within our model, enabling the COMIM framework
to select view elements that yield models of superior quality.
When projecting a view of a software class diagram, a user may
set a preference to prioritize high maintainability. In practice,
the system calculates maintainability scores for candidate
elements based on measurable attributes like coupling and
cohesion. Elements with higher scores are prioritized for
inclusion in the view. For instance, given a choice between
OrderProcessor (tightly coupled to 10 other classes) and Logger
(minimal dependencies), the system would assign Logger a
higher maintainability score and preferentially include it when
constructing a view focused on maintainability.

2. Model distance. We utilize a model distance metric to inform the
element selection process for Ecore class diagrams. The concept
of model distance has been extensively explored in the literature,
particularly in the context of model comparison. The distance
between two models is determined by analyzing their conceptual
similarities and differences, factoring in shared elements and
unique components (Sharbaf et al., 2022). We derive this
distance metric using a dedicated model distance calculator.
By applying this metric, we encourage the preservation of
the original model structure during view projection, thereby
minimizing unwanted side effects in the modified model.
This calculation is executed through an Eclipse plugin, which
incorporates a model matching algorithm defined using an
Epsilon Comparison Language (ECL) script (Kolovos, 2009).
This script is customizable, allowing for tailored adjustments to
the distance metric as required. The system evaluates potential
view projections by calculating their structural distance from the
original model. Among candidate projections, it selects the one
that minimizes this distance. For a class diagram with 20 classes,
projections including only peripheral classes would have high
distance scores, while projections preserving the central 5-class
core would have low distance scores and thus be preferred.

3. Coupling. To guide the view projection of UML models,
we employ metrics provided by SDMetrics (Wust, 2006).
Specifically, we utilize the MsgSent (number of messages sent)
and MsgRecv (number of messages received) metrics (Briand

et al., 1997) to assess coupling in UML sequence diagrams. By
analyzing the number of messages exchanged between lifelines,
we quantify the interdependence among them. The coupling
for each lifeline is calculated by aggregating these message
counts, enabling users to address inconsistencies between class
and sequence diagrams while maintaining loose coupling in
the sequence diagram. This approach empowers users to
implement element selection strategies that prioritize minimal
interdependencies, ultimately leading to cleaner and more
maintainable designs.

The three preference strategies described above (i.e., quality
characteristics, model distance, and coupling) are illustrative,
pluggable modules within COMIM. While the coupling metric
example is specific to UML, the framework allows for the
integration of analogous, domain-specific metrics for other
modeling languages. These preferences are optional extensions that
demonstrate how personalized view selection can be tailored to
different domains and quality concerns.

4.4 Inconsistency management
infrastructure overview

We propose a structured framework for managing intra-
model inconsistencies in collaborative modeling environments.
Figure 3 shows an overview of the proposed appoach that includes
Scope Definition, inconsistency evaluation using Consistency Oracle
based on the scopes, and Inconsistency Resolution by reordering
the execution of change operations or computing feedbacks
for inconsistency repair. By defining scopes, conducting real-
time inconsistency checks, leveraging a consistency oracle for
conflict resolution, and computing valid operation orders, the
system enhances the reliability and integrity of multi-view
collaboration. This holistic strategy not only improves the
efficiency of inconsistency management but also supports seamless
collaboration among engineers working on complex models.

The objective of Scope Definition is to create a clear boundary
around the model elements relevant to specific consistency rules.
Each consistency rule evaluation (CRE) assesses the related
consistency rules for each scope. A scope is a set of model elements
and their properties that are accessed during the evaluation of
the rule. The system manager declares a scope by specifying a
query (e.g., over the metamodel) that defines the region of interest.
Then, during the first execution of the Consistency Rule Evaluation
(CRE), the system automatically populates this scope with the
concrete set of model elements and their properties that are both
accessed during the rule evaluation and match the declared query.
This populated set is then dynamically maintained as the model
evolves. By limiting the evaluation to only the elements in the
scope, the system can efficiently manage inconsistencies without
re-evaluating the entire model, allowing for more fine-grained
checks.

Inconsistency checking based on scopes continuously monitor
changes in the model elements defined in the scopes to detect
inconsistencies. The system performs incremental consistency
checks at regular intervals or immediately after changes, focusing

Frontiers in Computer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1723480
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Alsharuee et al. 10.3389/fcomp.2025.1723480

FIGURE 3

The COMIM inconsistency management infrastructure data flow. The process begins with a user defining Scopes and Consistency Rule Definitions
(CRDs). When a change operation is received, the Scope Definition module identifies the affected scopes. The Consistency Oracle then evaluates the
relevant CRDs against the current state of the Operation Tree. If an inconsistency is detected, the Inconsistency Resolution module either computes
a valid reordering of operations (updating the Operation Tree) or generates feedback for the user.

on the elements within the defined scopes. When a change
occurs in an element within a scope, the corresponding CRE
is re-evaluated to determine if the model remains consistent.
This allows inconsistencies to be identified soon after they
are introduced.

The Consistency Oracle is the core component responsible
for detecting and managing inconsistencies. It achieves this
by evaluating incoming change operations against the set of
active consistency rules. It contains change evaluation module to
detect contradicting as well as equivalent operations that lead to
model inconsistency. Unlike general-purpose constraint solvers
or model checkers, our consistency oracle specializes in real-
time collaborative contexts by: (1) operating incrementally on
scoped model fragments, (2) prioritizing repair strategies based
on user preferences, and (3) maintaining operation trees for
inconsistency resolution—balancing automation with collaborative
control. The consistency oracle operates as a centralized module
that interprets change operations based on a specified consistency
model. It maintains tree of operations for each model and related
views and computes valid responses for queries based on the
defined consistency guarantees (e.g., strong consistency, eventual
consistency). This allows for systematic inconsistency resolution,
providing a coherent view of the model state across multiple
collaborators and ensuring that all operations align with the
specified consistency model.

The Operation Reordering computes order of operations for
inconsistency repair to determine the valid order of operations
that can be applied to resolve inconsistencies. The consistency
oracle computes possible interpretations of operation order based
on the consistency model in use. For strong consistency, the total
order matches the global history, while for eventual consistency,
all permutations of previous operations may be considered.
For models like monotonic reads or read-my-writes, the oracle
identifies unordered operations and applies the appropriate

conflict resolution strategies. This ensures that the resolution
of inconsistencies respects the logical relationships defined by
the consistency model, facilitating a consistent and reliable state
in the collaborative environment. In a real-time multi-view
collaboration environment, managing inconsistencies arising from
concurrent modifications can be performed in following desired
times:

1. After each modification: implementing real-time checks
immediately after a collaborator makes a change allows for
quick detection of inconsistencies. This approach provides
immediate feedback, enabling users to address issues before
proceeding further.

2. Before committing changes: before any collaborator commits
their modifications to the target model, a thorough check can
ensure that their changes do not conflict with others. This step
acts as a safeguard, preventing problematic changes from being
integrated into the final model.

3. At regular intervals: establishing periodic checks (e.g.,
every few minutes) can help identify inconsistencies that
may arise from multiple collaborators’ changes over time.
This approach balances real-time responsiveness and
system performance, reducing the likelihood of significant
discrepancies accumulating unnoticed.

4. On model view synchronization: whenever a collaborator
synchronizes their view with the target model or with other
views, inconsistency checks should be performed. This ensures
that any new changes are compatible with the current state of
the model, facilitating smoother integration.

5. Before final rendering: prior to generating the final model
from the various views, a comprehensive inconsistency check
should be performed. This is a crucial step to ensure that all
modifications align with the desired state of the model, allowing
for a coherent final output.

Frontiers in Computer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1723480
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Alsharuee et al. 10.3389/fcomp.2025.1723480

6. User-triggered checks: providing collaborators the option to
manually trigger inconsistency checks at any point can empower
users to verify their work whenever they feel necessary, adding
flexibility to the collaboration process.

In COMIM’s real-time collaborative environment,
inconsistency checking is performed at two key points to balance
responsiveness with comprehensive coverage. First, real-time
checks occur immediately when the collaboration server receives a
change operation, before the operation is committed to the shared
operation tree and propagated to other views. This provides the
submitting user with immediate feedback. Second, periodic checks
run at predefined intervals as a safety net, evaluating the current
state of the operation tree to detect inconsistencies that may arise
from complex, transitive interactions between multiple changes
over time. This hybrid approach ensures both low-latency feedback
and long-term model consistency.

The proposed environment facilitates collaboration among
engineers by enabling the sharing of knowledge related to their
artifacts, specifically models. This collaboration is supported by an
operation-based generic infrastructure. Within this infrastructure,
models are composed of multiple elements, each containing
properties that adhere to a specific metamodel. Changes made
to these models are systematically recorded through operations
that include creating, deleting, and modifying model elements and
their properties. These operations are organized into an operation
tree, which branches to represent models and each view developed
collaboratively. The infrastructure supports the concurrent work
of multiple users by allowing for the splitting and merging change
operations to this operation tree.

