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Introduction: Game theory has long served as a foundational tool in
cybersecurity to test, predict, and design strategic interactions between attackers
and defenders. The recent advent of Large Language Models (LLMs) offers new
tools and challenges for the security of computer systems. In this work, we
investigate whether classical game-theoretic frameworks can effectively capture
the behaviors of LLM-driven actors and bots.
Methods: Using a reproducible framework for game-theoretic LLM agents,
we investigate two canonical scenarios—the one-shot zero-sum game and the
dynamic Prisoner’s Dilemma—and we test whether LLMs converge to expected
outcomes or exhibit deviations due to embedded biases. We experiments on
four state-of-the-art LLMs and five natural languages (English, French, Arabic,
Vietnamese, and Mandarin Chinese) to assess linguistic sensitivity.
Results: For both games, we observe that the final payoffs are influenced by
agents characteristics such as personality traits or knowledge of repeated rounds.
We also uncover an unexpected sensitivity of the final payoffs to the choice
of languages, which should warn against indiscriminate application of LLMs in
cybersecurity applications and call for in-depth studies, as LLMs may behave
differently when deployed in different countries. We also employ quantitative
metrics to evaluate the internal consistency and cross-language stability of LLM
agents.
Discussion: In addition to uncovering unexpected behaviors requiring attention
by scholars and practitioners, our work can help guide the selection of the most
stable LLMs and optimizing models for secure applications.

KEYWORDS

game theory, large language model, generative AI, Prisoner’s Dilemma, zero-sum game,
cybersecurity, eavesdropping, network security

1 Introduction

According to recent reports, the cost of cyber threats is estimated to breach the $10
Trillion figure in the next few years (Morgan, 2020; Petrosyan, 2024). In addition to
costs for companies, citizens or government firms, cyber attacks can make digital societies
vulnerable to economic and infrastructural losses, which become even more critical as
information technologies diffuse worldwide. As scholars and practitioners develop new and
more powerful methods to face cyber attacks of various nature (Hausken et al., 2024), game
theory emerged as a powerful theoretical framework to study and predict how defenders
may react to attackers, and vice-versa, in cybersecurity (Do et al., 2017; Shiva et al., 2010;
Wang et al., 2016; Bashir et al., 2025; Hammond et al., 2025). Game theory formalizes
the strategic interaction between two (or more) players, whose scope is to maximize their
own gain (Owen, 2013). This modeling approach captures the strategic choices of both
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players, and evaluates the effectiveness of a defense (or attack)
mechanism, depending on the behaviors and payoffs that are typical
of all agents. This way, game theory adds a layer of complexity
to technology-only approaches, including the price or gains of
the interactions between cyberattackers and security layers. For
instance, security and efficiency can conflict and thus need to be
balanced (Amin and Johansson, 2019), and cyber resilience can
thus be better promoted under certain conditions rather than
others, depending on cost-benefit trade-offs (Hausken, 2020). With
applications spanning from intrusion detection, risk assessment,
jamming and eavesdropping (i.e., intentional interference with
wireless signals and passive interception of communication), up to
mechanism design or security investment (including applications
over networks) (Etesami and Başar, 2019), game theory offers
powerful tools such as proven mathematics, robustness analysis
of defense systems, and distributed solutions (Do et al., 2017;
Bashir et al., 2025). In cybersecurity, these games have been used
to model a variety of realistic operational problems. A one-shot
zero-sum game can represent, for instance, an intrusion-detection
setting in which an attacker chooses whether to launch an attack
while a defender allocates costly monitoring resources; successful
detection yields a gain for the defender and a loss for the attacker,
and vice-versa (Ara et al., 2012). Similarly, hardware Trojans have
also been modeled as attacker-defender zero-sum games, where
gain and losses depend on the attack success (Kamhoua et al.,
2014). The repeated Prisoner’s Dilemma naturally captures long-
term threat-intelligence sharing among organizations, where each
round corresponds to a decision to share or withhold indicators
of compromise. Mutual cooperation strengthens collective defense,
whereas opportunistic defection mirrors widely discussed free-
riding issues in cyber-strategy (Kamhoua et al., 2010; Kostyuk,
2013). The game can also form the basis for more complex
relationships in information domains (Schoenherr and Thomson,
2020).

Along with traditional information technology, the recent
years have witnessed the rapid emergence of Large Language
Models (LLMs)—extremely powerful AI applications that are
disrupting academic research, industry and societies alike (Lu
et al., 2024; Tessler et al., 2024; Patel and Trivedi, 2020). Among
the other fields, cybersecurity has swiftly included LLMs into its
range of investigation, both as generators of scenarios [modeling
scope, (Yamin et al., 2024)] and as agents within cybersecurity
scenarios (agentic scope, Kasri et al., 2025; Ferrag et al., 2024;
Hammond et al., 2025); in the latter case, LLMs can play both as
threatening or as defense-enhancing agents (Zhang et al., 2025).
However, systematic studies on the impact of LLMs to cybersecurity
applications are still at their infancy, and may radically benefit
from a coherent framework addressing the emerging strategies of
interacting attacker-defender LLMs. In this sense, game theory
provides a natural choice, and recent perspectives are suggesting
the use of generative AI to develop strategic agents for reliable
cybersecurity applications (Avinash and Jain, 2025; He et al.,
2025). From a methodological perspective, LLM-based agents
should be viewed as complementary to traditional optimisation and
reinforcement-learning (RL) approaches. Classical game-theoretic
or RL agents optimize explicitly specified payoff functions and can
compute or approximate equilibrium strategies under well-defined

rules, which makes them well suited for tasks such as resource
allocation or patrol scheduling. By contrast, LLMs can ingest rich
natural-language descriptions of players, constraints and goals,
and produce strategies or recommendations without retraining,
potentially capturing human-like justifications and informal rules
of engagement. In our study, we therefore do not propose
to investigate LLMs as replacements for optimal solvers, but
as flexible, language-driven agents that can serve as scenario
generators, red-team simulators and decision-support tools in
cybersecurity settings where textual context and human factors are
prominent.

