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Introduction: While Retrieval-Augmented Generation (RAG) enhances language
models, its application to long documents is often hampered by simplistic retrieval
strategies that fail to capture hierarchical context. Although the RAPTOR framework
addresses this through a recursive tree-structured approach, its effectiveness is
constrained by semantic fragmentation from fixed-token chunking and a static
clustering methodology that is suboptimal for organizing the hierarchy.

Methods: In this paper, we propose a comprehensive two-stage enhancement
framework to address these limitations. We first employ Semantic Segmentation
to generate coherent foundational leaf nodes, and subsequently introduce an
Adaptive Graph Clustering (AGC) strategy. This strategy leverages the Leiden
algorithm with a novel layer-aware dual-adaptive parameter mechanism to
dynamically tailor clustering granularity.

Results: Extensive experiments on the narrative QUALITY benchmark and the
scientific Qasper dataset demonstrate the robustness and domain generalization
of our framework. Our full model achieves a peak accuracy of 65.5% on
QUALITY and demonstrates superior semantic validity on Qasper, significantly
outperforming the baseline. Comparative ablation studies further reveal that our
graph-topological approach outperforms traditional distance-based, density-
based, and distribution-based clustering methods. Additionally, our approach
constructs a dramatically more compact hierarchy, reducing the number of
required summary nodes by up to 76%.

Discussion: This work underscores the critical importance of a holistic,
semantic-first approach to building more effective and efficient retrieval trees
for complex RAG tasks.

KEYWORDS

adaptive clustering, graph clustering, hierarchical retrieval, RAPTOR, retrieval-
augmented generation (RAG), semantic segmentation

1 Introduction

Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm for
enhancing Large Language Models (LLMs) (Brown et al., 2020; Chowdhery et al., 2023) by
providing them with external, up-to-date, and verifiable knowledge (Lewis et al., 2020). This
approach mitigates issues of hallucination and allows LLMs to reason over information not
present in their training data (Jiang et al., 2020). However, as the length and complexity of
source documents increase, standard RAG systems face significant challenges (Barnett et al.,
2024), primarily due to the fixed context window of LLMs and the difficulty of identifying
relevant information scattered across long texts (Liu et al., 2024).

The RAPTOR framework (Sarthi et al., 2024) introduced an innovative solution to
this problem by proposing a tree-structured, hierarchical approach to document
representation. Through a recursive “embed-cluster-summarize” process, RAPTOR

01 frontiersin.org


https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1710121&domain=pdf&date_stamp=2026-01-12
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1710121/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1710121/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1710121/full
mailto:Xiaodongxie@hqu.edu.cn
https://doi.org/10.3389/fcomp.2025.1710121
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1710121

Liu et al.

creates a multi-layered abstraction of the text, enabling efficient
retrieval of information at varying levels of granularity, from
specific details to high-level themes. This architecture has
demonstrated significant potential for long-document question
answering.

Despite its novel design, the effectiveness of the RAPTOR tree
is contingent upon two fundamental stages, both of which present
opportunities for significant improvement. The first is the leaf
node generation. RAPTOR's reliance on a fixed-token chunking
strategy is oblivious to the semantic boundaries of the text, often
resulting in the fragmentation of coherent logical units. This
creates a weak and semantically disjointed foundation for the
entire tree. The second limitation lies in the hierarchical clustering
process itself. The use of conventional clustering algorithms, such
as Gaussian Mixture Models (GMM), with static parameters is
often suboptimal for the complex, non-spherical manifolds of text
embeddings. A rigid clustering strategy struggles to adapt to the
different levels of semantic abstraction required at different
depths of the tree.

To address these dual limitations, we propose a comprehensive,
two-stage enhancement framework for RAPTOR. First, we replace
the fixed-token chunking with a semantic segmentation strategy,
ensuring that the foundational leaf nodes are semantically coherent
and self-contained. Second, we introduce a novel adaptive graph
clustering methodology. This approach leverages the state-of-the-art
Leiden algorithm for community detection and incorporates a layer-
aware dual-adaptive parameter strategy, which dynamically adjusts
the clustering granularity to match the level of abstraction at each
layer of the tree.

The main contributions of this work are as follows:

» We introduce a holistic, two-stage enhancement framework that
optimizes both the foundational leaf nodes and the internal
hierarchical structure of the RAPTOR tree.

o We demonstrate that employing semantic segmentation for
initial chunking provides a superior foundation, leading to
significant performance improvements in downstream
retrieval tasks.

o We design and implement an adaptive graph clustering algorithm
that constructs a more compact, efficient, and semantically
meaningful hierarchy, showing a strong synergistic effect when
combined with high-quality leaf nodes.

o Through extensive experiments on both the narrative
QuALITY benchmark and the scientific Qasper dataset, we
validate the robustness and domain generalization of our
framework. Our results show that the full model consistently
outperforms the original RAPTOR baseline. Furthermore, a
comparative  ablation study against distance-based
(Agglomerative) and density-based (HDBSCAN) clustering
methods demonstrates the superior efficacy of our graph-
topological approach in organizing complex semantic

information.

The remainder of this paper is organized as follows: Section 2
reviews related work in text chunking and clustering. Section 3 details
our proposed two-stage methodology. Section 4 presents our
experimental setup, results, and analysis. Finally, Section 5 concludes
the paper and discusses future work.
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2 Background
2.1 The chunking challenges in RAG

The performance of RAG systems hinges on how documents are
segmented into chunks. An effective strategy must balance two
competing demands:

Relevance: Small chunks improve retrieval precision by
reducing noise.

