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Emotion estimation from face expression analysis has been extensively
examined in computer science. In contrast, classifying expressions depends on
appropriate facial features and their dynamics. Despite the promising accuracy
results in handled and favorable conditions, processing faces acquired at a
distance, entailing low-quality images, still needs an influential performance
reduction. The primary objective of this study is to introduce a Real-Time
Emotion Recognition system-based Fog Technique, which was developed
to track and observe human emotional states in real time. This paper
provides a comprehensive integration of PCA-based feature selection with a
specific version of YOLO (YOLOV8), in addition to spatial attention for real-
time recognition. The developed system demonstrates superiority in edge
deployment capabilities compared to existing approaches. The proposed model
is compared with the CNN_PCA hybrid model. First, Principal Component
Analysis (PCA) is employed as a dimension-reduction tool, focusing on the most
informative characteristics during training, and then CNN as classification layer.
The proposed system’s performance is assessed via a dataset of 35,888 facial
photos classified into seven classes: anger, fear, happiness, neutral, sadness,
surprise, and disgust. The constructed model surpasses established pre-trained
models, such as VGG, ResNet, and MobileNet, with different evaluation metrics.
First, the PCA_CNN model achieved superior accuracy, precision, recall, and Area
Under the Curve (AUC) scores of 0.936, 0.971, 0.843, 0.871, and 0.943.YOLO v8
aith attention model achieved 0.986, 0.902, 0.941, and 0.952. Additionally, the
model exhibits significantly faster processing time, completing computations
in just 610 seconds than other pre-trained models. To validate the model's
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superiority, extensive testing on additional datasets consistently yields promising
performance results, further validating the efficiency and effectiveness of our
developed model in real-time emotion recognition for advancing affective
computing applications.

KEYWORDS

attention mechanism, convolutional neural network, dimension reduction, emotion
recognition, fog computing, YOLO

1 Introduction

Emotion recognition is critical for comprehending human
ideas and mental states without direct inquiry. It aids in monitoring
and assessing people’s mental health and allows for early diagnosis
of cognitive problems, which improves overall mental wellbeing.
In recent years, identifying emotions from facial expressions
has become essential, notably in smart living and Human-
Robot Interaction. As a result, researchers in artificial intelligence
have been actively involved in developing methods to recognize
emotions based on facial expressions. The current study focuses
on transforming facial expressions into crosspound emotions. This
process involves two key steps: feature extraction and emotion
detection and recognition.

Specific data preprocessing techniques such as normalization,
resizing, and denoising are also applied. Feature extraction is
a technique to select features from data containing significant
information while reducing redundancy. This study employs
the principal component analysis (PCA) algorithm for feature
extraction. The data is transformed based on a transformation
matrix that retains features with high variance, effectively
reducing the dimensionality of the data. Subsequently, a deep
convolutional neural network (CNN) model is utilized for image
classification based on the fusion of features obtained from the PCA
transformation.

Various versions of Deep neural network (DNN), especially
CNN, have gained attention in solving ER problems due to their
ability to extract deep features and insights from images. Several
studies reported that the CNN model can solve ER problems with
promising performance. However, traditional CNN models with a
small number of hidden layers may have several challenges with ER
that could summarized as follows: (1) ER needs a high-resolution
image to capture the essential features for recognition, (2) the
differences expressing emotions in different faces make the task
more challenging, and (3) utilizing deep CNN model comprise
huge CNN, pooling layers which increase the computational
time and hinder the generalization ability of the model. On the
other hand, increasing the number of layers did not increase
the model performance due to the vanishing gradient problems.
Therefore, various modifications for CNN were introduced to
enhance the overall performance, including VGG16 (Huang et al.,
2017), VGG19 ResNet 50 (Chollet, 2017), RestNet 121, ResNet
169 (Informatik et al., 2003), MobileNet V1 (Szegedy et al., 2016),
MobileNet V2 (Sudha and Ganeshbabu, 2021), etc., unless the
promising performance of those models. Deep Learning (DL)
training needs vast amounts of data, high computational power,
and resources.
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The appropriate ER systems should be able to recognize
emotions by designing an efficient CNN model that could
concentrate on the significant features to provide accurate
prediction in less running time. In our study, we depend on the
attention mechanism. Attention mechanisms gained considerable
interest in DL and achieved remarkable performance in several
tasks. Attention mechanisms empower DL models to rely on a
specific feature among the input feature set. It gives varying degrees
of relevance to each element. Models can capture intricate patterns
and dependencies by allocating attention weights to features.
The core concept of attention mechanisms concentrates on the
most informative regions and suppresses extraneous distractions,
resulting in enhanced efficiency and robustness. Several types of
attention used in Machine Learning (ML) and (DL) include soft
attention (Athar et al., 2022), hard attention (Strobl, 2023), global
attention (Liang et al., 2023), local attention (Sugiharto et al., 2023),
multihead attention (Sugiharto et al., 2023), etc. in our study we
utilized the spatial attention (Wang et al., 2023) which belong to the
local attention mechanism. In that type of attention, the attention
focuses on spatial regions of images and assigns weights to specific
areas while ignoring less important regions.

This study proposes a Real-Time Emotion Recognition System
based on Fog Computing Technique (RERS-FoG) that specifically
tackles the two issues mentioned previously. The proposed RERS-
FoG recognizes how creating an environment of safety can directly
improve patient outcomes by lowering stress and anxiety. It
has a timely notification system that enables stockholders to
react quickly and makes real-time environmental monitoring
possible. Within the RERS-FoG framework, facial expressions are
converted into cross-bound emotions spanning two stages: feature
extraction and emotion detection and recognition. Alongside data
preprocessing steps like normalization, resizing, and denoising,
feature extraction involves selecting specific features using various
methods to retain essential information while minimizing data
redundancy. Our study proposes two main models, PCA_CNN
and Yolov8, with the self-attention mechanism. first for PCA_CNN
model. PCA transforms the data based on a matrix that retains
features with high variance, effectively reducing dimensionality.
Subsequently, a Deep Convolutional Neural Network (DCNN)
model is utilized for image classification based on fusion.
Second, for YOLO V8 with self attention mechanism, The
primary contribution of this paper can be briefly summarized as
follows:

e Introducing a Real-Time Emotion Recognition System based

on the Fog Computing Technique (RERS-FoG) to capture real
emotions better than the traditional approaches.
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e Utilizing dimension reduction techniques on the data, this
optimization stage increases learning by focusing on the most
essential traits.

e Evaluating the proposed model on an emotion identification
dataset that included many photos classified into seven
different emotion classes, the model achieves superior
performance In terms of accuracy, precision, recall, and Area
Under the Curve (AUC).

e utilizing refined attention mechanism integrated with
YOLOVS, achieving 81 FBS on edge devices while maintaining
significant accuracy of 98.7

e Extended testing on both general and ASD-specific datasets,
showing superior robustness (92.3% AU alignment) compared
to VGG/ResNet baselines in resource-constrained scenarios.

The rest of this study is organized as follows: Section
2 provides recent and current research directions; Section
3 highlights methodology and dataset descriptions. Section 4
introduces the proposed system, which directly reduces anxiety and
stress on patient outcomes by providing a real-time monitoring
system and DL detection. Section 5 illustrates the experimental
results. Section 9 provides the papers conclusion and work
summary.

2 Literature review

Detecting the emotions from facial expressions has been
challenging for several years (Shanok et al, 2019; Lord et al,
2018). Facial expressions are the way toward good communication
and interactions between people; they help improve social
communication and provide continuous feedback (Shanok et al.,
2019; Silva et al., 2021). Autism is a complex neurobehavioral
condition that causes several impairments in developmental
language, social communications, and interactions (Silva et al,
2021). Therefore, people with Autism have several difficulties in
emotion recognition. The trained specialist could help people with
Autism by improving social communication. However, due to the
high intervention cost and the shortage of qualified specialists,
people with autism find it difficult to appeal to this approach (Lord
et al., 2018; Johnson and Myers, 2008). Accordingly, there was a
long overdue need for an emotion recognition system that could
help automatically recognize (Elseddik et al, 2023; Saleh et al,
2025).

This section will discuss the methods developed for facial
emotion recognition for Autism and everyday people. Firstly,
facial emotion recognition was based on statistical approaches.
In these approaches, all global characteristics of the face image
are extracted in a feature vector. Then, Subspace methods such
as moment-based, spatial frequency, Fisher linear Discriminant
analysis (FLED) (Loog, 2006), Principle component analysis (PCA)
(Wold etal., 1987), and Two-Directional PCA (Alshazly et al., 2020)
were used. It was the most efficient and successful technique in this
period. In such methods, images were first transformed into the
frequency domain, and then coefficients with low frequency were
taken as invariant features. The most invariant image features are
then utilized as image descriptors in face recognition.
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Other works utilized the local features of the interior parts
of the face image, i.e., the distance between eyes, nose dispatch,
mouse height, and width, etc., because these local features are more
robust against variations. These methods could be subdivided into
two types: (1) the dense descriptor that extracts local features pixel
by pixel and (2) the sparse descriptor that divides the image into
several patches and specifies the invariant features. Scale-invariant
feature transform (SIFT) is an example of sparse descriptors. It
was first introduced in 2004 by Lowe. In Brahnam et al. (2014),
D.G. was then utilized in several studies for facial expression. Such
methods achieve superior results against expression and occlusion.
In the period between 2007 to 2011, Gabor wavelet was widely
utilized as a local image descriptor. It depends on both frequency
and space domains. Therefore, the extracted features are invariant
to rotation and scale. In Brahnam et al. (2014), utilized the Gabor
filter in the face image; this could detect lines and edges. In Chen
et al. (2010) developed weber’s law-based dense descriptor. It is
an invariance to noise variations and image illumination. Despite
the satisfactory performance achieved by These methods, feature
extraction steps and classification required prior knowledge and
complex parameter adjustment. Therefore, various researchers use
classification techniques that remove this complicated process in
feature engineering.

