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Introduction: While Retrieval-Augmented Generation (RAG) enhances language 
models, its application to long documents is often hampered by simplistic retrieval 
strategies that fail to capture hierarchical context. Although the RAPTOR framework 
addresses this through a recursive tree-structured approach, its effectiveness is 
constrained by semantic fragmentation from fixed-token chunking and a static 
clustering methodology that is suboptimal for organizing the hierarchy.
Methods: In this paper, we propose a comprehensive two-stage enhancement 
framework to address these limitations. We first employ Semantic Segmentation 
to generate coherent foundational leaf nodes, and subsequently introduce an 
Adaptive Graph Clustering (AGC) strategy. This strategy leverages the Leiden 
algorithm with a novel layer-aware dual-adaptive parameter mechanism to 
dynamically tailor clustering granularity.
Results: Extensive experiments on the narrative QuALITY benchmark and the 
scientific Qasper dataset demonstrate the robustness and domain generalization 
of our framework. Our full model achieves a peak accuracy of 65.5% on 
QuALITY and demonstrates superior semantic validity on Qasper, significantly 
outperforming the baseline. Comparative ablation studies further reveal that our 
graph-topological approach outperforms traditional distance-based, density-
based, and distribution-based clustering methods. Additionally, our approach 
constructs a dramatically more compact hierarchy, reducing the number of 
required summary nodes by up to 76%.
Discussion: This work underscores the critical importance of a holistic, 
semantic-first approach to building more effective and efficient retrieval trees 
for complex RAG tasks.
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1 Introduction

Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm for 
enhancing Large Language Models (LLMs) (Brown et al., 2020; Chowdhery et al., 2023) by 
providing them with external, up-to-date, and verifiable knowledge (Lewis et al., 2020). This 
approach mitigates issues of hallucination and allows LLMs to reason over information not 
present in their training data (Jiang et al., 2020). However, as the length and complexity of 
source documents increase, standard RAG systems face significant challenges (Barnett et al., 
2024), primarily due to the fixed context window of LLMs and the difficulty of identifying 
relevant information scattered across long texts (Liu et al., 2024).

The RAPTOR framework (Sarthi et al., 2024) introduced an innovative solution to 
this problem by proposing a tree-structured, hierarchical approach to document 
representation. Through a recursive “embed-cluster-summarize” process, RAPTOR 
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creates a multi-layered abstraction of the text, enabling efficient 
retrieval of information at varying levels of granularity, from 
specific details to high-level themes. This architecture has 
demonstrated significant potential for long-document question 
answering.

Despite its novel design, the effectiveness of the RAPTOR tree 
is contingent upon two fundamental stages, both of which present 
opportunities for significant improvement. The first is the leaf 
node generation. RAPTOR’s reliance on a fixed-token chunking 
strategy is oblivious to the semantic boundaries of the text, often 
resulting in the fragmentation of coherent logical units. This 
creates a weak and semantically disjointed foundation for the 
entire tree. The second limitation lies in the hierarchical clustering 
process itself. The use of conventional clustering algorithms, such 
as Gaussian Mixture Models (GMM), with static parameters is 
often suboptimal for the complex, non-spherical manifolds of text 
embeddings. A rigid clustering strategy struggles to adapt to the 
different levels of semantic abstraction required at different 
depths of the tree.

To address these dual limitations, we propose a comprehensive, 
two-stage enhancement framework for RAPTOR. First, we replace 
the fixed-token chunking with a semantic segmentation strategy, 
ensuring that the foundational leaf nodes are semantically coherent 
and self-contained. Second, we introduce a novel adaptive graph 
clustering methodology. This approach leverages the state-of-the-art 
Leiden algorithm for community detection and incorporates a layer-
aware dual-adaptive parameter strategy, which dynamically adjusts 
the clustering granularity to match the level of abstraction at each 
layer of the tree.

The main contributions of this work are as follows:

	•	 We introduce a holistic, two-stage enhancement framework that 
optimizes both the foundational leaf nodes and the internal 
hierarchical structure of the RAPTOR tree.

	•	 We demonstrate that employing semantic segmentation for 
initial chunking provides a superior foundation, leading to 
significant performance improvements in downstream 
retrieval tasks.

	•	 We design and implement an adaptive graph clustering algorithm 
that constructs a more compact, efficient, and semantically 
meaningful hierarchy, showing a strong synergistic effect when 
combined with high-quality leaf nodes.

	•	 Through extensive experiments on both the narrative 
QuALITY benchmark and the scientific Qasper dataset, we 
validate the robustness and domain generalization of our 
framework. Our results show that the full model consistently 
outperforms the original RAPTOR baseline. Furthermore, a 
comparative ablation study against distance-based 
(Agglomerative) and density-based (HDBSCAN) clustering 
methods demonstrates the superior efficacy of our graph-
topological approach in organizing complex semantic 
information.

The remainder of this paper is organized as follows: Section 2 
reviews related work in text chunking and clustering. Section 3 details 
our proposed two-stage methodology. Section 4 presents our 
experimental setup, results, and analysis. Finally, Section 5 concludes 
the paper and discusses future work.

2 Background

2.1 The chunking challenges in RAG

The performance of RAG systems hinges on how documents are 
segmented into chunks. An effective strategy must balance two 
competing demands:

Relevance: Small chunks improve retrieval precision by 
reducing noise.