Contextual Integrity: Overly fine-grained chunks lose logical
connections between paragraphs.

Existing methods attempt to address this trade-off with varying
limitations. Fixed-size chunking simply splits text by token count,
often breaking semantic units (Zhang et al., 2023). While recursive
chunking relies on heuristic, rule-based delimiters like paragraphs or
sentences, semantic chunking methods (Chen et al., 2024a) leverage
embeddings to quantify coherence through cosine similarity,
dynamically aligning chunks with topic boundaries.

Traditional semantic chunking methods mainly rely on lexical
cohesion (Hearst, 1997) to detect discourse boundaries. However,
these methods perform poorly on text paragraphs with rich lexical
variations but consistent themes. With the development of deep
learning, modern text segmentation techniques have generally shifted
towards semantic representation methods based on pre-trained
language models (PLMs). The core idea within this paradigm is to
encode text units (such as sentences or paragraphs) into high
dimensional dense embedding vectors (Karpukhin et al., 2020)
through language models like BERT or Sentence-BERT (Reimers and
Gurevych, 2019; Nair et al., 2023). These embedding vectors map the
semantic content of the text to specific coordinates in the vector space,
enabling semantic associations to be quantified through the geometric
relationships between vectors. When quantifying the semantic
coherence between adjacent text units, cosine similarity has become
a de-facto standard metric. It measures the consistency in semantic
direction between two embedding vectors by calculating the cosine of
the angle between them. Its formal definition is as follows:

. Vi_1V;
simeos(-10%) =12
1— 1

The key advantage of cosine similarity lies in its magnitude
invariance. This means that it only focuses on the direction of vectors
(i.e., the theme), while ignoring differences in vector magnitude
caused by factors such as sentence length or lexical complexity. This
makes it particularly robust when comparing texts with varying levels
of detail but consistent themes.

Based on this, researchers typically use cosine distance, which is
defined as

1= sitcos (Vifl’vi )>

transforming the similarity problem into a distance metric. A
smaller distance value indicates a high degree of semantic continuity.
When the distance value exceeds a certain preset threshold or a local
peak occurs, it is considered that semantic discontinuity has occurred.
Based on this signal, the algorithm can infer the boundaries of
paragraphs at the corresponding positions. Although other metrics
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such as Euclidean distance (L2 Norm) can also be used, due to their
sensitivity to vector magnitude, they are not as widely applied in the
field of text semantic analysis as cosine distance. This segmentation
strategy based on semantic distance has become one of the mainstream
techniques for text chunking in current long document understanding,
information retrieval, and Retrieval Augmented Generation (RAG)
systems.

2.2 Clustering methods for text
representation

Clustering is a fundamental unsupervised learning technique for
organizing text documents by grouping semantically similar items
(Aggarwal and Zhai, 2012). The choice of algorithm is crucial as it
directly influences the quality of the resulting topical hierarchy.

A prevalent category of algorithms, including K-Means and
Gaussian Mixture Models (GMMs), operates on geometric or
distributional assumptions. These methods aim to partition the
embedding space into clusters that are geometrically compact or fit a
predefined probability distribution. However, they often presuppose
convex or ellipsoidal cluster shapes, a constraint that is frequently
violated by the complex, manifold-like structures of thematic groups
in textual data (McInnes et al., 2018). Furthermore, their efficacy can
be limited in the high-dimensional spaces of modern text embeddings,
where geometric assumptions may not hold (Aggarwal et al., 2001;
Aljaloud et al., 2024).

An alternative and more robust paradigm is graph-based clustering,
often framed as community detection. Advanced topic modeling
frameworks like BERTopic (Grootendorst, 2022) similarly leverage the
rich representations from deep embeddings to uncover complex
structures, moving beyond simple geometric assumptions. This approach
models documents as nodes in a graph, with edge weights representing
semantic similarity. The objective is to identify densely interconnected
communities of nodes. This method is agnostic to cluster shape and is
thus highly effective at uncovering complex thematic structures. The
Leiden algorithm (Traag et al., 2019) represents the state-of-the-art in
this domain, recognized for its efficiency and its ability to yield well-
connected, high-quality communities, making it particularly suitable for
discovering latent topics in large text corpora.

2.3 RAPTOR system

To address the challenge of long-document understanding, the
RAPTOR system (Sarthi et al. 2024; Cao and Wang, 2022) introduces a
tree-structured indexing approach. It hierarchically organizes information
through a recursive “embed-cluster-summarize” process. The system first
generates leaf nodes from initial text chunks, and then recursively groups
them using clustering algorithms such as Gaussian Mixture Models
(GMM). The nodes in each cluster are then summarized by a large
language model to form a parent node at a higher level of abstraction
(Gidi and Cohen, 2022). This architecture effectively creates a multi-
layered semantic hierarchy, from fine-grained details to high-level themes.

While this framework is powerful, its performance is highly
dependent on the quality of both its foundational leaf nodes and its
structural integrity. This exposes two potential limitations. First, its
reliance on a fixed-token chunking strategy can fragment semantically
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coherent text units, compromising the quality of the leaf nodes.
Second, as discussed in Section 2.2, the use of a conventional,
distribution-based clustering algorithm like GMM may not optimally
capture the complex, non-spherical thematic structures often present
in text embedding spaces.

These limitations in both the leaf node generation and the
hierarchical clustering stages motivate our work. In this paper, we
propose a two-stage enhancement to build more semantically robust
and structurally sound retrieval trees.

3 An enhanced RAPTOR tree
construction framework

In this section, we present our two-stage framework for enhancing
the RAPTOR tree construction process. Our approach is designed to
build a more semantically robust and structurally coherent retrieval
tree by optimizing both the foundational leaf node generation and the
subsequent hierarchical clustering. Figure 1 illustrates the overall
workflow of our proposed method.

3.1 Leaf node generation via semantic
segmentation

The structural integrity and retrieval accuracy of the entire
RAPTOR tree are fundamentally dependent on the quality of its
foundational leaf nodes. The original method employs a fixed-token
chunking strategy (e.g., 100 tokens per chunk), which, while simple,
is oblivious to the underlying semantic structure of the text. This can
lead to the fragmentation of coherent logical units, severely impacting
the performance of subsequent clustering, summarization, and
retrieval tasks.

This limitation is starkly illustrated by an example from the QUALITY
dataset, in the text “LOST IN TRANSLATION By LARRY M. HARRIS”
The fixed-token chunking method partitions a single, causally-linked
conversation into three separate chunks (107, 108, and 109). This division
severs the logical connection between the premises of the conversation
and its conclusion. Consequently, a retrieval query is likely to fetch only
the chunk containing the final conclusion (109), while missing the crucial
context from the preceding chunks. This results in an incomplete and
misleading context for the language model, leading directly to an incorrect
answer for the associated question.

To overcome this critical issue, we propose a semantic
segmentation strategy for initial node generation. Instead of relying on
arbitrary token counts, this method identifies and preserves
semantically coherent blocks of text. The core of this approach is to
partition the document based on its intrinsic thematic shifts. The
process first decomposes the input text into sentences and generates
their corresponding vector embeddings. It then iteratively calculates
the semantic distance between adjacent sentence embeddings to detect
topic boundaries. A new chunk is formed whenever this distance
exceeds a predefined threshold, 7, or a maximum token limit is reached.

When applied to the aforementioned example, our semantic
segmentation method correctly groups the entire related conversation
into a single, cohesive chunk. By preserving the logical integrity of the
text, this approach provides the language model with the complete
context necessary for accurate inference. As a result, our enhanced
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Enhanced RAPTOR Framework
Legend

A. Semantic Chunking Mechanism

LLM: Summarization Agent . Sentence Node (s;) 1 k: Neighbor Parameter ‘ ¥: Resolution Parameter

J

C. The Enhanced Tree

B. Dual-Adaptive Graph Clustering

Root Node

—— Cosine Similarity

S1

FIGURE 1

The architecture of the enhanced RAPTOR framework. (A) Semantic chunking mechanism: illustrates the “Leaf Node Generation” stage using semantic
segmentation. The system calculates the cosine similarity between adjacent sentence embeddings. A segmentation boundary (indicated by the scissor
icons) is established only when the similarity drops below the predefined semantic threshold 7 (e.g., 0.7). This dynamic strategy preserves “coherent
logical units,” effectively preventing the “context fragmentation” often caused by fixed-token chunking. (B) Dual-adaptive graph clustering: depicts the
construction of the hierarchical structure using the Leiden algorithm driven by a layer-aware dual-adaptive parameter strategy. As the hierarchy
ascends from the bottom (Layer 0) to the top: 1. The neighbor parameter (k) increases linearly (blue arrow) to expand the topological receptive field
and capture broader global relationships. 2. The resolution parameter (y) decreases linearly (purple arrow) to coarsen granularity and encourage high-
level thematic aggregation. Detected communities are summarized by an LLM Agent to form parent nodes for the subsequent layer. (C) The enhanced
tree: shows the final "multi-layered semantic hierarchy.” This structure integrates the semantically robust leaf nodes from Panel A with the optimized

10.3389/fcomp.2025.1710121

topological clusters from Panel B, creating a compact and efficient index for top-down retrieval.

model successfully provides the correct answer to the question that the
original RAPTOR failed. The detailed chunking results for this specific
example, comparing both methods, can be found in Appendices A, B.

This semantic-first approach ensures that each leaf node
represents a coherent and self-contained unit of information,
providing a high-quality foundation for the subsequent clustering
stage. The complete process is formalized in Algorithm 1.

3.2 Construction of the hierarchical
structure

With a robust foundation of semantically coherent leaf nodes
established in Stage 1, we proceed to construct the tree’s internal
hierarchical structure. This stage introduces a novel methodology that
replaces conventional clustering techniques with a more sophisticated
and adaptive graph-based approach, designed to better capture the
complex relational structure of textual data.

3.2.1 Graph-based clustering via community
detection

Traditional clustering algorithms, such as GMM, operate under
geometric or distributional assumptions that often fail to adequately
model the complex, non-spherical manifolds where text embeddings
reside. To overcome this, we reframe the clustering problem as a
community detection task.

Frontiers in Computer Science

For any given layer of nodes, we first construct a k-Nearest
Neighbor (k-NN) graph. In this structure, nodes represent text units
(chunks or summaries), and edges signify the semantic proximity
between them. The choice of cosine similarity as the edge weighting
metric is deliberate. In high-dimensional embedding spaces,
Euclidean distance becomes less discriminative due to the curse of
dimensionality (Aggarwal et al., 2001) and is often sensitive to vector
magnitude, which correlates with sentence length rather than
meaning. In contrast, cosine similarity captures the directional
alignment of semantic vectors. This ensures that our graph topology
relies purely on thematic consistency independent of text length,
providing a robust foundation for community detection.

We then employ the Leiden algorithm (Traag et al., 2019) to
partition this graph. Unlike traditional methods, Leiden is agnostic to
cluster shape and guarantees well-connected communities.
Specifically, we utilize the RBConfigurationVertexPartition method,
which optimizes a Potts model and allows for precise control over
community density—a feature we exploit in our adaptive strategy.
Each detected community is then treated as a single cluster, and its
constituent nodes are summarized by a Large Language Model to
form a parent node in the subsequent, higher layer of the tree.

3.2.2 Dual-adaptive strategy for multi-resolution
clustering

A central innovation of our framework is the recognition that a
single, static clustering granularity is suboptimal for a multi-layered

frontiersin.org
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ALGORITHM 1 Semantic segment algorithm.

Input: Original text string D; semantic threshold t; maximum
number of tokens Lmax.

Output: List of text chunks C=[Ci, C2,..., Cy].

Step 1: S«SplitSentences(D) //Split D into a sequence of sentences
S=[s1,...,5n]

Step 2: E—encode_batch(S) //Obtain the sequence of embedding
vectors E=[e; ,...,en]

Step 3: start—1 // Set the current chunk as the starting sentence

indexC«—[] // Initialize the result set

Step 4: for i=2,...,n: // For each sentence

d«Distance(ei-1,ei) //Calculate the semantic distance
between adjacent sentences

drift<(d>t) // Check if there is a semantic drift

length«—TokenCount(S[start,...,i])>L max // Check if
the length limit is exceeded

if drift or length then

C.append(S[start,...,i—1]) // Form a complete
chunk

starti // Set the starting point of the new chunk

Step 5: Output C, and the algorithm ends.

hierarchy. We introduce a dual-adaptive strategy to dynamically adjust
the resolution of the clustering process in correspondence with the
level of semantic abstraction.

Our guiding hypothesis is that different layers of the tree demand
different notions of semantic proximity. At lower layers, containing
specific granular content, the system must prioritize local, strong
connections to form tight thematic clusters. Conversely, at higher
layers composed of abstract summaries, the system must expand its
scope to identify broader, long-range relationships that connect
disparate sub-topics into a cohesive whole.

To implement this multi-resolution clustering, we first
dynamically adjust the number of neighbors, k, as a linear function of
the tree’s layer depth (layer_id):

Keurrent = Kpase + (lﬂ)’ﬁ _idx kstep )

In this formulation, kp,s defines the initial fine-grained
connectivity for the leaf layer, while kg, controls the rate at which the
topological search radius expands as the tree ascends. We employ this
linear progression strategy as a heuristic to model the “Cone of
Abstraction” inherent in document hierarchies. As the tree ascends,
the semantic “field of view” required to aggregate sub-topics naturally
widens. While more complex functions could be hypothesized, a
linear increase represents the most parsimonious and robust
assumption for general discourse structures, providing a stable
expansion of the receptive field without introducing the overfitting
risks associated with higher-order hyperparameters.

Frontiers in Computer Science

ALGORITHM 2 Adaptive graph clustering and hierarchy
construction.

Input: List of leaf nodes N; Neighbor parameters kyqge, Kstep 3
Resolution parameters ¥ pase, Vsteps

Output: Hierarchical Tree T.

Step 1: Initialize T with N(0),set current layer depth [ < 0.
Step 2: While [N®| > 1 do: // Continue until a root node is formed
//Dual-Adaptive Parameter Update

kcurr(_kbase+( 1% kstep)

Yeurr < MaxX(Ypase = (IX Vstep), 0-1)

// Graph Construction & Community Detection
G « BuildKNNGraph(N®, k...)

C < LeidenAlgorithm(G, resolution=y ;)

// Summarization for Next Layer

NED

For each cluster ¢ € C do:

s « LLM_Summarize(c) // Generate summary for
the cluster

N@D append(s)
Add node s to T as parent of nodes in ¢

| < 1+ 1// Move to the next layer

Step 3: Output T, and the algorithm ends.

Complementing this topological adaptation, we simultaneously
introduce a dynamic resolution parameter, y, for the Leiden algorithm.
While the k-value dictates the connectivity of the graph, y controls the
granularity of the community detection itself. We initialize y at a
higher value to strictly partition local details at the bottom and linearly
decay it to encourage the merging of broader communities at
higher levels.

This dual-adaptive mechanism ensures that the structural
organization of the tree is contextually sensitive to the level of
abstraction at each layer, resulting in a more logically sound and
semantically meaningful hierarchy. Integrating the graph-based
community detection detailed in Section 3.2.1 with the adaptive
parameter strategy proposed above, we present the comprehensive
workflow for our tree construction. This iterative process, which
transforms semantic leaf nodes into a unified hierarchical structure,
is formalized in Algorithm 2.

4 Experiments
4.1 Experimental setup

To rigorously evaluate the proposed framework’s performance
and generalization capabilities, we conducted experiments across

two distinct datasets representing different domains and task
formats.
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4.1.1 Datasets

QUALITY (Narrative Long-Context Understanding): We utilize
the QUALITY dataset (Pang et al., 2022) as our primary benchmark
for evaluating narrative comprehension. This dataset consists of
long-form documents (average 5 k tokens) with complex, cross-
paragraph questions requiring reasoning over disparate parts of the
text. The task is formatted as multiple-choice question answering.

Qasper (Scientific Literature QA): To assess the model’s domain
generalization and robustness in processing highly structured, logic-
dense text, we extend our evaluation to the Qasper dataset (Dasigi et
al., 2021). Qasper focuses on information-seeking questions over full-
text computer science research papers. Unlike QUALITY, Qasper
requires open-ended question answering, challenging the retrieval
system to synthesize precise answers from technical content
containing formulas, figures, and complex citations.

4.1.2 Evaluation metrics

Given the differing nature of the tasks, we employ task-specific
metrics:

Accuracy (for QUALITY): Following standard benchmarks, we
report Accuracy as the primary metric for the multiple-choice
questions in QUALITY.

Lexical and Semantic Metrics (for Qasper): For the open-ended
generation tasks in Qasper, we adopt a dual-faceted evaluation
strategy:

o Lexical Overlap Metrics: We utilize Token F1 Score, ROUGE-1,
and ROUGE-L to quantify the surface-level lexical match
between the generated answers and the ground truth. ROUGE-1
assesses information coverage (unigram overlap), while
ROUGE-L evaluates structural coherence (longest common
subsequence).

o LLM Score (Semantic Evaluation): Recognizing that lexical overlap
metrics may penalize semantically correct but phrased-differently
answers, we introduce a model-based metric, LLM Score. We
employ DeepSeek-V3 as an expert evaluator to rate the generated
answer against the gold reference on a 5-point Likert scale (1: Bad
to 5: Perfect). This metric specifically prioritizes information
completeness and logical correctness over mere string matching.
The specific evaluation prompt used is detailed in Appendix C.

4.1.3 Implementation details

Models: We utilize the BAAI/bge-m3 model (Chen et al., 2024b)
for all text embeddings. The deepseek-v3-0324 model is accessed via
its official API to perform both the summarization of clusters and the
final question-answering tasks. The specific prompt templates used for
these tasks are detailed in Appendix C.

Clustering Configuration: For the adaptive graph clustering stage,
Leiden
RBConfigurationVertexPartition method to optimize the community

we  employed  the algorithm  utilizing  the
structure. The graph construction relies on a k-Nearest Neighbor
(k-NN) approach where edges are weighted by the cosine similarity
between node embeddings. To implement our dual-adaptive parameter

strategy, we configured the parameters as follows:
o Adaptive Neighbors (k): We set the initial neighbor count

Kpase =15 for the leaf layer, increasing by kgtep =5 for each
subsequent layer to expand the topological receptive field.
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o Adaptive Resolution (y): We initialized the resolution parameter
at Ybase =1.0 and linearly decayed it by ygep =0.2 per layer
(minimum 0.1) to encourage broader semantic aggregation at
higher levels.

o Constraints: To manage the context window limits of the
summarization model, we imposed a strict maximum cluster size
of 100 nodes. Any community exceeding this threshold was
recursively re-clustered using the same adaptive logic.

To ensure reproducibility, we fixed the random seed to 224 for all
sampling, clustering, and embedding processes.

4.1.4 Comparative configurations
We evaluate three distinct configurations to isolate the
contributions of each component:

o Original RAPTOR (Baseline): Employs fixed-token chunking
(100 tokens) and its default GMM-based clustering.

o RAPTOR + SC: Integrates our semantic chunking (SC) method. We
test a range of semantic thresholds 7 € {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}.

o Our Full Model (RAPTOR + SC + AGC): Our complete model,
combining semantic chunking with our adaptive graph clustering
(AGC) algorithm, utilizing the dual-adaptive parameter settings
described above. We also evaluate a variant (Fixed Chunking +
AGC) on the Qasper dataset to verify the independent
effectiveness of the graph clustering algorithm.

4.2 Performance on narrative long-context
QA (QUALITY)

4.2.1 Impact of semantic segmentation

To isolate the effect of our first contribution, we first replace
RAPTORS fixed-token chunking with our semantic segmentation
approach. We conducted a parameter sweep across various semantic
thresholds (7) to identify the optimal configuration. The results are
presented in Figure 2.

The results illustrate a distinct non-monotonic relationship
between model performance and the chosen semantic threshold.
Accuracy improves steadily as 7 increases from 0.3, peaking at t = 0.7
with an accuracy of 55.17%, before declining at 7 = 0.8. This peak
represents a significant 5.5 percentage point improvement over the
fixed-token baseline (49.67%).

The peak performance at 7=0.7 suggests that this threshold
represents an optimal equilibrium point between granularity and
coherence:

o Below 0.7 (Over-segmentation): At lower thresholds (z < 0.6), the
segmentation algorithm is overly sensitive to minor lexical
changes. This triggers excessive splitting, shattering coherent
logical units—such as a narrative event or a premise-conclusion
pair—into disjoint fragments. This fragmentation forces the
retrieval system to piece together scattered context, significantly
increasing the risk of missing critical links required for complex
reasoning.

o Above 0.7 (Semantic Drift): Conversely, at higher thresholds (e.g.,
7 = 0.8), the chunking becomes too lenient. The algorithm fails to
detect subtle topic shifts, allowing distinct, unrelated themes to
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Accuracy Comparison of RAPTOR + SC vs. Original RAPTOR
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merge into noisy, multi-topical blocks. This semantic drift dilutes
the specific embedding of the leaf node, making precise retrieval
more difficult.

Optimal (t = 0.7): Therefore, T = 0.7 appears to align most closely

with the natural semantic pulse of human-written text. It
effectively captures complete reasoning chains within a single
node while maintaining thematic purity, providing a high-quality
foundation for the subsequent clustering stage.

This analysis validates the general effectiveness of the semantic
chunking approach and identifies 6=0.7 as its optimal operating
point. In the following section, we will evaluate our full model, which
incorporates adaptive graph clustering, across this same range of
thresholds to assess its cumulative impact and consistency.

4.2.2 Combined effect with adaptive graph
clustering

Having established the efficacy of semantic chunking, we now
evaluate our full model, which integrates adaptive graph clustering
(AGC) on top of this foundation. To provide a comprehensive
comparison, we test both the RAPTOR + SC model and Our Full
Model (RAPTOR + SC + AGC) across the full range of semantic
thresholds. The results are presented in Table 1.

The results reveal several crucial insights:

Consistent Improvement in Optimal Range: When the semantic
threshold is within a reasonable range (z > 0.5), our full model
consistently outperforms the RAPTOR + SC model. This demonstrates
that the adaptive graph clustering provides a significant performance
enhancement when operating on a foundation of well-formed,
coherent leaf nodes.

Frontiers in Computer Science

TABLE 1 Performance comparison across different semantic thresholds (7).

Semantic RAPTOR + Our full Performance

threshold SC model gain from

(x) (accuracy, (accuracy, AGC (%)
%) %)

0.3 46.33 38.50 —7.83

0.4 45.50 45.00 0.5

0.5 49.00 51.00 +2.00

0.6 51.83 57.50 +5.67

0.7 55.17 65.50 +10.33

0.8 48.33 64.00 +15.67

Bold values indicate the highest accuracy achieved in each column.

Peak Performance and Synergistic Effect: The performance of our
full model also peaks at 7 = 0.7, reaching a final accuracy of 65.5%. At
this optimal operating point, the introduction of AGC yields an
absolute performance gain of 10.33 percentage points over semantic
chunking alone. This substantial improvement strongly suggests a
synergistic effect: the adaptive graph clustering algorithm is able to
fully capitalize on the high-quality semantic chunks, leading to a
much more effective retrieval hierarchy than either enhancement
could achieve in isolation.

Behavior at Extreme Thresholds: At lower thresholds (7 < 0.5),
where semantic chunking leads to over-segmentation, the performance
of the full model degrades. This is expected, as even a superior
clustering algorithm cannot effectively group overly fragmented and
context-poor leaf nodes. Interestingly, at a very high threshold
(r =0.8), while the performance of RAPTOR + SC drops, our full
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model maintains a high accuracy. This suggests that the robust graph
clustering mechanism may be more resilient to the noise introduced
by slightly over-lenient chunking compared to the default GMM.

Overall, our complete model, integrating both enhancements,
significantly outperforms the original RAPTOR baseline (49.67%) by
a margin of 16.83 percentage points, confirming the substantial value
of our two-stage optimization framework.

4.2.3 Impact of clustering strategy (ablation
study)

To validate the necessity of our proposed Adaptive Graph
Clustering (AGC), we conducted an ablation study comparing it
against other prevalent clustering algorithms. To ensure a fair
comparison, all methods were evaluated using the same high-quality
leaf nodes generated by Semantic Chunking with the optimal
threshold (r = 0.7).

We compared the following clustering methodologies:

Agglomerative Clustering: A standard bottom-up hierarchical
approach (distance threshold = 0.9).

HDBSCAN: A density-based algorithm (min_cluster_size = 2)
known for handling noise.

Gaussian Mixture Models (GMM): The probabilistic clustering
method used in the original RAPTOR framework.

Adaptive Graph Clustering (Ours): Our proposed graph-based
community detection method.

The results are summarized in Table 2.

The substantial performance gap between the algorithms
highlights the critical role of structural organization in hierarchical
retrieval:

Failure of Distance and Density Metrics: Both Agglomerative
Clustering (47.50%) and HDBSCAN (49.00%) underperformed
significantly, falling below the GMM baseline. Agglomerative
clustering suffers from the rigidity of fixed distance thresholds in high-
dimensional embedding spaces. Similarly, HDBSCAN’s mechanism
of classifying sparse data points as “noise” is detrimental in the RAG
context, as outliers often contain unique, query-specific details that
are essential for retrieval. Discarding them leads to information loss.

Limitations of Geometric Assumptions: While GMM (55.17%)
performs respectably due to its soft-clustering nature, it is constrained
by the assumption that semantic topics form spherical Gaussian
distributions—a simplification that often fails to capture the complex,
irregular manifold of natural language representations.

Superiority of Graph Topology: Our Adaptive Graph Clustering
(65.50%) outperforms the next best method (GMM) by over 10
percentage points. This improvement stems from the method’s ability
to model semantic relationships as a topological graph structure

TABLE 2 Accuracy comparison of different clustering algorithms on the
QUALITY dataset (fixed semantic chunking t = 0.7).

Clustering Methodology type Accuracy
algorithm (%)
Agglomerative (t = 0.9) Distance-based (hierarchical) 47.50
HDBSCAN (min_size = 2) Density-based 49.00
Distribution-based
GMM (RAPTOR baseline) 55.17
(Probabilistic)
Adaptive graph clustering Graph-based (topological) 65.50
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rather than geometric clusters. By leveraging the Leiden algorithm
with our dual-adaptive strategy, it preserves the connectivity of the
semantic manifold and ensures that every node is meaningfully
integrated into the hierarchy, avoiding both the information loss of
density methods and the rigid assumptions of geometric methods.

4.3 Generalization on scientific literature
(Qasper)

To investigate the domain generalization capabilities of our
framework, we extended our evaluation from the narrative texts of
QUALITY to the highly technical and logic-dense scientific papers of the
Qasper dataset. This experiment aims to verify whether our proposed
enhancements—Semantic Chunking (SC) and Adaptive Graph
Clustering (AGC)—maintain their effectiveness in retrieval scenarios
that require synthesizing information from complex academic discourse.

4.3.1 Performance comparison

We evaluated the Original RAPTOR baseline, an ablation model
utilizing Fixed Chunking with AGC, and our Full Model across a
range of semantic thresholds (7). Table 3 presents the performance
comparison using both lexical overlap metrics (Token F1, ROUGE)
and the semantic-aware LLM Score.

4.3.2 Analysis of results

The experimental results on Qasper reveal three critical insights
regarding the structural and semantic advantages of our framework:

Efficacy of Adaptive Graph Clustering: Comparing the Original
RAPTOR baseline with the Fixed Chunking + AGC ablation model
demonstrates the independent contribution of our clustering
algorithm. Even without semantic segmentation, replacing GMM
with Adaptive Graph Clustering significantly improves performance
across all metrics, raising the LLM Score from 3.08 to 3.23 and Token
F1 from 6.45 to 7.45%. This confirms that the graph-based
hierarchical structure is intrinsically better suited for organizing the
complex, non-spherical topic manifolds found in scientific literature,
resulting in better information retrieval regardless of the chunking
strategy.

TABLE 3 Performance comparison on the Qasper dataset.

Model Token ROUGE-1 ROUGE-L LLM
configuration F1 (F1) (F1) score
(1-5)
Original RAPTOR 6.45 8.10 5.90 3.08
(Baseline)
Fixed Chunking + 7.45 9.41 7.46 3.23
AGC
Full Model (t = 0.3) 7.09 9.67 7.41 321
Full Model (t = 0.4) 6.51 8.99 6.72 322
Full Model (t = 0.5) 6.00 851 6.47 324
Full Model (t = 0.6) 7.14 9.83 7.84 322
Full Model (t = 0.7) 6.88 9.17 7.18 3.26
Full Model (t = 0.8) 7.04 9.50 7.17 325

The “LLM Score” (1-5) evaluates semantic accuracy and completeness as rated by an expert
LLM judge. The highest scores in each category are highlighted in bold.
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Robustness of the Optimal Threshold (t = 0.7): Consistent with our
findings on the QUALITY dataset (Section 4.2), the Full Model
achieves its highest semantic performance (LLM Score: 3.26) at a
threshold of 7 = 0.7. This recurrence suggests that T = 0.7 represents a
robust equilibrium point for text segmentation across different
domains, effectively balancing the granularity required for detail
retrieval with the coherence needed for logical reasoning.

Divergence between Lexical and Semantic Metrics: A notable
observation in Table 2 is the divergence between exact-match metrics
(Token F1, ROUGE) and the semantic LLM Score. While Fixed
Chunking + AGC achieves the highest Token F1 (7.45%), it falls short
in the LLM Score (3.23) compared to the Full Model at T = 0.7 (3.26).
This discrepancy highlights the limitation of N-gram overlap metrics
in complex QA tasks. Fixed-token chunking often severs semantic
dependencies (e.g., separating a hypothesis from its result), leading to
retrieved contexts that contain correct keywords (high F1) but lack
logical continuity. In contrast, our semantic segmentation ensures that
retrieval units are self-contained logical blocks. Although this may
result in slightly lower surface-level lexical overlap, it provides the
generation model with a more coherent context, enabling it to
synthesize answers that are semantically superior and more logically
accurate, as reflected by the expert LLM evaluation.

In conclusion, the Qasper experiments validate the domain
generalization of our framework. By prioritizing semantic integrity
through segmentation and structural optimization through graph
clustering, our model outperforms the baseline in generating
high-quality, logic-driven answers for scientific queries.

4.4 Computational cost analysis

To assess the practical implications of our proposed enhancements,
we conducted a detailed analysis of the computational costs associated
with the tree construction process. We logged time and token
consumption across three different document lengths (~6 k, ~18k,
and ~65 k tokens) for both the RAPTOR + SC and our Full Model
configurations. The key findings are summarized in Table 4, focusing
on the most challenging ~65 k token document as a representative case.

Based on the empirical data and theoretical modeling, we analyze
the cost-performance dynamics from three perspectives:

Empirical Cost Breakdown: The introduction of semantic chunking
incurs an upfront computational cost (Stage 1), increasing the initial
processing time from negligible in the baseline to approximately 68 s.

10.3389/fcomp.2025.1710121

This is due to the necessity of embedding all sentences to detect
semantic boundaries. However, this investment yields a dramatic
return in structural efficiency. The Adaptive Graph Clustering (AGC)
constructs a significantly more compact hierarchy, requiring only 34
summary nodes compared to 141 in the baseline, a 76% reduction.
Consequently, the token consumption for LLM summarization (Stage
3), which is typically the most expensive component of the RAPTOR
tree construction, drops from 95,001 to 73,282 tokens.

Theoretical Complexity Analysis: To understand the scalability of our
approach, we analyze the time complexity with respect to the document
length N (in tokens). Let C denote the number of chunks, where C occ N.

o Embedding (O (N )): Our semantic segmentation requires passing
the full text through the embedding model, introducing a linear
complexity O (N ) This explains the upfront time cost observed.

o Clustering (O(Cz)): The graph construction involves a k-NN

search, theoretically scaling as O C? ), followed by the Leiden
algorithm with near-linear complexity O(C ) While O(CZ)
appears computationally intensive, C represents chunks rather
than tokens(e.g., C~ 700 for N =65k). Thus, the actual
computation time is trivial compared to LLM inference.

o Summarization (O(N sum )): The dominant factor in total latency
is the LLM summarization, scaling as O(N sum ), where Ny, is
the total number of summary nodes. Our Dual-Adaptive strategy
minimizes Ny,,,,,, effectively reducing the coefficient of the most
expensive term in the total cost equation.

The Strategic Trade-off: Prioritizing Structure for Efficiency

While our Full Model incurs a higher upfront time cost due to
semantic embedding and graph construction, this represents a
deliberate optimization of the RAPTOR framework: allocating more
resources to the low-latency structuring phase to improve the
efficiency of the high-latency generation phase.

o Cost-Efficiency: By leveraging the Leiden algorithm to construct
a denser hierarchy, we exchange a modest increase in CPU-based
clustering time for a favorable reduction in API token
consumption. This shift effectively lowers the computational
burden on the most expensive component of the pipeline, the
LLM summarization.

TABLE 4 Computational cost comparison for a ~65 k token document at the optimal threshold (r = 0.7) versus the fixed-token baseline.

Metric Original RAPTOR (fixed-token) RAPTOR + SC (xr = 0.7) Our full model (x = 0.7)
Initial Embedding Cost (Stage 1)

time_stagel_sent_embed N/A 71.64 67.86
tokens_stagel_sent_embed N/A 81,311 86,617

Tree Structure Complexity

num_leaf nodes 726 714 714
num_summary_nodes 134 141 34

Tree Build Cost (Stage 3)

time_stage3_tree_build_s 118.78 131.0 261.23
tokens_to_summarize 95,001 92,927 73,282
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o Information Density: The enhanced clustering process serves to
improve semantic coherence. Instead of summarizing text
fragments that may be arbitrarily segmented, our method guides
the LLM to process well-grouped, thematically related
communities. This likely mitigates the propagation of noise and
increases the informational value of each generated
summary node.

o Performance ROIL: Crucially, this investment in structural
integrity translates into substantial retrieval improvements. The
peak accuracy gain of 15.83% over the RAPTOR baseline
suggests that a refined tree structure is highly beneficial for
complex reasoning tasks, effectively justifying the additional

preprocessing overhead.

5 Conclusion and future work
5.1 Conclusion

In this work, we enhanced the RAPTOR framework by addressing
limitations in context fragmentation and hierarchical organization.
We proposed a two-stage approach integrating Semantic Segmentation
to preserve logical units and Adaptive Graph Clustering (AGC) to
optimize tree topology.

Extensive evaluations on both the QUALITY (narrative) and
Qasper (scientific) datasets demonstrate the robustness and
generalization of our method.

Performance: Our model achieved a peak accuracy of 65.5% on
QuALITY 1 and demonstrated superior semantic validity (LLM Score:
3.26) on the Qasper benchmark, consistently peaking at a semantic
threshold of 7= 0.7.

Structural Efficacy: Ablation studies confirm that our graph-
topological approach significantly outperforms traditional distance-
based (Agglomerative), density-based (HDBSCAN), and distribution-
based (GMM) clustering methods.

These results underscore the efficacy of a “semantic-first” strategy,
proving that optimizing both foundational leaf nodes and structural
organization yields a more coherent and efficient retrieval hierarchy
for complex RAG tasks.

5.2 Future work

While our proposed framework has demonstrated significant
improvements on both narrative and scientific datasets, the critical
role of the clustering structure revealed in our experiments suggests
several promising avenues for future research:

Optimization of Adaptive Parameter Strategies: Our ablation
studies confirmed that the topological structure of the retrieval tree is
a decisive factor in performance. Currently, our dual-adaptive strategy
employs a heuristic linear function to adjust the neighbor count (k)
and resolution (y). Future work should investigate non-linear
adaptation schemes (e.g., exponential or logarithmic scaling) to better
model the “Cone of Abstraction.” Furthermore, we propose exploring
data-driven adaptation, where clustering parameters are dynamically
tuned based on the intrinsic density or manifold curvature of the
specific document’s embeddings, rather than relying on fixed layer-
based rules.
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Automated Hyperparameter Tuning: Our experiments identified
7= 0.7 as a robust threshold across domains. However, manual grid
search is inefficient for diverse real-world applications. Developing a
lightweight, unsupervised metric to automatically estimate the
optimal segmentation threshold (t) and clustering density for unseen
domains would be a significant advancement.

Scalability and Efficiency: Although effective, the exact k-NN
graph construction in our approach incurs a computational cost of
o(c?)
algorithms, such as HNSW, could dramatically accelerate graph

Integrating Approximate Nearest Neighbor (ANN)

construction with negligible accuracy loss, making the framework
scalable to massive corpora.

Impact of Embedding Manifolds: Since graph topology is derived
from embedding similarities, the choice of the embedding model
fundamentally dictates the cluster quality. Future research should
systematically evaluate how different embedding architectures (e.g.,
dense vs. sparse, general vs. domain-specific) interact with our graph
clustering algorithms to further optimize the semantic structure.
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