In this infrastructure, a meta-metamodel defined as a
streamlined MOF enables the creation of a domain-specific
metamodel. A collaborative session in COMIM operates on views
of a model that conform to this metamodel. By leveraging
this infrastructure, our approach can support collaborative work,
maintain a history of change operations, and be adapted to
different modeling domains by reconfiguring the framework
with the appropriate metamodel. Additionally, the infrastructure
facilitates communication with various services that extract and
manipulate critical information from these views. We adapt
established approaches to enhance the consistency checking service
by implementing immediately check after each modification as well
as periodic checks at regular intervals. By performing immediately
check, the system evaluates the consistency oracle to prepare
on-demand feedback and prevent propagation of inconsistency.
In addition, by conducting consistency checks at predefined
intervals, the system evaluates the operation tree for potential
inconsistencies, ensuring that all collaborators are informed of any
conflicts that may arise. This proactive approach allows users to
address issues promptly, maintaining the integrity of the models
as they evolve.

Figure 3 illustrates the environment composed of the
operation-based tree that logs all changes applied within the
streamlined MOF framework. In this context, a view presents an
projection of model elements and related properties. A model
consists of model elements, each containing properties. A property
can hold a single value or multiple values (collections). The types
of the model, model elements, and properties are determined by
the metamodel of the artifacts being represented. The model types

are defined at the metamodel level, allowing for instantiation as
model elements with specific property values.

Changes made to define the types, property types, model
elements, and so forth, are stored as a continuous stream of
events within the operation tree (top-right part of Figure 3). This
operation tree serves as the architecture’s backbone, providing the
operations necessary for services, including consistency checking,
to analyze relevant changes (e.g., the establishment of equivalent
or contradicting operations). In the following, we will focus on
the incosistency checking modules, including Scope Definition,
Consistency Oracle, and Inconsistency Resolution.

4.4.1 Scope definition
Incremental consistency checkers allow for fine-grained

reactions to changes in model elements, thereby avoiding the
need to re-evaluate the entire model. To enhance inconsistency
management, we utilize the concept of scope (Egyed, 2010).
A scope is defined as a set of model elements associated
with a consistency rule evaluation (CRE). When any element
within this scope is modified or a new element related
to this scope is added, it triggers the re-evaluation of the
corresponding CRE. The scope is automatically populated during
the initial execution of the CRE, resulting in a list of model
elements accessed during the rule evaluation on the UML
model. Only modifications to these accessed elements can
potentially alter the CRE state from consistent to inconsistent or
vice versa.

This mechanism implements incremental consistency checking
(Property 1), which ensures that only consistency rules whose
scopes intersect with the modified elements are re-evaluated.
Formally, for an operation o, the set of rules to check is
RulesToCheck(o). Thus, a CRE is re-executed only when an
element within its defined scope changes, avoiding a full model
re-evaluation. To support ongoing consistency checks, our system
implements a strategy of periodic evaluations at regular intervals.
This means that, in addition to immediate re-evaluations triggered
by scope changes, the consistency checker periodically assesses the
state of the model, allowing for the detection of inconsistencies that
may arise from concurrent modifications by different engineers.
This proactive approach helps maintain the integrity of the model
throughout the collaboration process. The consistency checker
utilizes a uniform representation of artifacts to manage both
rule definitions (CRDs) and evaluation results (CREs). It creates
instances of two distinct engineering artifact types:

• Consistency rule definition (CRD) artifact: this artifact
contains information about the type of artifact to which a
rule applies (the context) and the rule itself, typically defined
in OCL. CRDs serve as the foundational representation for
consistency checks.

• Consistency rule evaluation (CRE) artifact: these artifacts
implement CRDs for specific artifact instances (context
elements). They store the current consistency result and
maintain a reference to the associated CRD. Additionally,
CREs track their “scope,” which is a list of artifact/property
pairs relevant to the evaluation of a particular rule within a
specific context.

Frontiers in Computer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1723480
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Alsharuee et al. 10.3389/fcomp.2025.1723480

When an engineer creates a type, it can be designated as the
context for a CRD. Upon the creation of a CRD—facilitated by a
specialized tool—a corresponding CRE is automatically generated
for each artifact of the specified context type. These CREs are stored
within the workspaces of the respective artifacts. During the initial
evaluation, the scope of each CRE is constructed, encompassing
all relevant artifacts and their properties traversed during the rule
evaluation. A reference to the CRE is added to the properties
involved, enabling efficient tracking. Should any of these properties
change, the consistency checker follows the reference back to the
CRE to initiate a re-evaluation. By integrating periodic consistency
checks with targeted evaluations driven by changes within the
defined scope, our approach provides a configurable foundation
for inconsistency management, allowing teams to focus checking
efforts on specific, critical areas of the model relevant to their
project.

4.4.2 Consistency oracle
A consistency oracle is a software artifact designed to manage

inconsistencies within the defined scopes of multi-views in
collaborative modeling environments. It features an interface
similar to that of a generic distributed storage system, but
its primary goal is not to store data efficiently. Instead, the
consistency oracle evaluates all possible inconsistencies for any
change operation performed by the client, making its architecture
fundamentally different from traditional storage systems. The
consistency oracle is a core component of the proposed framework,
designed to ensure the consistency and integrity of models in a
multi-view collaborative environment. It operates as a centralized
module that monitors changes, evaluates consistency rules, and
detects inconsistencies arising from conflicting or equivalent
operations. The oracle uses a specified consistency model to provide
systematic inconsistency identification and resolution.

At the heart of the consistency oracle is the Consistency Rule
Evaluation (CRE) module. Each consistency rule is defined based
on the elements within a specific scope, which represents a set
of model elements and their properties relevant to the rule. The
CRE assesses these rules to determine whether the model remains
consistent after changes are made. During the evaluation, the
oracle automatically computes the relevant consistency rules based
on the scope of elements involved in the modifications. These
rules are dynamically selected as changes occur, ensuring that the
evaluation remains accurate and up-to-date. By focusing only on
the elements within the defined scope, the CRE enables efficient and
fine-grained consistency checks without the need to re-evaluate the
entire model.

The consistency oracle also includes a Change Evaluation
module, which plays a critical role in detecting inconsistencies.
This module monitors changes and identifies inconsistencies
[i.e., contradicting operations (changes that conflict with each
other) and equivalent operations (changes that lead to the same
meaning and redundancy)], leveraging multi-view coordination
(Property 2) to determine which views are affected. When an
operation o is performed in view VID, the system computes
RelatedViews (VID) to identify views sharing elements and
propagates changes accordingly.

For example, if two collaborators simultaneously modify the
same model element in incompatible ways, the Change Evaluation
module detects this contradiction by checking operation trees
and flags it as an inconsistency. Similarly, if multiple operations
result in the same redundant state, the module identifies them
as equivalent and ensures they are addressed collectively. This
proactive detection mechanism allows the system to identify
inconsistencies early, minimizing their impact on the collaborative
workflow.

Figure 4 depicts the structure of our consistency oracle module.
This module is designed to handle fundamental operations such
as addition, deletion, and update, enabling it to replicate more
intricate operations commonly encountered. Whenever a user
modifies a view, these change operations are transmitted to the
Consistency Oracle module in real-time to ensure consistency.
Each change operation as defined in Section 4.1 is an <INPUT>

tuple including <(CID) (VID) (EID) (OP) (TS)>.
The Consistency Oracle offers two primary interface calls:

Evaluate((INPUT), (CRDs), (M)) and Query((INPUT), (M)). The
parameter (M) identifies the model under which the operation is
performed. When Evaluate is called, (M) is also used to update the
session information accordingly. The Evaluate request fetches the
relevant consistency rules based on the (INPUT) tuple, enabling a
query-matching process. The oracle then returns responses derived
from the model’s operation tree. On the other hand, the Query
request traverses the operation tree of views to identify equivalent
or conflicting change operations. Since the operation trees maintain
a comprehensive history of all changes applied to a view, they
facilitate the detection of both equivalencies and contradictions.

Each Evaluate request adds an (INPUT) tuple to the operation
tree of the associated view, while a Query request enables updates
to the operation tree of the model based on the output from
the consistency oracle and the inconsistency resolution module.
If the consistency oracle identifies an inconsistency, it forwards

FIGURE 4

An overview of the consistency oracle.

Frontiers in Computer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1723480
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Alsharuee et al. 10.3389/fcomp.2025.1723480

the relevant details to the Inconsistency Resolution component for
further processing.