Contextual Integrity: Overly fine-grained chunks lose logical 
connections between paragraphs.

Existing methods attempt to address this trade-off with varying 
limitations. Fixed-size chunking simply splits text by token count, 
often breaking semantic units (Zhang et al., 2023). While recursive 
chunking relies on heuristic, rule-based delimiters like paragraphs or 
sentences, semantic chunking methods (Chen et al., 2024a) leverage 
embeddings to quantify coherence through cosine similarity, 
dynamically aligning chunks with topic boundaries.

Traditional semantic chunking methods mainly rely on lexical 
cohesion (Hearst, 1997) to detect discourse boundaries. However, 
these methods perform poorly on text paragraphs with rich lexical 
variations but consistent themes. With the development of deep 
learning, modern text segmentation techniques have generally shifted 
towards semantic representation methods based on pre-trained 
language models (PLMs). The core idea within this paradigm is to 
encode text units (such as sentences or paragraphs) into high 
dimensional dense embedding vectors (Karpukhin et al., 2020) 
through language models like BERT or Sentence-BERT (Reimers and 
Gurevych, 2019; Nair et al., 2023). These embedding vectors map the 
semantic content of the text to specific coordinates in the vector space, 
enabling semantic associations to be quantified through the geometric 
relationships between vectors. When quantifying the semantic 
coherence between adjacent text units, cosine similarity has become 
a de-facto standard metric. It measures the consistency in semantic 
direction between two embedding vectors by calculating the cosine of 
the angle between them. Its formal definition is as follows:
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The key advantage of cosine similarity lies in its magnitude 
invariance. This means that it only focuses on the direction of vectors 
(i.e., the theme), while ignoring differences in vector magnitude 
caused by factors such as sentence length or lexical complexity. This 
makes it particularly robust when comparing texts with varying levels 
of detail but consistent themes.

Based on this, researchers typically use cosine distance, which is 
defined as

	 ( )−− cos 11 , ,i isim v v

transforming the similarity problem into a distance metric. A 
smaller distance value indicates a high degree of semantic continuity. 
When the distance value exceeds a certain preset threshold or a local 
peak occurs, it is considered that semantic discontinuity has occurred. 
Based on this signal, the algorithm can infer the boundaries of 
paragraphs at the corresponding positions. Although other metrics 
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such as Euclidean distance (L2 Norm) can also be used, due to their 
sensitivity to vector magnitude, they are not as widely applied in the 
field of text semantic analysis as cosine distance. This segmentation 
strategy based on semantic distance has become one of the mainstream 
techniques for text chunking in current long document understanding, 
information retrieval, and Retrieval Augmented Generation (RAG) 
systems.

2.2 Clustering methods for text 
representation

Clustering is a fundamental unsupervised learning technique for 
organizing text documents by grouping semantically similar items 
(Aggarwal and Zhai, 2012). The choice of algorithm is crucial as it 
directly influences the quality of the resulting topical hierarchy.

A prevalent category of algorithms, including K-Means and 
Gaussian Mixture Models (GMMs), operates on geometric or 
distributional assumptions. These methods aim to partition the 
embedding space into clusters that are geometrically compact or fit a 
predefined probability distribution. However, they often presuppose 
convex or ellipsoidal cluster shapes, a constraint that is frequently 
violated by the complex, manifold-like structures of thematic groups 
in textual data (McInnes et al., 2018). Furthermore, their efficacy can 
be limited in the high-dimensional spaces of modern text embeddings, 
where geometric assumptions may not hold (Aggarwal et al., 2001; 
Aljaloud et al., 2024).

An alternative and more robust paradigm is graph-based clustering, 
often framed as community detection. Advanced topic modeling 
frameworks like BERTopic (Grootendorst, 2022) similarly leverage the 
rich representations from deep embeddings to uncover complex 
structures, moving beyond simple geometric assumptions. This approach 
models documents as nodes in a graph, with edge weights representing 
semantic similarity. The objective is to identify densely interconnected 
communities of nodes. This method is agnostic to cluster shape and is 
thus highly effective at uncovering complex thematic structures. The 
Leiden algorithm (Traag et al., 2019) represents the state-of-the-art in 
this domain, recognized for its efficiency and its ability to yield well-
connected, high-quality communities, making it particularly suitable for 
discovering latent topics in large text corpora.

2.3 RAPTOR system

To address the challenge of long-document understanding, the 
RAPTOR system (Sarthi et al. 2024; Cao and Wang, 2022) introduces a 
tree-structured indexing approach. It hierarchically organizes information 
through a recursive “embed-cluster-summarize” process. The system first 
generates leaf nodes from initial text chunks, and then recursively groups 
them using clustering algorithms such as Gaussian Mixture Models 
(GMM). The nodes in each cluster are then summarized by a large 
language model to form a parent node at a higher level of abstraction 
(Gidi and Cohen, 2022). This architecture effectively creates a multi-
layered semantic hierarchy, from fine-grained details to high-level themes.

While this framework is powerful, its performance is highly 
dependent on the quality of both its foundational leaf nodes and its 
structural integrity. This exposes two potential limitations. First, its 
reliance on a fixed-token chunking strategy can fragment semantically 

coherent text units, compromising the quality of the leaf nodes. 
Second, as discussed in Section 2.2, the use of a conventional, 
distribution-based clustering algorithm like GMM may not optimally 
capture the complex, non-spherical thematic structures often present 
in text embedding spaces.