Recent advances in LLM-based game-theoretic analysis (e.g.,
Akata et al., 2025; Fontana et al., 2024; Huang et al., 2025; Jia
et al., 2025; Sun et al., 2025) have demonstrated the importance of
studying emergent cooperation, strategic deviations and behavioral
biases in controlled multi-agent environments. However, these
studies primarily focused on social, cognitive or abstract strategic
settings and did not examine attacker–defender conflicts, jamming
or deception games, information-sharing dilemmas, or other
characteristics such as multiliguism (Do et al., 2017; Etesami and
Başar, 2019). Here, we complement this growing body of works
by analyzing LLM strategic behavior specifically in cybersecurity-
motivated versions of the one-shot zero-sum game and the
repeated Prisoner’s Dilemma, framed according to canonical use-
cases and providing a multilingual evaluation of LLM behavior
on foundational cyber-game scenarios, with the aim of assessing
their suitability for operational decision-support and simulation
tasks. In fact, we may ask whether LLMs act in alignment with
game-theoretic predictions (rendering them more or less suitable to
predict the outcome of games) or whether they showcase alternative
and unpredictable outcomes. In the latter case, we ask how
representative such outcomes are with respect to developers’ goals
(both as attackers and as defenders), and which features mostly
influence such outcomes. For instance, in games representing the
development of AI ecosystems (Alalawi et al., 2026; Correia da
Fonseca et al., 2025), it was observed that only certain LLMs (out
of a set of popular ones including GPT, Gemini, Mistral, and
more), and under specific conditions, comply with game-theoretic
predictions (Balabanova et al., 2025; Buscemi et al., 2025a). Other
works also observed that LLMs divert from theoretical predictions
even in traditional game-theoretic scenarios (Fontana et al., 2024;
Wang et al., 2024; Akata et al., 2025). It is thus of interest to
test how LLMs would behave within cybersecurity-oriented game-
theoretic scenarios, whether certain LLMs offer greater reliability
than others, and which factors or biases may challenge game
theoretic-based analysis of cyber threats.

In this work, we address these questions by building on the
FAIRGAME framework (Buscemi et al., 2025b) and instantiating
it in two canonical games that have been widely employed in
cybersecurity studies: a static attacker–defender zero-sum game
(Ara et al., 2012) and a dynamic Prisoner’s Dilemma on networks
(Kamhoua et al., 2010). To this aim, we adopt FAIRGAME’s
methodology and examine how LLM agents behave when these
games are framed as cybersecurity scenarios. We specialize the
game narratives, roles and prompts to representative security
settings, analyse LLM behavior across five languages and distinct
agent “personalities,” and derive practical recommendations for
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model choice, deployment language, and appropriate use cases
(e.g., decision support vs. exploratory red teaming) in cybersecurity
workflows.

2 Materials and methods

2.1 Game theory for cybersecurity

Game theory is a mathematical modeling framework aimed
at quantitatively and formally capturing the strategic interactions
(formalized as games with rules and payoffs) among two or more
agents, whose personal goal is to receive benefits from playing such
games (Owen, 2013). Formally, games are formalized as set of tuples
G such that

G = 〈P, {Sj}i∈P, {uj}i∈P〉 , (1)

where P is the set of players, {Sj}i∈P is the set of j possible strategies
for player i. Given a combination of selected strategies Si = [Sj],
{uj}i∈P :(Sj)i∈P → R≥0 is the set of payoffs, associated with each j-
th strategy, of the player i, and ui : Si → R≥0 is the overall payoff
function for player i. Depending on the game, {uj} can be either
interpreted as gain or as penalties. The set of payoffs is usually
represented in terms of a payoff function, which captures the results
of interacting strategies for each involved player. An example of
payoff function for a two-player game, with two available strategies,
is provided in Table 1.

An interesting feature of games is the possible existence of
equilibria, i.e., strategies that lead to situations where any other
unilateral move would not further improve the players’ payoff. For
a set of relatively simple games, under some assumptions, such
equilibria can be computed analytically; alternatively, for games
involving a higher degree of complexity, games can be effectively
simulated to extract information (see, e.g., García and Van Veelen,
2018; Balabanova et al., 2025; Han et al., 2020).

For cybersecurity applications, games are usually interpreted
as the set of actions between at least two conflicting players: an
attacker, whose goal is to cause corruption in the cyberspace, and
a defender aiming to prevent or minimize damage (Shiva et al.,
2010). Depending on the cybersecurity scenario and scope (such
as jamming, cyber-physical security, configuration of intrusion
detection systems, selfishness in selected networks, trust, and
more), various games can be aptly taken from the vast game-
theoretic literature and adapted to describe the desired scenarios;
see Do et al. (2017) and Hausken et al. (2024) for recent
reviews on the topic. Games can capture a variety of features in
cyber systems, such as the completeness of information (whether
agents know everything about payoffs, strategies, and opponents’
characteristics), the accuracy of monitoring (i.e., or the degree of
knowledge about the game history and opponents’ choices). Games

TABLE 1 Generic form of a two-players payoff matrix, when two
strategies are viable.

Option A Option B

Option A x1,1 = (a1, a2) x1,2 = (b1, b2)

Option B x2,1 = (c1, c2) x2,2 = (d1, d2)

can also be static or dynamic (or repeated), so as to capture attacks
and disturbances that occur only once and at the same time, or
repeatedly over time (and with the possibility for agents to adjust
their response at round t + 1, depending on the actions and payoffs
received at time t).

Popular games such as the zero-sum game, the Prisoner’s
Dilemma or the Stackelberg game (Srinivasan et al., 2003; Shukla
et al., 2022; Nguyen et al., 2022) are widely employed to model
scenarios occurring in the cyberspace, and have successfully
promoted the development of effective applications. However, real
cyber systems are often more complex than relatively simple and
deterministic games. To overcome this issue, stochastic games have
been increasingly employed to capture uncertainties, e.g., in cyber-
physical interactions (Zhu and Başar, 2011); recently, there have
been suggestions (He et al., 2025; Yang et al., 2024; Xiao et al.,
2025) for the usage of generative AI and Large Language Models
to better incorporate the complexity of networked systems or
strategic agents in the cyberspace, and to equip them with advanced
characteristics (such as personality, which is absent in traditional
game-theoretic models) to improve efficiency and effectiveness.
However, there is still shortage of systematic investigations about
the adequateness and emerging properties of game-theoretic LLM
agents in cybersecurity settings.

In what follows, we select two widely used games, having
different characteristics that capture different needs of the cyber
modelers, and explore their behaviors within generative AI settings.

2.1.1 The one-shot zero-sum game
The first game to be analyzed is the static (one-shot) zero-

sum non-cooperative game. It has been employed, e.g., to model
jamming and eavesdropping activities (Ara et al., 2012), as well
as attacks aimed at denying service (DoS) (Spyridopoulos et al.,
2013) or hardware Trojans (Kamhoua et al., 2014); in the physical
domain, it has also been employed to model submarine attacks
(Brown et al., 2011). Zero-sum games are such if the payoff function
satisfies

N∑

i=1

ui = 0, (2)

that is, a player winning something implies the others to lose an
equal amount. For instance, think of an attacker-defender scenario
on a routing system: the attacker strives to find the optimal
configuration parameters that cause maximum service disruption
with the minimum cost. On the opposite side, the defender looks
for the optimal configuration parameters for a firewall, so as to
fight off the threat and get the maximum gain. Whichever player
gets the upper hand, implies that the other loses an equal amount.
A corresponding payoff matrix would be that of Table 2 [with
generic payoff values that are proportional up to a scaling factor
(Von Neumann and Morgenstern, 2007)].

We describe a prototypical scenario and its detailed
implementation in Section 2.2.
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TABLE 2 Zero sum game payoff matrix.

Option A Option B

Option A x1,1 = (2,−2) x1,2 = (−2, 2)

Option B x2,1 = (−2, 2) x2,2 = (2,−2)

TABLE 3 Prisoner’s Dilemma payoff matrix.

Option A Option B

Option A x1,1 = (6, 6) x1,2 = (0, 10)

Option B x2,1 = (10, 0) x2,2 = (2, 2)

2.1.2 The repeated Prisoner’s Dilemma
The Prisoner’s Dilemma is a classic scenario in game theory

where two players must choose between cooperation and defection,
each facing varying levels of penalties based on their decisions.
Here, mutual cooperation yields a better collective payoff; however,
according to the theory, in a static scenario, the dominant strategy
equilibrium leads both parties to a suboptimal outcome—mutual
defection. In the cyber domain, the Prisoner’s Dilemma has been
used, e.g., to model selfishness in Multi-hop networks (Kamhoua
et al., 2010), where intermediate nodes in wireless mesh or ad-
hoc networks may refuse to forward transit packets, intentionally
or strategically limiting cooperation. Such behavior can degrade
network availability, disrupt routing, and even resemble denial-
of-service conditions when large portions of traffic are dropped
or selectively relayed. The model has also been used to capture
mutual aid in multi-agent scenarios (Hausken, 2002). The classical
results of a one-shot Prisoner’s Dilemma may change in the case
of repeated games, where players have the chance to update their
choices based on history (Wang et al., 2015). For instance, repeated
games are employed to model selfishness in packet forwarding (Ji
et al., 2010), as well as the problem of free-riding. To capture these
scenarios, we thus investigated the repeated Prisoner’s Dilemma,
over 10 rounds, with partial information available to the agents.
Using a common scaling of dilemma payoffs (Wang et al., 2015),
we employed a conventional configuration with matrix given in
Table 3.

The description of the game scenario and its implementation
details are given in Section 2.2.

2.2 LLMs in game-theoretic scenarios

Large Language Models rely on deep computational
architectures that are vastly obscure to explicit modeling.
Hence, using analytical tools to analyse strategic games among
LLM agents is not feasible, and we must perform studies based
on empiric game-theoretic analysis (Wellman et al., 2025), that is,
performing experiments and carefully evaluating and interpreting
the results, and contrast them with game-theoretic predictions.
Large Language Models are characterized by a large array of
degrees of freedoms and features that render them extremely
versatile, but also challenging for sensitivity analysis. Moreover,

LLMs are inherently characterized by uncertainties and non-
deterministic behavior, which yields some degree of stochasticity
in their responses (Swoopes et al., 2025). Hence, integrating LLMs
into game-theoretic scenarios requires setting their attributes
in a reproducible and interpretable framework, which helps to
systematically account for the influence of single features and
allows repeated experiments to collect reasonable statistics about
the average behavior during games.

To these ends, we instantiated the games mentioned above
using FAIRGAME (Buscemi et al., 2025b), a framework
purposefully designed to embed LLM agents for the desired
strategic games, while allowing to set several features of agents
and game settings. The specific settings are detailed below and
summarized in Figure 1. Our use of FAIRGAME in this work
should be understood as employing a validated experimental
backbone rather than proposing algorithmic modifications or
metric extensions. This choice enables direct comparability with
prior LLM behavioral studies while allowing us to investigate
questions that are specific to cybersecurity modeling. In contrast
with recent contributions that focus on abstract social or cognitive
strategic reasoning (e.g., Akata et al., 2025; Fontana et al., 2024),
our analysis examines LLM behavior when the underlying games
are structured around canonical attacker–defender conflicts,
intrusion-detection interactions, or information-sharing dilemmas
frequently explored in cyber-defense research (Do et al., 2017;
Etesami and Başar, 2019). The resulting contribution is therefore
situated at the intersection of behavioral evaluation and domain
translation: we assess whether established FAIRGAME metrics
reveal systematic vulnerabilities or inconsistencies when LLM
agents operate within cybersecurity-motivated strategic conditions
across multiple languages.