The DL algorithm, CNN, can automatically learn picture
properties without requiring manually created characteristics
(Alzubaidi et al., 2021; Nguyen et al., 2020). CNN adds weight to
each element and object in a picture, enabling it to stand out. The
preprocessing procedures in CNN are substantially less than those
in other archaic techniques. CNN is frequently used for a variety of
computer vision applications, such as recognizing faces in images
(Silva et al., 2021; Liu et al., 2014). For instance, Pathar et al. (2019)
produced an optimistic CNN model that divides patients into seven
emotions. Similarly, several studies have suggested different CNN
models, like the Deep Belief Network and the autoencoder model,
to accurately identify facial expressions (Wang et al., 2018). In other
research, transfer learning was also used to recognize emotions,
leading to high F1 scores and accuracy in the MobileNet, Xception,
and Inception V3 models. Additionally, some research have used
facial analysis to determine attentiveness in autistic children’s facial
images for other purposes (Kim et al., 2017). Others in Hakim et al.
(2024) and Lokeshnaik et al. (2023) utilized CNN based approach
for classifying images to 6 emotions (Kant et al., 2025; Meghana
etal., 2023).

Attention processes have a significant impact on CV systems,
especially FER systems. For example, Zhang et al. (2022) used
class activation mapping to analyze attention maps generated
by their model, whereas another review in Novais et al. (2022).
Incorporated an attention branch that trained a face mask
highlighting discriminative elements for emotion recognition.
These findings emphasize the significance of attention processes
in face emotion identification. Furthermore, feature extraction
has used self-attention methods to capture local and global
contexts via convolutional layers. These collected characteristics are
subsequently employed in a relation attention module, which uses
self-attention to capture relationships between patches. However,
the practical deployment of facial recognition systems still needs to
be improved due to noise, ambiguous annotations, and complex
real-world scenes. Therefore, attention modules have gained
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significant interest in facial emotion recognition tasks, considering
their effectiveness in computer vision applications (Alabdulhafith
et al., 2023; El-Rashidy et al., 2025).

Additionally, psychological studies have identified specific
facial features important for emotion recognition, such as the
mouth for observing happiness and the eyes for detecting
sadness. DCNN models extract discriminative features for

emotion recognition, and class activation mapping helps
identify these features at each layer. This mapping technique
has shown promise in localizing features around the eyes
for movement analysis, providing a better understanding of
the model’s performance. As a result, integrating attention
mechanisms and analyzing discriminative features via class
activation mapping have appeared as valuable techniques in
facial emotion recognition. These approaches address the
challenges associated with practical deployment and improve
understanding and performance. While the current architecture
prioritizes real-time performance, several recent works have
concentrated on multitask attention. These approaches focus
on shared attention mechanisms across related tasks (Hayat
et al., 2024), which could improve feature extraction by up
to 40%. Although this method enhances overall accuracy, it
also increases computational costs by approximately (1.5-
2.5x), exceeding our latency targets. To address this, we plan
to explore alternative hybrid architectures with a lightweight
multitask backbone.

The field of animal emotion detection is being transformed by
advances in computer vision and deep learning, with a growing
research focus on visual and behavioral cues like facial expressions
and movement trajectories. Despite this shift, the predominant
reliance on unimodal data for instance (Chiavaccini et al.,
2024; Descovich et al., 2017), inferring state from vocalizations
imposes fundamental limitations on accuracy and robustness, as it
ignores the inherently multimodal nature of emotional expression.
Consequently, the development of multimodal recognition systems
is critical, yet it is impeded by dual challenges: the technical
complexity of acquiring and synchronizing diverse data streams,
and the unresolved question of how to optimally fuse this
information to enhance computational model performance (Ehret,
2018; Jabarin et al., 2022; Yu et al., 2024).

Facial emotion recognition datasets are widely utilized
by researchers in various research endeavors, particularly
in emotion recognition. Evaluating the effectiveness of
these datasets and the performance achieved using them
is crucial. The methods and objectives for collecting facial
image datasets differ depending on the specific applications
in facial systems development. For reference, Table 1 details
emotion

the characteristics of the most common facial

recognition datasets.

2.1 Comparison of emotion recognition
datasets

Table 1 provides a comparative analysis of different datasets

used in emotion recognition. It highlights the sample size, number
of emotions classified, and dataset description.
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3 Materials and methods

3.1 Dataset description

As shown in Figurel, our paper includes two different
datasets for facial expression. We chose to test the developed
model with two different datasets to ensure the generalization
ability of the developed model. The utilized dataset includes
images for persons with 7 classes (Anger, sad, surprise,
neutral, happy, disgust, and fear) (Goodfellow et al,
2013).

The images dataset includes 35,888 images that divide to
(Anger: 3,995, Fear:7,097, happy: 7215, Natural: 4969, Sadness:
4,830, Surprise: 3,171, disgust: 463) in the training part and (Anger:
958, Fear:1024, happy: 1774, Natural: 1223, Sadness: 1247, Surprise:
831, disgust: 111) in the test part. The data consists of 48 x 48
pixel grayscale images of faces. The faces have been automatically
registered so that the face is more or less centered and occupies
about the same amount of space in each image. The dataset that

utilized for testing is obtained from Talaat et al. (2024).

3.2 Principal component analysis

PCA is a popular data reduction approach that involves
translating data from its original coordinate system to a new system
chosen by the data itself. Because it contains the most relevant
information, the converter selects the direction of the coordinate
axis based on the highest variation (Ma and Yuan et al,, 2019;
Sun et al., 2021). The first new axis correlates with the direction
of the most significant variance in the original data. In contrast,
the second axis is chosen orthogonally to the first, signaling
the second most considerable variance. This iterative approach
continues, with each repeat matching the feature dimension of the
original data. The first step in PCA is to normalize the original
data with a mean of 0 and a variance of 1. The eigenvalues and
eigenvectors are then determined using a covariance matrix. The
eigenvectors with the highest eigenvalues are then picked. Finally,
the input is translated or mapped into a new space created by
these chosen eigenvectors. This mapping permits the capture of
compressed data with decreased dimensionality (Ma and Yuan
etal., 2019).

3.3 Convolutional neural network

CNN effectively is a DL model used to extract the spatial
features from the input data. It's a feedforward neural network
that depends on the convolutional structure. It has several layers:
The convolutional layer utilizes several convolutional kernels
with different learnable parameters. It's a matrix with equal
odd numbers, which represent matrix weights. The weight of
this convolutional matrix corresponds to the local area of the
feature map; it performs the convolutional operation of that
area by sliding operation. Feature map size generally is W,H,C,
representing height, width, and channel. Flow of data in the
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TABLE 1 Comparison of different emotion recognition datasets (images reproduced from F.M. Talat, et al., “Facial emotion dataset for autism children”,
https://doi.org/10.34740/kaggle/dsv/13569077 and I. Goodfellow, et al., “Challenges in representation learning: Facial expression recognition challenge”,
https://www.kaggle.com/datasets/msambare/fer2013 under the Database Contents License (DbCL) v1.0).

Ref Name Dataset Num of Dataset description
sample emotions
Autistic CK+ 7 Data was captured from 210 individuals using a Panasonic AF_7500
children facial camera. Participants aged 18 to 50, with 69% female. 81% were American,
dataset (2025) 13% African American, and 6% from another background. Images were
taken from a frontal view at 640x480 resolution.
Goeleven et al. JAFFE 7 JAFFE dataset includes all emotional information. Developed in 1997, it
(2008) consists of 3 images for each of the 7 facial expressions per participant. Each
image was evaluated for emotional adjectives by 60 Japanese subjects.
Saleh et al. KDEF 7 KDEF consists of 40 color images from 70 individuals (35 males, 35
(2021) . females). Expressions include neutral, happy, surprised, repulsed, fearful,
and sorrowful.
Saleh et al. RAF_DB ' 3 7 RAF_DB contains 39,627 facial images from 40 distinct individuals with
(2021) ‘ variations in age, gender, race, lighting, arrangement, and post-processing
! effects.
g.:_A
Aifanti et al. MUG 6 Aggregated from 86 participants aged 35-51. Image sequences were
(2010) captured in a controlled lab environment. The database contains manual
and automatic annotations for 80 facial landmark points.
Pantic et al. MMI - Contains over 2,900 videos and high-resolution photos with 75 distinct
(2005) frames. Event coding indicates autonomous facial units, and annotations are
based on audio-visual amusement.