These limitations in both the leaf node generation and the 
hierarchical clustering stages motivate our work. In this paper, we 
propose a two-stage enhancement to build more semantically robust 
and structurally sound retrieval trees.

3 An enhanced RAPTOR tree 
construction framework

In this section, we present our two-stage framework for enhancing 
the RAPTOR tree construction process. Our approach is designed to 
build a more semantically robust and structurally coherent retrieval 
tree by optimizing both the foundational leaf node generation and the 
subsequent hierarchical clustering. Figure 1 illustrates the overall 
workflow of our proposed method.

3.1 Leaf node generation via semantic 
segmentation

The structural integrity and retrieval accuracy of the entire 
RAPTOR tree are fundamentally dependent on the quality of its 
foundational leaf nodes. The original method employs a fixed-token 
chunking strategy (e.g., 100 tokens per chunk), which, while simple, 
is oblivious to the underlying semantic structure of the text. This can 
lead to the fragmentation of coherent logical units, severely impacting 
the performance of subsequent clustering, summarization, and 
retrieval tasks.

This limitation is starkly illustrated by an example from the QuALITY 
dataset, in the text “LOST IN TRANSLATION By LARRY M. HARRIS.” 
The fixed-token chunking method partitions a single, causally-linked 
conversation into three separate chunks (107, 108, and 109). This division 
severs the logical connection between the premises of the conversation 
and its conclusion. Consequently, a retrieval query is likely to fetch only 
the chunk containing the final conclusion (109), while missing the crucial 
context from the preceding chunks. This results in an incomplete and 
misleading context for the language model, leading directly to an incorrect 
answer for the associated question.

To overcome this critical issue, we propose a semantic 
segmentation strategy for initial node generation. Instead of relying on 
arbitrary token counts, this method identifies and preserves 
semantically coherent blocks of text. The core of this approach is to 
partition the document based on its intrinsic thematic shifts. The 
process first decomposes the input text into sentences and generates 
their corresponding vector embeddings. It then iteratively calculates 
the semantic distance between adjacent sentence embeddings to detect 
topic boundaries. A new chunk is formed whenever this distance 
exceeds a predefined threshold, τ, or a maximum token limit is reached.

When applied to the aforementioned example, our semantic 
segmentation method correctly groups the entire related conversation 
into a single, cohesive chunk. By preserving the logical integrity of the 
text, this approach provides the language model with the complete 
context necessary for accurate inference. As a result, our enhanced 
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model successfully provides the correct answer to the question that the 
original RAPTOR failed. The detailed chunking results for this specific 
example, comparing both methods, can be found in Appendices A, B.

This semantic-first approach ensures that each leaf node 
represents a coherent and self-contained unit of information, 
providing a high-quality foundation for the subsequent clustering 
stage. The complete process is formalized in Algorithm 1.

3.2 Construction of the hierarchical 
structure

With a robust foundation of semantically coherent leaf nodes 
established in Stage 1, we proceed to construct the tree’s internal 
hierarchical structure. This stage introduces a novel methodology that 
replaces conventional clustering techniques with a more sophisticated 
and adaptive graph-based approach, designed to better capture the 
complex relational structure of textual data.

3.2.1 Graph-based clustering via community 
detection

Traditional clustering algorithms, such as GMM, operate under 
geometric or distributional assumptions that often fail to adequately 
model the complex, non-spherical manifolds where text embeddings 
reside. To overcome this, we reframe the clustering problem as a 
community detection task.

For any given layer of nodes, we first construct a k-Nearest 
Neighbor (k-NN) graph. In this structure, nodes represent text units 
(chunks or summaries), and edges signify the semantic proximity 
between them. The choice of cosine similarity as the edge weighting 
metric is deliberate. In high-dimensional embedding spaces, 
Euclidean distance becomes less discriminative due to the curse of 
dimensionality (Aggarwal et al., 2001) and is often sensitive to vector 
magnitude, which correlates with sentence length rather than 
meaning. In contrast, cosine similarity captures the directional 
alignment of semantic vectors. This ensures that our graph topology 
relies purely on thematic consistency independent of text length, 
providing a robust foundation for community detection.

We then employ the Leiden algorithm (Traag et al., 2019) to 
partition this graph. Unlike traditional methods, Leiden is agnostic to 
cluster shape and guarantees well-connected communities. 
Specifically, we utilize the RBConfigurationVertexPartition method, 
which optimizes a Potts model and allows for precise control over 
community density—a feature we exploit in our adaptive strategy. 
Each detected community is then treated as a single cluster, and its 
constituent nodes are summarized by a Large Language Model to 
form a parent node in the subsequent, higher layer of the tree.