The Inconsistency Oracle performs real-time inconsistency
checks when change operations are received by the server, as well
as periodic checks at regular intervals on the current operation
tree state. Real-time checks ensure that inconsistencies are detected
and addressed as soon as they occur, preventing their propagation
through the model. Periodic checks, on the other hand, evaluate
the entire operation tree for potential inconsistencies, ensuring
that all collaborators are informed of any conflicts that may have
arisen over time. This combination of real-time and periodic
checks supports consistency maintenance in dynamic collaborative
sessions. The consistency oracle’s design allows for easy extension
to support new consistency models simply by implementing and
integrating new modules. This adaptability is crucial for effectively
managing and repairing inconsistencies in collaborative modeling
environments. Furthermore, by maintaining a history of change
operations and leveraging a streamlined meta-metamodel, the
oracle supports multiple modeling languages and domains, making
it a versatile tool for collaborative modeling.

4.4.3 Inconsistency resolution
The resolution process involves either reordering the execution

of change operations or computing feedback for modelers to
repair the inconsistency. For example, if two operations conflict,
the Inconsistency Resolution module based on the oracle result
tries to determine a valid order in which they can be applied
to restore consistency. Alternatively, it may provide feedback
to the collaborators, suggesting modifications to their changes
to align with the consistency rules. This dual approach ensures
that inconsistencies are resolved systematically, maintaining the
integrity of the model while supporting collaborative work. A key
feature of the Inconsistency Resolution Module is its ability to
reorder operations based on the specified consistency evaluation
rules. For instance, under strong consistency, the oracle ensures
that the total order of operations matches the history of changes,
providing a single, coherent view of the model state. In contrast, for
eventual consistency, the oracle considers all possible permutations
of previous operations applied on views, allowing for more flexible
conflict resolution.

The inconsistency resolution module is designed to function
within a testing environment where both clients and servers can
operate on a single machine. This configuration enables the use of
a single clock to establish a total order of all operations recorded in
the history. This total order reflects the behavior of a distributed
system in which all servers have perfectly synchronized clocks
and consistently timestamp every operation. Given this total order,
the inconsistency resolution module is tasked with computing
all possible interpretations of operation sequences based on the
specified consistency evaluation rules. In the simplest case of strong
consistency, the only valid interpretation of the operation sequence
is the total order defined in the model tree operation history. Here,
all operations must occur sequentially, preserving their exact order.

In contrast, under eventual consistency, the total order can be
interpreted in any arbitrary sequence by considering the ownership
of elements in the applied operations. For queries referencing the
model tree operation history, the inconsistency resolution module

must evaluate all permutations of operations that precede the
current operation. This exhaustive evaluation ensures that the
module accounts for every possible logical sequence in which
operations could occur. For cases involving limited partial orders—
such as monotonic adds or deletes—the inconsistency resolution
module must identify operations that are considered unordered
according to the model’s definitions (i.e., where no happens-
before relationship exists). In such scenarios, the module applies
conflict resolution strategies as dictated by the specific consistency
evaluation rule, ensuring that the resolution process adheres to
the intended guarantees of the model. Through these mechanisms,
the consistency oracle effectively navigates the complexities of
operation ordering, enabling robust inconsistency resolution in
collaborative multi-view environments.

4.4.4 Algorithms for inconsistency management
The formal operations and properties defined in Section 4.1 are

implemented by the algorithms presented in this subsection. These
algorithms form the executable core of COMIM’s inconsistency
detection and resolution mechanism.

Algorithm 1 (Evaluate) implements the EVALUATE operation
(Definition 8). It is the main entry point for consistency checking
when a new change operation is submitted. The algorithm
determines which rules are affected (using Algorithm 3),
evaluates them, and if inconsistencies are detected, attempts
resolution by identifying conflicts (Algorithm 2) and reordering
operations (Algorithm 5). Algorithm 2 (Query) implements
the QUERY operation (Definition 9). It identifies operations
that are equivalent or conflicting with a given operation by
examining related views (Algorithm 4) and rules with overlapping
scopes (Algorithm 3).

Algorithm 3 (RulesToCheck) and Algorithm 4
(getRelatedViews) implement the incremental consistency
checking (Property 1) and multi-view coordination (Property
2) respectively. They enable efficient, scope-based evaluation
by limiting checks to relevant rules and views. Algorithm 5
(Reorder) implements the REORDER operation (Definition 10). It
attempts to resolve conflicts by systematically testing permutations
of conflicting operations until a valid order that satisfies all
consistency rules is found. These algorithms are referenced in
the illustrative example that follows to demonstrate COMIM’s
workflow in practice.

4.5 Illustrative example

To demonstrate our intra-model inconsistency management
approach, we use a single, unified UML model of a Video on
Demand (VOD) system (Egyed, 2006). A UML model is a semantic
repository of system elements. This model can be represented
through various diagrams, which are diagrammatic projections
that highlight significant information while omitting less important
details (Rumpe, 2016). For this example, we project the VOD model
into two such diagrams: a class diagram showing static structure,
and a sequence diagram showing dynamic behavior. Each diagram
provides an incomplete view of the whole system model, focusing
on specific parts or functions. Figure 5 shows the UML model of

Frontiers in Computer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1723480
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Alsharuee et al. 10.3389/fcomp.2025.1723480

1: Evaluate(o,T,R).
Require: A new operation o = (CID,VID,EID,OP,TS),

the current Operation Tree T, the set of all
consistency rules R.

Ensure: A consistency result (CONSISTENT,
INCONSISTENT), an optional set of feedback
messages, and optionally a reordered sequence
Ovalid.

2: Step 1: Append & propagate
3: Append o to the relevant branch in T corresponding

to view VID.
4: Propagate the effect of o to compute a candidate

model state Mcandidate.
5: Step 2: Determine rules to check
6: Let Rrelevant ← RulesToCheck(o,R) � Call

Algorithm 3
7: Step 3: Evaluate rules
8: Let violations ← ∅
9: for each rule R in Rrelevant do
10: result ← R(Mcandidate)
11: if result is False then
12: violations ← violations ∪ {R}
13: end if
14: end for
15: Step 4: Check for violations and attempt

reordering
16: if violations is empty then
17: return (CONSISTENT, ∅,∅)
18: else
19: � Try to resolve by reordering
20: Let (Oequivalent,Oconflicting) ←

Query(o,T,Mcandidate) � Call Algorithm 2
21: Let Oset ← Oconflicting ∪ {o}
22: Let (Ovalid,feedbackreorder) ←

Reorder(Oset,T,R) � Call Algorithm 5
23: if Ovalid is not None then
24: � Valid reordering found
25: Update operation tree T according to Ovalid
26: return (CONSISTENT,feedbackreorder,Ovalid)
27: else
28: � Reordering failed, generate feedback
29: Let feedback ← ∅
30: for each rule R in violations do
31: Generate a user-friendly message m

describing the violation of R by o
32: feedback ← feedback ∪ {m}
33: end for
34: return (INCONSISTENT,feedback, ∅)
35: end if
36: end if

Algorithm 1. Evaluate.

the VOD system that both Harry and Bob are familiar with. The
VOD system model is represented through two diagrams: (a) a
class diagram showing the entities Media, Audio, Video, Streamer,
and Logger, and (b) a sequence diagram outlining the interaction

1: Query(oquery,T,R).
Require: A query operation oquery =

(CID,VID,EID,OP,TS), the current Operation
Tree T, the set of all consistency rules R.

Ensure: A set of equivalent and conflicting
operations {Oequivalent,Oconflicting}.

2: Step 1: Get Current Model State and Identify
Related Views

3: Let Mcurrent ← getCurrentModelState(T) � Extract
state from main branch of T

4: Let Vrelated ← getRelatedViews(VID(oquery),Mcurrent)
� Using Property 2 and Algorithm 4

5: Step 2: Collect Operations from Related Views
6: Let Ocandidate ← ∅
7: Let Oequivalent ← ∅, Oconflicting ← ∅
8: for each view v in Vrelated do
9: Let Bv ← getBranch(T,v) � Get operation

branch for view v
10: for each operation oi in Bv where TS(oi) <

TS(oquery) do
11: if RulesToCheck(oi,R) ∩

RulesToCheck(oquery,R)
= ∅ then
12: Ocandidate ← Ocandidate ∪ {oi}
13: end if
14: end for
15: end for
16: Step 3: Detect Equivalent Operations
17: for each operation oc in Ocandidate do
18: if areEquivalent(oc,oquery,Mcurrent) then
19: Oequivalent ← Oequivalent ∪ {oc}
20: end if
21: end for
22: Step 4: Detect Conflicting Operations
23: for each operation oc in Ocandidate do
24: if areConflicting(oc,oquery,Mcurrent) then
25: Oconflicting ← Oconflicting ∪ {oc}
26: end if
27: end for
28: Step 5: Return Results
29: return (Oequivalent,Oconflicting)

Algorithm 2. Query.

among those Video and Streamer classes to describe the process of
streaming, pausing, and stopping a video.

