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Introduction: The rapid expansion of Generative Artificial Intelligence (GAI) is 
reshaping pedagogical practices and educational policies worldwide. One of 
its most notable contributions is its capacity to deliver personalized feedback, 
which has the potential to enhance student learning and academic performance. 
This study aims to propose and validate a conceptual model that examines the 
factors influencing student behavior in response to GAI-mediated feedback in 
online learning environments.
Methods: A Massive Open Online Course (MOOC) titled “Transforming Education 
with AI: ChatGPT” was designed within a university setting, in which students 
received feedback on their activities through the GAI tool ChatGPT. Data were 
collected through a survey completed by 161 participants. The proposed model 
was evaluated and validated using Partial Least Squares Structural Equation 
Modeling (PLS-SEM).
Results: Findings indicate that students hold a positive perception of GAI as a 
tool for receiving feedback within their learning process. Although concerns 
related to privacy and security remain, these factors do not exert a significant 
influence on students’ overall satisfaction with GAI-mediated feedback.
Discussion: The results suggest that GAI-mediated feedback is well-received 
by students and can be integrated effectively into online learning environments. 
While issues surrounding privacy and security should not be overlooked, they 
do not appear to hinder students’ acceptance or satisfaction. These insights 
contribute to the development of evidence-based strategies for the pedagogical 
incorporation of GAI in higher education.
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1 Introduction

In recent decades, online teaching and learning processes have experienced sustained 
growth, which accelerated significantly in recent years as a response to the challenges posed by 
the COVID-19 pandemic for higher education institutions worldwide (Estriegana et al., 2024; 
Govindaraju et al., 2023). To address this shift, most institutions adopted hybrid teaching models, 
which enabled them to respond to a new educational paradigm grounded in the flexibility and 
adaptability of learning environments (Bakar et al., 2023; Raes, 2022). Within this context, 
Artificial Intelligence (AI) has played a fundamental role by enabling the analysis of large 
volumes of data to identify performance patterns (Dhara et al., 2022) and by offering specific 
recommendations that enhance both students’ conceptual understanding and the personalization 
of teaching strategies (Boscardin et al., 2024; Chen M. et al., 2024; Chen X. et al., 2024).
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The development of Generative Artificial Intelligence (GAI) has 
further expanded these possibilities, establishing itself as a tool capable 
of transforming pedagogical methods and shaping educational policy 
worldwide (Canabal and Margalef, 2017). One of its main 
contributions lies in the generation of personalized educational 
content, such as activities and assessments tailored to the level and 
pace of each student, thereby strengthening learning personalization 
and fostering more inclusive and equitable access to education 
(Morales-Chan et al., 2024). Nonetheless, the integration of these 
technologies also raises considerable ethical challenges, including 
issues related to data privacy, the detection and correction of 
algorithmic biases, and the need to guarantee equity in access to 
digital resources (Barrett and Pack, 2023).

Among the emerging challenges, one of the most pressing 
concerns is how GAI can contribute to optimizing feedback processes 
in online courses in ways that not only promote deep and meaningful 
learning but also enhance student motivation and satisfaction 
(Wongvorachan and Bulut, 2022). The ability of these technologies to 
generate real-time, personalized feedback constitutes a valuable 
resource that can directly influence the improvement of students’ 
academic performance (Lin et al., 2022).

Despite these advances, the academic literature still lacks a 
systematic model for comprehensively assessing the impact of GAI on 
feedback processes and, consequently, on student satisfaction in 
online education environments (Boscardin et al., 2024). This gap 
underscores the need for empirical studies that examine the factors 
involved in such impact. In this regard, the present study proposes an 
evaluation model based on seven key dimensions: feedback, personal 
predisposition, privacy, attitude toward GAI, trust, security, and 
student satisfaction. These dimensions will be tested through an 
empirical analysis using the PLS-SEM technique, with the aim of 
validating the proposed hypothetical relationships and contributing 
evidence to strengthen the academic debate on the application of GAI 
in contemporary higher education (Govindaraju et al., 2023).

This article is structured as follows: after an introduction, Section 
2 contains a literature review and theoretical framework. This section 
describes and establishes the importance of feedback, including its 
challenges, and generative artificial intelligence. In addition to 
identifying some key studies, to propose a specific model on the 
impact of generative artificial intelligence on online course feedback. 
Section 3 presents the model and its components. Also, in this section 
the hypotheses are presented. Section 4 describes the research 
methodology, the instrument used, the participants and data 
collection, furthermore the data analysis and results are presented. A 
discussion follows in Section 5. Finally, the article ends with the 
conclusions, limitations and future work drawn from the study.

2 Literature review

2.1 Foundations of feedback in education

Feedback constitutes an essential process within teaching and 
learning activities, as it guides students toward achieving the 
objectives, outcomes, and educational goals established by the 
teaching team (Mamoon et al., 2016). This process acquires particular 
relevance in higher education, since it provides concrete information 
on academic performance, enabling students to adjust their study 

strategies and address areas in need of improvement (Aguilar et 
al., 2016).

Beyond the evaluation of results, feedback fosters the development 
of analytical, writing, and presentation skills, thereby preparing 
students to face challenges in both academic and professional contexts. 
Positive reinforcement acts as a motivating factor, while the learning 
derived from mistakes becomes an opportunity for growth and 
preparation for future challenges (Viciana et al., 2023).

In the context of Massive Open Online Courses (MOOCs), the 
literature has highlighted the importance of implementing formative 
feedback mechanisms capable of addressing the needs of large and 
diverse student populations (Barrett and Pack, 2023; Steiss et al., 
2024). Although peer feedback has emerged as a viable alternative, a 
significant portion of students expresses a preference for more detailed 
and personalized comments (Suen, 2014; Floratos et al., 2017).

Studies have also identified three major challenges. The first is the 
lack of personalization, since generic feedback rarely responds to the 
specific needs of each student (Sunar et al., 2016). The second relates 
to delays in delivery or low levels of interaction, factors that undermine 
motivation and reduce the effectiveness of the learning process 
(Laaser, 2014; Khe and Wing, 2014). Finally, the low quality of 
comments directly affects students’ perception of their usefulness, 
which becomes particularly critical in large-scale educational 
initiatives such as MOOCs (Segovia, 2021).

2.2 The role of generative AI in educational 
feedback

Generative Artificial Intelligence (GAI) is profoundly reshaping 
the contemporary educational landscape, eliciting divergent responses 
across academic institutions that range from restricting its use to 
actively integrating it into teaching practices (Samala et al., 2025). This 
polarization reflects both the novelty and the disruptive potential of 
the technology (Ahmad et al., 2023). Its influence is evident in 
significant transformations of pedagogical methodologies and in the 
redefinition of teaching and learning practices (Bahroun et al., 2023; 
Bower et al., 2024). In this regard, the impact of GAI is often compared 
to earlier technological revolutions, such as the advent of the Internet 
or smartphones, due to its capacity to alter already consolidated 
structures (Ooi et al., 2023).

The integration of GAI into educational environments fosters new 
dynamics of collaborative learning and promotes teaching innovation, 
establishing itself as an essential resource for professional development 
in digital education (Alammari, 2024). However, its full potential can 
only be realized if faculty adapt their teaching and assessment 
strategies, ensuring ethical use and preventing malpractice (Ali et al., 
2024; Alshaikh et al., 2024). Its utility extends to diverse domains such 
as university admissions, assessment, and educational research 
(Boscardin et al., 2024), while simultaneously raising ethical and 
methodological dilemmas that demand critical attention (Mao et 
al., 2024).

The effectiveness of these tools has been examined in empirical 
studies. For example, ChatGPT has demonstrated its usefulness in 
addressing conceptual questions in disciplines such as medical 
physiology (Agarwal et al., 2023), while comparisons with other 
models like Claude-2 have revealed differences in accuracy and 
relevance (Banerjee et al., 2023). Likewise, its capacity to provide 
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contextualized and valuable information to learners in educational 
settings has been highlighted (Almagazzachi et al., 2024).