3.2.2 Dual-adaptive strategy for multi-resolution 
clustering

A central innovation of our framework is the recognition that a 
single, static clustering granularity is suboptimal for a multi-layered 

FIGURE 1

The architecture of the enhanced RAPTOR framework. (A) Semantic chunking mechanism: illustrates the “Leaf Node Generation” stage using semantic 
segmentation. The system calculates the cosine similarity between adjacent sentence embeddings. A segmentation boundary (indicated by the scissor 
icons) is established only when the similarity drops below the predefined semantic threshold τ (e.g., 0.7). This dynamic strategy preserves “coherent 
logical units,” effectively preventing the “context fragmentation” often caused by fixed-token chunking. (B) Dual-adaptive graph clustering: depicts the 
construction of the hierarchical structure using the Leiden algorithm driven by a layer-aware dual-adaptive parameter strategy. As the hierarchy 
ascends from the bottom (Layer 0) to the top: 1. The neighbor parameter (k) increases linearly (blue arrow) to expand the topological receptive field 
and capture broader global relationships. 2. The resolution parameter (γ ) decreases linearly (purple arrow) to coarsen granularity and encourage high-
level thematic aggregation. Detected communities are summarized by an LLM Agent to form parent nodes for the subsequent layer. (C) The enhanced 
tree: shows the final “multi-layered semantic hierarchy.” This structure integrates the semantically robust leaf nodes from Panel A with the optimized 
topological clusters from Panel B, creating a compact and efficient index for top-down retrieval.
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hierarchy. We introduce a dual-adaptive strategy to dynamically adjust 
the resolution of the clustering process in correspondence with the 
level of semantic abstraction.

Our guiding hypothesis is that different layers of the tree demand 
different notions of semantic proximity. At lower layers, containing 
specific granular content, the system must prioritize local, strong 
connections to form tight thematic clusters. Conversely, at higher 
layers composed of abstract summaries, the system must expand its 
scope to identify broader, long-range relationships that connect 
disparate sub-topics into a cohesive whole.

To implement this multi-resolution clustering, we first 
dynamically adjust the number of neighbors, k, as a linear function of 
the tree’s layer depth (layer_id):

	 ( )= + ×_current base stepk k layer id k

In this formulation, basek  defines the initial fine-grained 
connectivity for the leaf layer, while stepk  controls the rate at which the 
topological search radius expands as the tree ascends. We employ this 
linear progression strategy as a heuristic to model the “Cone of 
Abstraction” inherent in document hierarchies. As the tree ascends, 
the semantic “field of view” required to aggregate sub-topics naturally 
widens. While more complex functions could be hypothesized, a 
linear increase represents the most parsimonious and robust 
assumption for general discourse structures, providing a stable 
expansion of the receptive field without introducing the overfitting 
risks associated with higher-order hyperparameters.

Complementing this topological adaptation, we simultaneously 
introduce a dynamic resolution parameter, γ, for the Leiden algorithm. 
While the k-value dictates the connectivity of the graph, γ controls the 
granularity of the community detection itself. We initialize γ at a 
higher value to strictly partition local details at the bottom and linearly 
decay it to encourage the merging of broader communities at 
higher levels.

This dual-adaptive mechanism ensures that the structural 
organization of the tree is contextually sensitive to the level of 
abstraction at each layer, resulting in a more logically sound and 
semantically meaningful hierarchy. Integrating the graph-based 
community detection detailed in Section 3.2.1 with the adaptive 
parameter strategy proposed above, we present the comprehensive 
workflow for our tree construction. This iterative process, which 
transforms semantic leaf nodes into a unified hierarchical structure, 
is formalized in Algorithm 2.

4 Experiments

4.1 Experimental setup

To rigorously evaluate the proposed framework’s performance 
and generalization capabilities, we conducted experiments across 
two distinct datasets representing different domains and task 
formats.

ALGORITHM 1  Semantic segment algorithm. ALGORITHM 2  Adaptive graph clustering and hierarchy 
construction.
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4.1.1 Datasets
QuALITY (Narrative Long-Context Understanding): We utilize 

the QuALITY dataset (Pang et al., 2022) as our primary benchmark 
for evaluating narrative comprehension. This dataset consists of 
long-form documents (average 5 k tokens) with complex, cross-
paragraph questions requiring reasoning over disparate parts of the 
text. The task is formatted as multiple-choice question answering.

Qasper (Scientific Literature QA): To assess the model’s domain 
generalization and robustness in processing highly structured, logic-
dense text, we extend our evaluation to the Qasper dataset (Dasigi et 
al., 2021). Qasper focuses on information-seeking questions over full-
text computer science research papers. Unlike QuALITY, Qasper 
requires open-ended question answering, challenging the retrieval 
system to synthesize precise answers from technical content 
containing formulas, figures, and complex citations.

4.1.2 Evaluation metrics
Given the differing nature of the tasks, we employ task-specific 

metrics:
Accuracy (for QuALITY): Following standard benchmarks, we 

report Accuracy as the primary metric for the multiple-choice 
questions in QuALITY.

Lexical and Semantic Metrics (for Qasper): For the open-ended 
generation tasks in Qasper, we adopt a dual-faceted evaluation 
strategy:

	•	 Lexical Overlap Metrics: We utilize Token F1 Score, ROUGE-1, 
and ROUGE-L to quantify the surface-level lexical match 
between the generated answers and the ground truth. ROUGE-1 
assesses information coverage (unigram overlap), while 
ROUGE-L evaluates structural coherence (longest common 
subsequence).

	•	 LLM Score (Semantic Evaluation): Recognizing that lexical overlap 
metrics may penalize semantically correct but phrased-differently 
answers, we introduce a model-based metric, LLM Score. We 
employ DeepSeek-V3 as an expert evaluator to rate the generated 
answer against the gold reference on a 5-point Likert scale (1: Bad 
to 5: Perfect). This metric specifically prioritizes information 
completeness and logical correctness over mere string matching. 
The specific evaluation prompt used is detailed in Appendix C.