Furthermore, to provide personalized multi-view collaborative
modeling, the design manager follows the view definition step
of the proposed approach to prepare a projection on the class
diagram based on the separation of concern and coupling
preferences to display the elements of class diagram into
the Structural view and the Streaming view. Figure 6 shows
the first version of the resulted views. He also defined the
Streamer Interaction view as a distinct view on the sequence
diagram. The manager also defined two scopes. Scope 1 focus
on class diagram elements, and Scope 2 contains sequence
diagram elements.

Frontiers in Computer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1723480
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Alsharuee et al. 10.3389/fcomp.2025.1723480

1: RulesToCheck(o, R).
Require: An operation o = (CID,VID,EID,OP,TS), the

set of all consistency rules R
Ensure: The set of consistency rules that need to be

checked for operation o
2: Step 1: Determine Directly Affected Elements
3: Let Edirect ← getDirectlyAffectedElements(o)
4: Step 2: Determine Transitively Affected Elements
5: Let Etransitive ← getTransitivelyAffectedElements

(Edirect)
6: Step 3: Combine All Affected Elements
7: Let Eaffected ← Edirect ∪ Etransitive
8: Step 4: Find Rules with Overlapping Scopes
9: Let Rrelevant ← ∅
10: for each consistency rule R ∈ R do
11: Let SR ← getScope(R) � Get the scope of rule R
12: if SR ∩ Eaffected
= ∅ then
13: Rrelevant ← Rrelevant ∪ {R}
14: end if
15: end for
16: Step 5: Return Relevant Rules
17: return Rrelevant

Algorithm 3. RulesToCheck.

To ensure consistency in the final product, the UML diagrams
must adhere to the following rules:

• Rule 1: a subclass cannot declare an attribute with the same
name of its superclass (e.g., the Video and Audio classes
cannot contain new attributes with name of title and format).

• Rule 2: the message direction must match the Class
Association direction (e.g., Sending a message from the
Streamer to Video instance in sequence diagram is not possible
since the Streamer class don’t have association to the Video
class).

• Rule 3: the messages used in the sequence diagram must be
present as an operation in their respective receiver’s class (e.g.,
the stream() message must be present in the Streamer class).

Inconsistencies occur when models violate fundamental well-
formedness constraints, which we formalize as consistency rules.
These rules can be precisely specified using Object Constraint
Language (OCL) (Cabot and Gogolla, 2012). We formalize these
expressions as CRDs—see CRD1 through CRD3 in Listings 1–3.
Note that:

• CRD1 applies to Scope 1 (class diagram).
• CRD2 and CRD3 apply to Scope 2 (sequence diagram).

In the modeling time and based on the expertise, Harry focuses
on the structural view, while Bob works in the streaming view
as well as the streamer interaction view. Harry added duration
attribute to Media class and resolution attribute to Video class. In
parallel, Bob added the association from Streamer class to Logger
class, and added title attribute to Video class in the streaming
view, and pause() method from Streamer to Video instances in the
streamer interaction view.

1: getRelatedViews(vid, M).
Require: A view identifier vid, the target model M
Ensure: A set of view identifiers that are related

to view vid
2: Step 1: Get Elements in Current View
3: Let elementscurrent ← getElementsInView(vid,M)
4: Let related_views ← {vid} � Start with current

view
5: Step 2: Find Views Sharing Elements
6: for each view v in getAllViews(M) do
7: if v
= vid then � Skip the current view
8: Let elementsv ← getElementsInView(v,M)
9: if elementscurrent ∩ elementsv
= ∅ then
10: related_views ← related_views ∪ {v} �

Direct element sharing
11: end if
12: end if
13: end for
14: Step 3: Find Views Connected via Consistency

Rules
15: for each view v in getAllViews(M) do
16: if v /∈ related_views then � Only check views

not already related
17: Let elementsv ← getElementsInView(v,M)
18: if shareConsistencyRule(elementscurrent,

elementsv,M) then
19: related_views ← related_views ∪ {v} �

Connected via rules
20: end if
21: end if
22: end for
23: Step 4: Return Related Views
24: return related_views

Algorithm 4. getRelatedViews.

Figure 7 shows the timestamp one, where all the
aforementioned changes committed to the server as an INPUT
tuple (e.g., added resolution attribute by Harry submitted as
<(Client 1) (Structural View) (resolution attribute ID) (Add)
(TS1)>) to be checked by consistency oracle. Algorithm 1 shows
the process of Evaluate operation inside the Consistency Oracle.
Algorithm 2 shows the process of Query operation inside the
Consistency Oracle, which complements the Evaluate algorithm.
Algorithms 3, 4 present the required properties for Evaluate
and Query algorithms as defined in Section 4.1. Moreover,
Algorithm 5 provides the algorithmic details of Reorder operation
for computing valid operation sequences from conflicting sets.

Here, the Evaluate((<(Client 1) (Structural View) (resolution
attribute ID) (Add) (TS1)>), (Operation Tree), (CRDs)) interface
called to check the inconsistency of adding resolution attribute
that successfully pass related CRDs. The Evaluate interface
applies incremental checking (Property 1) by selecting only the
consistency rules relevant to the changed elements. Furthermore,
the Query((<(Client 1) (Structural View) (resolution attribute
ID) (Add) (TS1)>), (Operation Tree), (VOD System Model))
interface and lead to add it to the operation tree for the
structural view. Multi-view coordination (Property 2) ensures

Frontiers in Computer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1723480
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Alsharuee et al. 10.3389/fcomp.2025.1723480

1: Reorder(Oconflict,T,R).
Require: A set of conflicting operations Oconflict,

the current Operation Tree T, the set of all
consistency rules R.

Ensure: A sequence Ovalid (a permutation of Oconflict)
that leads to a consistent state, or None if no
such sequence exists, and feedback messages.

2: function Reorder(Oconflict,T,R)
3: Let Mcurrent ← getCurrentModelState(T) � Get

state from the main branch of T
4: Let Perms ← generateAllPermutations(Oconflict)
5: Let feedback ← ∅
6: for each permutation P in Perms do � Test each

ordering
7: Let Mtest ← copy(Mcurrent)
8: Mtest ← applyOperations(Mtest,P) � Apply P to

the model copy
9: if isConsistent(Mtest,R) then � Check if

this order is valid
10: return (P,∅) � Return the valid sequence

and empty feedback
11: end if
12: end for
13: � If no valid permutation found
14: feedback ← feedback ∪

{"No valid order found to resolve the conflict."}
15: return (None,feedback)
16: end function

Algorithm 5. Reorder.

that changes in one view (e.g., the structural view) are
propagated to related views when they share model elements.
While, assessing the Evaluate((<(Client 2) (Streaming View)
(title attribute ID) (Add) (TS1)>), (Operation Tree), (CRDs))
and Evaluate((<(Client 2) (Streamer Interaction View) (pause()
message ID) (Add) (TS1)>), (Operation Tree), (CRDs)) lead to
rejection of mentioned change operations and sending feedbacks
to the relevant client.

In the second timestamp, as depicted in Figure 8, Bob received
the addition of resolution attribute in the Video class. However,
both of Bob’s changes led to the inconsistencies based on CRD1
for adding title attribute and CRD2 and CRD3 rules for adding
pause() message and rejected to the Bob with adequate feedbacks.
Therefore, in the second timestamp, Bob decided to remove the
title attribute of Video class and added title parameter to play()
method of Video class and correct the direction of pause() message
and added stop() message. Harry in parallel renamed method play()
in Video class to playVideo(). After second timestamp and by
renaming play() method before adding title parameter for play()
method, the Query interface detects these contradicting change
operations and reorder them to resolve the inconsistency. This
reordering is performed by the Reorder algorithm (Algorithm 5),
which tests permutations of the conflicting rename and parameter-
addition operations. The algorithm finds that applying the rename
(play() → playVideo()) first, followed by the parameter addition

(playVideo() → playVideo(title)), yields a consistent state.
This valid sequence is computed and applied automatically,
demonstrating the integrated resolution mechanism. In addition,
the Evaluation interface finds stop() method cannot pass CRD2,
since there isn’t any association from Streamer class to Video class.

Figure 9 shows third timestamp, where Bob added the required
association and add again the stop() message. Figure 10 depicts
the resulted VOD system model after merging changes applied
on views and confirmed by consistency oracle and inconsistency
resolution modules.

5 Evaluation

In Section 4, we elaborated on the details of COMIM and
explained how our approach addresses inconsistency management
in real-time collaborative modeling for multiple views. While
the theoretical foundation of this approach demonstrates its
potential to solve inconsistency management problems, its practical
applicability requires further validation. This is a critical concern, as
the scale of typical industrial projects can overwhelm experimental
approaches, potentially rendering them ineffective.

For an approach to effectively support real-time collaboration,
it must exhibit minimal delay and efficiently handle a large number
of collaborators without performance degradation. To validate the
applicability of our approach, we focus on three key aspects: (1)
evaluating its applicability using Wind Turbine case study, (2)
assessing its ability to detect various types of inconsistencies that
may arise when engineers work concurrently, and (3) analyzing its
performance, which we define as the computational efficiency and
scalability of COMIM’s inconsistency management mechanisms.
Specifically, we measure the time required for inconsistency
detection and resolution as model size and the number of
concurrent collaborators increase.