GAI also supports knowledge construction by enabling immersive 
experiences through virtual and augmented reality, facilitating the 
creation of realistic and educationally valuable simulations (Carlson, 
2023; Vaughn et al., 2024). This potential requires innovative 
pedagogical environments capable of redesigning active learning 
experiences while addressing emerging risks such as plagiarism and 
the erosion of academic integrity (Salinas-Navarro et al., 2024).

At the student outcome level, evidence shows that GAI can 
contribute to learning when used as a virtual tutor, fostering student 
confidence despite the possibility of inaccurate responses (Ding et al., 
2023). Research in higher education further confirms that the 
influence of tools such as ChatGPT is shaped by the technological 
design itself (Chen et al., 2023). It has also been shown to enhance 
early stages of critical thinking (Essien et al., 2024), improve 
performance through conversational assistance and problem-solving 
support (French et al., 2023), and encourage self-regulation in 
academic writing by means of innovative pedagogical models (Kong 
et al., 2024).

Collaborative learning in “human-human” and “human-
machine” modalities presents distinct nuances: while interactions 
with GAI reduce cognitive load, they also encourage more 
systematic thinking (Li et al., 2024). These benefits are reinforced 
in iterative processes of AI-assisted academic writing, where 
students perform better when working jointly with the technology 
(Le et al., 2024). From the teaching perspective, GAI has become a 
widely adopted resource in both course material preparation and 
direct instruction (Vera, 2024).

At the institutional level, although these technologies enrich 
course content, they also increase demands for updates and 
maintenance, adding to the workload of faculty (Ilieva et al., 2023). 
The growing integration of GAI requires higher education institutions 

to strengthen policies that safeguard academic integrity (Song, 2024). 
Ethical use is thus framed as an indispensable requirement (De Gagne 
et al., 2023), accompanied by curricular integration proposals 
designed to maximize benefits while minimizing risks (Gosak et al., 
2024). Along these lines, controlled adoption strategies in management 
programs have been explored to balance innovation with caution 
(Hyde et al., 2024).

Therefore, the introduction of GAI challenges traditional notions 
of authorship and academic norms, generating the need for clear 
regulatory frameworks to guide its use (Duah and McGivern, 2024). 
The absence of such guidelines can lead to ethical ambiguities; hence, 
several universities have begun establishing specific policies to 
regulate its application in teaching, research, and learning contexts 
(Spivakovsky et al., 2023).

3 Research model and hypotheses

A theoretical model was constructed to understand students’ 
attitudes towards the use of GAI in the feedback process in online 
courses. Each hypothesis presented below corresponds to a path in the 
Structural Equation Modeling (SEM) depicted in Figure 1.

3.1 Feedback

Feedback in teaching and learning processes is conceived as the 
guidance provided by instructors to students in order to achieve the 
intended learning outcomes and objectives (Suen, 2014; Floratos et al., 
2017). In the university context, this task becomes particularly 
complex due to the volume and diversity of content, which makes it 
difficult to deliver timely and high-quality responses (Hujala et 
al., 2020).

FIGURE 1

Structural model results (baseline model).
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Information technologies have transformed the educational 
ecosystem, reshaping the ways in which knowledge is accessed and 
assimilated (Estriegana et al., 2021). These tools turn the classroom 
into a dynamic and participatory environment, within which 
Generative Artificial Intelligence (GAI) plays a central role by 
providing personalized explanations and feedback for each student 
(Ayoubi, 2024; Chen M. et al., 2024; Chen X. et al., 2024).

The need to address the diversity of learning styles requires 
flexible and scalable training approaches. Traditional methods show 
limitations in this regard, whereas tools such as ChatGPT or Copilot 
allow for productivity optimization, though they remain constrained 
in terms of personalization (Shaka et al., 2023; Patil, 2024). Within this 
framework, the use of language models has expanded to innovative 
experiences, such as the design of educational board games, where 
ChatGPT supports educators through the stages of ideation, 
customization, and feedback (Junior et al., 2023).

In the field of academic writing, GAI demonstrates significant 
potential. For instance, it has been noted that ChatGPT facilitates the 
development of electronic portfolios by providing automatic feedback 
and suggestions for improvement throughout the reflective process 
(Le et al., 2024). Similarly, it is recognized as an emerging teaching 
support resource, particularly in mathematics education, where it is 
used as a complement to formative assessment, with both benefits and 
limitations (Lee et al., 2024; Téllez et al., 2024).

The literature shows that ChatGPT can contribute to strengthening 
writing skills in higher education, functioning as a valuable support 
alternative (Escalante et al., 2023; Mahapatra, 2024; Seetharaman, 
2023). Nevertheless, when compared with teacher-provided feedback, 
the latter offers a more contextualized and empathetic analysis, while 
ChatGPT, though reliable in certain aspects, lacks that personal 
dimension (Wang et al., 2024).

Perceptions of ChatGPT’s usefulness in formative feedback reflect 
both opportunities and cautions. Research indicates that although 
expert teachers’ comments often surpass in quality those generated by 
GAI, the latter proves especially useful in resource-constrained 
contexts, such as Massive Open Online Courses (MOOCs), where the 
scale hinders individualized attention (Barrett and Pack, 2023; Steiss 
et al., 2024; Zheng et al., 2024; Liu, 2025). In this scenario, GAI 
emerges as an alternative to ensure support, particularly in the early 
stages of learning. Finally, it has been highlighted that ChatGPT also 
makes a significant contribution in specific areas such as programming 
education, by providing automated feedback tailored to students’ 
levels (Phung et al., 2024).

Therefore, our hypothesis suggests that feedback received by 
students via GAI (ChatGPT) positively impacts their attitude towards 
it (ATT) (H6).

3.2 Trust (TRU)

Trust in the use of emerging technologies such as ChatGPT 
constitutes a decisive element in the adoption and effectiveness of 
these tools in educational settings, as it reflects students’ sense of 
security and certainty when employing them to achieve their learning 
goals (Yang et al., 2023). Several studies emphasize that trust is a 
determining factor in the success of technological innovations, since 
its presence promotes both acceptance and continued use of such tools 
(Loh et al., 2021). In this regard, evidence shows that students’ trust is 

positively related to their intention to use ChatGPT consistently, 
reinforcing its role as a key mediator in technological adoption (Salifu 
et al., 2024). This impact is further confirmed by research highlighting 
that the degree of trust influences not only the initial use of ChatGPT, 
but also its long-term integration as a learning resource (Ayoub et al., 
2024). Likewise, trust functions as a relevant predictor in the 
acceptance of generative artificial intelligence (GAI), increasing 
students’ expectations regarding its use (Tanantong and 
Wongras, 2024).

The effects of trust on student behavior extend beyond mere 
technological adoption. This variable has been positively associated 
with perceptions of security, self-confidence, and favorable attitudes 
toward ChatGPT, thereby enhancing satisfaction with the digital 
learning experience (Salah et al., 2024). From another perspective, the 
relationship between trust and perceived productivity reveals both 
benefits and risks: while these tools can optimize performance, they 
also raise concerns about potential threats in their implementation 
(Kuhail et al., 2024).

In the context of higher education, trust has been linked to 
processes of pedagogical adaptation and to the need for instructors to 
reformulate their practices in order to critically integrate GAI. It is 
recognized that, in addition to trust, factors such as critical thinking 
and self-regulation strategies are essential for the effective use of 
ChatGPT (Abdelhalim, 2024). Moreover, research has shown that the 
level of acceptance of educational chatbots depends on a balance 
between perceived trust, performance expectations, and social 
influence, reflecting the multifactorial nature of their integration into 
learning environments (Al Shakhoor et al., 2024).

Recent literature has also examined trust in ChatGPT as a virtual 
tutor in fields such as STEM, showing that students consider its 
responses and academic support to be reliable (Ding et al., 2023). 
However, concerns persist regarding excessive dependence, since the 
uncritical use of these systems may hinder the autonomous 
development of skills and the validation of information (Kiryakova 
and Angelova, 2023). In this sense, the need has been raised to 
implement strategies that mitigate AI-generated hallucinations in 
order to preserve and strengthen students’ trust in the educational use 
of these tools (Leiser et al., 2023).

Therefore, our hypotheses suggest that trust in the use of GAI 
(ChatGPT) positively impacts behavior change (BC) (H12), feedback 
(FEEDBACK) (H13), student attitudes towards it (ATT) (H11), 
perception of safety (PS) (H14), and satisfaction (SAT) (H15).