convolutional kernel with size n x n x i could be described as in
Equation 1:

n

feature_surfaceoy = f ZMi x W;+ B (1)

i=1
Where m represents the matrix w, is the weight of the matrix,
and M is the bias, f is the non-linear activation function. The
correlation convolution layer and the convolution kernel and
feature surface for a 2-D matrix input with conv size k, matrix size

i, and padding are shown in Equation 2:

O={$J+l )

The pooling layer is utilized to reduce the dimension to
the input dimension to reduce the convolutional connections,
thereby reducing the network computation. Additionally, it allows
for the achievement of scale invariance, translation invariance,
and rotation invariance of the input image. Lastly, it enhances
the robustness of the output feature map against the distortion
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and errors of a single neuron. Several alternative methods have
been proposed, such as Lp Pooling (Gulcehre et al, 2014) and
stochastic Pooling (Zeiler and Fergus, 2013); however, the two
most commonly used pooling methods that used to alleviate over-
fitting more effectively is the average pooling (Gholamalinezhad
and Khosravi, 2020) and maximum pooling (Eom and Choi, 2019).
The general relationship that satisfies the relationship between the
input and output matrix sizes in the pooling operation is as follows:

0=Li+25—kJ+1 3)

The fully connected layer integrates and categorizes local
input using category discrimination obtained after convolution and
pooling. In the end, it produces the image’s category information
(Gu et al,, 2018). Several hidden layers in the FC Layer extract
high-level characteristics from the preceding network in a more
complicated way. The output vector that results is used to identify
the category to which the picture belongs, where the number of
neurons at the output end is equal to the number of categories.
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angrv disgust happy neutral surprise

FIGURE 1

Emotions recognition data with seven different classes (images reproduced from F.M. Talat, et al., “Facial emotion dataset for autism children”,
https://doi.org/10.34740/kaggle/dsv/13569077 and |. Goodfellow, et al., “Challenges in representation learning: Facial expression recognition
challenge”, https://www.kaggle.com/datasets/msambare/fer2013 under the Database Contents License (DbCL) v1.0).

3.4 Attention model

Attention models are a class of neural network architectures
that enable selective processing of input sequences via an attention
mechanism (Vaswani et al., 2023; Chaudhari et al., 2021). The
attention mechanism plays a vital role by selectively allocating
available resources to focus on processing the salient part of a
scene rather than the entire scene. Multiple attention mechanisms
are utilized to address a known weakness in convolution.
Mathematically, attention can be represented as a weighted sum
of the input sequence, where each element is assigned, a weight
based on its relevance to the current output being generated by
the model. Various methods can be used to compute the attention
mechanism, but the spatial features based on dot product approach
is a popular one (Santana and Colombini, 2021). In this method,
the input sequence and the model’s current state are multiplied to
obtain a set of scores, which are then normalized using the SoftMax
function to obtain the attention weights (Chefer et al., 2021). The
dot product attention mechanism can be characterized as a set of
equations that compute the scores, attention weights, and context
vector, as follows: An input sequence X with dimension (T, D) and
h hidden state.

The attention weights are computed as:

XWo)XWi)T

Vi ) (4)

X € RN*P, wo, Wi e RP*%

Attention_weights = SoftMax (

The context vector is then calculated as:

Context_Vector = Attention_weights - (XWy),

(5)
Wy € RDxdr Output € RNV*dv

Where:
e N: Sequence length (flattened spatial dimensions H x W).

e D:Input feature depth (e.g., 256 for YOLOVS8 neck).
e d,d,: Key/Value dimensions (set to D/8 = 32).
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Ultimately, the context vector is derived through the element-
wise multiplication of the attention weights and the input sequence
across the time axis. This operation yields a weighted summation of
the input sequence, highlighting the most relevant segments crucial
for the model’s ongoing state. Herein, the operation x denotes
matrix multiplication, and Softmax(-) is the column-wise softmax
operator, and it helps to compute a normalized version of the input
matrix X = [x1,X2,%3,...,%,]. WH denotes a weight matrix of
dimensions, including (H, D), used to project the current state h
of dimensions H to the same dimension as the input sequence. Q
denotes matrix as trainable variables.

3.5 Attention based CNN model

Unless the importance of CNN in image classification, it
has several limitations, including the following: (1) CNN may
be less suitable for capturing long-range dependencies between
various picture sections, making it challenging to recognize
complex or irregularly shaped objects. (2) Furthermore, CNNs
may be computationally costly, restricting their usefulness in some
applications, mainly when working with massive datasets or high-
resolution pictures. An attention method has been developed
(Santana and Colombini, 2021). This method utilizes the obtained
features of different network parts as weights to help other parts
learn more significant sequential information. Two main types
of attention methods are currently used: channel attention (Chen
et al, 2020) and spatial attention (Hu et al, 2019). Channel
attention focuses on the effects of channel features on the entire
CNN, while spatial attention treats all pixels at the exact location,
with its weight learned through each pixel at each location. These
attention mechanisms can address the problem from different
perspectives, providing a solution.

3.6 Pre-trained models

A pre-trained model has previously been trained on a large
dataset. By training the model, it learned meaningful patterns and
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features from the data being trained on a vast, labeled dataset,
achieving promising performance on different tasks, including
object detection, image classification, and machine translation;
using a pre-trained model offers several advantages, including the
following:

e It saves significant time and computational resources as
training a DL model from scratch can be a time-consuming
and resource-intensive process.

e Save time and resources by allowing for fine-tuning rather
than starting from scratch.

e Because of their rich representations gained from varied
datasets, pre-trained models generalize well.

e Help with domain adaptability by capturing general
information as well as patterns for specific tasks.

Furthermore, pre-trained models serve as a good starting point
for transfer learning, transfer learning id the process of fine-tuning
a previously trained model on a new, smaller dataset tailored to the
task at hand. This method is essential when the target dataset is
small. There are pre-trained models, including VGG (Huang et al.,
2017), ResNet 5, RestNet, and MobileNet, and their derivatives
are examples of popular pre-trained models. These models have
proven cutting-edge performance on various benchmarks and are
the foundation for many cutting-edge applications.

3.7 YOLO V8 model

YOLO (you only look once) is considered one of the most
popular models in object detection, and it is a significant update
of YOLO V5. The backbone of YOLO V8 uses CSPDarkNet. The
kernel of the model was resized from 6 x 6 to 3 x 3; in addition,
all C3 structures were updated to C2f structure. The same is true
for the number of C2f blocks, which is changed from 3-6-9-3 to
3-6-6-3, regarding the neck part of the YOLO v8 model. It used
PANET, similar to yoloV5; this model is effective and fasr. The
backbone of the model goes through SPPF, then passes through the
downsample layer, and then through PANET after the upsampling
technique. The developed output is sent to the model head for loss
calculation. PANET is a bidirectional network. When comparing it
to FPN, PANET provides a bottom-up path, which makes it easier
for information to flow on the top. The head part of the YOLO
v8 model is unlike the YOLO v5 model. It uses a Decopuled head,
which distinguishes between regression and classification branches.
YOLO v 8 used task TaskAlginedAssigfner to specify weighted
scores across classification and regression tasks, utilize BCE for loss
classification and CIOU for regression tasks.

4 Proposed work

This section spans two parts: The initial part focuses on the
theoretical elements, investigating the hybrid of fog technology
and an emotion recognition system to enhance the system’s
performance in real-time. The subsequent part addresses practical
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considerations, specifically feature selection using PCA and the
implementation of DL as the learning technique.

4.1 Proposed real-time emotion
recognition system based on fog
computing technique

In emotion recognition, wireless technology combined with
fog computing has successfully provided rapid analysis and
personalized solutions that can promise advancements in mental
health, human-computer interaction, and social robotics. This
paper introduces a real-time emotion recognition system based on
fog computing (RERS-FoG). The proposed approach recognizes
the direct impact of lowering anxiety and stress on patient
outcomes by delivering a safe atmosphere. It has an on-time
alerting system permits nurses to respond quickly and enables real-
time environmental monitoring. As shown in Figure 2, the overall
layers of the proposed system include monitoring sensors, medical
computing, real-time notification systems, and cloud server layers.

The monitoring layer carries a pivotal position in modern
emotion recognition systems. With the proposed RERS-FoG, the
monitoring layer facilitates data collection, integration, and analysis
from diverse connected devices and sensors, which is critical
for improving system functionality. Suppose RERS-FoG includes
wearable sensors, smart cameras, and microphones, which are
instrumental in capturing essential data about facial expressions,
voice characteristics, and physiological indicators. These devices
operate in a continuous monitoring mode, capturing real-time
data that is subsequently transmitted to the subsequent layer
for additional processing and in-depth analysis to ensure timely
intervention. The architecture as discussed in Figure 2 consists of
4 distinct layers:

1. Sensing layer: This layer includes data acquisition from
different sources such as smart cameras in a clinical or
personal room. By leveraging the monitoring layer, the
RERS-FoG system can access diverse data sources, allowing
for multimodal analysis of emotions. Integrating data from
multiple sensors and devices enhances the accuracy and
reliability of emotion recognition algorithms. Moreover, the
real-time monitoring in the monitoring layer significantly
improves the accuracy, timeliness, and efficacy of emotion
recognition processes, ultimately enhancing the understanding
of individuals’ emotional well-being and providing tailored
reinforcement when required. A light weight preprocessing step
occurs here to crop the facial regions to reduce the data sent to
the next layers.

2. Fog computing layer: This is the core of RERS-FoG system that
resides in the local server, or edge node. The primary functions
of this layer are the following:

(a) Feature reduction: The preprocessed images received from
the sensing layer undergo data reduction using the PCA
algorithm and emotion detection using the CNN attention
model. PCA converts highly dimensional data into a
representation with a lower dimension while preserving as
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FIGURE 2

Real-Time Medical Competing Layer

Architecture of the proposed RERS-FoG system showing the abstraction layers and components.

much information as feasible. The PCA starts to function
by doing the following steps after receiving data from sensor
devices:

(b) Real-time decision making: After the role of data
monitoring in RERS-FoG, the real-time medical computing
layer serves as the second stage. The work in this layer is
completed in a fog server to speed up the decision-making
process; if critical emotions are detected (i.e., fear, anger), the
fog layer triggers an action to on-site staff without waiting
for cloud notification. This layer operates to ensure timely
alerts and notifications based on the analysis performed in
the fog computing layer.

The following function in the fog server for emotion
recognition and classification is based on CNNs, a DL model
inspired by the structure and functioning of the human visual
system. They excel at processing and analyzing visual data,
such as images and videos. CNNs consist of several layers,
including convolutional, pooling, and fully connected layers,
which collectively learn hierarchical representations of the input
data. It works based on the following steps:

(a) The convolutional layers apply filters to the input data,
extracting local features and patterns. These filters learn to
detect edges, textures, and other visual elements relevant to
the task at hand.

(b) Pooling layers downsample the feature maps obtained from
the convolutional layers, reducing the spatial dimensions of
the data. This helps capture the most salient features while
discarding some of the less important details.

(c) The fully connected layers take the flattened feature maps
from the previous layers and perform classification or
regression tasks. They learn to map the extracted features to
the desired output, such as emotion labels in our case.
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3. Cloud server layer: Cloud server layer: This layer works as
centralized repository for long term tasks. It utilized to aggregate
the historical emotion data , analyze the results and report logs
to various fog nodes It provides a scalable platform for storing
large volumes of data and enables comprehensive reporting and
system-wide insights.

The cloud server is the final layer in the proposed RERS-FoG
system, offering many advantages, including scalable computing
resources, streamlined data management, and advanced analytics
capabilities tailored for emotion recognition systems. Using a
cloud server for holding and analyzing historical data allows
seamless retention, processing, and retrieval of past emotion-
related information, leading to more precise and resilient
emotion recognition models and algorithms. The cloud server
is equipped with mechanisms to continuously update historical
data, guaranteeing that the system aids from a dynamic and
current historical database. As new data becomes accessible,
it undergoes preprocessing and integration into the existing
historical dataset to keep the system relevant and adaptive.
Figure 3 illustrates the sequence diagram of the proposed
RERS-FoG, showcasing the system’s interaction and flow of
processes. The architecture of the proposed attention-enhanced
convolutional neural network is illustrated in Figure 4. The
complete workflow of the proposed system, including data
preprocessing, model training, evaluation, and explainability, is
presented in Figure 5.

4.2 Proposed CNN-attention model

The proposed framework consists of four steps to achieve
accurate image classification while providing interpretability and
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FIGURE 3
The sequence diagram of the proposed RERS-FoG.

understanding of the decision-making process. The steps are
discussed as follows:

1. Our framework starts with reading the input images. First,
we make data normalization by standardizing the input data
to 100 x 100. After normalization, the dataset was split
into training and testing with 80% and 20%. This percentage
enables the model to learn from the training and evaluate
unseen data.

2. The second step includes utilizing the PCA model to
reduce the data dimensionality while preserving essential
information. The required computational powers and resources
decreased by reducing the data dimension, facilitating the
subsequent steps.

3. We utilized several pre-trained models, including VGG, ResNet,
MobileNet, and DenseNet, which enhanced performance in
various image classification tasks. However, to address the
challenges related to execution time during the testing phase, a
custom CNN model was developed from scratch. This custom
model is designed to streamline performance and optimize
computational efficiency.

4. CNN-attention model was developed to enhance overall

The

ignoring irrelevant information using the spatial attention

performance. developed model concentrated on
technique. The developed model can assign higher weights
to the more significant features to better capture the
relevant features.

5. The fourth step is utilizing the explanation tools to specify

the ROI, which significantly impacts the overall decision.
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This step helps to provide a better understanding of
the model decision. In our framework, we utilize the
LIME

to help highlight the significant areas contributing to

(local interpretable model-agnostic explanation)
the classification results. This provides transparency and
interpretability and allows users to specify the factors that affect

model decisions.

The model performance was evaluated using precision, recall,
F-score, and AUC. These metrics contribute to the comprehensive
evaluation of the model classification ability.

4.2.1 Input layer

As shown in Figure 6 the face that includes the human emotion
is provided as input. The original face emotion image is represented
as X, where X belongs to the total number of images, and each
image has a dimension of N x M x C. Here, N x M represents
the size of each band image, and C represents the total number of
bands (channels).

4.2.2 Dimension reduction layer

The goal is first to reduce the dimensionality of the image
data. To achieve this, we utilize the theory of PCA. Through
PCA, a set of principal component feature maps is obtained. The
principal components encompass the most essential information
extracted for subsequent processing. The main objective of the
PCA is to utilize the orthogonal transformation to convert
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FIGURE 4
Proposed CNN_attention.

!

convzd_7 | mput: | (None, 10, 10, 64)
ConvzD output: (None, 8, 8, 128)
max_poolmg2d_5 | mput: | (None, 8, 8, 128)
MaxPoolmg2D output: | (None, 4, 4, 128)
dropout_6 | mput: | (None, 4, 4, 128)
Dropout output: | (None, 4, 4, 128)
flatten_1 mput: (None, 4, 4, 128)
Flatten output: (None, 2048)
dense_2 mput: (None, 2048)
Dense output: (None, 128)
dropout_7 mput: | (None, 128)
Dropout output: | (None, 128)
dense 3 mput: (None, 128)
Dense output: (None. 7)

the collection of potentially correlated variables into a set of
linearly independent variables. This process is done through the
following steps:

e The input data image is first represented as matrix X, as shown
in Equation 6. Each channel band expanded in the row vector.

X1 ... X
X1 ... X

e The matrix X is then standardized to obtain matrix A (see
Equation 7), where a;; = Xj;j — u; where i = 1,2,3,...,N

Z?l: X
and pu; = —’I\} J

ayl ... i

arl ... Ay
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e The standardized matrix was then utilized to calculate the

covariance matrix R:

1 ... Tin
R=| 1 . 8)
L1 ... TLn
Calculating the eigenvalues and the corresponding

eigenvectors. Eigenvectors calculated through the equation
|R — LL| = 0. Note that the big eigenvalue corresponds with
the most essential features to the eigenvector.

The chosen eigenvector, which corresponds to the highest
eigenvalue, is constituted in matrix V:

V=| © - )

Choosing eigenvalues are then multiplied by the standardized
matrix to calculate the output after dimension reduction.
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Proposed YOLO v8 attention model. Facial expression recognition challenge, https://www.kaggle.com/datasets/msambare/fer2013 under the
Database Contents License (DbCL) v1.0).
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FIGURE 6
Proposed architecture.

In brief, the initial step in our proposed model involves  corresponds to a pixel value. The principal components
preprocessing the images by transforming them into an are derived by applying PCA to this vectorized image
appropriate format for analysis. Subsequently, each image is  data, capturing the most significant variations present in
flattened into a 1-dimensional vector, where each element the dataset.
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Image before and after dimension reduction (image reproduced from |. Goodfellow, et al., “Challenges in representation learning: Facial expression
recognition challenge”, https://www.kaggle.com/datasets/msambare/fer2013 under the Database Contents License (DbCL) v1.0).

The number of principal components to retain is determined
by the desired information preservation level or by assessing the
explained variance ratio. Figure 7 shows the original figure and the
image after applying PCA.

4.2.3 Attention layer

The CNN attention model is applied to the reduced image
following PCA. It integrates an attention mechanism that focuses
on the crucial features. The attention model assigned weights
(scores) that were adjusted during the training process. These
scores determine the importance of various regions in the images
according to their relevance. In our study, we utilize the element-
wise multiplication attention process. In this technique, each
element is individually multiplied by the corresponding weight.
This operation diminishes or amplifies the contribution of each
component according to the assigned weights. They are multiplied
and then aggregated to form the final weights. Using attention
via multiplication, the model may emphasize the most critical or
informative aspects while de-emphasizing less important ones by
learning the attention weights.

4.2.4 Image classification

When the Attention CNN model has finished training,
it is ready to identify pictures. When given a new picture,
the model runs it through the convolutional layers, extracting
relevant information. The attention mechanism directs the model’s
attention to critical areas, improving its capacity to discriminate
between classes. The final fully connected layers provide a
probability distribution across distinct courses, showing the image’s
likelihood of belonging to each class. The projected class for the
supplied image is assigned to the class with the highest probability.
The following are the details of the CNN attention model that was
utilized. Algorithm 1 shows the main steps of the proposed model.
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4.3 Integration of PCA and CNNs in
emotion recognition

The integration of PCA and CNNs in emotion recognition can
harness the benefits of both techniques. Here is a possible workflow
for their combination:

e The facial images are preprocessed to align and normalize the
faces, ensuring consistency in the input data.

PCA is applied to preprocessed images to reduce their
dimensionality. This step extracts the most informative
features related to facial expressions.

The reduced-dimensional PCA features are used as inputs to
train a CNN model. CNN learns to map the PCA features
to emotion labels, leveraging its ability to capture complex
patterns and spatial dependencies.

After training, the integrated model can take a new facial
image, apply PCA dimensionality reduction, and pass the
resulting features through the trained CNN for emotion
prediction.

The benefits of this integration include:

e Using PCA to reduce the dimensionality of the data,
we obtain a lower-dimensional representation that can
be more easily interpreted and visualized. This can aid
in understanding the underlying factors contributing to
different emotions.

PCA reduces the dimensionality of the data, making it
computationally more efficient to train and use CNN models.
This can significantly speed up emotion recognition systems’
training and inference processes.

The combination of PCA and CNNs can improve the
generalization capabilities of the emotion recognition model.
PCA helps reduce noise and irrelevant features, allowing CNN
to focus on the most informative aspects of the data. This can
lead to better performance on unseen data.
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1: Input: dataset images Ds

2: Output: Image target for target 1labels j =
0,1,2, ...

3: Begin

4: Read facial emotion recognition images and

convert them to NumPy array matrix X
5: For each image class, calculate the mean matrix
I
6: Calculate the covariance matrix by converting the
mean from the input matrix for each feature X—pu
7: Calculate the eigenvalues and the corresponding
eigenvectors
8: Sort the eigenvectors, then calculate the new

principal component wused to reconstruct the
images

9: Read the images after reconstruction

10: Divide Dg for training and testing data (70% for
training and 30% for testing)

11: Use the element-wise multiplication attention
technique to give more weight to the most
significant features

12: Build several layers, including Conv, Max-pooling
to reduce the features and extract the most
essential features

13: Apply the
overfitting

14: Load the model

15: Use test data to evaluate the model using the

dropout layer to reduce model

saved model

16: The output of the level zero learning is based
on level one learning (meta-learning)

17: Give the final prediction

18: End

Algorithm 1. Proposed CNN attention model steps.

e CNNs are known for their ability to handle variations in input
data, such as changes in lighting conditions, facial expressions,
and poses. By integrating PCA, which captures the most
relevant features, the model can become even more robust in
these variations.

4.4 Proposed YOLO-8 self-attention model

The proposed attention mechanism integrated into the YOLO
architecture represents a significant enhancement for object
detection tasks, particularly in complex visual environments.
This discussion analyzes the key components and implications
of the algorithm. The algorithm employs a channel reduction
strategy through the reduction ratio parameter, which serves
multiple purposes. First, it substantially reduces computational
complexity by compressing the channel dimension before
computing attention scores. This is crucial for real-time object
detection where computational efficiency is paramount. Details
of the utilized algorithm detailed in Algorithm 2. The reduction

Frontiersin Computer Science

10.3389/fcomp.2025.1714394

ratio acts as a bottleneck that maintains essential features while
discarding redundant information, striking a balance between
model performance and computational requirements.

The use of separate convolutional layers for Query, Key, and
Value projections follows the established transformer architecture
paradigm. However, the innovation lies in adapting this mechanism
for convolutional networks by maintaining spatial relationships
through careful reshaping operations. The Query and Key
projections share the same reduced dimensionality, enabling
efficient computation of attention scores, while the Value projection
retains the original channel dimension to preserve feature
richness. The algorithm demonstrates several optimizations for
computational efficiency:

e Dimensionality reduction: By reducing channels through the
reduction ratio, the algorithm minimizes the computational
cost of matrix multiplications in attention computation.

e Spatial compression: The adaptive average pooling to 14 X
14 resolution reduces spatial dimensions while maintaining
global contextual information.

e Learnable scaling: The gamma parameter provides adaptive
control over the attention contribution, preventing over-
reliance on attention in early training stages.

4.5 Attention mechanism dynamics

The attention computation follows a scaled dot-product
approach, where the scaling factor +/reduced_channels stabilizes
gradient flow during training. This prevents the softmax function
from entering regions of extremely small gradients, which is
particularly important given the high dimensionality of the
feature maps.

The residual connection (Gamma * attention output +
Input) is a critical component that ensures training stability. By
initializing gamma to zero, the network begins training without
the attention mechanism, allowing it to gradually incorporate
attention-based feature refinement as training progresses. This
warm-start approach prevents disruption of pre-trained features
when fine-tuning on our specific detection task.

4.5.1 Hyperparameter tuning

All hyperparameters are tuned using Bayesian Optimization
with Hyperband, efficiently tuning critical parameters (y, learning
rate, PCA components). Table 2 shows we add the hyperparameter
tuning table that gives the search range, in addition to the
optimized value.

5 Results and discussion

5.1 Experimental results with different
pretrained architectures on orignal data

We evaluated the pre-trained models using the original data in
this section of the results. Table 3 provides a detailed breakdown of
the results obtained. Upon analyzing the table, several noteworthy
observations can be made. (1) VGG 19 outperforms VGG 16
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1: Input: In channels, reduction ratio

2: Initialize: attention score

3: Begin, Initialize the following

4: Reduced channels = in channels/ reduction_ratio

5: Query= Conv2D (in channels, Reduced channels,
kernel size = 1)

6: Key= Conv2D (in channels, Reduced channels,
kernel size = 1)

7: Value= Conv2D (in channels, in channels, kernel
size = 1)

8: Gamma= tune learnable parameter (initial value
=0)

9: Pooling layer= adaptive average pooling
[generated output (14,14)]

10: For each step in the forward pass, do the
following:

11: Reshape the input (from 2D to 4D to be the
following structure (batch, channels, height,
weight)

12:  Apply the pooling layer to the input to generate

the pooled output with shape (batch, channels
14%14)

13: Compute the Query, Key and Value:

14: - Query_map = Query (generated pooled input)

15: - Key_map = Key (generated pooled input)

16: - Value_map= Query (generated pooled input)

17: Reshape the Query, Key, and Value to compute
attention

18: - Query_map = Reshape [Query_map, (batch,
red_channels, 14%14)]

19: - Key_map =  Reshape [Key_map, (batch,
red_channels, 14%14)]

20: - Value_map= Reshape [Query_map, (batch,

red_channels, 14%14)]
21: Compute the attention scores

22: - Transposed Key_map = transpose ( keymap
14%*14, reduced channels)

23: - Atten_score = MatrixMultiplication
(Query_map, Transposed Key_map)

24 : - Scaled_atten_score = Atten score/sqrt
(reduced_channels)

25: Compute the attention output weight

26: - Atten_output= MatrixMultiplication
(Scaled_Atten_score, Value_Map)

27: - Reshape atten_score = reshape [Atten_output
(batch, In_channels, 14*14)]

28:  Apply Gamma with Residual connection

29: - Final_Atten_score= Gamma* Reshape

atten_score +Input

Algorithm 2. Proposed YOLO-8 self-attention model.

in terms of classification accuracy, precision, and recall. This
improvement can be attributed to the additional layers and
parameters present in VGG 19. The increased depth of the model
allows it to capture more complex characteristics and patterns,
resulting in enhanced performance. (2) ResNet 169 vs. ResNet
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TABLE 2 Hyperparameter optimization results.

Parameter Description Range  Value

y (Focal loss) Focusing parameter [0.5,5.0] 2.0

PCA components Retained eigenvectors [10,200] 50

Attention heads Multi-head attention [1,8] 4
units

121: When comparing ResNet 169 to ResNet 121, we observe
a slight increase in accuracy and precision with ResNet 169.
The higher number of parameters in ResNet 169 enables it
to learn more intricate representations, improving performance
in the given task. (3) MobileNet and MobileNet V2 efficiency:
MobileNet and MobileNet V2 models achieve competitive accuracy
while utilizing significantly fewer parameters than VGG and
ResNet architectures. This highlights the effectiveness of MobileNet
architectures in scenarios with limited computational resources.
These models balance accuracy and efficiency efficiently, making
them well-suited for resource-constrained environments. (4)
MobileNet V2 superiority: Among the architectures, MobileNet
V2 demonstrates the highest accuracy, precision, and recall. The
improved performance of MobileNet V2 can be attributed to its
advanced design and innovative additions, which have enhanced its
ability to extract meaningful features and representations from the
data from those observations; we could conclude that MobileNet
V2 emerges as the most accurate, precise, and recalling architecture
due to its superior design and advancement.

As shown in Table 4, we could observe the following when
we analyze the results from a computational time point of
view. (1) ResNet took 1,512.44 seconds, indicating that it takes
more computational time than the other version (VGG 19:
1,143.11); this could be attributed to the significant number of
parameters and the network architecture, which requires more
computations per inference. (2) ResNet takes longer than VG
with the two tested versions; this attributed to the residual
connection employed in the ResNet architecture. (3) ResNet 169
required the longest running time, owing to the significantly
higher number of parameters and deeper network structure. (4)
MobileNet demonstrates lower runtime than VGG and ResNet.
This returns to depth-wise separable convolutions. MobileNet V2
enhances the computational runtime; MobileNet V2 features such
as inverted residual blocks and linear bottlenecks lead to quicker
calculations without sacrificing accuracy.

5.2 Experimental results with different
pre-trained architectures on data after
dimension reduction

This section explores the performance of pre-trained models
after data dimension reduction. Dimension reduction aims
to reduce the data dimensionality without losing important
information. In the following results, we could observe the impact
of dimension reduction on the overall performance of the pre-
trained model. Table 3 details the results of those experiments in
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terms of different evaluation metrics. From that table, we could
observe the following: (1) VGG 16 achieves adequate classification
accuracy (ACC = 0.876). However, the other evaluation metrics,
including precision-recall and F-measure, were slightly lower than
VGG 19.

The AUC value was found to be relatively low, indicating
that the model’s discrimination capability was limited. The
computational time after dimensionality reduction did not
decrease proportionally to the performance improvement. For the
pre-trained architectures, VGG19 exhibited improved performance
compared with its counterpart trained on the original data,
achieving higher accuracy (0.884), precision (0.913), and recall
(0.843) values than VGG16. The ResNet architecture demonstrated
a well-balanced relationship among precision, recall, and F-
measure, indicating a more effective trade-off between positive and
negative class predictions. Among all models, ResNet169 contained

TABLE 3 Performance of pre-trained models on original data.

10.3389/fcomp.2025.1714394

the largest number of parameters and achieved superior precision
(0.859), recall (0.853), and F-measure (0.833), with a notably
stronger AUC value, confirming enhanced discriminative power.
These results collectively suggest that dimensionality reduction
contributed positively to the overall predictive capability of
the models.

In contrast, MobileNet achieved satisfactory performance

of 0.801) but did ResNet169,
having a comparable of parameters.
MobileNet substantial
computational improved
efficiency.  After reduction,  MobileNet
achieved  the all  evaluated
models

(accuracy not surpass

despite number
Nonetheless, demonstrated a

reduction in time, leading to
dimensionality
highest

maintaining  the

accuracy among

while lowest  computational

cost,  highlighting its  suitability =~ for real-time or

resource-constrained applications.

Model Params (K) Acc Prec Rec F1 Time (s)
VGGI16 16,266 0.852 0.865 0.836 0.831 1,512.44
VGGI19 21,609 0.883 0.852 0.899 0.875 1,143.11
ResNetl121 9,143 0.839 0.853 0.839 0.845 2,144.21
ResNet169 53,355 0.872 0.865 0.865 0.863 2,231.33
MobileNet 53,355 0.879 0.865 0.833 0.869 840.21
MobileNetV2 8,558 0.889 0.869 0.849 0.873 730.53
TABLE 4 Performance of pre-trained models on reduced data.
Model Params (K) Acc Prec Rec F1 Time (s)
VGGI16 16,266 0.876 0.883 0.854 0.852 1,131.21
VGGI19 21,609 0.884 0.913 0.843 0.876 1,211.53
ResNet121 9,143 0.893 0.891 0.843 0.861 1,732.62
ResNet169 53,355 0.859 0.853 0.833 0.851 1,890.20
MobileNet 53,355 0.851 0.893 0.813 0.899 810.21
MobileNetV2 8,558 0.882 0.828 0.849 0.823 840.13
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FIGURE 8
VGG model results before dimensionality reduction: (a) training accuracy and (b) training loss.
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Figure 7 illustrates the validation and loss curves of the
pretrained VGG19 model using the original dataset, whereas
Figure 8 presents the corresponding confusion matrix. From a
computational standpoint, several observations can be drawn:

e VGG16 and VGG19 required significantly longer processing
times, implying higher computational demands relative to
other models.

e Despite the strong discriminative ability of ResNet, it incurred
the highest computational time, potentially limiting its
applicability in real-time environments.

e MobileNet, when compared to the VGG and ResNet families,
considerably reduced computational time while maintaining
competitive precision, underscoring its computational
efficiency.

e MobileNet V2, in particular, exhibited the lowest processing
time among all tested models, making it an excellent candidate

for latency-sensitive applications.

Overall, dimensionality reduction improved the performance
of all models, as it effectively concentrated the most informative
Both MobileNet V1 and MobileNet V2 achieved
substantial reductions in computational time while maintaining

features.

or improving accuracy. Figure 8 presents the training accuracy
and loss after dimensionality reduction, and Figure 9 displays the
corresponding confusion matrix.

10.3389/fcomp.2025.1714394

5.3 Results of proposed CNN attention
mechanism

In this section, proposed CNN attention model introduces
to evaluate the model on the original data and the data after
dimension blackuction. Upon the model evaluation, we make the
following observations: (1) utilizing the proposed CNN attention
model improves the overall performance in terms of several
evaluation metrics, (2) utilizing the proposed model on the original
data achieves an accuracy of 0.916, precision of 0.923, recall of
0.910, F-measure of 0.913, and an AUC of 0.911. These results
suggest that the model performs reasonably well in accurately
classifying samples and identifying positive instances, and (3)
applying dimension blackuction on the original data enhances the
model performance. The accuracy improved to 0.836, precision
to 0.861, and Measure 0.851. These improvements indicate
the utilizing dimension reduction captures the most significant
features, increasing classification accuracy, identifying positive
samples more effectively, and improving the capacity to distinguish
across classes.

Regarding the computational time, the model decreases
from 1,132.32 after applying dimension reduction to 610.45.
This
successfully

dimension reduction is because it

the
computational efficiency. The model achieves comparable or

reduction after

reduces model complexity and reduces

enhanced performance by condensing the essential information
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FIGURE 9
Confsuion matrix VGG after applying dimension reduction.
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Performance of the CNN self-attention model: (a) training accuracy and (b) training loss after dimensionality reduction.
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FIGURE 11
Confusion matrix for CNN with self attention model.
TABLE 5 CNN attention model results.
Model Params (K) Acc Prec Rec F1 Time (s)
Original data 1,732 0.916 0.923 0.910 0913 1,132.32
Dim-reduced 1,732 0.937 0.971 0.843 0.871 711.45

into a more compact representation while requiring fewer
computational resources. The proposed model, which utilizes
the attention model to provide notable computational efficiency,
enhanced the performance with dimension reduction and
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reduced computational time in our proposed model. Using
dimension reduction strategies considerably improves the model’s
accuracy, precision, recall, F-measure, and discriminative ability.
Furthermore, decreased processing time indicates increased
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computational efficiency, making the model suitable for real-
time applications or scenarios with restricted resources. These
findings highlight the advantages of the attention mechanism and
dimension reduction approaches in increasing performance and
computing economy within the proposed model. Figures 10a, b
shows the accuracy graph and loss of the proposed model with data
after dimension reduction. Figure 11 shows the confusion matrix
of the proposed model with data after dimension reduction.

We plot the confusion matrix from the model prediction on
the testing data to provide more analysis of the proposed model.
Table 5 shows the results of the proposed model with original data
and dimension reduction data.

To check the importance of utilizing PCA, we test the
PCA model with different models as shown in Table 6. The
PCA demonstrate significant gains, PCA-> MLP show the lowest
resource usage but the accuracy dropped with 7.4%. utilizing
PCA with CNN improve the spatial awareness, give improved
performance than CNN baseline. Variant (iv) with positional
encoding shows marginally lower accuracy (0.928 vs. 0.936) than
our primary PCA_CNN, suggesting that while spatial context helps,
the added complexity may not justify the small improvement for
this task.

5.4 Results of proposed YOLO with self
attention mechanism

In that section, we evaluate our proposed YOLO V8-
Self-attention model to evaluate the model on the original
data. Upon the model evaluation in Table7, we make the
following observations: (1) utilizing the proposed YOLO V8
with a self-attention mechanism that improves the overall
performance in terms of several evaluation metrics, (2) utilizing
the proposed model on the original data achieves an accuracy
of 0.926, precision of 0.893, recall of 0.910, F-measure of

TABLE 6 Performance comparison of model variants.

10.3389/fcomp.2025.1714394

0.874, and an AUC of 0.855. These results indicate that
utilizing YOLO v8 gives enhanced performance compared to
the PCA-CNN model (3). Applying a self-attention mechanism
on the feature map enhanced the model’s performance. The
accuracy improved to 0.89669, precision to 0.901, recall to 0.941,
and measure to 0.881. These enhancements demonstrate that
utilizing self-attention concentrates on the most salient features,
augmenting classification accuracy, more effectively recognizing
positive samples, and enhancing the ability to differentiate
among classes. Regarding the computational time, the model
decreases from 723.32 after applying dimension reduction to
610.45. after applying the self-attention mechanism. The model
achieves comparable or enhanced performance by condensing
the essential information into a more compact representation
while requiring fewer computational resources. The suggested
model employs the self-attention mechanism to achieve significant
computational economy while improving performance through
dimensionality reduction. Furthermore, our proposed model
has a decrease in processing time. A self-attention mechanism
significantly enhances the model’s accuracy, precision, recall,
F-measure, and discriminative capability. Reduced processing
time signifies enhanced computational efficiency, rendering
the model appropriate for real-time applications or resource-
constrained environments. The findings underscore the benefits of
employing the attention mechanism and dimensionality reduction
techniques in enhancing the proposed model’s performance and
computational efficiency. Figures 12a, b illustrate the accuracy
graph and loss of the proposed model after with self attention.
Figure 13 illustrates the confusion matrix of the proposed model.
To ensure consistency and realistic results, we implement strict
identity-aware splitting with different folds Table 8 shows the
results of the results of the proposed model from 1 to 5 folds. Model
paramters detailed in Table 9.

Superior processing efficiency (forward pass only).
Better context awareness through self-attention.
Multi-scale feature extraction capability.

Improved generalization with unseen data.

" . 3 . . 0
Model Accuracy Params FLOPs Training The YOLOv8 with self-attention achieves 98.69%
Variant (M) ()] time (H) accuracy with 624.45s runtime, demonstrating excellent
() CNN 0911 124 2 . real-time performance.
Alone
(i) PCA — 0.842 5.1 0.9 1.2
MLP . .
5.5 Discussion
(iii) PCA — 0.936 63 2.1 2.4
CNN . . .
Our study proposes two main models for real-time emotion
(iv) 0.928 6.5 23 26 recognition, including the CNN_PCA model and Yolov8
T‘éﬁ;’s}inc with a self-attention mechanism. The first module combines
the strength of the CNN module that captures the spatial
TABLE 7 YOLOVS8 with self-attention results.
Model Params (K) Acc Prec Rec F1 Time (s)
YOLOv8 2,719 0.946 0.893 0.910 0.9014 72332
YOLOV8+SA 1,652 0.987 0.902 0.941 0.921 624.45
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information and PCA, which enhances the feature representation.
CNN_PCA model improves the model’s ability to capture the
information while decreasing the computational complexity.
Compared with other pertained models, this model includes
VGG, ResNet, and mobileNet. The second model is the YOLO
v8 with the self-attention mechanism. This model first leverages
YOLOVS architecture as a feature extractor, and the self-attention
mechanism permits the model to prioritize the most relevant spatial
information and extract the context information. Experimental
results assured that YOLO v8 with self-attention outperforms
the CNN_PCA model, achieving high accuracy and enhanced
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model robustness in real-time emotion recognition. This returned
to various reasons, including the following: (1) YOLOS8 has a
significant ability to process efficient data, unlike traditional CNN,
which depends on sliding window. Yolov8 is able to process
images in a forward direction. This makes the model more
efficient and faster in real-time use cases. (2) integration between
self attention mechanisms allows the model to concentrate on
the most significant regions and capture the long dependencies as
well as contextual relationships. (3) YOLOvS8s have a significant
ability to make feature extraction. It leverages multiscale in
capturing features, which permits the capture of coarse and
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fine-grained features. This approach significantly impacts the
emotion recognition task, as it can detect local features, such as
microexpression, and global features, such as facial structure. These
features are then prioritized using the self-attention mechanism.
(4) A combination of YOLO and self-attention helps to achieve
more generalization with the unseen data. The self-attention
mechanism contributes to capturing context-aware features,
which reduce overfitting and improve performance on diverse
datasets. To compare all models in terms of all evaluation
metrics, Figures 14a, b compares all pre-trained models before
and after using the dimension reduction. Figure 14c compares
CNN before and
before and after applying the self-attention mechanism. for

after dimension reduction and YOLOVS

more clarification, Table 10 summarize the previous mentioned
results. The computational efficiency of the evaluated models is
quantitatively analyzed in Table 11, which compares model size,
inference time, frame rate (FPS), and GPU memory consumption.

We ran all experiments under a unified setting using 1-
NVIDIA A100 GPU for all models, with batch size = 16 and 100
iterations excluded from timing. All models were executed using
PyTorch 2.1 on CUDA 11.8. Table 12 summarizes the performance
characteristics across different architectures.

Our experimental results reveal several important findings.
Most notably, our YOLOv8-SA model demonstrates significant
performance advantages, achieving 2.3x faster inference than
VGG19 and 1.8x faster than ResNet-169 while maintaining
comparable accuracy. Although MobileNetV2 remains the
fastest option with 102 FPS, this comes at the cost of 7.2%
accuracy degradation compared to our proposed models. The
memory efficiency of our solutions is particularly noteworthy,
with YOLOV8-SA requiring only 1.8GB of GPU memory while
delivering competitive frame rates. These results suggest that
our approaches successfully balance the trade-off between
speed and accuracy, offering practical advantages for real-world
deployment scenarios.

5.6 Statistical analysis of model
performance

This section summarizes the statistical analysis of the utilized
models. Table 13 compares the performance of four utilized models
on a classification task.

From this table we make the following observations:

1. The YOLOV8-SA (ours) model is the best overall, achieving
the highest scores in Accuracy (98.6%), Recall (93.9%), F1-Score
(92.0%), and AUC (95.1%).

2. The CNN-PCA (ours) model has exceptional Precision (96.8%),
meaning it is very good at avoiding false positives, and also has
high Accuracy (93.3%).

3. VGG19 and MobileNetV2 are established models used
for comparison. They perform well but are consistently
outperformed by the two proposed models.

4. The values (e.g., 0.986) represent the score, and the = value (e.g.,
£0.003) shows the variation across multiple runs, indicating
the result’s stability. A smaller & value means more consistent
performance.
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TABLE 8 Performance metrics across different folds.

Fold Accuracy Precision  Recall Fl-score
1 0.941 0.933 0.912 0.922

2 0.928 0.925 0.903 0.914

3 0.935 0.931 0.908 0.919

4 0.923 0.917 0.896 0.906

5 0.938 0.929 0.915 0.922
Mean 0.933 0.927 0.907 0.917

TABLE 9 Model parameters breakdown.

Model Total params  Trainable  Non-trainable
YOLOV8+SA ‘ 1,652,118 ‘ 83,782 ‘ 1,568,336

5.7 Proposed model explanation

5.7.1 Explanation of CNN-attention model

LIME is a popular explanation technique. The goal of using
LIME is to generate the local explanation for each instance
by highlighting the most significant regions. By using LIME
on specific images, the model could provide an explanation
image that highlights the most critical areas in the image, as
shown in Figure 15. Figure 16 visual explanation of the YOLO-
based detection model using Grad-CAM. The highlighted regions
indicate the spatial areas that most strongly influenced the
model’s prediction, demonstrating the model’s ability to focus
on diagnostically relevant visual features and enhancing the
interpretability and transparency of the proposed deep learning
framework.

The explanation with LIME involves the following steps:

—

. The image is preprocessed to ensure its compatibility, including
resizing and normalization.

NS

. LIME applies perturbations by masking several regions,
generating a diverse set of images.

. The modified image is predicted with the model, generating the
prediction for analysis. That selection is based on the image in
terms of distance metrics.

. LIME extracts the relevant features from images to specify the
most significant features contributing to the predicted class.

5. LIME fits an interpretable model based on the extracted features.

This local model approximates the original model’s behavior.

W

I

5.7.2 Explanation of YOLO-self attention model

Grad-CAM (Gradient-weighted Class Activation Mapping) is a
technique used with CNN modules to interpret and visualize the
model’s decisions. It highlights the most significant regions used
for prediction (Selvaraju et al., 2017). Grad-CAM is an extension of
CAM (Class Activation Mapping), commonly used to understand
CNN behavior. The process involves:

e Passing the input image through the CNN to compute
gradient scores for each class.
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FIGURE 14
Comparison between all utilized models: (a) pre-trained models, (b) pre-trained with dimension reduction, and (c) CNN and YOLO models.

TABLE 10 Performance comparison summary (Mean + Std from 5-Fold CV).

Model Params Accuracy F1-score AUC Time (ms) FPS
Pre-trained models

VGG19 21.6M 0.883 % 0.012 0.875 £ 0.011 0.939 & 0.008 28.7 34.8
ResNet-169 53.4M 0.872 %+ 0.010 0.863 % 0.014 0.945 £ 0.007 22.1 45.2
MobileNetV2 8.6M 0.889 = 0.009 0.873 £ 0.012 0.945 + 0.006 9.8 102.0
Our proposed models

CNN-PCA 17M 0.936 £ 0.006 0.871 & 0.007 0.943 £ 0.004 14.9 67.1
YOLOVS-SA 1L.7M 0.986 £ 0.003 0.921 £ 0.005 0.952 % 0.003 12.4 80.6
Edge deployment

YOLOVS-SA (Jetson) 1L7M 0.985 + 0.004 0.920 + 0.006 0.951 & 0.004 10.2 98.0
YOLOVS-SA (RPi 5) L7M 0.983 £ 0.005 0.918 £ 0.007 0.949 + 0.005 34.8 28.7

e Pooling gradients over spatial dimensions (width/height) to
generate a feature map.

e Combining the feature map with the original image to
highlight regions critical for the prediction.

5.7.3 Interoperability using attention weights
The spatial attention module enhances interpretability of our
model through three key operations: (1) a 1 x 1 convolutional
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layer projects input features into query (Q), key (K), and value (V)
spaces; (2) attention scores a;j are computed via scaled dot-product
between Q and K using o = softmax(QK” /«/E); (3) the output
refines V through weighted aggregation using «. As shown in
Table 14, mechanism automatically learns to emphasize emotion-
salient facial regions - particularly the eyebrows (Action Unit AU4)
for anger, cheek raising (AU6) for happy, and lip corner depressor
(AU12) for sadness—while suppressing irrelevant background
features. Region-specific attention weights were quantified by
analyzing 1,000 test images from FER2013 with manual facial
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landmark annotations, with values normalized to [0,1] by dividing
by the maximum attention weight per emotion category.

6 Integration on cloud

To validate the system’s real-world performance, we deployed
our model on three representative fog/edge platforms and
measured:

TABLE 11 Model performance comparison.

Model Params Inference FPS GPU
(M) (ms) Mem
VGGI19 21.6 28.7 34.8 3.2
ResNet-169 53.4 221 45.2 29
MobileNetV2 8.6 9.8 102.0 1.2
CNN-PCA (ours) 6.3 14.9 67.1 1.5
YOLOVS-SA (ours) 1.65 124 80.6 1.8

TABLE 12 Performance comparison between fog+cloud and cloud-only
approaches.

Metric Fog+ Cloud- Improvement
Cloud only

End-to-end latency 26 ms 142 ms 5.5 Faster

Energy per 09] 3.7] 4.1 Savings

inference

Data transmitted 12 KB/s 110 KB/s 89% reduction

10.3389/fcomp.2025.1714394

Inference Latency (per frame in ms).

Power Consumption (in W).

Memory Footprint (RAM/VRAM usage in GB).

Bandwidth Utilization (for fog— cloud offloading in Mbps).

The proposed model on Raspberry Pi 5 with Coral TPU as a
Low-cost edge the results show average latency of 34 & 3.8 with
FPS of 28.1 and Power 5.1 Second, we make Network Latency
Analysis which measured end-to-end latency across different
network conditions. From that table our target aligns with all
setting, as we need it to be less than or equal 33 ms/frame. Choosing
this threshold returns FDA guidance in medical systems Table 15
frame per time, as well as the real time applicability. Table 12
show Performance comparison between fog+cloud and cloud-only
approaches , as well as Table 16 show comparison between Device
Performance include [Jeston Orin, Raspberry Pi and Cloud (T4
GPU)]. To further contextualize the effectiveness of the proposed
approaches, Table 17 presents a comprehensive comparison with
existing emotion recognition models reported in the literature.

7 Comparison with other work

In this section, we compare our proposed work and other
literature regarding feature extraction techniques, the classification
model utilized in the dataset, and the final prediction. Table 6
details the comparison. From that table, we can observe the
following. (1) Among traditional ML models, SVM has been
applied to various datasets, including CK+ and FER, in studies
Eom and Choi (2019) and Gu et al. (2018). These studies utilized
VGG16, CNN, and Alexnet as feature extraction steps. In a
study Vaswani et al. (2023), authors used the RF model and
NFD as feature extraction on the SFEW dataset. This yields a

TABLE 13 Statistical performance comparison using 5-fold cross-validation (Mean + Std).

Model Accuracy Precision Recall Fl-score AUC

VGG19 0.880 = 0.012 0.849 £ 0.018 0.895 £ 0.015 0.871 = 0.011 0.939 = 0.008
MobileNetVv2 0.885 £ 0.010 0.865 = 0.016 0.846 == 0.020 0.855 = 0.014 0.945 = 0.007
CNN-PCA (ours) 0.933 = 0.007 0.968 = 0.009 0.840 = 0.012 0.899 = 0.008 0.940 £ 0.006
YOLOVS-SA (ours) 0.986 =+ 0.003 0.901 = 0.010 0.939 = 0.008 0.920 + 0.006 0.951 + 0.004

o

FIGURE 15
Image explanation using LIME: (a) neutral example, (b) happy example. Facial expression recognition challenge, https://www.kaggle.com/datasets/
msambare/fer2013 under the Database Contents License (DbCL) v1.0).
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FIGURE 16
Explanation using YOLO.

Grad-CAM Qverlay

TABLE 14 Normalized attention weights across facial regions.

TABLE 15 Connection performance and real-time applicability.

Facial Anger Happy  Sadness Surprise
region

Eye brows 0.78 0.12 0.35 0.42
Eyes 0.45 0.38 0.68 0.81
Mouth 0.32 0.82 0.74 0.53
Cheeks 0.15 071 0.28 0.39

lower performance of 57.7%. Others in Chaudhari et al. (2021)
suggest using SCALe invariant feature transform (SIFT) with
CNN, leading to an acc of 91.82 on the CK+ dataset. Others
utilized a probabilistic approach, as Santana and Colombini (2021)
utilized a Gaussian model on JAFFE; it achieved a height accuracy
of 95.6 when combined with a rapid feature extractor (Dual-
tree wavelet transform). Deep learning models such as CNN
demonstrate enhanced performance in Chefer et al. (2021). The
authors utilized the FER2013 dataset and achieved a 94.12%
accuracy. The same is true in Chen et al. (2020), where the
authors used RNN and CNN for feature extraction and LSTM
for classification. This assures the role of such a DL model
in capturing the temporal dependencies. Our proposed models
introduced two-person models. First, PCA integrated with CNN
was applied in FER, achieving an accuracy of 94.69%. The
second model in YOLO V8, with a self-attention mechanism,
achieved an accuracy of 98.69%, highlighting the integration of
self-attention and YOLO v8 in improving emotion recognition
accuracy. Overall, the results demonstrate the superiority of our
proposed model (YOLO8 with self-attention) in selecting the
appropriate features.
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Con Fog— frame Total RT
cloud latency  applicability
WiFi-6 8.2 ms 6.5 ms 25.1 ms Yes (39.8
FPS)
4G LTE 62.4 ms 24.7 ms 87.1 ms Limited (11.5
FPS)
5G SA 11.3 ms 7.1 ms 285 ms Yes (35.1
FPS)

TABLE 16 Device performance comparison.

Device Processing Local Total E2E
latency, network latency
T_proc latency, (ms)

(ms) T_net (ms)

Jetson Orin 102+ 1.1 ~ 1.0 ~122

Raspberry Pi 5 + 348 +5.7 ~ 1.0 ~ 36.8

TPU

Cloud (T4 GPU) 85+0.5 ~35.0 ~ 785

8 Limitation and future work

While our work demonstrates strong performance in controlled
settings, we intend to expand testing to more challenging real-world
conditions. collecting datasets with various conditions as follows:

e collecting images in Natural occlusions (masks, glasses, hair).
e maintain  different (low-light,
backlighting).

lighting  variations
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TABLE 17 Comparison of different models in emotion recognition for healthcare applications.

References Model Data Features # Emo Performance
Shahzad et al. (2023) SVM FER VGG 16 & AlexNet 7 ACC =86%
Shahzad et al. (2023) SVM CK+ CNN 7 ACC =94.94%
Liu et al. (2021) RF SFEW NFD 7 ACC =57.7%
Oguine et al. (2022) SIFT CK+ CNN 7 ACC =91.82%
Kommineni et al. (2021) Gaussian model JAFFE Dual-tree wavelet 7 ACC =99.53%
Ab Hamid et al. (2022) CNN JAFFE, FER2013 CNN 7 ACC=9%4.12%
Shahin et al. (2019) LSTM JAFFE RNN+CNN 7 ACC =93.08%
Proposed PCA_CNN FER PCA 7 ACC = 94.69%
Proposed YOLOVS + attention FER - 7 ACC =98.69%

These datasets will help to ensure the generalization ability of
the developed model.

9 Conclusion

Understanding human thoughts and mental states without
direct questioning is paramount, and emotion recognition is
vital in achieving this understanding. The advancements in DL
have significantly improved emotion recognition from facial
expressions. However, concerns remain about the reliability
of these systems in real-world scenarios. This paper addresses
these concerns by introducing a Real-Time Emotion Recognition
System based on the Fog Computing Technique. The system
leverages fog computing to ensure real-time constraints and
reliable monitoring of emotion recognition. A lightweight
CNN attention model is proposed to enhance the system’s
performance. This model has a more straightforward structure
and incorporates attention mechanisms to improve accuracy.
Additionally, dimension reduction techniques are applied to
the data before training, focusing on the most relevant features
for effective learning. The effectiveness of the proposed system
is evaluated using a dataset of 35,888 images categorized
into seven emotion classes. The developed model surpasses
popular pre-trained models like VGG, ResNet, and MobileNet
in accuracy, precision, recall, and AUC, achieving impressive
scores of 0.986, 0.902, 0.941, and 0.952., respectively. Notably,
the model exhibits a significantly faster processing time of 610
seconds than other pre-trained models. Additional datasets are
tested to validate the model’s superiority, consistently yielding
promising performance results. These findings further confirm
the efficiency and effectiveness of the developed model in real-
time emotion recognition scenarios. This research advances
emotion recognition systems by introducing a reliable and
efficient approach based on fog computing and a lightweight
CNN attention model. The proposed system demonstrates
enhanced accuracy, faster processing time, and consistent
performance across different datasets. These results highlight the
potential and practicality of the developed model in real-world
applications and pave the way for further advancements in emotion
recognition technology.
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