4.1.3 Implementation details
Models: We utilize the BAAI/bge-m3 model (Chen et al., 2024b) 

for all text embeddings. The deepseek-v3-0324 model is accessed via 
its official API to perform both the summarization of clusters and the 
final question-answering tasks. The specific prompt templates used for 
these tasks are detailed in Appendix C.

Clustering Configuration: For the adaptive graph clustering stage, 
we employed the Leiden algorithm utilizing the 
RBConfigurationVertexPartition method to optimize the community 
structure. The graph construction relies on a k-Nearest Neighbor 
(k-NN) approach where edges are weighted by the cosine similarity 
between node embeddings. To implement our dual-adaptive parameter 
strategy, we configured the parameters as follows:

	•	 Adaptive Neighbors (k): We set the initial neighbor count 
=basek 15  for the leaf layer, increasing by =stepk 5  for each 

subsequent layer to expand the topological receptive field.

	•	 Adaptive Resolution (γ ): We initialized the resolution parameter 
at γ =base 1.0  and linearly decayed it by γ =step 0.2  per layer 
(minimum 0.1) to encourage broader semantic aggregation at 
higher levels.

	•	 Constraints: To manage the context window limits of the 
summarization model, we imposed a strict maximum cluster size 
of 100 nodes. Any community exceeding this threshold was 
recursively re-clustered using the same adaptive logic.

To ensure reproducibility, we fixed the random seed to 224 for all 
sampling, clustering, and embedding processes.

4.1.4 Comparative configurations
We evaluate three distinct configurations to isolate the 

contributions of each component:

	•	 Original RAPTOR (Baseline): Employs fixed-token chunking 
(100 tokens) and its default GMM-based clustering.

	•	 RAPTOR + SC: Integrates our semantic chunking (SC) method. We 
test a range of semantic thresholds τ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}.

	•	 Our Full Model (RAPTOR + SC + AGC): Our complete model, 
combining semantic chunking with our adaptive graph clustering 
(AGC) algorithm, utilizing the dual-adaptive parameter settings 
described above. We also evaluate a variant (Fixed Chunking + 
AGC) on the Qasper dataset to verify the independent 
effectiveness of the graph clustering algorithm.

4.2 Performance on narrative long-context 
QA (QuALITY)

4.2.1 Impact of semantic segmentation
To isolate the effect of our first contribution, we first replace 

RAPTOR’s fixed-token chunking with our semantic segmentation 
approach. We conducted a parameter sweep across various semantic 
thresholds (τ) to identify the optimal configuration. The results are 
presented in Figure 2.

The results illustrate a distinct non-monotonic relationship 
between model performance and the chosen semantic threshold. 
Accuracy improves steadily as τ increases from 0.3, peaking at τ = 0.7 
with an accuracy of 55.17%, before declining at τ = 0.8. This peak 
represents a significant 5.5 percentage point improvement over the 
fixed-token baseline (49.67%).

The peak performance at τ = 0.7 suggests that this threshold 
represents an optimal equilibrium point between granularity and 
coherence:

	•	 Below 0.7 (Over-segmentation): At lower thresholds (τ ≤ 0.6), the 
segmentation algorithm is overly sensitive to minor lexical 
changes. This triggers excessive splitting, shattering coherent 
logical units—such as a narrative event or a premise-conclusion 
pair—into disjoint fragments. This fragmentation forces the 
retrieval system to piece together scattered context, significantly 
increasing the risk of missing critical links required for complex 
reasoning.

	•	 Above 0.7 (Semantic Drift): Conversely, at higher thresholds (e.g., 
τ = 0.8), the chunking becomes too lenient. The algorithm fails to 
detect subtle topic shifts, allowing distinct, unrelated themes to 
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merge into noisy, multi-topical blocks. This semantic drift dilutes 
the specific embedding of the leaf node, making precise retrieval 
more difficult.

	•	 Optimal (τ = 0.7): Therefore, τ = 0.7 appears to align most closely 
with the natural semantic pulse of human-written text. It 
effectively captures complete reasoning chains within a single 
node while maintaining thematic purity, providing a high-quality 
foundation for the subsequent clustering stage.

This analysis validates the general effectiveness of the semantic 
chunking approach and identifies =ô 0.7 as its optimal operating 
point. In the following section, we will evaluate our full model, which 
incorporates adaptive graph clustering, across this same range of 
thresholds to assess its cumulative impact and consistency.

4.2.2 Combined effect with adaptive graph 
clustering

Having established the efficacy of semantic chunking, we now 
evaluate our full model, which integrates adaptive graph clustering 
(AGC) on top of this foundation. To provide a comprehensive 
comparison, we test both the RAPTOR + SC model and Our Full 
Model (RAPTOR + SC + AGC) across the full range of semantic 
thresholds. The results are presented in Table 1.

The results reveal several crucial insights:
Consistent Improvement in Optimal Range: When the semantic 

threshold is within a reasonable range (τ ≥ 0.5), our full model 
consistently outperforms the RAPTOR + SC model. This demonstrates 
that the adaptive graph clustering provides a significant performance 
enhancement when operating on a foundation of well-formed, 
coherent leaf nodes.

Peak Performance and Synergistic Effect: The performance of our 
full model also peaks at τ = 0.7, reaching a final accuracy of 65.5%. At 
this optimal operating point, the introduction of AGC yields an 
absolute performance gain of 10.33 percentage points over semantic 
chunking alone. This substantial improvement strongly suggests a 
synergistic effect: the adaptive graph clustering algorithm is able to 
fully capitalize on the high-quality semantic chunks, leading to a 
much more effective retrieval hierarchy than either enhancement 
could achieve in isolation.

Behavior at Extreme Thresholds: At lower thresholds (τ < 0.5), 
where semantic chunking leads to over-segmentation, the performance 
of the full model degrades. This is expected, as even a superior 
clustering algorithm cannot effectively group overly fragmented and 
context-poor leaf nodes. Interestingly, at a very high threshold 
(τ = 0.8), while the performance of RAPTOR + SC drops, our full 

TABLE 1  Performance comparison across different semantic thresholds (τ).

Semantic 
threshold 
(τ)

RAPTOR + 
SC 

(accuracy, 
%)

Our full 
model 

(accuracy, 
%)

Performance 
gain from 
AGC (%)

0.3 46.33 38.50 −7.83

0.4 45.50 45.00 −0.5

0.5 49.00 51.00 +2.00

0.6 51.83 57.50 +5.67

0.7 55.17 65.50 +10.33

0.8 48.33 64.00 +15.67

Bold values indicate the highest accuracy achieved in each column.

FIGURE 2

Model accuracy on the QuALITY dataset as a function of the semantic segmentation threshold. The dashed line represents the Original RAPTOR 
baseline.
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model maintains a high accuracy. This suggests that the robust graph 
clustering mechanism may be more resilient to the noise introduced 
by slightly over-lenient chunking compared to the default GMM.

Overall, our complete model, integrating both enhancements, 
significantly outperforms the original RAPTOR baseline (49.67%) by 
a margin of 16.83 percentage points, confirming the substantial value 
of our two-stage optimization framework.

4.2.3 Impact of clustering strategy (ablation 
study)

To validate the necessity of our proposed Adaptive Graph 
Clustering (AGC), we conducted an ablation study comparing it 
against other prevalent clustering algorithms. To ensure a fair 
comparison, all methods were evaluated using the same high-quality 
leaf nodes generated by Semantic Chunking with the optimal 
threshold (τ = 0.7).

We compared the following clustering methodologies:
Agglomerative Clustering: A standard bottom-up hierarchical 

approach (distance threshold = 0.9).
HDBSCAN: A density-based algorithm (min_cluster_size = 2) 

known for handling noise.
Gaussian Mixture Models (GMM): The probabilistic clustering 

method used in the original RAPTOR framework.
Adaptive Graph Clustering (Ours): Our proposed graph-based 

community detection method.
The results are summarized in Table 2.
The substantial performance gap between the algorithms 

highlights the critical role of structural organization in hierarchical 
retrieval:

Failure of Distance and Density Metrics: Both Agglomerative 
Clustering (47.50%) and HDBSCAN (49.00%) underperformed 
significantly, falling below the GMM baseline. Agglomerative 
clustering suffers from the rigidity of fixed distance thresholds in high-
dimensional embedding spaces. Similarly, HDBSCAN’s mechanism 
of classifying sparse data points as “noise” is detrimental in the RAG 
context, as outliers often contain unique, query-specific details that 
are essential for retrieval. Discarding them leads to information loss.

Limitations of Geometric Assumptions: While GMM (55.17%) 
performs respectably due to its soft-clustering nature, it is constrained 
by the assumption that semantic topics form spherical Gaussian 
distributions—a simplification that often fails to capture the complex, 
irregular manifold of natural language representations.

Superiority of Graph Topology: Our Adaptive Graph Clustering 
(65.50%) outperforms the next best method (GMM) by over 10 
percentage points. This improvement stems from the method’s ability 
to model semantic relationships as a topological graph structure 

rather than geometric clusters. By leveraging the Leiden algorithm 
with our dual-adaptive strategy, it preserves the connectivity of the 
semantic manifold and ensures that every node is meaningfully 
integrated into the hierarchy, avoiding both the information loss of 
density methods and the rigid assumptions of geometric methods.

4.3 Generalization on scientific literature 
(Qasper)

To investigate the domain generalization capabilities of our 
framework, we extended our evaluation from the narrative texts of 
QuALITY to the highly technical and logic-dense scientific papers of the 
Qasper dataset. This experiment aims to verify whether our proposed 
enhancements—Semantic Chunking (SC) and Adaptive Graph 
Clustering (AGC)—maintain their effectiveness in retrieval scenarios 
that require synthesizing information from complex academic discourse.

4.3.1 Performance comparison
We evaluated the Original RAPTOR baseline, an ablation model 

utilizing Fixed Chunking with AGC, and our Full Model across a 
range of semantic thresholds (τ). Table 3 presents the performance 
comparison using both lexical overlap metrics (Token F1, ROUGE) 
and the semantic-aware LLM Score.

4.3.2 Analysis of results
The experimental results on Qasper reveal three critical insights 

regarding the structural and semantic advantages of our framework:
Efficacy of Adaptive Graph Clustering: Comparing the Original 

RAPTOR baseline with the Fixed Chunking + AGC ablation model 
demonstrates the independent contribution of our clustering 
algorithm. Even without semantic segmentation, replacing GMM 
with Adaptive Graph Clustering significantly improves performance 
across all metrics, raising the LLM Score from 3.08 to 3.23 and Token 
F1 from 6.45 to 7.45%. This confirms that the graph-based 
hierarchical structure is intrinsically better suited for organizing the 
complex, non-spherical topic manifolds found in scientific literature, 
resulting in better information retrieval regardless of the chunking 
strategy.

TABLE 2  Accuracy comparison of different clustering algorithms on the 
QuALITY dataset (fixed semantic chunking τ = 0.7).

Clustering 
algorithm

Methodology type Accuracy 
(%)

Agglomerative (t = 0.9) Distance-based (hierarchical) 47.50

HDBSCAN (min_size = 2) Density-based 49.00

GMM (RAPTOR baseline)
Distribution-based 

(Probabilistic)
55.17

Adaptive graph clustering Graph-based (topological) 65.50

TABLE 3  Performance comparison on the Qasper dataset.

Model 
configuration

Token 
F1

ROUGE-1 
(F1)

ROUGE-L 
(F1)

LLM 
score 
(1–5)

Original RAPTOR 

(Baseline)

6.45 8.10 5.90 3.08

Fixed Chunking + 

AGC

7.45 9.41 7.46 3.23

Full Model (τ = 0.3) 7.09 9.67 7.41 3.21

Full Model (τ = 0.4) 6.51 8.99 6.72 3.22

Full Model (τ = 0.5) 6.00 8.51 6.47 3.24

Full Model (τ = 0.6) 7.14 9.83 7.84 3.22

Full Model (τ = 0.7) 6.88 9.17 7.18 3.26

Full Model (τ = 0.8) 7.04 9.50 7.17 3.25

The “LLM Score” (1–5) evaluates semantic accuracy and completeness as rated by an expert 
LLM judge. The highest scores in each category are highlighted in bold.

https://doi.org/10.3389/fcomp.2025.1710121
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Liu et al.� 10.3389/fcomp.2025.1710121

Frontiers in Computer Science 09 frontiersin.org

Robustness of the Optimal Threshold (τ = 0.7): Consistent with our 
findings on the QuALITY dataset (Section 4.2), the Full Model 
achieves its highest semantic performance (LLM Score: 3.26) at a 
threshold of τ = 0.7. This recurrence suggests that τ = 0.7 represents a 
robust equilibrium point for text segmentation across different 
domains, effectively balancing the granularity required for detail 
retrieval with the coherence needed for logical reasoning.

Divergence between Lexical and Semantic Metrics: A notable 
observation in Table 2 is the divergence between exact-match metrics 
(Token F1, ROUGE) and the semantic LLM Score. While Fixed 
Chunking + AGC achieves the highest Token F1 (7.45%), it falls short 
in the LLM Score (3.23) compared to the Full Model at τ = 0.7 (3.26). 
This discrepancy highlights the limitation of N-gram overlap metrics 
in complex QA tasks. Fixed-token chunking often severs semantic 
dependencies (e.g., separating a hypothesis from its result), leading to 
retrieved contexts that contain correct keywords (high F1) but lack 
logical continuity. In contrast, our semantic segmentation ensures that 
retrieval units are self-contained logical blocks. Although this may 
result in slightly lower surface-level lexical overlap, it provides the 
generation model with a more coherent context, enabling it to 
synthesize answers that are semantically superior and more logically 
accurate, as reflected by the expert LLM evaluation.

In conclusion, the Qasper experiments validate the domain 
generalization of our framework. By prioritizing semantic integrity 
through segmentation and structural optimization through graph 
clustering, our model outperforms the baseline in generating 
high-quality, logic-driven answers for scientific queries.

4.4 Computational cost analysis

To assess the practical implications of our proposed enhancements, 
we conducted a detailed analysis of the computational costs associated 
with the tree construction process. We logged time and token 
consumption across three different document lengths (~6 k, ~18 k, 
and ~65 k tokens) for both the RAPTOR + SC and our Full Model 
configurations. The key findings are summarized in Table 4, focusing 
on the most challenging ~65 k token document as a representative case.

Based on the empirical data and theoretical modeling, we analyze 
the cost-performance dynamics from three perspectives:

Empirical Cost Breakdown: The introduction of semantic chunking 
incurs an upfront computational cost (Stage 1), increasing the initial 
processing time from negligible in the baseline to approximately 68 s. 

This is due to the necessity of embedding all sentences to detect 
semantic boundaries. However, this investment yields a dramatic 
return in structural efficiency. The Adaptive Graph Clustering (AGC) 
constructs a significantly more compact hierarchy, requiring only 34 
summary nodes compared to 141 in the baseline, a 76% reduction. 
Consequently, the token consumption for LLM summarization (Stage 
3), which is typically the most expensive component of the RAPTOR 
tree construction, drops from 95,001 to 73,282 tokens.

Theoretical Complexity Analysis: To understand the scalability of our 
approach, we analyze the time complexity with respect to the document 
length N (in tokens). Let C denote the number of chunks, where ∝C N.

	•	 Embedding ( ( )O N ): Our semantic segmentation requires passing 
the full text through the embedding model, introducing a linear 
complexity ( )O N . This explains the upfront time cost observed.

	•	 Clustering ( ( )2O C ): The graph construction involves a k-NN 

search, theoretically scaling as ( )2O C , followed by the Leiden 
algorithm with near-linear complexity ( )O C . While ( )2O C  
appears computationally intensive, C represents chunks rather 
than tokens(e.g., C ≈ 700 for N = 65 k). Thus, the actual 
computation time is trivial compared to LLM inference.