3.3 Behavior change (BC)

Behavioral change is understood as the process through which an 
individual, group, or community intentionally modifies actions or 
habits, influenced by factors such as education, motivation, 
persuasion, social influence, or the surrounding environment (Zhu et 
al., 2024). In the educational context, the acceptance and use of 
generative artificial intelligence (GAI) tools, such as ChatGPT, are 
linked to determinants such as performance expectancy, motivation, 
and perceived ease of use, which encourage students’ willingness to 
adjust their learning practices (Sabraz Nawaz et al., 2024).

Trust constitutes a decisive element in the adoption of these 
technologies, as it enhances students’ readiness to modify their 
behaviors in relation to their use (Jo, 2023). From a theoretical 
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perspective, the application of the Unified Theory of Acceptance and 
Use of Technology confirms that behavioral change toward ChatGPT 
is a key factor in understanding its integration into academic 
environments (Strzelecki, 2023). Likewise, the use of GAI techniques 
and applications significantly influences students’ cognitive 
performance, strengthening both their learning capacity and 
behavioral patterns (Jaboob et al., 2024).

The impact of digital technology based on artificial intelligence is 
not confined to the academic sphere, but also extends to quality of life, 
where performance and effort expectations determine the way users 
integrate these tools into their routines (Kosasi et al., 2023). Along 
these lines, the intention to adopt ChatGPT is reinforced when its 
performance benefits are emphasized, trust conditions are 
consolidated, and favorable environments are created for its 
professional and academic use (Emon et al., 2023).

Perceptions of the benefits, risks, and weaknesses of GAI differ 
between students and educators, yet perceived strengths exert a 
positive effect on attitudes, subjective norms, and perceived behavioral 
control, which directly influence behavioral change (Ivanov et al., 
2024). Similarly, the use of ChatGPT among students is conditioned 
by variables such as performance expectancy, social influence, 
educational and technological self-efficacy, and personal anxiety, 
while academic integrity may act as a barrier to its adoption (Bouteraa 
et al., 2024).

Other studies confirm that perceived usefulness and ease of use 
are positively associated with behavioral intention and actual usage 
behavior, validating the applicability of the Technology Acceptance 
Model in this field (Ma et al., 2024). In sectors beyond education, such 
as healthcare, the combination of TAM and the Theory of Planned 
Behavior has demonstrated that technological and attitudinal factors 
exert a positive influence on the intention to use, except for subjective 
norms, which exhibit a contrary effect (Dhara et al., 2023).

In the university context, the adoption of educational 
chatbots confirms that trust, performance expectancy, and 
student habits act as predictors of behavioral intention (Rahim et 
al., 2022). Similarly, in e-commerce, perceptions of accuracy and 
interaction experience have been shown to directly influence 
online purchasing behaviors, which highlights the applicability 
of these models across diverse digital environments (Adwan and 
Aladwan, 2022).

Therefore, our hypotheses suggest that behavior change due to the 
use of GAI (ChatGPT) positively impacts attitude (ATT) (H2), 
feedback (FEEDBACK) (H3), privacy perception (PP) (H4) and 
satisfaction (SAT) (H5).

3.4 Attitude (ATT)

Students’ attitudes toward the use of Generative Artificial 
Intelligence (GAI) constitute a decisive factor in their acceptance of, 
and satisfaction with, its implementation in online learning 
environments. This disposition is influenced by perceptions of 
usefulness, ease of use, and prior experiences, which determine the 
degree of openness to incorporating such tools into educational 
processes (Cao et al., 2023). Evidence indicates that evaluations of GAI 
are heterogeneous and depend on sociodemographic variables, such 
as age, which condition the willingness to integrate these tools into 
educational practice (Moravec et al., 2024).

In teaching contexts, the acceptance of ChatGPT has been 
associated with predominantly positive attitudes, as it helps address 
structural limitations in the teaching–learning process (Mukred et al., 
2023). In specialized university settings, such as health sciences, 
perceived risk, perceived usefulness, and ease of use have been 
identified as key factors shaping favorable attitudes toward this 
technology (Sallam et al., 2023). Nevertheless, a persistent tension 
remains between recognizing its benefits and expressing doubts about 
the quality and accuracy of its outputs, reflecting an ambivalent 
attitude oscillating between enthusiasm and caution (Weber et 
al., 2024).

Several studies confirm that students acknowledge both the 
opportunities and risks associated with the use of ChatGPT. For 
instance, while some highlight its potential to enhance productivity, 
they also warn of the risk of unethical academic practices (Rogers et 
al., 2024). The use of ChatGPT in the creation of learning scenarios 
has been shown to increase intrinsic motivation, academic 
performance, and positive attitudes toward its integration into training 
programs (Bai et al., 2024). Similarly, initial student interactions with 
these tools can shift neutral or cautious attitudes toward more 
enthusiastic perceptions following firsthand practical experiences 
(Šedlbauer et al., 2024).

Attitudes also vary across disciplinary and cultural contexts. In 
technical universities, for example, students expressed greater 
openness to using ChatGPT in English classes, whereas instructors 
maintained more neutral positions (Synekop et al., 2024). 
Complementarily, research shows that English as a Foreign Language 
(EFL) students with positive attitudes toward the usefulness of 
ChatGPT demonstrate a stronger intention to incorporate it into their 
learning processes outside the classroom, thereby consolidating a clear 
link between attitude and behavior (Liu and Ma, 2024).

A positive perception of ChatGPT is not limited to higher 
education. In early education, teachers have emphasized its value as 
an effective pedagogical resource to enhance second-language 
acquisition, underlining its utility in foundational learning contexts 
(Allehyani and Algamdi, 2023). Likewise, ChatGPT has been 
documented as functioning as an intelligent learning assistant, 
fostering personalized learning, increasing student engagement, and 
stimulating creativity (Kiryakova and Angelova, 2023).

Finally, prior knowledge of AI directly influences students’ 
attitudes. Those with greater understanding of the technology tend to 
recognize its appropriate use and display more favorable attitudes 
toward its implementation (Iwasawa et al., 2023). However, gaps 
remain in the literature regarding students’ attitudes and behavioral 
intentions, highlighting the need for further inquiry into how 
perceived usefulness and ease of use affect their full acceptance of 
these tools (Rahman et al., 2023).

Therefore, our hypothesis suggests that students’ Attitude towards 
the use of GAI (ChatGPT) positively impacts students’ Satisfaction 
with GAI.

3.5 Privacy (PP)

In the educational domain, privacy is understood as the protection 
of the personal and sensitive information of students, faculty, and 
administrative staff, ensuring that such data is neither misused nor 
disclosed without consent (Crompton and Burke, 2024). This concept 
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also entails compliance with legal and regulatory frameworks designed 
to safeguard the rights and intimacy of individuals in learning contexts 
mediated by digital technologies (Yang and Beil, 2024). In the case of 
the implementation of generative artificial intelligence (GAI), such as 
ChatGPT, ensuring data confidentiality becomes indispensable, as the 
exposure or misuse of information constitutes one of the main 
perceived risks (Polyportis and Pahos, 2024).

The incorporation of ChatGPT in university settings raises ethical 
concerns regarding data security and the responsible use of 
technology. Consequently, both public and private educational 
institutions must establish clear policies to guide the implementation 
of GAI-based tools and guarantee minimum standards of privacy 
protection (Rejeb et al., 2024). Empirical studies have shown that 
privacy is one of the most decisive factors in the acceptance of 
ChatGPT, ranking above other elements such as security, trust, or 
social influence in adoption models (Albayati, 2024). These findings 
reinforce the need to address the concerns arising from its use, as the 
absence of preventive measures may heighten risks such as plagiarism, 
misinformation, or academic fraud (Crompton and Burke, 2024).

Likewise, several analyses have emphasized that although 
ChatGPT holds significant potential to enrich educational 
processes, it also generates risks linked to data privacy and biases, 
which must be subjected to ongoing ethical scrutiny (Srishti, 2024). 
Complementarily, it has been argued that further research is crucial 
to better understand the scope and limitations of its implementation, 
particularly in relation to the protection of user information 
(Samala et al., 2024).