To demonstrate the feasibility of our approach, we developed
a proof-of-concept implementation. This prototype showcases
how immediate inconsistency management can be utilized in
real-time collaborative multi-view modeling. In the following
sections, we provide a detailed discussion of each aspect of
the evaluation.

5.1 Prototype implementation

To evaluate our approach, we implemented a prototype
tool in Java as a server that supports COMIM infrastructure.
In this section, we delve into the practical implementation of
our proposed solution, providing insights into the development
and deployment of the consistency management for multi-
view collaborative modeling. We detail the architecture and
functionalities of the COMIM, highlighting its ability to facilitate
multi-model inconsistency detection without direct data exchange
between the modeling tools and parties. The implementation is
available on GitHub1 under the Apache 2.0 license.

Figure 11 illustrates the internal structure of COMIM. The
entry point to COMIM is the Consistency Server, which waits for

1 https://github.com/hayderalsharuee/COMIM

Frontiers in Computer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1723480
https://github.com/hayderalsharuee/COMIM
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Alsharuee et al. 10.3389/fcomp.2025.1723480

FIGURE 5

Two diagrammatic projections of the unified VOD system model. (a) Class diagram. (b) Sequence diagram.

Evaluate or Query consistency checking requests. In addition to
the Consistency Server, COMIM includes a Consistency Oracle
component. This component is initiated by the server and handles
all preparation and checking steps. For an Evaluate request, it
identifies the necessary rules and elements, while for a Query
request, it creates the required data requests. The Consistency
Oracle then calls the Rule Evaluator to evaluate the necessary
rules or uses the Change Evaluator to check for equivalent or
contradicting operations. To facilitate this, COMIM also includes
a Data Requester component, which is responsible for sending data
requests to the adapters and collecting the responses. Additionally,
COMIM provides an interface for the Rule Evaluator and an
implementation of it. Once the evaluation is complete, the
Consistency Oracle returns the consistency results to the server. If
inconsistencies are found, they are forwarded to the Inconsistency
Resolution component, which prepares feedback or reordering
decisions for the inconsistent operations.

5.2 Correctness and applicability

We evaluated the correctness of our approach
regarding applicability through the Wind Turbine case
study (Gómez et al., 2020). The Wind Turbine case study
focuses on the design and management of a cooling
control system for a wind turbine generator. The system
includes input temperature sensors, output signals, and
controller units that manage fans and brakes. System
parameters define temperature limits that trigger the
cooling system.

In an online collaboration senario, all stakeholders work in
real-time, and changes are propagated immediately to ensure
that everyone has access to the most up-to-date version of the
model. While this approach minimizes conflicts, it introduces
challenges related to synchronization and inconsistency resolution.
For example, if two stakeholders (e.g., the WT Manager and
System Manager) make contradicting changes to the same model
element simultaneously, the system must detect and resolve these
inconsistencies immediately. If both modify the temperature limits
at the same time, the system should flag the inconsistency and
require on-demand resolution.

Temporary inconsistencies may also arise during the brief
period between a change being made and propagated. For instance,
if the IO Manager removes the GeneratorTemperature input, there
may be a short delay before the WT Manager and System Manager
see the updated model. Additionally, if a stakeholder makes a
change without realizing that another stakeholder has already
modified the same element, the second change might overwrite
the first. For example, if the System Manager updates a parameter
while the WT Manager is also working on it, the WT Manager’s
changes might be lost if not properly synchronized. Therefore,
effective inconsistency management is essential to ensure that
all stakeholders work with a consistent and up-to-date model
view, preventing errors and improving collaboration efficiency. In
this case study, personalization was utilized in both dimensions.
Each stakeholder (e.g., WT Manager, IO Manager) worked within
a personalized view of the wind turbine model, configured to
show only the elements relevant to their role. Furthermore, the
inconsistency management was configured with project-specific
consistency rules and scopes, enabling the system to detect and

Frontiers in Computer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1723480
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Alsharuee et al. 10.3389/fcomp.2025.1723480

FIGURE 6

Three personalized views defined on the unified VOD system model. (a) Structural view. (b) Streaming view. (c) Streamer interaction view.

1 inherited attribute
2 self.ownedAttribute->forAll(subAttr |
3 {not} self.allInheritedAttributes()->exists(
4 superAttr | superAttr.name = subAttr.name))

Listing 1 (CRD1) A subclass cannot declare an attribute with the same
name of its superclass.

1 context Message inv:
2 self.receiveEvent -> exists (lr : Lifeline |
3 self.sendEvent->exists(ls : Lifeline |
4 ls.attributes->exists (a: Attribute |
5 not (a = null) implies a.type= lr.type)))

Listing 2 (CRD2) The Message direction must match the Class Association
direction.

resolve conflicts in a manner tailored to the project’s engineering
context.

In the Wind Turbine case study, the COMIM framework
was evaluated through four collaborative scenarios involving
three stakeholders working on three different views of a model
with an average of 5,441 elements. Across these scenarios, the

1 context Message inv:
2 self.receiveEvent->exists(lr : Lifeline |
3 self.receiveEvent->forAll(l : Lifeline |
4 l.operations->exists (o:Operation |
5 o.name = self .name))

Listing 3 (CRD3) The Message must be defined as an Operation in the
Receiving Class.

system detected all 14 inconsistencies that arose. Of these,
four inconsistencies (35.7%) were automatically resolved through
operation reordering by the Consistency Oracle, while eight
inconsistencies (57.1%) required user feedback for manual
resolution. The remaining inconsistency (0.7%) were semantical
conflict that were prevented by immediate validation before
commit. These results demonstrate COMIM’s effectiveness in both
detecting and resolving inconsistencies in a real-world, multi-view
collaborative setting, with a significant portion of conflicts being
resolved automatically through reordering.

The aim of this case study was to evaluate whether the
solution meets the most ambitious target measures set by
industrial needs. Initially, three different users—WT Manager, IO

Frontiers in Computer Science 17 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1723480
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Alsharuee et al. 10.3389/fcomp.2025.1723480

FIGURE 7

An snapshot of the first timestamp.

Manager, and System Manager—participated in the scenario.
To further test the system, we expanded the number of
participants to seven by adding a Principal Engineer, Pitch
Manager, Converter Manager, and Generator Manager. All
seven users worked in the same shared modeling session. As
a result, every change made by one user was automatically
propagated to all other users, and their editors were refreshed
in real-time to display the updated model. This propagation
is managed by the Collaboration Server (Figure 1), with
consistency validated via the Evaluate interface of the Consistency
Oracle (Figure 4).

From the analysis of the measures, we observed that increasing
the number of collaborators with common scopes led to a longer
time required for inconsistency evaluation. However, for consistent
changes, operations were automatically propagated to all relevant
users, and their editors were refreshed immediately to show the

updated view. To assess inconsistency management, various sets
of changes were applied to the models to determine whether the
type and amount of changes significantly impacted response time
and view consistency. The results indicate that the type of changes
had no significant effect on the accuracy of the inconsistency oracle.
However, the amount of detected inconsistencies did affect the
time required to propagate changes to all views. Consequently, the
volume of inconsistencies directly impacted the time needed to
synchronize changes across all views, while the type of changes had
no significant effect on the inconsistency oracle’s accuracy.

5.3 Inconsistency management evaluation

To assess the inconsistency management of our approach, we
utilized the benchmark (Langer and Wimmer, 2013) presented

Frontiers in Computer Science 18 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1723480
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Alsharuee et al. 10.3389/fcomp.2025.1723480

FIGURE 8

An snapshot of the second timestamp.

in the AMOR project. This benchmark is designed to evaluate
the accuracy of our consistency oracle component and assess
COMIM’s capability to manage contradicting changes while
producing a consistent model. It comprises 23 test scenarios
(12 with inconsistency and 11 without inconsistency) aimed at
measuring the precision of detecting inconsistencies during
the operation-based evolution of an Ecore metamodel.
These test scenarios are derived from the collaborative
conflict lexicon and encompass a variety of inconsistency
types arising from atomic change operations, including
concurrent updates, conflicting delete/update, update/update,
add/add, and delete/add operations. Among these, 11 test
cases are designed to produce no inconsistencies, serving as
control scenarios.

The benchmark’s 12 inconsistent test scenarios encompass
three primary conflict types derived from concurrent,
operation-based edits: (1) Semantic Inconsistencies (two
scenarios), where operations violate domain-specific logic;
(2) Contradicting Changes (six scenarios), such as concurrent
updates to the same attribute with incompatible values or
conflicting delete/update operations; and (3) Constraint
Violations (four scenarios), where operations break structural
metamodel constraints.