	•	 Summarization ( ( )sumO N ): The dominant factor in total latency 
is the LLM summarization, scaling as ( )sumO N , where sumN  is 
the total number of summary nodes. Our Dual-Adaptive strategy 
minimizes sumN , effectively reducing the coefficient of the most 
expensive term in the total cost equation.

The Strategic Trade-off: Prioritizing Structure for Efficiency

While our Full Model incurs a higher upfront time cost due to 
semantic embedding and graph construction, this represents a 
deliberate optimization of the RAPTOR framework: allocating more 
resources to the low-latency structuring phase to improve the 
efficiency of the high-latency generation phase.

	•	 Cost-Efficiency: By leveraging the Leiden algorithm to construct 
a denser hierarchy, we exchange a modest increase in CPU-based 
clustering time for a favorable reduction in API token 
consumption. This shift effectively lowers the computational 
burden on the most expensive component of the pipeline, the 
LLM summarization.

TABLE 4  Computational cost comparison for a ~65 k token document at the optimal threshold (τ = 0.7) versus the fixed-token baseline.

Metric Original RAPTOR (fixed-token) RAPTOR + SC (τ = 0.7) Our full model (τ = 0.7)

Initial Embedding Cost (Stage 1)

time_stage1_sent_embed N/A 71.64 67.86

tokens_stage1_sent_embed N/A 81,311 86,617

Tree Structure Complexity

num_leaf_nodes 726 714 714

num_summary_nodes 134 141 34

Tree Build Cost (Stage 3)

time_stage3_tree_build_s 118.78 131.0 261.23

tokens_to_summarize 95,001 92,927 73,282
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	•	 Information Density: The enhanced clustering process serves to 
improve semantic coherence. Instead of summarizing text 
fragments that may be arbitrarily segmented, our method guides 
the LLM to process well-grouped, thematically related 
communities. This likely mitigates the propagation of noise and 
increases the informational value of each generated 
summary node.

	•	 Performance ROI: Crucially, this investment in structural 
integrity translates into substantial retrieval improvements. The 
peak accuracy gain of 15.83% over the RAPTOR baseline 
suggests that a refined tree structure is highly beneficial for 
complex reasoning tasks, effectively justifying the additional 
preprocessing overhead.

5 Conclusion and future work

5.1 Conclusion

In this work, we enhanced the RAPTOR framework by addressing 
limitations in context fragmentation and hierarchical organization. 
We proposed a two-stage approach integrating Semantic Segmentation 
to preserve logical units and Adaptive Graph Clustering (AGC) to 
optimize tree topology.

Extensive evaluations on both the QuALITY (narrative) and 
Qasper (scientific) datasets demonstrate the robustness and 
generalization of our method.

Performance: Our model achieved a peak accuracy of 65.5% on 
QuALITY 1 and demonstrated superior semantic validity (LLM Score: 
3.26) on the Qasper benchmark, consistently peaking at a semantic 
threshold of τ = 0.7.

Structural Efficacy: Ablation studies confirm that our graph-
topological approach significantly outperforms traditional distance-
based (Agglomerative), density-based (HDBSCAN), and distribution-
based (GMM) clustering methods.

These results underscore the efficacy of a “semantic-first” strategy, 
proving that optimizing both foundational leaf nodes and structural 
organization yields a more coherent and efficient retrieval hierarchy 
for complex RAG tasks.

5.2 Future work

While our proposed framework has demonstrated significant 
improvements on both narrative and scientific datasets, the critical 
role of the clustering structure revealed in our experiments suggests 
several promising avenues for future research:

Optimization of Adaptive Parameter Strategies: Our ablation 
studies confirmed that the topological structure of the retrieval tree is 
a decisive factor in performance. Currently, our dual-adaptive strategy 
employs a heuristic linear function to adjust the neighbor count (k) 
and resolution (γ ). Future work should investigate non-linear 
adaptation schemes (e.g., exponential or logarithmic scaling) to better 
model the “Cone of Abstraction.” Furthermore, we propose exploring 
data-driven adaptation, where clustering parameters are dynamically 
tuned based on the intrinsic density or manifold curvature of the 
specific document’s embeddings, rather than relying on fixed layer-
based rules.

Automated Hyperparameter Tuning: Our experiments identified 
τ = 0.7 as a robust threshold across domains. However, manual grid 
search is inefficient for diverse real-world applications. Developing a 
lightweight, unsupervised metric to automatically estimate the 
optimal segmentation threshold (τ) and clustering density for unseen 
domains would be a significant advancement.

Scalability and Efficiency: Although effective, the exact k-NN 
graph construction in our approach incurs a computational cost of 
( )2O C . Integrating Approximate Nearest Neighbor (ANN) 

algorithms, such as HNSW, could dramatically accelerate graph 
construction with negligible accuracy loss, making the framework 
scalable to massive corpora.

Impact of Embedding Manifolds: Since graph topology is derived 
from embedding similarities, the choice of the embedding model 
fundamentally dictates the cluster quality. Future research should 
systematically evaluate how different embedding architectures (e.g., 
dense vs. sparse, general vs. domain-specific) interact with our graph 
clustering algorithms to further optimize the semantic structure.
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