Other studies have warned that the application of ChatGPT in 
education and the labor market can optimize knowledge transmission 
and invigorate training systems, although this entails legal and ethical 
implications, including privacy violations (Chen M. et al., 2024; Chen 
X. et al., 2024). Similarly, specific risks associated with the use of GAI 
in academic environments have been identified, with the exposure of 
sensitive data emerging as one of the most pressing concerns 
(Gonçalves and Gonçalves, 2024).

Documented experiences in diverse teaching scenarios have also 
highlighted the emergence of issues such as information manipulation, 
deceptive privacy, and lack of transparency, which undermine trust in 
these technologies (Tlili et al., 2023). In this regard, critical challenges 
have been described, including the reliability of responses, algorithmic 
biases, and the need for system interpretability—all of which demand 
careful attention to mitigate risks related to privacy (Chen M. et al., 
2024; Chen X. et al., 2024).

From a broader perspective, the literature has proposed mitigation 
strategies aimed at reducing threats to privacy and security, while 
simultaneously warning about the potential misuse of ChatGPT in 
illicit activities such as cyberattacks (Alawida et al., 2023). Other 
works stress that although this technology may deliver substantial 
benefits, its application also entails negative societal consequences 
arising from biases, misinformation, or privacy violations (Dwivedi et 
al., 2023).

Finally, the use of virtual assistants such as ChatGPT in public and 
educational services introduces challenges related to the transfer of 
personal data, transparency in decision-making, and risks of bias, 
which call for a rigorous ethical approach (Piñeiro-Martín et al., 
2023). In this sense, ensuring user trust largely depends on the 
capacity of institutions to effectively address concerns regarding the 
security and privacy of information (Yang et al., 2023).

Therefore, our hypotheses suggest that students’ perception of 
privacy due to the use of GAI (ChatGPT) positively impacts their 
attitude towards it (ATT) (H7) and their satisfaction (SAT) (H8).

3.6 Security (PS)

The perception of security in the use of Generative Artificial 
Intelligence (GAI) tools, such as ChatGPT, constitutes a decisive factor 
in the acceptance and satisfaction of students in online learning 
environments (Baig and Yadegaridehkordi, 2025; Shahzad et al., 
2025). Security is linked to the protection of personal data and the 
assurance that information generated or shared through these 
platforms is handled with integrity and confidentiality (Crompton and 
Burke, 2024). In this regard, ensuring compliance with data protection 
regulations and policies is essential to strengthen users’ trust and their 
willingness to interact with these technologies (Chen M. et al., 2024; 
Chen X. et al., 2024).

The use of ChatGPT in educational settings raises ethical and legal 
concerns related to privacy, which directly affect students’ perception 
of security (Polyportis and Pahos, 2024). To address this, institutions 
must implement clear guidelines that promote responsible use of GAI 
and include preventive measures against risks such as plagiarism, 
academic fraud, or the manipulation of information (Rejeb et al., 
2024). Likewise, recent studies highlight that security and privacy 
factors, along with trust and social influence, are key determinants for 
the sustained adoption of ChatGPT in education (Albayati, 2024).

From a critical perspective, the potential of ChatGPT not only 
offers advantages in terms of personalization and learning 
enhancement, but also generates concerns regarding the loss of skills 
and technological dependency, which impact the perception of 
security and the ethical evaluation of its use (Srishti, 2024). These 
concerns are reinforced by research stressing the need to analyze risks 
and limitations related to privacy and the exposure of personal data 
(Samala et al., 2024).

Security is also associated with the ability of institutions to ensure 
the ethical and transparent use of these tools (Akor et al., 2024). 
Although the implementation of GAI may improve efficiency and add 
value to educational processes, it is not exempt from threats such as 
privacy breaches and the exposure of sensitive data (Gonçalves and 
Gonçalves, 2024). Research has identified scenarios in which issues 
emerge concerning the accuracy of responses, information 
manipulation, and misleading privacy, posing a constant challenge in 
consolidating a secure environment (Tlili et al., 2023).

In this context, mitigation strategies become particularly relevant 
to minimize risks associated with cyberattacks and algorithmic biases, 
aiming to ensure that the educational experience does not compromise 
students’ security (Alawida et al., 2023). Nevertheless, the adoption of 
these technologies requires a critical evaluation of their ethical and 
legal limitations, as well as of the potential impact of misinformation 
and misuse on the perception of security (Dwivedi et al., 2023).

Furthermore, perceived security not only influences the trust 
placed in these tools but also determines the continuity of their use 
(Shahzad et al., 2025). Research shows that transparency in data 
management and protection against biases or risks derived from 
automated processing are essential conditions for consolidating 
student satisfaction (Piñeiro-Martín et al., 2023). Similarly, ensuring 
robust standards of information security is an indispensable 
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requirement for maintaining users’ trust and fostering the sustained 
adoption of GAI in education (Yang et al., 2023).

Therefore, our hypotheses suggest that students’ perception of 
security regarding the use of GAI (ChatGPT) positively impacts their 
attitude towards it (ATT) (H9) and their satisfaction with the feedback 
provided through GAI (SAT) (H10).

3.7 Satisfaction (SAT)

Satisfaction in online learning contexts is understood as the 
state in which students perceive that their academic expectations 
have been adequately fulfilled (Mireles and García, 2022). This 
construct is particularly relevant because it directly influences 
behavioral intentions associated with the acceptance and use of 
emerging educational technologies (Alqurashi, 2019). In this regard, 
satisfaction not only reflects a subjective evaluation of the learning 
experience but also represents a decisive factor in the continuity of 
learning mediated by generative artificial intelligence (GAI) 
systems.

Several studies have documented that usability, enjoyment, and 
the perceived responsiveness of platforms such as ChatGPT are 
critical determinants in increasing student satisfaction and their 
willingness to continue using these tools (Kim et al., 2024). Likewise, 
recent research indicates that the perceived usefulness of GAI and 
the quality of the outputs it generates have a direct effect on 
satisfaction, thereby reinforcing its potential to enhance the 
educational experience and optimize academic outcomes 
(Boubker, 2024).

Empirical evidence also shows that the impact of GAI on 
generating academic recommendations enhances both the quality of 
student work and the satisfaction associated with the learning process 
(Neyem et al., 2024). At the level of digital service management, 
factors such as perceived intelligence and service quality are crucial to 
consolidating perceived usefulness and overall user satisfaction (Jo, 
2024). In parallel, it has been observed that literacy in the use of GAI 
tools significantly increases students’ satisfaction and trust in these 
systems (Lee and Park, 2023).

Within learning management platforms, the integration of 
ChatGPT has been shown to raise student satisfaction by providing 
personalized diagnoses of weaknesses and suggestions for 
improvement (Yasniy et al., 2023). Additionally, when students 
acknowledge the usefulness of ChatGPT in their learning process, 
they not only report higher levels of satisfaction but also demonstrate 
a favorable attitude toward its continued adoption (Ngo et al., 2024).

Satisfaction is also linked to the intention to recommend and 
promote the use of GAI among peers, reinforcing positive attitudes 
that facilitate the continuity of learning mediated by these technologies 
(Pasupuleti and Thiyyagura, 2024). Finally, recent studies have shown 
that knowledge acquisition through support systems based on 
ChatGPT has a direct effect on motivation, satisfaction, and the 
perceived effectiveness of learning (Hu et al., 2023).

Based on the aspects discussed above, it can be concluded that 
satisfaction constitutes a determining factor in the use of Generative 
Artificial Intelligence (GAI) tools. This satisfaction does not emerge 
in isolation but is shaped by multiple dimensions, among which 
privacy, security, attitude, trust, and behavioral change are 
particularly significant.

4 Methodology

The following presents a learning and formative assessment 
experience that incorporates key elements such as feedback, behavioral 
change, attitude, privacy, security, and student satisfaction, all of 
which play a central role in the process. The implementation of this 
experience is grounded in the previously discussed literature review 
and a theoretical study that enabled the adaptation of the topic to 
integrate the use of generative artificial intelligence in the feedback 
provided to students on their assignments and activities, with 
particular emphasis on its impact on satisfaction within online 
learning environments.