The results demonstrate that COMIM successfully detected all
12 expected inconsistencies across the 23 test scenarios, achieving
100% accuracy in inconsistency management. Additionally, the
benchmark confirmed that COMIM consistently generated valid
tree operations for the target model in all 23 scenarios, ensuring

Frontiers in Computer Science 19 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1723480
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Alsharuee et al. 10.3389/fcomp.2025.1723480

FIGURE 9

An snapshot of the third timestamp.

the final model remained consistent. These findings highlight
COMIM’s effectiveness in handling contradicting changes and
maintaining model consistency.

5.4 Performance

The applicability of our approach hinges on its performance
scalability. Scalability can be evaluated by analyzing various system
attributes, such as memory usage, network usage, and CPU usage.
In this work, however, we focus our scalability evaluation on the
algorithmic and computational ability of our approach.

The performance scalability of consistency checking,
implemented via the Evaluate interface (Algorithm 1), is primarily
influenced by the number of required evaluations, which is
minimized by our scoping mechanism (Property 1). Changes that

trigger inconsistency oracle evaluations are limited to the creation
and modification of model elements—deletions do not necessitate
re-evaluations. As noted by Egyed (2010), prior validations of the
Model/Analyzer indicate that the average number of evaluations
per change ranges between 3 and 11, depending on the size of
the model.

To empirically evaluate the overhead introduced by our
approach, we replicated an evaluation of the Model/Analyzer using
our method. For this evaluation, we utilized the same UML models
described by Reder and Egyed (2012b), which include 30 UML
models from both academic and industrial sources, ranging in
size from 90 to 64,061 model elements. We simulated random
changes to all model elements within each model and measured
the time required to re-evaluate all affected CREs and persist the
updated results. The 30 models used in this evaluation represent
diverse Ecore-based models from multiple domains, including

Frontiers in Computer Science 20 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1723480
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Alsharuee et al. 10.3389/fcomp.2025.1723480

FIGURE 10

The unified model of VOD system after timestamp 3. (a) The resulted class diagram. (b) The resulted sequence diagram.

UML models and domain-specific languages, demonstrating the
framework’s language-agnostic nature and the scalability of its
scoping mechanism.

Each change was executed multiple times, and the raw data for
each iteration was recorded. The experiments were conducted on a
Windows 10 Professional PC equipped with an Intel(R) Core(TM)
i7-8665U CPU @ 2.1GHz and 32GB of RAM. Table 1 summarizes
the results obtained from applying the experiments. The results
demonstrate that while model size has a noticeable impact on
evaluation time, this effect is relatively small. Additionally, the
findings reveal that neither the number of affected CREs nor the
evaluation time per CRE individually significantly influences the
total processing time. However, when considered together, these
factors become key determinants of the overall processing time.

Table 1 demonstrates that COMIM’s performance is robust to
variations in model size and rule composition. While evaluation
time per instance increases modestly (0.50–0.84 ms) across models
ranging from 90 to 64,061 elements, this growth is sub-linear
relative to model scale. Notably, models with similar sizes but
differing rule counts [e.g., “ANTS Visualizer” (1,282 elements,
125 rules) vs. “Inventory and Sales” (1,296 elements, 81 rules)]
show comparable latency, confirming that our scoping mechanism
effectively isolates rule evaluation to relevant changes. This
validates COMIM’s two key advantages: (1) checking overhead
depends primarily on the scope of modifications rather than
total model size, and (2) rule extensibility does not compromise
performance, as only active rules for modified elements are
triggered. These properties ensure scalability for both large-scale
models and evolving rule sets in practice.

5.5 Threats to validity

This section discusses internal, external, and conclusion threats
to validity and outlines how we mitigated them, following the
guidelines provided by Wohlin et al. (2012).

5.5.1 Internal validity
Internal threats primarily concern the selection of models used

in the evaluation. For instance, using only small or large models
could lead to an over- or under-representation of inconsistencies,
which could also affect repair generation. To mitigate this threat,
we utilized 30 UML models and four Java systems, with model sizes
ranging from 100 to 64,061 elements. This resulted in a range of
3–1,000 inconsistencies per model, totaling 3,953 inconsistencies
across all models. The diversity in model sizes and the resulting
inconsistency counts demonstrate that the selected models are
sufficiently varied to support our findings.

Another internal threat relates to the consistency rules used in
the evaluation, as the size and complexity of the evaluation and
repair trees may be influenced by these rules. To address this,
we defined a diverse set of rules with varying sizes, expression
types, and evaluation contexts. The results, particularly the number
of evaluations per model, support our claim that this threat
has been effectively mitigated. A further internal threat concerns
the scope of detectable inconsistencies. Our evaluation focused
on inconsistency types expressible as OCL constraints within
the defined case studies and benchmark (e.g., syntactic conflicts,
structural violations). While this covers common collaborative

Frontiers in Computer Science 21 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1723480
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Alsharuee et al. 10.3389/fcomp.2025.1723480

FIGURE 11

Overview of the internal structure of the COMIM prototype implementation.

conflicts, the framework’s effectiveness for more complex, domain-
specific semantic inconsistencies, which may require richer
reasoning or external knowledge, represents a threat to the internal
validity of claims about general inconsistency management.

5.5.2 External validity
External threats pertain to the generalizability of our findings.

One such threat is the focus on a single industrial case study, which
imposed constraints on the initial selection of frameworks. As a
result, the findings from this case study should not be generalized
to the broader population of modeling tools and technologies.
To mitigate this, we incorporated 30 UML models from diverse
domains in the computational complexity evaluation. While this
evaluation used UML models and Java source code, limiting
the evidence to these domains, the successful application of our
approach to Ecore and UML models suggests its potential for
extension to other domains.

Two additional threats to external validity concern practical
adoption: First, the effort required to define a comprehensive
set of Consistency Rule Definitions (CREs) depends on domain
complexity and could be substantial, potentially limiting uptake
in practice. Second, COMIM is designed for intra-model
inconsistency management across views of a single model.
Its mechanisms and evaluation do not address inter-model
consistency (consistency across different, related models), which is
a common challenge in heterogeneous toolchains. This limits the
generalizability of our findings to that broader context.

5.5.3 Conclusion validity
A key threat to conclusion validity lies in the scenarios

considered for evaluating inconsistency management. To address
this, we employed a benchmark comprising 23 purposefully
designed modeling scenarios that cover a wide range of conflicting
situations. While we believe these scenarios encompass the most
common cases of inconsistency detection, further investigation of
the consistency oracle component through additional scenarios
is recommended in future work. Furthermore, our evaluation
of the resolution mechanism showed that not all inconsistencies
can be resolved automatically; some require user feedback. The
distribution between auto-resolved and user-resolved conflicts
in our case study is specific to that scenario, and the general
effectiveness of the reordering strategy across all inconsistency
types remains a threat to conclusions about fully automated
resolution.

6 Conclusion

This paper presents COMIM, a configurable approach
for managing intra-model inconsistencies in real-time
collaborative editing of a single model through multiple
views. By leveraging MDE principles, COMIM introduces
a structured framework that supports real-time change
propagation, incremental consistency checking, and operation-
based resolution. The framework addresses the challenges of
inconsistency management by integrating a consistency oracle,
enabling efficient detection and resolution of inconsistencies

Frontiers in Computer Science 22 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1723480
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Alsharuee et al. 10.3389/fcomp.2025.1723480

TABLE 1 Performance evaluation results for models of varying sizes.

Name #Model element #Consistency rule Evaluation time per affected instance (m)

Video on demand 90 6 0.50

ATM 220 30 0.53

Microwave oven 290 38 0.52

Model view controller 418 39 0.59

eBullition 513 41 0.59

Curriculum 763 59 0.52

Teleoperated robot 1,115 85 0.57

Dice 3 1,274 99 0.57

ANTS visualizer 1,282 125 0.58

Inventory and sales 1,296 81 0.57

Course registration 1,406 73 0.61

UML IOC F05a T12 1,453 98 0.65

VOD 3 1,558 183 0.66

Vacation and sick leave 1,658 104 0.66

Home appliance 1,707 84 0.65

HDCP defect seeding 1,784 98 0.67

DESI 2.3 1,974 208 0.67

iTalks 2,212 289 0.68

Hotel management sys. 2,583 202 0.67

Biter robocup 2,632 334 0.69

Calendarium 2,809 294 0.68

UML LCA F03a T1 2,983 143 0.69

<unnamed> 5,373 292 0.73

NPI 7,110 303 0.75

Word pad 8,078 318 0.75

dSpace 3.2 8,761 205 0.76

OODT 9,828 406 0.79

Insurance network fees 16,255 425 0.81

<unnamed> 33,347 451 0.82

<unnamed> 64,061 489 0.84

across multiple views. Evaluations using case studies and
benchmarks demonstrate COMIM’s effectiveness in handling
contradicting changes and maintaining model consistency,
with empirical results confirming scalable performance
for teams of ten concurrent users and models exceeding
60,000 elements.