2.2.1 Employed LLMs
It has been observed that, in various tasks, different LLMs may

not be consistent with one another (Buscemi and Proverbio, 2024;
Buscemi et al., 2025b). Hence, we tested the games on four widely
used Large Language Models, using default settings recommended
by the providers: (i) GPT-4 by OpenAI (proprietary) in its February
2025 version, with Temperature = 1.0 and Top_p = 1.0; (ii) Claude
3.5 Sonnet by Anthropic (proprietary) in its February 2025 version,
with Temperature = 0.9 and Top_p = 1.0; (iii) Mistral Large by
Mistral AI (open-source) in its mistral-large-latest version, with
Temperature = 0.3 and Top_p = 1; (iv) Llama 3.1 405b by Meta
(open-source) in its meta/meta-llama-3.1-405b-instruct version,
with Temperature = 0.9, Top_p = 0.6 and Top_k = 40. All LLMs
are accessed through their corresponding APIs. The set of evaluated
models matches the set used in FAIRGAME to ensure direct
comparability with their reported LLM behavioral results. The goal
is to investigate how the relative stability, variability and linguistic
sensitivity of these models manifest when the same evaluation
framework is instantiated within cybersecurity-motivated strategic
contexts.

2.2.2 Tested features
LLM agents can embed complex traits that surpass simplified

features of game-theoretic models (Han et al., 2024; Avinash and
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FIGURE 1

Simulation and analysis workflow. After selecting the games, they are instantiated in LLM form using FAIRGAME (whose pipeline is in dashed frame;
figure adopted from Buscemi and Proverbio, 2024): the Config. and Template file are user-defined to specify the game settings and features and are
taken as inputs; then, the framework automatically integrates the information and runs the games by calling the desired LLMs (gray-shaded area); the
output are the rounds history, the final payoffs and any other specified metric, which is finally analyzed.

Jain, 2025). This allows greater flexibility and capabilities; at the
same time, however, this fact makes estimating the sensitivity of
outputs to LLM characteristics more challenging. Hence, we here
select and test a set of features that are known to possibly elicit
biases in LLM responses (Buscemi et al., 2025b; Liang et al., 2023):
the natural language used to conduct the games, and the personality
bestowed upon each agents. Using different languages is natural, as
both hackers and defenders can come from geographically distant
regions and may be more or less proficient using certain languages,
such as their own native one; as prompting LLMs can be conducted
in different languages, it is of interest to test their influence on the
outcomes. Setting a personality for agents can also be intriguing; in
fact, attention has been given in the past to using agents receiving
incentives (Hausken, 2024) or having specific attitudes toward
information sharing (Pala and Zhuang, 2019); setting a personality
to LLM agents is a first step toward modeling their ‘intrinsic’
behavioral tendencies while performing their strategies.

As natural languages, we employed English, French, Arabic,
Vietnamese, and Mandarin Chinese, to represent a variety of
cultures and geographies. The prompts are initially written in
English and then translated with the help of native speakers.
Following FAIRGAME (Buscemi et al., 2025b), we evaluate each
game in these five languages to examine how prompting language
influences strategic behavior. This design aims to probe cross-
linguistic sensitivity while allowing controlled comparison; we do
not claim exhaustive linguistic coverage. This multilingual design
extends FAIRGAME’s analysis to cybersecurity-motivated games,
allowing us to assess whether language-dependent behavioral
differences also arise in attacker-defender and threat-intelligence
sharing scenarios that are central to cyber-defense research.

As personality traits, we used a binary classification into
“cooperative” and “selfish,” to represent the possibility of stressing
cooperation or self-interest (Do et al., 2017). Instead, we did not
specify any specific agent identifier (name) such as “attacker”
or “defender;” they were intentionally left neutral (“agent1” and
“agent2”) so as not to add additional variables that could introduce
deviations from default behaviors. Future works may look into the
impact of explicitly telling each agent its role into a cybersecurity
game. Note that agents are unaware of their opponent’s personality,
as that would mean requiring additional information that is often
not available to either player (Liu et al., 2013). We intentionally kept

agent identifiers neutral (“agent1”/“agent2”) to avoid introducing
linguistic or role-priming biases, in line with FAIRGAME’s
findings. Future work may extend this design by embedding explicit
attacker/defender personas or expert profiles (e.g., penetration
testers, SOC analysts), which would allow exploration of role-
conditioned behavioral deviations.

For the repeated games of the Prisoner’s Dilemma, we tested
both scenarios in which agents know the total number of rounds (#
Rounds Known) or not (# Rounds Unknown). However, they are
knowledgeable about the past history of the rounds. This reflects
the amount of information possessed by the agents, which is often
incomplete in case of real cyber systems (Acquisti and Grossklags,
2005; McKelvey and Palfrey, 1998). Agents do not communicate
with each other.

2.2.3 Game runs
To run games following FAIRGAME’s workflow (Buscemi et al.,

2025b), the framework requires a configuration JSON file and
a prompt template describing the characteristics of each game
and of the agents, translated into the languages of interest. The
prompt template provides a literal description of the game, with
placeholders populated using the information from the JSON file.
The English prompt templates, which employ prompt engineering
hacks such as using assertive and rule-driven language, employing
clear subdivision of commands into sections, as well as including
all placeholders (in {}) for mandatory fields in clear order, are:

Zero-sum game: You are {currentPlayerName} and your
opponent is {opponent1}. {intro}: [You are {personality}.]

You and {opponent1} are fulfilling a task, which requires
choosing either {strategy1} or {strategy2}.

There is only one round to decide. If you both choose
{strategy1} or {strategy2}, Agent1 gets a payoff of {weight1}
and Agent2 gets a payoff of {weight2}. If one agent chooses
{strategy1} and the other chooses {strategy2}, Agent1 gets a
payoff of {weight2} and Agent2 gets a payoff of {weight1}. If
one agent chooses {strategy2} and the other chooses {strategy1},
Agent1 gets a payoff of {weight2} and Agent2 gets a payoff of
{weight1}.

Your goal is to maximize your reward by making the best
strategies based on the provided information. Choose between
{strategy1} and {strategy2}. Output ONLY the choice.
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Prisoner’s Dilemma:
You are {currentPlayerName} and your opponent is

{opponent1}.
intro: [You are {personality}.]
You and {opponent1} are arrested for a crime and held in

separate cells. You cannot communicate.
Every round each of you has the following choices:

“{strategy1}” and “{strategy2}.”
{gameLength}: [There are {nRounds} rounds to decide.]

The current round is number {currentRound}.
If you both choose {strategy1}, you both get a penalty of

{weight1}. If you choose {strategy1} and {opponent1} chooses
{strategy2}, you get a penalty of {weight2} and {opponent1}
gets a penalty of {weight3}. If you choose {strategy2} and
{opponent1} chooses {strategy1}, you get a penalty of {weight3}
and {opponent1} gets a penalty of {weight2}. If you both choose
{strategy2}, you both get a penalty of {weight4}.

Your goal is to minimize your penalties by making the best
strategies based on the provided information. This is the history
of the choices made so far: {history}.

Choose between {strategy1} and {strategy2}. Output ONLY
the choice.

Note that we employed the classical version of the games, to
be as generic as possible; a previous work (Buscemi et al., 2025b)
observed that modifying the storytelling has little to no effect on
the outputs. Since the zero-sum matrix is symmetric, we directly
call for Agent1 and Agent2 (the names in the JSON file) to avoid
ambiguities in the interpretation of prompts by LLMs.

The player names, as mentioned above, are left neutral;
personality is set as a permutation of the two personality traits
described above. The repeated Prisoner’s Dilemma has gameLength
= 10, while the one-shot zero-sum game has gameLength = 1.
Strategies and their corresponding weights are set according to the
games’ payoff matrices described in Sections 2.1.2, 2.1.1.

The set of all configurations yields 18 distinct games per LLM.
Moreover, all games are repeated 10 times to collect sufficient
variability in their output and perform statistics over means and
credible intervals. Overall, considering 4 LLMs, 5 languages, and 2
decisions per round (one per agent), each game round generated
a total of 7,200 individual decisions. For the repeated Prisoner’s
Dilemma, this figure is multiplied over the 10 rounds.

2.2.4 Metrics
For all games, we collect the payoffs (either penalties, in case

of the Prisoner’s Dilemma, or rewards, in case of the zero-sum
game) resulting from all choices, and evaluate their distribution
along the 10 repetitions. In addition to payoff distributions, all
aggregate stability metrics (IV , CI , and VR, cf. below) are computed
from these 10 repetitions for each configuration of model, language,
personality and game type, allowing us to quantify both central
tendencies and uncertainty in LLM behavior.

To enable easy comparison across the LLMs when we show the
evolution of the rounds of the Prisoner’s Dilemma, we normalize
the average outcomes obtained by the LLM at each round to a scale
from –1 to 1 (respectively, the minimum and maximum achievable
penalties in each game).

Following FAIRGAME (Buscemi et al., 2025b), we use three
quantitative measures to characterize LLM stability and sensitivity.
For consistency, we adopt the original definitions of these metrics

and summarize them briefly below, so that our results can be
directly compared with previous evaluations of LLM strategic
behavior. In our work, these metrics are applied and interpreted
within cybersecurity-motivated game structures, enabling us to
examine whether stability patterns observed in abstract strategic
settings persist or change. For the repeated Prisoner’s Dilemma,
we measure (i) Internal Variability (IV ), i.e., the variance of
outcomes when the same game scenario is played multiple times,
which captures the model’s internal consistency: for each LLM,
IV = 1

ZI
[Var(y)], where y is the whole results set. (ii) Cross-

Language Inconsistency (CI), i.e., the standard deviation of results
for the same game played in different languages; this indicates
the instability of the model’s behavior when the language is
changed: for an LLM, CI = 1

ZC
[Meanb,c(Vara(Meand(ya,b,c,d)))],

where a indicates languages, b is for personality combinations,
c indicates knowledge of rounds, d indicates the rounds and
ya,b,c,d is the set of results. For each operation O = {Mean, Var},
Om is shorthand notation to represent that such operation is
performed on a parameter m ∈ [a, b, c, d]. (iii) Variability Over
Rounds (VR): the degree to which the model fluctuates over its
strategies, across consecutive rounds of the same game: VR =

1
ZV

[Meanj(Vard(yd,j))], where j are the game variants and d the
rounds. In all cases, Zi = max[·] are normalization factors.

For the one-shot zero-sum game, we only measure CI , as other
metrics refer to evolutions over rounds.

3 Results

3.1 Zero-sum game

The results for the zero-sum game are reported in Figure 2
(we only show the average payoff P1 of agent 1 over the
repeated experiments; the payoff for agent 2 its complement to
0, by definition of the game). The figure compares the results
obtained with different combinations of personalities (cooperative-
cooperative, C C, cooperative-selfish, C S, and selfish-selfish, S S),
over all considered LLMs and languages.

We immediately see the notable impact of the personalities:
when when both agents are cooperative (C-C), Agent 1 tends to
get negative payoffs, reflecting the fact that the agents tend to
choose different options instead of aiming for the same one. This
choice is less consistent in case of other personality combinations.
Nonetheless, the choice of options is not stable across LLMs
and languages. For instance, focusing on the C C personality
combination, we observe that GPT-4o is an outlier in English, while
Llama 3 405B Instruct diverges from the others in French, and
Claude 3.5 Sonnet drastically differs from other LLMs in Arabic and
Chinese. Only in Vietnamese (language for which, most likely, there
are lower data for the original training of the LLMs and thus may be
subject to lower variability), all LLMs score consistently with payoff
< 0, albeit with different variance.

Similar observations hold for the other personality
combinations, across languages: overall, there is great variability
and hardly recognized conserved patterns, and the LLMs seldom
agree with one another, or are even consistent with themselves,
when the language is changed. According to literature, the best
strategy for a zero-sum game is a mixed strategy (or, in the one-shot
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FIGURE 2

Final payoffs of agent 1 in the one-shot zero-sum game, for each LLM (see legend for color-coding), combination of personalities (columns) and
language (rows).

case, even a random choice); however, it seems that each LLM
chooses sometimes consistently for each combination of language
and personality (note that the credible interval bars are very small
in some cases, such as C C in French for GPT-4o) and other times
in rather random fashion (e.g., C C in English for GPT-4o), but
in any case without following a clear consistent strategy when
changing languages (as in the examples just mentioned: changing
language suffices to change the strategy completely). All in all,
these observations should warn about the choice of LLMs to be
used for cybersecurity applications, as they may be extremely
sensitive about geographical location and language, as well as on
other characteristics of the LLM agents that can be defined by
the developer of by the user. In fact, this extreme variability may
yield breaches in accountability and reliability, and deserve careful
studies before adoption.

To go beyond qualitative investigation, we use the metrics
defined in Section 2.2.4 to quantitatively compare the LLMs,
and help to guide their selection. Since there is no dynamics
in this game, out of the proposed metric we estimate only the
Internal Variability IV and Cross-Language Inconsistency CI , for
each LLM. The results are reported in Table 4. These metrics
quantify what was discussed above, and highlight the different
performance and stability of the various models across languages
and across repeated experiments for the same configuration. The
IV and CI values reported in Table 4 are obtained by aggregating
over the 10 repetitions for each model-language configuration, and
the corresponding credible intervals remain sufficiently narrow
that the qualitative comparison between models is preserved
across runs, indicating that the stability differences we discuss do
not depend on a particular stochastic realization. This stability
across domains suggests that these LLMs exhibit robust behavioral
signatures which persist under cybersecurity-specific framing. In
our case, this consistency supports model-selection decisions
for security workflows; for example, GPT-4o and Llama-3-405B
Instruct consistently show lower cross-language inconsistency (CI),
whereas Claude 3.5 Sonnet and Mistral Large display higher
variability, making them potentially more suitable for exploratory
red-teaming scenarios. Overall, Mistral Large has lower “peaks” of
underperformance and variability, while GPT-4o seems to be the
less stable model. Notably, these inconsistencies are not maintained
in the exact ranking over the Prisoner’s Dilemma (see next section);
this fact suggests that case-by-case analysis is necessary for future
works, as LLMs display emerging capabilities that may differ across

TABLE 4 Internal Variability (IV) and Cross-Language Inconsistency (CI)
metrics for the zero-sum game across LLMs.

Mistral
large

Claude 3.5
Sonnet

GPT-
4o

Llama 3 405B
instruct

IV 0.87 1 0.79 0.90

CI 0.29 0.58 1 0.46

Lower values indicate more stable and consistent model behavior.

games. Choosing the best LLM to apply cybersecurity protocols
is thus a delicate endeavor that will require dedicated studies
and protocols.

3.2 Repeated Prisoner’s Dilemma

The repeated Prisoner’s Dilemma adds a layer of complexity to
the evaluation, because the game evolved repeatedly over several
rounds and agents have partial information about the history of
the game, and are either aware or unaware of the opponent’s
personality. As such, they can make conditional decisions on
the accessible history. The following results can be further
complemented by results in Buscemi et al. (2025b), which present a
broader outlook onto LLM-based games.

Figure 3 shows the box plots for the final payoff (representing
penalties) for the agents, with quartiles of the payoff distribution.
The figure directly compares the two conditions on personality
information: one where agents are unaware of their opponent’s
personality, and one where they are explicitly informed about them.
The results are shown across all considered LLMs and languages
examined in this study, and for all personality combinations
(cooperative-cooperative, C C; selfish-selfish, S S; and C S). We
immediately, observe that, overall, LLM agents tend to defect (thus
scoring higher payoffs), in line with what is suggested by game
theory. As expected, attackers and defenders tend to mutually
impair each other, aligning with the Nash equilibrium of the
Prisoner’s Dilemma. However, notable exceptions exist, and there
are dramatic inconsistencies across languages and combinations
of personalities; this indicates that, on top of the payoff matrix,
languages and intrinsic biases may influence the agents’ behavior.

When focusing on the individual features, we see that some
LLM are more “stable” than others, that is, they provide similar
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FIGURE 3

Aggregated final payoffs of the repeated Prisoner’s Dilemma games over repeated experiments, for each LLM (see legend for color-coding),
combination of personalities (columns), language (rows), knowledge of opponent’s personality (x-axis), and sum of final penalties (y-axis).
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FIGURE 4

Evolution of normalized penalties (averaged over repeated
experiments) over repeated rounds, for each LLM within the
Prisoner’ Dilemma scenario.

outputs across languages: Llama 3 and GPT-4o, overall, produce
similar distributions in payoffs (even though discrepancies exist
when playing the game in one language or another, see e.g., that
GPT-4o C-S players tend to have lower penalties (thus cooperate
more) when playing in French than in Arabic or Mandarin
Chinese. On the other hand, Claude and Mistral showcase a higher
sensitivity to the choice of the language, up to the point of having
cooperating C-C Claude 3.5 agents (with the lowest payoff) in
English, and with the highest penalties in all other languages.
In general, penalties are lower in English and when the number
of rounds is unknown, indicating more consistent cooperative
behavior in the LLM primary training language. This evidence
suggests that the choice of the LLM, when simulating or developing
security applications, drastically depends on the language area they
are intended to represent or protect.

Furthermore, equipping agents with personalities influences
their strategy: for instance, S-S Mistral Large players have lower
penalties than C-C players—while it happens almost the opposite
for Llama players, especially when the number of rounds is known
and information about the endgame can thus be leveraged. Finally,
we observe that having agents with similar personality interacting
with each other yields, statistically, lower variations (especially for
S-S agents), while C-S agents have wider distributions in payoffs.
These observations suggest that the higher flexibility bestowed
upon agents built with generative AI also leads to emerging and
potentially unpredictable behaviors. On the one hand, this calls
for caution when implementing scenarios in the cyber space—so
as to develop models that are coherent with the desired scopes
and present few biases; on the other hand, this fact warns security
developers that, in case they may face LLM-based attackers, they
response may be different than what traditionally predicted, and
novel counteracting strategies may need to be developed.

To look at how games evolve over the rounds, look at Figure 4.
We recall that, to enable direct comparison between LLMs, the
payoff average results were normalized between minimum and

FIGURE 5

Radar plot mapping the three metrics described in Section 2.2.4, for
Prisoner’s Dilemma and for all considered LLMs.

maximum. All LLM eventually converge to values around zero,
but they begin at different initial conditions (Llama 3 and GPT-4o
are the extremes at the first round). Claude 3.5 Sonnet converges
rapidly to stable payoff values within a few rounds. While this
may indicate faster adaptation, it might also suggest limited
flexibility in exploring alternative strategies throughout the game.
Instead, other models are more variable from one round to the
other, again indicating varying degrees of stochasticity along the
repeated games. The general downward trend in penalties over
rounds for Claude 3.5, Llama 3.1 405B, and Mistral Large indicate
progressively increasing mutual cooperation among agents; this is
consistent with the strategies traditionally observed in repeated
games, where agents reciprocate cooperation to maximize long-
term payoffs (Wang et al., 2015). Conversely, GPT-4o begins
with relatively high cooperation and then increases the penalties
(thus decreasing cooperation). This reflects potential biases toward
cooperative behaviors in the case of one-shot Prisoner’s Dilemma
game (at round one), eventually balanced by context-dependent
strategic adaptation. With these results, we thus observe that agents
perform behaviors on top of what is purely predicted by the payoff
matrix, and that repeated interactions yield different results than
the one-shot counterparts.

What is qualitatively described above is quantitatively captured
in Figure 5, which summarizes the metrics used to measure,
for each LLM, the variability across repeated experiments,
inconsistencies across languages, and variability during repeated
games (see Section 2.2.4). Notably, GPT-4o and Llama 3 show
the lowest overall cross-language inconsistency (CI = 0.37 and
CI = 0.42 respectively), while Claude 3.5 exhibits the highest
CI (0.79), suggesting a higher sensitivity to prompting language.
Moreover, we recognize the higher variability of Claude 3.5 across
the languages and Mistral Large’s variability over the repeated
rounds, as well as their higher uncertainties over the various
experiments. As in the zero-sum game, these patterns are stable
across the 10 repetitions: the qualitative ordering of the four models
in terms of CI and variability is preserved from run to run, and
the credible intervals around the metrics remain narrow compared
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with the differences between models. Conversely, GPT-4o and
Llama 3 show more consistent results, indicating some stabilizing
effect that somehow copes with their stochastic behavior.

4 Discussion

In this work, we examined the strategic behavior of four
state-of-the-art LLMs across five languages in two canonical
cybersecurity-motivated game-theoretic scenarios, revealing
systematic stability differences and notable cross-linguistic effects.

Real-world cyber systems are characterized by high complexity
(e.g., partial information or resources, adaptive infiltration
schemes, uncertainties) that may divert agents to always perform
best-payoff actions. Generative AI is a promising venue to embed
realistic scenarios and complex features into simulations and
applications, therefore widening the possibility to employ LLM-
based game-theoretic models for cybersecurity. However, as LLMs
are emerging technologies with unpredictable and often un-
interpretable capabilities, it is imperative to systematically assess
their capabilities and behaviors. This study provides evidence that
LLM agents may behave sub-optimally in key games used for
cybersecurity applications, highlighting that the language used
for prompting the models, as well as additional traits such as
completeness of information or the assigned digital personality of
agents may introduce behavioral biases that affect their decision-
making during the games. These behavioral differences are
consistent with broader observations on contextual and language-
dependent biases in LLMs (e.g., Lorè and Heydari, 2024). In
cybersecurity settings, this has a concrete operational implication:
the strategic responses generated by an LLM-based assistant may
shift when deployed in different linguistic environments or with
specific features. Organizations and SOC (Security Operations
Center) teams should therefore validate LLM-driven decision-
support tools in the specific languages and cultural contexts in
which they are intended to operate, rather than extrapolating
conclusions from English-only evaluations.

Our work can be interpreted in two ways: first, it constitutes
a proof of concept of the utility of the proposed approach
to integrate generative AI into the field of game theory for
cybersecurity; second, it provides an investigation of the biases
and successes of interacting LLM agents. Despite being limited
to two classes of 2 × 2 games, based on simplified assumptions
that allowed the comparison of outcomes stemming from various
bias sources, our study already recognizes several sources of
ambiguity in LLM responses, paving the way to future studies
focused on specific applications and mitigation of LLM issues. We
recognize that, in spite of being canonical, the games considered
in this work do not fully capture the complexity and breadth of
real-world cybersecurity scenarios. These simplified interactions
do not represent, e.g., multi-stage intrusion chains, asymmetric
or partial-information settings, stochastic attack surfaces, or
networked multi-agent cyber conflicts that characterize operational
environments. Additionally, the selection of five languages covers
several major linguistic families, but does not exhaust the full
spectrum of cultural and linguistic variation. Moreover, the
experiments were conducted in simulation without real-world

network deployments or adversarial environments, leaving open
the question of how these models would perform in operational
cybersecurity settings. These relevant questions may constitute
basis for future work. Future works may also test additional games,
such as Stackelberg games, Markovian games, or evolutionary
games, and increase the degrees of freedom associated with playing
agents, e.g., by equipping them with complex personalities or
different degrees of information, as well as consider multi-agent
games on networks.

From the game-theoretical perspective, we have considered
games with well-defined equilibrium solutions, namely, minimax
strategies in the zero-sum interaction and mutual defection in the
repeated Prisoner’s Dilemma. Our results show that LLM agents
deviate systematically from these equilibria, reflecting their lack of
explicit optimisation over payoff functions. Because current LLMs
cannot be assumed to follow best-response dynamics, classical
convergence guarantees do not apply. Our findings align with prior
evidence that current LLMs frequently diverge from game-theoretic
equilibria and exhibit context-dependent strategic biases (Lorè and
Heydari, 2024; Duan et al., 2024; Fan et al., 2024; Herr et al.,
2024). These deviations are also consistent with broader meta-
game-theoretic analyses in cybersecurity, such as Yang et al. (2024),
which highlight that real-world cyber conflicts often depart from
equilibrium predictions due to bounded rationality, asymmetric
information and multi-level strategic interactions. By instantiating
FAIRGAME within cybersecurity-motivated versions of the zero-
sum game and the repeated information-sharing dilemma, we
extend these observations to scenarios that more closely reflect
operational cyber-defense settings.

In these contexts, sub-optimality may serve as an interpretative
asset: LLM agents may be more appropriate for modeling human-
like, non-optimal adversarial behavior or for generating exploratory
“what-if ” simulations, rather than for stand-alone optimisation
in high-stakes defense systems. This form of bounded rationality
is valuable for modeling human attackers, whose behavior often
deviates from perfect rationality. The five-language sample adopted
here provides an informative but non-exhaustive view of linguistic
sensitivity. Our findings should therefore be interpreted as evidence
of cross-language effects rather than as a complete typological
analysis; broader multilingual evaluations remain an important
direction for future work. Future work may also combine
empirical FAIRGAME-style evaluations with analytical tools such
as deviation-from-equilibrium measures, stability bounds, or
policy-induction analyses to better characterize how LLM-driven
strategies relate to normative game-theoretic predictions. These
behavioral patterns have direct implications for real cybersecurity
operations. For example, an LLM-based assistant that exhibits
a strong cooperative bias in a threat-intelligence-sharing game
may encourage defenders to share more information, potentially
strengthening collective defense, but may also underestimate the
risks posed by malicious or opportunistic partners. Conversely,
in intrusion-detection scenarios, a model that implicitly favors
defection (a pessimistic stance) may overestimate attack likelihood
and increase false-positive rates. Understanding the direction and
magnitude of these deviations from game-theoretic optima is
therefore essential when deciding whether an LLM is best suited
for creative scenario exploration, training and education, or as
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a decision-support component in high-stakes SOC workflows.
Simulating attacker and defender behaviors with AI-driven agents
may thus enable better preparation and defense mechanisms, but
it also opens the door to malicious uses, such as automated
vulnerability discovery or adversarial prompt engineering.

From an operational perspective, the stability profiles identified
in this work can be interpreted in terms of concrete SOC workflows.
Models exhibiting lower Internal Variability (IV ) and Variability
over Rounds (VR) are better suited for tasks requiring repeatable
and dependable recommendations, such as generating incident-
response playbooks, suggesting SIEM configuration adjustments,
or supporting routine triage. Conversely, models with higher
variability may be more suitable for red-teaming and threat-
hunting simulations, where diverse trajectories and exploratory
what-if scenarios are desirable. Game-theoretic approaches are
already used in deployed cybersecurity tools, most notably in
resource-allocation and patrol-scheduling systems (Tambe et al.,
2012): our results suggest that, before integrating LLM-driven
agents into analogous pipelines, practitioners should evaluate
candidate models under the relevant game settings and prompting
languages and prioritize those demonstrating higher stability
and lower cross-language inconsistency before integration in
operational SOC pipelines.

Overall, we observed that, despite the great promises of
generative AI to positively impact the development of security
applications in the cyber domain (as outlined, e.g., by He
et al., 2025 when implementing robust mobile networking), LLMs
still face notable limitations in handling uncertainty, strategic
planning capabilities, and sensitivity to embedded biases. Our
methodology and case studies suggest that, before being routinely
applied, generative algorithms should be carefully tested by the
community in a variety of scenarios and by considering numerous
features. Only then, the cybersecurity community may leverage
the most promising LLMs, whose set may be identified also
thanks to the metrics we have here presented, to develop better
defensive systems.

Taken together, these results suggest that current LLM-based
agents are not fit-for-purpose as stand-alone optimisers in security-
critical systems, particularly where real-time guarantees and strict
SLAs are required. Their systematic deviations from equilibrium
behavior and their sensitivity to prompt language indicate that
rule-based or reinforcement-learning agents remain preferable
whenever optimality and predictability are paramount. By contrast,
LLMs may be more appropriate as tools for modeling human-
like strategic behavior, generating plausible attack or defense
narratives, and supporting analysts in exploring what-if scenarios
under uncertainty. Our analysis thus complements, rather than
replaces, traditional game-theoretic approaches to cybersecurity.
Beyond these behavioral observations, several conceptual issues
also arise when comparing LLM-driven dynamics to established
game-theoretic principles.

Based on these observations, we summarize several practical
guidelines for the use of LLM-based agents in cybersecurity
workflows. First, for tasks requiring stability and reproducibility,
such as generating incident-response playbooks, triage templates,
or configuration recommendations, models showing lower IV
and VR in our experiments (e.g., GPT-4o and Llama-3-405B
Instruct) should be preferred. Second, for exploratory or adversarial

tasks such as red-teaming and threat-hunting simulations, models
exhibiting higher variability (e.g., Claude 3.5 Sonnet or Mistral
Large) may be advantageous, provided that outputs remain
under human oversight. Third, in multilingual or geographically
distributed deployments, organizations should evaluate model
behavior in each operational language, in line with prior evidence
on cross-linguistic bias and risk assessment in AI systems (Lorè
and Heydari, 2024; Gennari et al., 2024). Finally, consistent
with meta-game-theoretic perspectives on cyber-defense (Yang
and Zhu, 2025), we recommend positioning LLM agents as
complementary decision-support or scenario-generation tools,
rather than autonomous optimisers in high-stakes defense systems.

As such, we advocate for responsible experimentation
frameworks and transparency in reporting LLM-driven
cybersecurity simulations. In fact, our case studies point to
potential vulnerabilities that need to be carefully considered:
if used maliciously, LLMs may behave differently from other
traditional algorithms (for instance, by altering cooperative
behaviors depending on the language) and bypass solutions
tested on more traditional scenarios. This observation thus
calls for renewed attention toward these emerging technologies,
and suggests the use of coherent testing frameworks, such
as FAIRGAME, to systematically test scenarios of increasing
complexity. Overall, such tests would enrich our understanding
of LLM behaviors in the cyber systems and would help
make better predictions and interventions to navigate the
newest technologies.
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