4.1 Formative assessment experience

The incorporation of feedback strategies supported by GAI was 
carried out through the development of a MOOC titled “Transforming 
Education with AI: ChatGPT,” which ran from March 27 to May 11, 
2023. The course attracted 5,482 students interested in exploring the 
use of GAI in the educational field and was designed to cater to a 
diverse group of learners, from educators to curious enthusiasts about 
AI’s potential in teaching.

The curriculum was divided into four comprehensive lessons, 
each designed to progressively deepen participants’ understanding 
and skills regarding the role of AI in education. The first lesson 
introduced ChatGPT, focusing on its capabilities and potential to 
revolutionize educational practices. Next, practical aspects of 
integrating ChatGPT into teaching and learning processes were 
addressed, providing hands-on experience and insights into effective 
implementation strategies—from planning, curriculum design, and 
development of learning activities to the assessment process. 
Additionally, ethical considerations in the use of AI in education 
were discussed, equipping participants with knowledge to navigate 
the complex ethical landscape surrounding GAI and emphasizing 
the importance of responsible use.

The course content delivery primarily utilized educational videos 
generated with GAI tools such as Heygen and Elevenlabs, showcasing 
their practical application in creating educational content and serving 
as an innovative teaching method. Within the MOOC, various 
learning activities were implemented, both formative and summative. 
Formative activities were designed to facilitate continuous learning 
and skill development, while summative activities, including one 
specifically designed for assessment using GAI, focused on measuring 
students’ assimilation of knowledge and competencies attained.

One of these summative activities integrated with an innovative 
educational bot called “GESfeedback,” developed to provide 
constructive and personalized feedback to students.

The development and implementation of the “GESFeedback” bot 
were based on an in-house prototype specifically designed to support 
the formative assessment experience described in this study, Figure 2 
presents the AI Architecture for the prototype.

The system receives each student’s written response through the 
MOOC activity interface and processes it using a structured evaluation 
rubric embedded in a prompt that guides the generation of 
individualized feedback. The personalization mechanism is grounded 
on the student’s actual submission rather than on pre-defined learner 
profiles or preferences: each response is analyzed semantically, and the 
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feedback returned is dynamically adapted to the content provided by 
the learner as is shown in Figure 3.

From a technical standpoint, the prototype was implemented 
using LangChain 0.0.158 and the OpenAI GPT-4 API (model: gpt-4-
0613) (OpenAI, 2023). It employed a SequentialChain that combined 
a PromptTemplate (presented in Table 1), an LLMChain, and a simple 
agent responsible for interpreting rubric criteria and structuring the 
response. The system used deterministic parameters 
(temperature = 0.3; max_tokens = 800; top_p = 1.0) to ensure 
consistency and comparability across student outputs. The system 
instructions within the prompt explicitly defined the expected tone, 
length, and evaluative focus. The entire workflow was orchestrated 
through a Python-based pipeline that handled task retrieval, text 
preprocessing (tokenization and cleaning), rubric mapping, and 
response post-processing prior to delivery.

The main objective of “GESfeedback” was to significantly enhance 
both learning and academic performance of each student by providing 
constant and specific feedback that complemented and enriched the 
educational process. This bot stood out for its ability to meticulously 
analyze students’ responses and work to offer a deep analysis of their 
performance. It tailored its feedback to each student’s individual 
needs, highlighting their strengths and suggesting improvements in 
specific areas to strengthen their academic performance. To achieve 
this, an assessment rubric was used that clearly expressed the criteria 
and levels of evaluation.

In the context of the MOOC, Figure 3 presents how 
“GESfeedback” operates as follows: (a) Task Submission: The 
student submitted the task through the course platform. (b) Task 
Receipt: The task was received through the course platform, then 
downloaded for further processing. (c) Task Analysis: Advanced 
algorithms were used to assess the quality and understanding of 
the student’s work. (d) Feedback Generation: Based on the analysis 
and assessment rubric, the bot generated personalized feedback 
addressing both strengths and areas for improvement. (e) Feedback 
Delivery: The feedback was sent to the student via email. (f) 
Student Reception: The student received the feedback and could 
use it to enhance their learning and prepare for future assessments. 
Immediately afterward, students were invited to complete the 

perception instrument described in Section 4.2, which collected 
data for validating the proposed model.

It should be noted that this version of GESFeedback was 
developed as an experimental prototype, and more robust iterations 
are currently under development with improved pipelines for data 
validation, rubric versioning, and adaptive prompt optimization. To 
replicate this experience, researchers may follow a comparable 
configuration by (a) defining a clear evaluation rubric aligned with 
the constructs under analysis (an example of the GESFeedback 
Prompt Template is presented in Table 2), (b) implementing a 
sequential chain in LangChain that links a prompt template to the 
LLM API call, and (c) recording feedback interactions for subsequent 
perception analysis. This design can be reproduced with open-
source components and minimal computational resources, 
facilitating adaptation to different online learning environments and 
research contexts.

4.2 Instrument

The items for each variable in the study were adapted from 
validated scales in previous studies. Thus, questions regarding the 
feedback received by students through the use of GAI were adapted 
from (Lizzio and Wilson, 2008; Gan et al., 2021). The scales on 
changes in student behavior in the use of GAI in feedback were 
adapted from Estriegana et al. (2021, 2024), Chang (2013).

The scales for trust towards the use of GAI in feedback were 
measured using items adapted from Tang et al. (2022). Similarly, 
attitudes were adapted from items proposed by Lim et al. (2006) and 
also from Ibrahim et al. (2011).

On the other hand, scales measuring students’ perception of 
privacy towards the use of feedback through GAI were measured 
using items adapted from Aleroud et al. (2020). Regarding the scales 
measuring students’ perception of security in the use of GAI in the 
feedback process, items proposed by Charles et al. (2022) were used.

Finally, questions to evaluate students’ satisfaction with the 
feedback process through the use of GAI were adapted from Wirani 
et al. (2022) and also from Jang and Hsieh (2021).

FIGURE 2

AI architecture for the GESFeedback prototype.

https://doi.org/10.3389/fcomp.2025.1708114
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Medina Merodio et al.� 10.3389/fcomp.2025.1708114

Frontiers in Computer Science 09 frontiersin.org

To test our hypotheses, student data was collected using an online 
questionnaire following several criteria as a guide, adapted considering 
other reviewed models as recommended by O’Leary (2017).

The questionnaire used a 5-point Likert scale to obtain responses 
(Likert, 1932), adopting the standard method for measuring variables 
that are not directly quantifiable (Hair et al., 2013), with responses 
ranging from 1: completely disagree to 5: completely agree. To 
minimize errors in items related to variation, the questionnaire used 
simple questions and easy-to-understand language. This questionnaire 
was subsequently analyzed.

4.3 Participants and data collection

The activities targeted 207 participants in the pilot. Reviewing 
panel of educators determined that the responses were suitable and 

adequate. Participants were then issued with a study questionnaire, 
which was completed by 161 individuals whose responses were 
recorded and analyzed in depth.

4.4 Data analysis

This study employed a regression analysis of latent variables, 
based on the optimization technique of partial least squares (PLS) to 
elaborate the model. This study draws on SmartPLS 4.1.0.2. PLS is a 
multivariate technique for testing structural models and estimates the 
model parameters that minimize the residual variance of the 
dependent variables of the whole model (Hair et al., 2013). It does not 
require any parametric conditions and is recommended for small 
samples (Hulland, 1999).

4.4.1 Justification of number of cases
On the other hand, Hair et al. (2017) suggest using software like 

GPower GPower 3.0 (Institut für Experimentelle Psychologie, 2007) for 
conducting specific power analyses as per model specifications. To 
determine the sample size, it is necessary to specify the effect size (ES), 
the significance level alpha (α), and the power (β). Generally, a 
significance level of α = 0.05 and power of 80% are accepted. In this case, 
a multiple regression study with four predictors was conducted, with a 
medium effect size (ES) of 0.15, an alpha of 0.05, and power of 0.95 
(following Cohen, 1992). One wishes to ascertain the sample size 
required. Applying a priori analysis shows a result of N = 129 subjects.

The available sample for this analysis consists of 161 valid cases, 
which comfortably exceeds any requirement set by these criteria, for 
conducting measurement and structural model analyses.

4.4.2 Measurement model evaluation
The results show that all standardized loadings (λ) exceed the 

threshold of 0.707, supporting the adequate individual reliability of 
the items (Carmines and Zeller, 1979). Moreover, these outer loadings, 
which represent the association between latent variables and their 
observed indicators, reinforce the validity of the model, as presented 
in Table 3.

The simple reliability of the measurement scales used was 
calculated considering the Cronbach’s alpha values, all of which were 
above 0.70 (Nunnally and Bernstein, 1994). The composite reliability 
can be seen that all of indicators values are shown to be greater than 
0.7 (Werts et al., 1974), so high level of internal consistency reliability 
have been demonstrated among latent variables.

In the analysis of variance, all the values for the average variance 
extract (AVE) were above 0.50, Fornell and Larcker (1981), exceeding 
the minimum acceptable values for validity (Table 4).

Additionally, Fornell and Larcker (1981), suggest that the square 
root of AVE in each latent variable can be used to establish 
discriminant validity so for confirm discriminant validity among the 
constructs, the square root of the AVE must be superior to the 
correlation between the constructs. Table 5 presents the square roots 
of the AVE on the diagonal and the correlations among the constructs. 
This value is larger than other correlation values among the latent 
variables, so that the values indicate adequate discriminant validity of 
the measurements.

On the other hand, as we can show in Table 6 the discriminant 
validity measures using the heterotrait-multitrait (HTMT) method 
(Henseler et al., 2014) which indicated the mean of the 

FIGURE 3

GESFeedback dataflow.
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heterotrait-heteromethod correlations relative to the geometric mean 
of the average monotrait-heteromethod correlation of both variables. 
We found that the HTMT ratio for group-focused and individual 
focused, was below the 0.95 cutoff recommended for conceptually 
close constructs (Henseler et al., 2014).

4.4.3 Structural model analysis
The model shown in Figure 1 has been elaborated from the 

reviewed literature and its analysis.
PLS program can generate T-statistics for significance testing of 

both the inner and outer model, using a procedure called 

bootstrapping (Chin, 1998b). In this procedure, many subsamples 
(10000) are taken from the original sample with replacement to give 
bootstrap standard errors, which in turn gives approximate T-values 
for significance testing of the structural path.

After the bootstrapping procedure is completed, Results can get 
as the following. All the R-squared values range from 0 to 1. The 
higher the value, the more predictive capacity the model has for that 
variable. Because R-squared should be high enough for the model to 
reach a minimum level of explanatory power. The R-squared values 
are greater than 0.10 with a significance of t > 1.64 (Fralk and 
Miller, 1992).

TABLE 2  Structure and example of the GESFeedback prompt template.

Component Prompt engineering strategy Example content

System role Persona and goal setting: Establishes the LLM’s authority 

(“senior educator”) and its core mission (“Provide formative 

feedback that is specific, supportive, and improvement-

oriented”).

“You are a senior educator and AI-in-education expert with extensive experience in 

online learning. Provide formative feedback that is specific, supportive, and 

improvement-oriented.”

Task context Contextual framing: Provides the LLM with the necessary 

background (MOOC, Lesson, Task) to understand the learner’s 

submission and the expected output.

“Activity context: This is Lesson 2 of the MOOC ‘Transforming Education with AI: 

ChatGPT.’ Task for the learner: ‘Identify at least three specific applications of 

ChatGPT in the educational field. Include examples and detailed explanations of 

how each application can benefit students and teachers.’“

Learner 

submission

Input variable: Uses a clear placeholder ({student_response}) to 

dynamically insert the text to be evaluated, a key component of 

automated feedback systems.

“Learner submission: {student_response}”

Internal rubric Evaluation constraints: Defines the hidden criteria the LLM 

must use to structure its implicit evaluation, ensuring alignment 

with learning objectives.

“Evaluate the submission implicitly using the internal criteria: (a) Identification of 

Applications (b) Examples & Explanations (c) Rationale of the Benefit (d) Clarity & 

Organization”

Output 

instructions

Format and tone control: Directs the LLM on the required 

output structure (email format) and the desired communication 

style (empathetic, motivating, balanced).

“Use an empathetic and motivating tone. Do not reveal the rubric. Provide 

balanced feedback highlighting strengths and areas for improvement. Return the 

feedback in email format (subject, greeting, body, closing).”

Rubric hiding Strategic omission: Explicitly instructs the LLM to not reveal the 

internal criteria, maintaining the focus on constructive feedback 

rather than a score-based evaluation.

“Do not reveal the rubric.”

TABLE 1  Prompt template prepared for GESFeedback prototype.

Component Description and example

1. System role Purpose: Defines the persona, expertise, and primary goal of the Large Language Model (LLM). Example: “You are a senior educator 

and AI-in-education specialist with extensive experience in online learning. Your goal is to provide formative, high-quality feedback 

that helps learners improve.”

2. Task context Purpose: Provides necessary background information about the assignment, course, or learning environment. Example: “MOOC: 

Transforming Education with AI: ChatGPT. Lesson 2 activity: Identify at least three specific applications of ChatGPT in education, 

including examples and detailed explanations of how each application benefits students and teachers.”

3. Student submission (variable) Purpose: Placeholder for the input text that the LLM must evaluate and provide feedback on. Example: STUDENT_

RESPONSE = {student_response}

4. Rubric (hidden from learner) Purpose: Internal guidance criteria for the LLM to structure its evaluation and ensure alignment with learning objectives. Example: 

“Internal guidance criteria: (a) Identification of Applications (b) Examples & Explanations (c) Rationale of the Benefit (d) Clarity & 

Organization”

5. Output requirements Purpose: Specifies the desired tone, focus, and final format of the LLM’s response. Example: “Tone: empathetic, constructive, and 

supportive. Focus: highlight strengths and specify actionable areas for improvement. Format: structured email message (subject, 

greeting, body, closing).”

6. LLM call (prototype 

configuration)

Purpose: Technical parameters used for the API call to the LLM, ensuring reproducibility and controlling output behavior. Example: 

“Model: gpt-4-0613. Temperature: 0.3. Max tokens: 800. Top_p: 1.0”
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TABLE 4  Cronbach’s alpha coefficients, Rho_A, construct reliability and average variance extracted AVE.

Cronbach’s alpha rho_A Composite reliability Average variance 
extracted (AVE)

ATT 0.942 0.947 0.963 0.896

BC 0.881 0.886 0.913 0.678

Feedback 0.949 0.951 0.963 0.868

PP 0.922 0.923 0.963 0.928

PS 0.922 0.937 0.945 0.812

SAT 0.753 0.823 0.887 0.797

TRU 0.943 0.945 0.959 0.855

TABLE 3  Outer model loadings.

Items\ 
Factors

ATT BC Feedback PP PS SAT TRU

ATT1 0.927

ATT2 0.955

ATT3 0.958

BC1 0.855

BC2 0.855

BC3 0.765

BC5 0.801

BC6 0.838

FEBT1 0.924

FEBT2 0.940

FEBT3 0.917

FEBT4 0.945

PP2 0.965

PP3 0.962

PS1 0.906

PS2 0.936

PS3 0.938

PS4 0.821

SAT1 0.852

SAT2 0.932

TRU2 0.944

TRU3 0.901

TRU4 0.927

TRU5 0.925

TABLE 5  Discriminant validity matrix (Fornell-Larcker criterion).

ATT BC Feedback PP PS SAT TRU

ATT 0.947

BC 0.563 0.824

Feedback 0.686 0.571 0.932

PP 0.146 0.276 0.072 0.963

PS 0.215 0.482 0.270 0.450 0.901

SAT 0.768 0.579 0.550 0.056 0.162 0.893

TRU 0.409 0.540 0.557 0.177 0.493 0.436 0.925
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Figure 4 and Table 7 show the explained variance (R squared) in 
the dependent constructs and the path coefficients for the model.

The standardized of the regression coefficients show the 
estimates of the relationships of the structural model, that is, the 
hypothesized relationships between constructs. So it will analyze 
the algebraic sign if there is change of sign, the magnitude and 

statistical significance is greater Tstadistic of (t(9999), one-tailed 
test) 1.64. After, the hypotheses were checked and validated and 
the relationships were positive, mostly with high significance 
(Table 8).

However, when it is applied percentile bootstrap to generate a 95% 
confidence interval using 10.000 resamples, H1 to H6, and H12 to 

TABLE 6  Discriminant validity matrix (Heterotrait-Monotrait ratio criterion).

ATT BC Feedback PP PS SAT TRU

ATT

BC 0.608

Feedback 0.719 0.621

PP 0.159 0.298 0.105

PS 0.229 0.527 0.288 0.482

SAT 0.880 0.700 0.624 0.062 0.207

TRU 0.432 0.593 0.588 0.188 0.520 0.529

FIGURE 4

Results of testing the model significance. *p < 0.05; **p < 0.01; ***p < 0.001.

TABLE 7  Structural model results.

R2 Sample mean 
(M)

Standard 
deviation (STDEV)

T Statistics (|O/
STDEV|)

P values Q2

ATT 0.523 0.540 0.072 7.278 0.000 0.16

BC 0.292 0.301 0.073 3.995 0.000 0.07

Feedback 0.414 0.426 0.073 5.632 0.000 0.33

PP 0.076 0.082 0.046 1.674 0.047 0.20

PS 0.243 0.255 0.074 3.287 0.001 0.20

SAT 0.645 0.663 0.060 10.792 0.000 0.37
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TABLE 8  Structural model results.

Hypothesis Results Influence SPC Sample 
mean (M)

Standard 
deviation 
(STDEV)

T statistics 
(|O/

STDEV|)

P values Cambio 
signo

H1 Accepted ATT → SAT 0.618 0.617 0.083 7.462 0.000 No

H2 Accepted BC → ATT 0.280 0.288 0.102 2.737 0.003 No

H3 Accepted BC → Feedback 0.382 0.385 0.101 3.771 0.000 No

H4 Accepted BC → PP 0.276 0.274 0.084 3.306 0.000 No

H5 Accepted BC → SAT 0.240 0.242 0.110 2.179 0.015 No

H6 Accepted Feedback → ATT 0.557 0.543 0.086 6.486 0.000 No

H7 No accepted PP → ATT 0.075 0.072 0.057 1.326 0.092 Si

H8 No accepted PP → SAT −0.071 −0.067 0.044 1.611 0.054 Si

H9 No accepted PS → ATT −0.096 −0.101 0.082 1.169 0.121 Si

H10 No accepted PS → SAT −0.115 −0.119 0.074 1.544 0.061 Si

H11 No accepted TRU → ATT −0.019 −0.009 0.101 0.187 0.426 Si

H12 Accepted TRU → BC 0.540 0.545 0.068 7.981 0.000 No

H13 Accepted TRU → Feedback 0.351 0.348 0.094 3.741 0.000 No

H14 Accepted TRU → PS 0.493 0.499 0.074 6.648 0.000 No

H15 No accepted TRU → SAT 0.122 0.127 0.101 1.209 0.113 Si

Path significance using percentile bootstrap 95% confidence.

TABLE 9  Effects on endogenous variables (extended model).

Dependent 
variable

R2 Q2 Antecedents Path coefficients Correlations Explained 
variance (%)

SAT 0.645 0.37 64.5

H8: Perceived privacy −0.071 0.056 −0.30

H5: BC 0.240 0.579 13.8

H1: Attitude 0.617 0.768 47.3

H15: Trust 0.122 0.409 4.98

H10: Perceived security −0.115 0.162 −1.86

PP 0.076 0.20 7.60

H4: BC 0.276 0.177 4.88

PS 0.243 0.20 24.30

H14: Trust 0.493 0.493 24.30

ATT 0.523 0.16 52.3

H7: Perceived privacy 0. 075 0.146 1.09

H2: BC 0.280 0.563 15.76

H6: Feedback 0.557 0.686 38.21

H11: Trust −0.019 0.409 −0.7

H9: Perceived security −0.096 0.215 −2.06

BC 0.292 0.07 29.20

H12: Trust 0.540 0.540 29.16

Feedback 0.414 0.33 41.40

H13: Trust 0.351 0.557 19.55

H3: BC 0.382 0.571 21.81
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H14, are supported because its confidence interval not includes zero 
(Table 5). Thus these hypothesis are adopted. All of these results 
complete a basic analysis of PLS-SEM in our research. PLS-SEM result 
is shown in Figure 4.

Finally, Table 9 shows the amount of variance that each antecedent 
variable explains on each endogenous construct. Thus, cross-validated 
redundancy measures show that the theoretical/structural model has 
a predictive relevance.

5 Discussion

Based on the results, the proposed model for this analysis was 
highly satisfactory. The reliability of each item, along with the values 
of Cronbach’s alpha and composite reliability, met acceptable 
standards, demonstrating a high level of internal consistency reliability 
among the latent variables. Additionally, it was found that the validity 
and discriminant validity values of the measures were within 
acceptable ranges. Moreover, the relationships between the variables 
were predominantly significant, confirming the validation of 
all hypotheses.

According to Table 8, confidence in the use of GAI (TRU) shows 
significant positive correlations with students’ behavioral change 
towards GAI use (BC) (H12), explaining 29.16% of the variance, 
consistent with findings by Sabraz Nawaz et al. (2024) and Jo (2023). 
Furthermore, confidence in the use of GAI (TRU) correlates 
significantly positively with students’ attitude towards GAI use 
(FEEDBACK) (H13), explaining 19.55% of the variance, as indicated 
by Shaka et al. (2023), Téllez et al. (2024), and Barrett and 
Pack (2023).

Additionally, confidence in the use of GAI (TRU) shows a 
significant positive correlation with students’ perception of security (PS) 
in receiving GAI-based feedback, explaining 24.30% of the variance, in 
line with findings by Kuhail et al. (2024), Hannon et al. (2024), and 
Kiryakova and Angelova (2023). This is critical as there is a risk that 
students may blindly trust GAI without verifying the authenticity of 
generated texts, potentially negatively impacting their acquisition of 
knowledge and skills.

On the other hand, confidence in the use of GAI (TRU) does not 
directly influence attitude (ATT) or satisfaction (SAT) but does so 
indirectly through behavioral change, explaining 4.98% of 
the variance.

Behavioral change (BC) has a significant direct positive impact on 
students’ perception of privacy (PP) in GAI use (H4), explaining 4.88% 
of the variance, consistent with findings by Chen M. et al. (2024), Chen 
X. et al. (2024), Albayati (2024), and Samala et al. (2024).

On the other hand, behavioral change (BC) has a significant direct 
positive impact on students’ Feedback (Feedback) H3, on Attitude 
(ATT) H2, and on Satisfaction in GAI use (SAT) H5, explaining 21.81, 
15.76, and 13.8% of the variance, respectively. These findings are 
consistent with Téllez et al. (2024), Phung et al. (2024) regarding 
feedback, Mukred et al. (2023), Sallam et al. (2023) regarding attitude, 
and Ayoubi (2024), Boubker et al. (2024), and Lee and Park (2023) 
regarding satisfaction.

Furthermore, we can observe that students’ attitude toward 
feedback received through GAI (ATT) H1 has a significant positive 
impact on satisfaction (SAT) H1, explaining 47.30% of the variance. 
This is because when there is a high degree of satisfaction, there is a 

strong willingness to continue using it in the future, as indicated by 
Ayoubi (2024) and Neyem et al. (2024).

Additionally, feedback (Feedback) has a significant positive 
correlation with students’ attitude (ATT) H6, explaining 38.21% of 
the variance, in line with the works of Escalante et al. (2023), 
Mahapatra (2024), Seetharaman (2023), Wang et al. (2024), and Steiss 
et al. (2024).

We can also observe that although students have a high perception 
of privacy (PP) H4, this does not significantly influence students’ 
attitude toward the use of GAI, nor do they perceive it to influence the 
satisfaction experienced in using GAI for the feedback received.

Similarly, students’ perception of security (PS) H14 does not 
significantly influence their attitude toward the use of GAI, nor do they 
perceive it to influence the satisfaction experienced in using GAI for the 
feedback received. Therefore, it is evident that students’ attitude toward 
the use of GAI in their learning and feedback process depends on the 
trust provided by the tool and the behavior change that occurs during 
its use, thereby resulting in greater satisfaction with it.

Based on the results, we can affirm that students show a positive 
attitude toward the use of GAI in feedback, receiving timely feedback 
on their assignments and practices, which facilitates the flow of learning 
for students, in line with Lee and Park (2023), Yasniy et al. (2023), and 
Ngo et al. (2024).

The integration of GAI in the learning process of MOOC courses 
facilitates improvements in learning outcomes and student attitudes by 
encouraging their active participation and providing quick responses to 
their assignments and tasks, thereby reducing dropout rates.

Furthermore, it enhances knowledge acquisition, particularly in 
subjects like programming and sciences, by offering interactive and 
hands-on learning experiences, as indicated by Blackie and Luckett 
(2024), Rogers et al. (2024), Iwasawa et al. (2023), and Jo (2024).

On the other hand, the findings of this study also invite reflection 
on the implications of Generative Artificial Intelligence (GAI) for 
inclusive education. Within online learning environments, 
GAI-mediated feedback can serve as a mechanism to support learners 
with diverse needs by offering personalized and adaptive responses 
that accommodate varying levels of prior knowledge, learning pace, 
and linguistic competence (Barrett and Pack, 2023; Steiss et al., 2024). 
This capacity for personalization aligns with the principles of 
Universal Design for Learning, which emphasize flexibility and 
accessibility in instructional design. Consequently, GAI feedback 
systems such as GESfeedback can contribute to fostering equitable 
participation, particularly in large-scale settings like MOOCs, where 
instructor-led individualized feedback is often unfeasible (Floratos et 
al., 2017).

Moreover, the integration of GAI tools into online courses has the 
potential to mitigate barriers faced by marginalized learners and 
students with disabilities. By providing multimodal feedback—through 
text, voice, or visual explanations—these systems enhance accessibility 
for learners who might otherwise be excluded from traditional online 
formats (Chen M. et al., 2024; Chen X. et al., 2024; Alammari, 2024). 
For instance, feedback generated via natural language processing can be 
adapted to different reading levels or translated automatically, thus 
facilitating participation for students from diverse linguistic 
backgrounds (Canabal and Margalef, 2017). Such functionalities align 
with broader efforts to promote digital inclusion in higher education 
and to ensure that AI adoption does not widen existing educational 
inequalities (Bower et al., 2024).
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In addition, the model proposed in this study underscores that 
trust and behavioral change—two variables significantly associated 
with student satisfaction—can act as mediating factors in inclusive 
practices. When students perceive GAI feedback as trustworthy and 
supportive, they are more likely to engage actively and persist in 
their learning, even when facing socio-economic or cognitive 
barriers (Kiryakova and Angelova, 2023; Jo, 2023). This dynamic 
suggests that inclusion is not solely a matter of access, but also of 
sustained participation and motivation within digital learning 
environments enhanced by GAI. Therefore, trust-based feedback 
mechanisms represent a valuable pathway toward more inclusive 
and equitable forms of online education.

Finally, it is essential to recognize that the ethical deployment 
of GAI in education must explicitly address the challenges of 
fairness, bias mitigation, and accessibility. Future implementations 
should ensure that the algorithms used for generating feedback are 
transparent and sensitive to cultural, linguistic, and cognitive 
diversity (Dwivedi et al., 2023; Song, 2024). By embedding 
inclusivity as a core design principle rather than an afterthought, 
GAI systems like GESfeedback can evolve from being mere 
technological aids to becoming transformative instruments for 
social equity in education. This perspective broadens the 
contribution of our study, linking GAI-mediated feedback not only 
to learning effectiveness and satisfaction but also to the 
advancement of inclusive educational practices.

6 Conclusions, limitations and future 
work

The integration of GAI-based technologies like ChatGPT in 
education is revolutionizing learning processes and altering 
methodologies. In many cases, it represents a paradigm shift 
where finding a balance between automation and the human 
factor is crucial. Therefore, understanding students’ attitudes 
toward these applications is fundamental for enhancing the 
learning process.

While automation ensures efficiency and scalability, recognizing 
the nuances where human intervention is crucial is part of the 
precision, empathy, and personalized guidance needed in certain 
educational interactions. Otherwise, there is a risk of dehumanizing 
the learning process, where individual needs and differences may not 
be adequately considered. Achieving this balance allows for the 
optimal use of GAI capabilities while maintaining human-centered 
qualities essential for effective teaching and learning.

The results show that students have positive attitudes towards 
GAI-based feedback, finding its use satisfactory largely due to its 
speed and continuous response, enabling students to correct errors 
and improve their skills more efficiently, thereby enhancing the 
learning process. Furthermore, it is evident that perceptions of 
security and privacy are important to students, as indicated by the 
values of H4 and H14, but they do not consider these perceptions 
relevant to their attitudes towards GAI and satisfaction with feedback 
received through GAI. Instead, GAI tools provide confidence and 
foster behavioral change in students.

The study results will contribute to defining guidelines and 
curricula aimed at developing GAI-based feedback processes, 

especially in integrating GAI tools into higher education curricula. This 
could lead to a rethinking of how soft skills are taught and assessed.

Despite the observed benefits, the study also recognizes technical 
challenges and limitations that may affect the effectiveness of 
GAI-based feedback, such as Ethics, which requires a firm 
commitment in its use to ensure fairness, mitigate biases, and 
safeguard data privacy, are integral aspects of responsible AI use.

Addressing these ethical considerations not only upholds our 
standards of integrity and equity but also establishes a foundation of 
trust among students, educators, and stakeholders. Ethical 
implementation is not just a regulatory requirement but a 
fundamental principle to foster a positive and responsible 
educational environment driven by AI. This aspect underscores the 
need for institutional support and teacher training for the effective 
integration of these technologies in the classroom through policies 
and educator training.

However, this study presents some limitations. Although certain 
demographic data were collected during the implementation of the 
MOOC, these were not included in the online questionnaire, which 
limits the possibility of conducting a more detailed analysis of the 
responses. Moreover, since the course focused specifically on 
generative artificial intelligence in education, a potential bias may have 
been introduced, as participants interested in this topic might share 
similar predispositions or perceptions. Additionally, the use of self-
reported data may involve biases and methodological variations that 
should be taken into account when interpreting the results. Likewise, 
the proportion of variance explained in the dependent variables is not 
exhaustive, suggesting that some relevant predictors might not have 
been included in the analysis. Finally, it is recommended that future 
research expand the sample to obtain more representative and 
statistically robust data, thereby strengthening the reliability of the 
findings and enhancing their generalizability across different 
educational contexts.

Another limitation of this study relates to the level of technical 
detail provided regarding the GESFeedback prototype. The article 
intentionally prioritized the validation of the conceptual model and 
its behavioral constructs over a full technical exposition of the 
prototype’s configuration. Consequently, implementation specifics 
such as pseudocode, API parameters, or LangChain component 
architecture were only outlined at a conceptual level and referenced 
to our previous publication (Morales-Chan et al., 2024). This 
decision aligns with the paper’s primary objective that is to 
empirically validate the proposed model rather than to present a 
system design study. Future research may expand on these aspects 
by offering open-access repositories or technical appendices that 
facilitate replicability and comparative studies across similar 
educational contexts.

Therefore, the following lines of research are proposed. Firstly, to 
continue research to further explore how GAI-based feedback 
impacts skill acquisition, which could provide deeper insights into 
the effectiveness of GAI-driven educational tools. Secondly, it would 
be pertinent to explore how students’ demographic and gender 
variables may influence their attitudes towards feedback through 
GAI. Third, it is proposed to analyze the impact of the bot’s use in 
MOOCs that are not specifically focused on generative artificial 
intelligence, in order to avoid potential predispositions or 
homogeneous perceptions among participants. Lastly, to analyze how 
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factors such as privacy perception and security perception are 
affected by the social influence of rapid advancements in GAI, 
particularly in specific fields where technological factors could be 
decisive, such as social sciences, health sciences, or engineering. 
These findings would contribute to a better understanding of the 
implications of GAI use in the learning and development processes 
of students and educators.
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