Future research could explore extending COMIM to support
additional modeling languages and domains beyond UML and
Ecore, further enhancing its versatility. We plan to extend COMIM
to handle a broader range of inconsistency types, including
those requiring complex domain reasoning, by integrating more
sophisticated resolution strategies. To reduce the effort of writing
consistency rules, we will investigate techniques for automatic
rule mining from model histories. Investigating advanced machine
learning techniques to automate inconsistency resolution and

improve the efficiency of conflict detection could also be beneficial.
Additionally, integrating COMIM with blockchain technology for
secure and transparent collaboration in distributed environments
presents an exciting avenue for exploration. Finally, conducting
large-scale industrial case studies would provide deeper insights
into COMIM’s applicability and performance in real-world
scenarios, helping to refine and optimize the framework for
broader adoption.

Data availability statement

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

Frontiers in Computer Science 23 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1723480
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Alsharuee et al. 10.3389/fcomp.2025.1723480

Author contributions

HA: Software, Writing – original draft, Formal analysis,
Visualization, Validation. MS: Validation, Conceptualization,
Investigation, Writing – review & editing, Methodology.
BT: Writing – review & editing, Investigation, Supervision,
Conceptualization, Project administration.

Funding

The author(s) declared that financial support was not received
for this work and/or its publication.

Conflict of interest

The author(s) declared that this work was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declared that generative AI was not used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Balzer, R. (1991). “Tolerating inconsistency (software development),” in
Proceedings-13th International Conference on Software Engineering (Austin, TX:
IEEE Computer Society), 158–159. doi: 10.1109/ICSE.1991.130638

Blanc, X., Mounier, I., Mougenot, A., and Mens, T. (2008). “Detecting model
inconsistency through operation-based model construction,” in Proceedings of the 30th
International Conference on Software Engineering (New York, NY: ACM), 511–520.
doi: 10.1145/1368088.1368158

Boehm, B. W., Brown, J., and Lipow, M. (1976). “Quantitative evaluation of software
quality,” in Software Engineering: Barry W. Boehm’s Lifetime Contributions to Software
Development, Management, and Research (San Francisco, CA: IEEE), 25.

Briand, L., Devanbu, P., and Melo, W. (1997). “An investigation into coupling
measures for C++,” in Proceedings of the 19th International Conference on
Software Engineering (New York, NY: ACM), 412–421. doi: 10.1145/253228.253
367

Burger, E. (2014). Flexible Views for View-Based Model-Driven Development, Volume
15. Karlsruhe: KIT Scientific Publishing.

Cabot, J., and Gogolla, M. (2012). “Object constraint language (OCL): a
definitive guide,” in International School on Formal Methods for the Design
of Computer, Communication and software Systems (Cham: Springer), 58–90.
doi: 10.1007/978-3-642-30982-3_3

Cicchetti, A., Ciccozzi, F., and Leveque, T. (2011). “Supporting incremental
synchronization in hybrid multi-view modelling,” in International Conference on
Model Driven Engineering Languages and Systems (Cham: Springer), 89–103.
doi: 10.1007/978-3-642-29645-1_11

Dam, H. K., and Winikoff, M. (2011). An agent-oriented approach to change
propagation in software maintenance. Auton. Agent Multi. Agent Syst. 23, 384–452.
doi: 10.1007/s10458-010-9163-0

David, I., Vangheluwe, H., and Syriani, E. (2023). Model consistency as a heuristic
for eventual correctness. J. Comput. Lang. 76:101223. doi: 10.1016/j.cola.2023.101
223

Egyed, A. (2006). “Instant consistency checking for the UML,” in Proceedings of
the 28th International Conference on Software Engineering (New York, NY: ACM),
381–390. doi: 10.1145/1134285.1134339

Egyed, A. (2010). Automatically detecting and tracking inconsistencies in software
design models. IEEE Trans Softw. Eng. 37, 188–204. doi: 10.1109/TSE.2010.38

Egyed, A., Letier, E., and Finkelstein, A. (2008). “Generating and evaluating choices
for fixing inconsistencies in uml design models,” in 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering (Washington, DC: IEEE), 99–108.
doi: 10.1109/ASE.2008.20

Feldmann, S., Kernschmidt, K., Wimmer, M., and Vogel-Heuser, B. (2019).
Managing inter-model inconsistencies in model-based systems engineering:
application in automated production systems engineering. J. Syst. Softw. 153,
105–134. doi: 10.1016/j.jss.2019.03.060

Franzago, M., Di Ruscio, D., Malavolta, I., and Muccini, H. (2017). Collaborative
model-driven software engineering: a classification framework and a research map.
IEEE Trans. Softw. Eng. 44, 1146–1175. doi: 10.1109/TSE.2017.2755039

Gómez, A., Mendialdua, X., Barmpis, K., Bergmann, G., Cabot, J., De Carlos, X.,
et al. (2020). Scalable modeling technologies in the wild: an experience report on
wind turbines control applications development. Softw. Syst. Model 19, 1229–1261.
doi: 10.1007/s10270-020-00776-8

Grundy, J., Hosking, J., and Mugridge, W. B. (1998). Inconsistency management
for multiple-view software development environments. IEEE Trans. Softw. Eng. 24,
960–981. doi: 10.1109/32.730545

Herzig, S. J., Qamar, A., and Paredis, C. J. (2014). An approach to identifying
inconsistencies in model-based systems engineering. Procedia Comput. Sci. 28,
354–362. doi: 10.1016/j.procs.2014.03.044

Júnior, A. A., Misra, S., and Soares, M. S. (2019). “A systematic mapping
study on software architectures description based on ISO/IEC/IEEE 42010: 2011,” in
Computational Science and Its Applications-ICCSA 2019: 19th International Conference,
Saint Petersburg, Russia, July 1-4, 2019, Proceedings, Part V 19 (Cham: Springer), 17–30.
doi: 10.1007/978-3-030-24308-1_2

Karagiannis, D., Buchmann, R. A., and Bork, D. (2016). Managing Consistency
in Multi-view Enterprise Models: An Approach Based on Semantic Queries (Istanbul:
European Conference on Information Systems).

Kleiner, M., and Roucoules, L. (2025). Farfadet: contribution to consistency
management in multi-physical systems engineering. Int. J. Comput. Integr. Manuf. 38,
1870–1887. doi: 10.1080/0951192X.2025.2461024

Knapp, A., and Mossakowski, T. (2018). “Multi-view consistency in UML: a survey,”
in Graph Transformation, Specifications, and Nets: In Memory of Hartmut Ehrig (Cham:
Springer), 37–60. doi: 10.1007/978-3-319-75396-6_3

Kolovos, D. S. (2009). “Establishing correspondences between models
with the epsilon comparison language,” in European Conference on Model
Driven Architecture-Foundations and Applications (Cham: Springer), 146–157.
doi: 10.1007/978-3-642-02674-4_11

Langer, P., and Wimmer, M. (2013). A benchmark for conflict detection
components of model versioning systems. Softwaretechnik-Trends 33, 91–94.
doi: 10.1007/s40568-013-0060-y

Lucas, F. J., Molina, F., and Toval, A. (2009). A systematic review of
uml model consistency management. Inf. Softw. Technol. 51, 1631–1645.
doi: 10.1016/j.infsof.2009.04.009

Macedo, N., Jorge, T., and Cunha, A. (2016). A feature-based classification
of model repair approaches. IEEE Trans. Softw. Eng. 43, 615–640.
doi: 10.1109/TSE.2016.2620145

Mistrík, I., Grundy, J., Van der Hoek, A., and Whitehead, J. (2010).
Collaborative Software Engineering: Challenges and Prospects. Cham: Springer.
doi: 10.1007/978-3-642-10294-3

Frontiers in Computer Science 24 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1723480
https://doi.org/10.1109/ICSE.1991.130638
https://doi.org/10.1145/1368088.1368158
https://doi.org/10.1145/253228.253367
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1007/978-3-642-29645-1_11
https://doi.org/10.1007/s10458-010-9163-0
https://doi.org/10.1016/j.cola.2023.101223
https://doi.org/10.1145/1134285.1134339
https://doi.org/10.1109/TSE.2010.38
https://doi.org/10.1109/ASE.2008.20
https://doi.org/10.1016/j.jss.2019.03.060
https://doi.org/10.1109/TSE.2017.2755039
https://doi.org/10.1007/s10270-020-00776-8
https://doi.org/10.1109/32.730545
https://doi.org/10.1016/j.procs.2014.03.044
https://doi.org/10.1007/978-3-030-24308-1_2
https://doi.org/10.1080/0951192X.2025.2461024
https://doi.org/10.1007/978-3-319-75396-6_3
https://doi.org/10.1007/978-3-642-02674-4_11
https://doi.org/10.1007/s40568-013-0060-y
https://doi.org/10.1016/j.infsof.2009.04.009
https://doi.org/10.1109/TSE.2016.2620145
https://doi.org/10.1007/978-3-642-10294-3
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Alsharuee et al. 10.3389/fcomp.2025.1723480

Muram, F. U., Tran, H., and Zdun, U. (2017). Systematic review of
software behavioral model consistency checking. ACM Comput. Surv. 50, 1–39.
doi: 10.1145/3037755

Nentwich, C., Capra, L., Emmerich, W., and Finkelsteiin, A. (2002). Xlinkit: a
consistency checking and smart link generation service. ACM Trans. Internet Technol.
2, 151–185. doi: 10.1145/514183.514186

Nentwich, C., Emmerich, W., and Finkelstein, A. (2003). “Consistency management
with repair actions,” in 25th International Conference on Software Engineering,
2003. Proceedings (Portland, OR: IEEE), 455–464. doi: 10.1109/ICSE.2003.12
01223

Ohrndorf, M., Pietsch, C., Kelter, U., Grunske, L., and Kehrer, T. (2021). History-
based model repair recommendations. ACM Trans. Softw. Eng. Methodol. 30, 1–46.
doi: 10.1145/3419017

Ortega, M., Pérez, M., and Rojas, T. (2003). Construction of a systemic
quality model for evaluating a software product. Softw. Qual. J. 11, 219–242.
doi: 10.1023/A:1025166710988

Persson, M., Loiret, F., Westman, J., Chen, D.-J., T’́orngren, M., and Biehl, M.
(2013). Multi-Viewed components. Available online at: https://www.diva-portal.org/
smash/record.jsf?pid=diva2:622666 (Accessed October 10, 2025).

Puissant, J. P., Mens, T., and Van Der Straeten, R. (2010). “Resolving model
inconsistencies with automated planning,” in Proceedings of the 3rd Workshop on Living
with Inconsistencies in Software Development (LWI/SE 2010) (Antwerp), 8–14.

Reder, A., and Egyed, A. (2012a). “Computing repair trees for resolving
inconsistencies in design models,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering (New York, NY: ACM), 220–229.
doi: 10.1145/2351676.2351707

Reder, A., and Egyed, A. (2012b). “Incremental consistency checking for
complex design rules and larger model changes,” in Model Driven Engineering
Languages and Systems: 15th International Conference, MODELS 2012, Innsbruck,
Austria, September 30-October 5, 2012. Proceedings 15 (Cham: Springer), 202–218.
doi: 10.1007/978-3-642-33666-9_14

Rumpe, B. (2016). Modeling with UML, Vol. 98. Cham: Springer.
doi: 10.1007/978-3-319-33933-7

Schröpfer, J., Schwägerl, F., and Westfechtel, B. (2019). “Consistency control
for model versions in evolving model-driven software product lines,” in
2019 ACM/IEEE 22nd International Conference on Model Driven Engineering
Languages and Systems Companion (MODELS-C) (Munich: IEEE), 268–277.
doi: 10.1109/MODELS-C.2019.00043

Shahvari, Y., Sharbaf, M., Rahimi, S. K., and Tehrani, S. Y. (2024). “Towards agile
collaborative multi-view modeling with inconsistency tolerance,” in Proceedings of the
STAF 2024 Workshops: AgileMDE (Enschede).

Sharbaf, M., Zamani, B., and Sunyé, G. (2020). “A formalism for specifying model
merging conflicts,” in Proceedings of the 12th System Analysis and Modelling Conference
(New York, NY: ACM), 1–10. doi: 10.1145/3419804.3421447

Sharbaf, M., Zamani, B., and Sunyé, G. (2022). Automatic resolution of model
merging conflicts using quality-based reinforcement learning. J. Comput. Lang.
71:101123. doi: 10.1016/j.cola.2022.101123

Sharbaf, M., Zamani, B., and Sunyé, G. (2023). Conflict management techniques
for model merging: a systematic mapping review. Softw. Syst. Model 22, 1031–1079.
doi: 10.1007/s10270-022-01050-9

Sharbaf, M., Zamani, B., and Sunyé, G. (2025). Compers: a configurable conflict
management framework for personalized collaborative modeling. J. Syst. Softw.
219:112227. doi: 10.1016/j.jss.2024.112227

Spanoudakis, G., and Zisman, A. (2001). “Inconsistency management in software
engineering: Survey and open research issues,” in Handbook of Software Engineering
and Knowledge Engineering: Volume I: Fundamentals (London: World Scientific),
329–380. doi: 10.1142/9789812389718_0015

Stevens, P. (2020). Maintaining consistency in networks of models:
bidirectional transformations in the large. Softw. Syst. Model 19, 39–65.
doi: 10.1007/s10270-019-00736-x

Torres, W., Van den Brand, M. G., and Serebrenik, A. (2021). A systematic
literature review of cross-domain model consistency checking by model
management tools. Softw. Syst. Model 20, 897–916. doi: 10.1007/s10270-020-008
34-1

Vogel-Heuser, B., and Zou, M. (2019). Leveraging inconsistency management
in the multi-view collaborative modelling of cyber-physical production
systems. IET Collab. Intell. Manuf. 1, 126–129. doi: 10.1049/iet-cim.2019.
0019

Wen, H., Wu, J., Jiang, J., Tang, G., and Hong, Z. (2023). A formal approach for
consistency management in uml models. Int. J. Softw. Eng. Knowl. Eng. 33, 733–763.
doi: 10.1142/S0218194023500134

Whittle, J., Hutchinson, J., and Rouncefield, M. (2013). The state of practice
in model-driven engineering. IEEE Softw. 31, 79–85. doi: 10.1109/MS.201
3.65

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A.
(2012). Experimentation in Software Engineering. Cham: Springer Science & Business
Media. doi: 10.1007/978-3-642-29044-2

Wust, J. (2006). Sdmetrics: The Software Design Metrics Tool for UML. Available
online at: https://www.sdmetrics.com/index.html (Accessed October 10, 2025).

Xiong, Y., Hu, Z., Zhao, H., Song, H., Takeichi, M., Mei, H., et al. (2009).
“Supporting automatic model inconsistency fixing,” in Proceedings of the 7th Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering (New York, NY: ACM),
315–324. doi: 10.1145/1595696.1595757

Yu, E., and Choi, J. (2023). Development of building information modeling-based
automation assessment process for universal design of public buildings. J. Comput. Des.
Eng. 10, 641–654. doi: 10.1093/jcde/qwad018

Frontiers in Computer Science 25 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1723480
https://doi.org/10.1145/3037755
https://doi.org/10.1145/514183.514186
https://doi.org/10.1109/ICSE.2003.1201223
https://doi.org/10.1145/3419017
https://doi.org/10.1023/A:1025166710988
https://www.diva-portal.org/smash/record.jsf?pid=diva2:622666
https://www.diva-portal.org/smash/record.jsf?pid=diva2:622666
https://doi.org/10.1145/2351676.2351707
https://doi.org/10.1007/978-3-642-33666-9_14
https://doi.org/10.1007/978-3-319-33933-7
https://doi.org/10.1109/MODELS-C.2019.00043
https://doi.org/10.1145/3419804.3421447
https://doi.org/10.1016/j.cola.2022.101123
https://doi.org/10.1007/s10270-022-01050-9
https://doi.org/10.1016/j.jss.2024.112227
https://doi.org/10.1142/9789812389718_0015
https://doi.org/10.1007/s10270-019-00736-x
https://doi.org/10.1007/s10270-020-00834-1
https://doi.org/10.1049/iet-cim.2019.0019
https://doi.org/10.1142/S0218194023500134
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1007/978-3-642-29044-2
https://www.sdmetrics.com/index.html
https://doi.org/10.1145/1595696.1595757
https://doi.org/10.1093/jcde/qwad018
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	A configurable approach for intra-model inconsistency management in multi-view collaborative modeling
	1 Introduction
	2 Background
	2.1 Models and views
	2.2 Consistency

	3 Related work
	4 The COMIM approach
	4.1 Formal foundations of COMIM
	4.2 Conceptual overview of the collaboration architecture
	4.3 View definition
	4.3.1 User-based selection
	4.3.2 Preferences-based selection

	4.4 Inconsistency management infrastructure overview
	4.4.1 Scope definition
	4.4.2 Consistency oracle
	4.4.3 Inconsistency resolution
	4.4.4 Algorithms for inconsistency management

	4.5 Illustrative example

	5 Evaluation
	5.1 Prototype implementation
	5.2 Correctness and applicability
	5.3 Inconsistency management evaluation
	5.4 Performance
	5.5 Threats to validity
	5.5.1 Internal validity
	5.5.2 External validity
	5.5.3 Conclusion validity

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

	Button1:
	Button2:
	Button3:
	Button4:
	Button5:
	Button6:
	Button7:
	Button8:
	Button9:
	Button10:
	Button11:

