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Developing new products requires innovative materials and advanced manufacturing 
methods. Consequently, establishing specialized laboratories capable of producing 
new products or enhancing manufacturing processes has become essential. 
Additionally, the complexity of product design, which involves multiple subsystems, 
requires extensive iteration, making the process both challenging and costly. 
Evaluating manufacturing conditions further adds to these difficulties and expenses. 
In response, cutting-edge laboratories utilizing advanced technologies have been 
developed. These laboratories offer several advantages, such as remote operation, 
where equipment can be controlled and tests conducted systematically from 
a distance. Moreover, Virtual Reality (VR) laboratories have gained traction due 
to their lower costs and flexibility. VR laboratories can be adjusted and used to 
train students and operators through immersive technologies that simulate real-
world scenarios. This paper proposes an innovative virtual laboratory deployed 
on Oculus Quest 3 and Android devices. The VR laboratory interacts with users 
through large language models. The VR laboratory features a virtual Fiber Extrusion 
Device (FrED) developed at MIT, as well as expert avatars specializing in specific 
topics, offering solutions to develop soft skills. Furthermore, the VR experience 
is tailored to the user’s personality, enhancing the overall experience. Factory 
conditions are also simulated and optimized within the immersive laboratory 
using advanced optimization algorithms.
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Introduction

In recent years, technological education has undergone significant advances, making 
learning more interactive, dynamic, and realistic. This work focuses on utilizing technologies 
such as Virtual Reality (VR), Artificial Intelligence (AI), and immersive laboratories to 
enhance learning in engineering and manufacturing education. Integrating VR laboratories 
with AI-powered tutors and immersive simulations creates unique opportunities for enhancing 
practical skills and acquiring knowledge in a controlled environment.

Virtual Reality (VR) has gained recognition in STEM education, particularly for 
providing an immersive, hands-on learning experience that eliminates the need for 
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physical equipment, making it ideal for high-risk and costly 
experimentation (Liu et al., 2024; Acevedo et al., 2024). However, 
challenges such as cost, accessibility, and the need for well-
designed immersive experiences aligned with educational 
objectives persist (Acevedo et al., 2024). VR-based education can 
enhance learning outcomes, motivation, and user engagement, 
with a focus on thoughtful design to maximize its benefits 
(Acevedo et al., 2024; Yang et al., 2024).

VR integration in manufacturing processes has also advanced 
significantly. VR labs provide environments for interacting with virtual 
machines, allowing for training and experimentation without the costs or 
risks associated with real-world operations. Studies have shown the 
effectiveness of VR in training operators by replicating real-world 
scenarios, which enhances engagement and retention of skills (Hoang et 
al., 2022). VR laboratories also offer flexible learning and testing, allowing 
users to operate virtual machines remotely. Recent improvements focus 
on enhancing realism and responsiveness through the use of real-time 
physics engines and high-quality models (Oliveira et al., 2007).

AI-based tutoring systems ensure personalized, adaptive learning 
experiences catering to individual needs (Chen et al., 2020). Intelligent 
Tutoring Systems (ITS) provide 24/7 support and effectively 
complement standard teaching practices (Bezanson et al., 2023; Kim 
and Kim, 2020; Fazlollahi et al., 2022). AI tutors, as described by 
Fazlollahi et al., match the effectiveness of expert instruction, 
providing personalized learning pathways that would otherwise be 
unavailable (Fazlollahi et al., 2022). These AI systems have also been 
integrated into virtual learning environments to provide tailored 
content and enhance skill acquisition in various fields, including 
software engineering (Frankford et al., 2024). Large Language Models 
(LLMs), such as OpenAI’s GPT, enhance user interactions in virtual 
learning by providing expert guidance, answering questions, and 
tailoring content to user needs (Pester et al., 2024). In manufacturing-
oriented VR environments, LLMs can serve as virtual consultants, 
providing expertise in machinery operation, maintenance, and 
troubleshooting, while integrating domain-specific knowledge for 
industry-specific tasks (Khelifi and Morris, 2024).

On the other hand, advanced manufacturing technologies, 
including additive manufacturing, automated assembly, and digital 
twins, are transforming product development and production lines. 
Besides, Digital Twins offer real-time virtual replicas of physical 
systems, enabling the monitoring and optimization of manufacturing 
processes (Li, 2022). These innovations enhance predictive 
maintenance, quality control, and resource management, leading to 
increased productivity and lower costs. Combining VR labs with 
digital twins creates opportunities for process optimization and testing 
in a risk-free virtual environment (Li, 2022). Integrating Digital Twins 
in VR labs also bridges the gap between traditional hands-on and 
remote experiences, offering a more comprehensive learning 
environment (Alsaleh et al., 2022).

In addition, optimization algorithms play a crucial role in 
enhancing the performance of manufacturing systems in virtual 
environments. Metaheuristic algorithms, such as Genetic Algorithms, 
Particle Swarm Optimization, and Simulated Annealing, are used to 
optimize factory parameters, including resource allocation, energy 
consumption, and throughput (Hamid et al., 2014). These algorithms, 
implemented in VR labs, provide insights into optimal processes in a 
controlled, immersive setting, resulting in improved efficiency and 
reduced waste (Hamid et al., 2014).

Tailored gamification within educational systems helps improve 
motivation, engagement, and learning outcomes. Personalized, 
gamified systems adapted to learner preferences significantly enhance 
educational experiences (Oliveira et al., 2023). However, challenges 
include tailoring to individual styles and demonstrating impact 
(Oliveira et al., 2023). Personalizing educational experiences using 
psychological models, such as the Big Five Personality Traits, enables 
content and interaction to be tailored for individual users, resulting in 
increased engagement and performance (Chen et al., 2024). In VR 
labs, personality tailoring adjusts task complexity, pacing, and 
feedback tone, providing a more effective learning experience that 
considers individual differences (Chen et al., 2024).

As a result, recent studies have highlighted the importance of 
integrating soft skills training into STEM education. Soft skills, such 
as communication, teamwork, and leadership, are crucial for 
professional success but are often underrepresented in technical 
training. VR-based simulations have shown promise in teaching soft 
skills effectively (Hickman and Akdere, 2017; Abdelouahab, 2020; 
Caeiro-Rodríguez et al., 2021). VR-assisted environments offer the 
advantage of training both soft and hard skills, bridging the gap 
between theory and application (Abdelouahab, 2020). Virtual tutors 
can enhance decision-making and leadership skills by simulating real-
world industry scenarios, thereby improving the transfer of skills to 
professional settings (Botke et al., 2018). Table 1 presents a comparison 
of educational technologies to provide a general overview.

Early work on virtual laboratories in engineering education 
established both the promise and the practical questions that later DT 

TABLE 1  Comparison of technologies for education.

Technology Advantages Disadvantages

Virtual reality (VR) Immersive learning 

enhances practical 

skills, ideal for complex 

subjects

High cost, requires 

specialized hardware, 

accessibility issues (Liu et 

al., 2024; Acevedo et al., 

2024)

AI tutoring system 

(ITS)

Personalized learning, 

24/7 availability, 

adaptive to student 

needs

Limited to certain subjects, 

requires careful design of 

feedback (Bezanson et al., 

2023; Kim and Kim, 2020; 

Fazlollahi et al., 2022)

Gamification Increases motivation 

and engagement, 

enhances the 

enjoyment of learning

Needs personalization, 

impact on learning 

outcomes not always clear 

(Oliveira et al., 2023)

AI-powered VR labs Combines the benefits 

of VR and ITS, real-

time adaptive learning

High development costs, 

complexity in integrating 

AI and VR effectively (Yang 

et al., 2024; Bezanson et al., 

2023)

Soft skills training Develops 

communication, 

leadership, and 

teamwork skills, with 

immersive practice in a 

safe setting

Intangible outcomes, 

difficult to evaluate skill 

transfer (Hickman and 

Akdere, 2017; 

Abdelouahab, 2020; Caeiro-

Rodríguez et al., 2021)
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and AI systems would inherit. In chemical and biochemical 
engineering, ViRILE provided a plant-scale simulator grounded in 
first-principles equations, raising enduring issues about fidelity, 
verification, and how closely simulations reflect real operating 
envelopes (Schofield, 2012). The next wave extended immersion to 
unit operations training; for example, an immersive crude-distillation 
experience showed that VR could scaffold procedure rehearsal and 
hazard awareness at the plant scale (Pirola et al., 2020). By 2021, 
reviews in chemical/biochemical engineering consolidated evidence 
that VR improves access to complex processes while highlighting gaps 
in assessment rigor and the cost/effort of content development 
(Kumar et al., 2021). Parallel surveys conducted in 2023 broadened 
the lens to encompass manufacturing and engineering education, 
cataloging VR/XR deployments and identifying persistent barriers, 
particularly in evaluation design and limited adoption beyond pilots 
(de Giorgio et al., 2023; Lampropoulos et al., 2025).

From 2024 onward, digital-twin exemplars demonstrated that 
fidelity and assessment can coexist. A VR bioreactor DT demonstrated 
realistic operator training, including infrequent event rehearsal, while 
documenting design principles, learning analytics, and evaluation 
methods that translate directly to discrete manufacturing or training 
contexts (Hassan et al., 2024). In 2025, comprehensive reviews 
mapped how DTs and virtual learning environments can support 
smart-manufacturing education, emphasizing human-centric, 
AI-enabled learning flows and multi-mode access (Filho and Junior 
et al., 2025). Scoping reviews in manufacturing and broader 
engineering education synthesized more than a hundred studies, 
offering taxonomies (domains, levels, entities) and practical roadmaps 
for adoption at scale while reiterating the need for stronger causal 
evaluation (Ipsita et al., 2025; Karanam and Hartman, 2025; 
Lampropoulos et al., 2025).

Concurrently, immersive AI tutoring matured from concept to 
reference architecture. An LLM-centric design for intelligent tutoring 
within VR specified core capabilities—real-time dialogue with 
non-player experts, hand/gaze/haptic multimodality, as well as 
synchronized speech and embodiment—creating a concrete blueprint 
for avatar-mediated instruction in labs (El Hajji et al., 2025). The 
broader ITS literature in 2025 introduced methodological guardrails, 
with systematic reviews generally documenting positive learning 
effects but calling for stronger experimental designs (e.g., blocking, 
pre/post ANCOVA) and clearer links between telemetry and 
outcomes, as well as an AI-driven intelligent tutoring system 
(Létourneau et al., 2025; Liu et al., 2025). At the authoring layer, 
studies in Nature’s education journals have shown that lesson plans 
can be improved through LLM-simulated teacher–student interactions 
and structured human–LLM workflows, which are useful for 
designing avatar playbooks, prompt governance, and reflection loops 
in immersive labs (Feisel and Rosa, 2005; Flores Romero et al., 2025). 
Finally, open-source XR agent platforms lowered the barrier to 
deploying LLM-driven virtual humans in Unity-based environments, 
accelerating reproducibility and comparative evaluation (Shoa and 
Friedman, 2025).

Taken together, the field has converged on three actionable 
insights for manufacturing education. First, DT-backed VR can 
deliver authentic process and factory experiences when fidelity is 
paired with explicit assessment scaffolds (Hassan et al., 2024; Junior et 
al., 2025; Karanam and Hartman, 2025; Peterson et al., 2025). Second, 
LLM-driven avatars are no longer speculative; reference architectures 

and toolkits exist, but evaluation must tie dialogue and behavior 
telemetry to validated learning outcomes using robust designs (El 
Hajji et al., 2025; Létourneau et al., 2025). Third, new authoring 
paradigms, including LLM-based simulation, structured prompting, 
and open XR agents, enable scalable, multimodal laboratories, 
provided governance (safety, provenance, and bias) and accessibility 
(multi-device and multi-language) are treated as first-class design 
constraints (Feisel and Rosa, 2005; Ipsita et al., 2025; Shoa and 
Friedman, 2025).

Despite rapid progress within each strand of research, the 
literature still lacks a truly end-to-end framework that integrates 
immersive VR, LLM-driven tutoring or avatars, and operational 
Digital Twins and Virtual Models into a single, assessable learning 
environment for sustainable manufacturing, while simultaneously 
cultivating soft skills such as communication, ethical reasoning, 
teamwork, and decision-making. Prior studies typically examine these 
components in isolation, for example, VR labs without causal 
evaluation, DT implementations without explicit pedagogy, or 
human–AI workflows detached from process fidelity. As a result, key 
questions remain open regarding the alignment between fidelity and 
assessment, human-in-the-loop safety and governance, multi-device 
and multi-language accessibility, and the linkage between system 
telemetry and validated learning outcomes.

This article addresses that gap by presenting a unified VR–LLM–
VM (virtual model) laboratory that combines realistic factory and 
process behavior with LLM-guided avatar guidance and analytics-
supported decision tools (e.g., optimization and forecasting), while 
embedding soft-skills training through avatar-mediated critiques, oral 
defenses, and ethical audit trails. The environment is engineered for 
inclusivity (headset and mobile pathways, bilingual interaction), 
measurement (rubrics tied to system telemetry and key performance 
indicators), and governance (traceable prompts, bounded actions, 
rollback), and it is paired with a rigorous evaluation design that uses 
pre/post testing, blocked assignment, and blinded rating to generate 
credible evidence at scale. Although VR has been used effectively in 
STEM education, with a primary emphasis on procedural and 
technical competence (Liu et al., 2024; Acevedo et al., 2024), the 
systematic development of soft skills in immersive settings remains 
comparatively underexplored (Hickman and Akdere, 2017; 
Abdelouahab, 2020; Caeiro-Rodríguez et al., 2021). Existing studies 
indicate that immersion and realism can enhance soft-skill rehearsal 
and near transfer; however, consistent far transfer to authentic 
workplaces is challenging because these skills are partly tacit, highly 
contextual, and difficult to measure objectively at scale (Caeiro-
Rodríguez et al., 2021). A promising direction is the integration of 
LLM-based virtual tutors that adopt varied, role-specific personae (for 
example, supervisor, peer, customer), creating context-specific 
dialogues, critiques, and decision checkpoints that mirror real 
interactions and yield structured, auditable evidence for assessment 
(Botke et al., 2018). Embedding these LLM roles directly into VR task 
flows, alongside high-fidelity virtual models of the extruder and 
factory (with associated production metrics), enables concurrent 
practice of both technical operations and soft skills without yet 
requiring a full real-time digital twin connection. Telemetry such as 
dialogue turns, quality of rationale, and team-coordination traces can 
be mapped to rubrics and performance outcomes, thereby addressing 
both the learning-design gap and the evaluation challenge 
documented in prior work (Liu et al., 2024; Acevedo et al., 2024; 
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Hickman and Akdere, 2017; Abdelouahab, 2020; Caeiro-Rodríguez et 
al., 2021; Botke et al., 2018).

As a result, this combination of technological tools enhances 
technical skill training while developing critical soft skills, offering 
personalized content and continuous, contextual feedback. On the 
other hand, the use of a didactic Fiber Extrusion Device (FrED) offers 
an interactive, hands-on experience that enables trainees to engage 
directly with manufacturing processes, thereby enhancing their 
understanding of sustainable digital manufacturing practices.

It is essential to consider that implementing a virtual reality course 
laboratory presents several recurring limitations. Physiological effects 
such as dizziness, nausea, headache, eye strain, and difficulty 
concentrating can restrict session length and exclude a subset of 
learners. Rich visuals, fast motion, and nonessential interactables 
often lead to cognitive overload and distraction, diverting attention 
away from the learning objective. Ergonomic issues, such as fatigue, 
neck strain, and heat buildup, accumulate during extended headset 
use, forcing shorter, more frequent sessions that reduce instructional 
time. Accessibility remains uneven: fully immersive head-mounted 
displays are a poor fit for students with visual impairments and 
challenging for some neurodivergent or vestibular-sensitive learners, 
making it hard to guarantee true equivalence of experience. Safety and 
liability concerns persist because occluded vision and cabling 
introduce collision and trip hazards, requiring supervision, clear 
space, sanitation routines, and incident procedures (Soliman et al., 
2021). In addition, cost and resources are substantial: high-fidelity 
headsets, capable computers, tracking systems, and consumables 
demand ongoing funding, while maintenance and replacement cycles 
are accelerated by wear and rapid obsolescence. Infrastructure and 
logistics complicate delivery; VR labs require generous floor space, 
reliable power and ventilation, storage, booking systems, and device 
fleet management. Throughput is limited by the number of headsets 
and the time required for the turnaround between groups. 
Development is complex, as educational scenarios require expertise 
in game engines, three-dimensional modeling, interaction design, and 
software engineering. Commercial assets tend to prioritize 
entertainment over assessment or pedagogy, so bespoke scripting is 
common (Soliman et al., 2021).

Pedagogical alignment and validation are non-trivial: without an 
explicit mapping to learning outcomes and iterative testing, 
engagement may increase without corresponding measurable learning 
gains. Assessment and data integrity pose further challenges because 
telemetry must be interpreted with caution, and proctoring within 
immersive environments is particularly difficult. Privacy and ethics 
introduce administrative burdens, as VR can capture sensitive signals 
such as gaze, posture, voice, and biometrics that require strict consent, 
minimization, retention, and access controls. Staffing and training 
needs increase for instructors and assistants who must handle setup, 
troubleshooting, hygiene, and safety, and reliability remains fragile 
due to firmware updates, tracking glitches, and driver conflicts that 
can derail scheduled sessions. Interoperability with campus platforms 
is often fragile, resulting in ad hoc integration with learning-
management systems and analytics. Finally, transfer to real equipment 
is not guaranteed; gaps in haptics, force feedback, and material 
behavior mean that skills learned in virtual environments may not 
generalize without complementary hands-on work (Soliman et al., 
2021). As a result, this paper attempts to address some of these 
limitations by utilizing an AI-enabled virtual laboratory that integrates 

large language models with the FrED extrusion system within an 
interactive VR environment. In this environment, learners interact in 
real-time with expert avatars and other non-player characters, which 
maintain their own conversation histories to preserve context. To 
broaden access, the lab is deployed in two complementary formats: a 
fully immersive Oculus Quest 3 experience with 3D avatars, and a 
performance-optimized Android version that omits avatars to ensure 
smooth operation while preserving core learning goals. Both versions 
support voice and text interaction in English and Spanish, enhancing 
inclusivity without compromising functionality.

Across platforms, the laboratory offers a coherent suite of 14 
interactive elements that guide learners from profile setup and 
subsystem exploration to AI-assisted analysis. Within this progression, 
predictive analytics play a central role. For production optimization, 
a loss-driven genetic algorithm iteratively searches operating 
configurations using tournament selection, crossover, and mutation. 
The objective function penalizes low throughput, oversized buffers, 
and failure or repair rates that deviate from baseline targets, guiding 
the search toward efficient and cost-effective operating points and 
demonstrating convergence across successive generations. In parallel, 
a neural network trained on data from VR-simulated robotic arms 
forecasts line status, enabling proactive decisions about operations and 
maintenance inside the factory scenario. The technical content is 
framed by a materials-education perspective through the Penta-S 
framework, which emphasizes smart, sustainable, social, sensing, and 
safe considerations. This lens connects process choices to product 
properties and sustainability outcomes, ensuring that optimization 
and forecasting are not purely algorithmic but also pedagogically 
meaningful. Taken together, the design fosters critical thinking, 
problem-solving, collaboration, adaptability, and leadership, while 
remaining inclusive and portable across various hardware tiers.

What is FrED?

FrED (fiber extrusion device) is a compact, affordable desktop 
fiber extrusion system designed primarily for educational purposes, 
developed at MIT. While not a high-fidelity replica of industrial 
setups, it simulates fiber draw mechanisms, enabling hands-on 
learning in smart manufacturing, control systems, data acquisition, 
and computer vision. Acting as a bridge between theory and practice, 
FrED enhances understanding of advanced manufacturing concepts. 
FrED consists of key components: an extrusion subassembly, a 
diameter measurement subassembly, a cooling subassembly, and a 
spooling subassembly. The process involves heating and melting 
material in the extrusion subassembly, measuring fiber diameter with 
a USB camera, cooling the fiber, and winding it evenly in the spooling 
subassembly. A built-in control feedback loop supports real-world 
learning in manufacturing environments. Developed to support MIT 
courses, FrED has evolved through multiple iterations. The first 
“Research FrED” targeted high-performance educational use (Bradley, 
2023). One of the first versions prioritized affordability with simplified 
designs and lower-cost materials, making it widely accessible. This 
version was then enhanced with cooling, control algorithms, and 
mechanical stability to achieve even lower production costs (Xu, 
2024). The next version, detailed by Rosko (2024) and Zhang (2024), 
introduced closed-loop control for precise diameter regulation, 
enhanced mechanical stability, an optimized cooling system, and a 
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redesigned user interface. These upgrades represent a significant 
advancement, featuring dynamic motor speed and heating 
adjustments based on real-time feedback, which further bridge the 
gap between academic learning and industrial practices. Figure 1 
illustrates FrED’s most recent version, bringing advancements in cost 
efficiency, mechanical stability, control systems, and educational 
usability. FrED has the following main systems:

	 a)	 Extrusion sub-assembly that extrudes the preform using a 
stepper motor that pushes the preform into the heater block 
with a gear. The heater block heats up the preform to form 
a fiber.

	b)	 Fiber cooling sub-assembly that has two fans that cool the fiber 
before it reaches the pulleys of the diameter measurement.

	 c)	 The diameter measurement sub-assembly consists of a pulley 
system that maintains the position of the fiber for a USB 
camera to take diameter measurements optically of the fiber.

	d)	 The spooling sub-assembly has a removable spool that is 
controlled by a DC motor and gearbox to collect extruded fiber 
neatly through rotation and single-axis translation.

	 e)	 A PCB board and Raspberry Pi controller stored below the base 
plate. These control the FrED.

With these enhancements, FrED is well-suited as a training tool 
in virtual reality (VR). Its compact design, real-time control, and data 
acquisition features enable immersive simulations of the fiber 

extrusion process. This setup allows learners to safely practice skills in 
a realistic, controlled environment, deepening their understanding of 
complex manufacturing concepts through hands-on interaction.

Methodology

This paper proposes the development of an innovative virtual reality 
(VR) laboratory using virtual models that integrates Large Language 
Models (LLMs) to enhance the understanding of subsystems in the 
Educational Extruder (FrED) and its associated factory. A notable feature 
of FrED is its ability to assess materials, providing insights into the 
feasibility of material substitution for improved performance. Figure 2 
illustrates the flow diagram of the proposed VR laboratory, highlighting 
its phases and components where optimization algorithms and AI could 
be implemented (Ponce and Ponce, 2011).

The VR laboratory offers a personalized educational experience 
by tailoring the learning environment to the Big Five personality traits. 
Tailoring the environment to individual profiles ensures that 
educational content resonates with each learner’s preferences. 
Gamification further enhances this personalized approach by tailoring 
rewards to individual learner traits, thereby fostering motivation and 
engagement.

The core interaction phase bridges the gap between theory and 
practice, enabling users to engage with specific extruder subsystems 
within the VR environment, including control mechanisms, power 

FIGURE 1

FrED 2024 version.
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systems, and material evaluation tools. Each interaction offers an 
in-depth understanding, ensuring focused and effective learning. 
Users then complete assessments to identify misunderstandings, 
serving as feedback mechanisms to reinforce comprehension (Molina 
et al., 2024).

After assessments, users engage with experts represented as 
avatars in the VR environment, guiding them through complex 
challenges related to the extruder’s operation. These experts assist 
users in resolving technical issues, promoting collaborative problem-
solving, and developing essential soft skills, including teamwork and 
effective communication.

Another key aspect of the laboratory is its simulation of factory 
setup and operation. Users learn about practical considerations for 
establishing and optimizing a factory, utilizing advanced optimization 
algorithms to enhance data-driven performance. These simulations 
offer practical insights into decision-making and strategy 
implementation, enabling the achievement of operational excellence 
(Ponce-Cruz et al., 2020).

The VR laboratory represents a dynamic platform for 
understanding manufacturing systems (Peniche et al., 2012; Rubio et 
al., 2005), integrating technical education with personal growth. By 
incorporating LLMs, personality-based customization, gamification, 
and optimization algorithms, the laboratory equips users to tackle 
real-world challenges with confidence.

It is worth noting that this laboratory can also run a lighter version 
on Android, enabling the educational proposal to be accessed on 
Android devices. This broadens the reach, enabling more users to 
benefit from the program. Figure 3 outlines the core advantages and 
potential disadvantages of this proposal.

General methodology description

In general, this study evaluates a unified VR–LLM–VM (virtual 
models) learning environment that begins with device-level mastery on 
the FrED educational extruder and then scales the same concepts to a 

FIGURE 3

Main advantages and disadvantages of the proposal.

FIGURE 2

Flow diagram of the proposed laboratory, divided into four steps: personalization, subsystem interaction, assessment and expert guidance, and the 
factory simulation and optimization phase.
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factory/production-line context where students optimize flow, reliability, 
buffers, and cost using analytics (GA/ANN). The experiment compares 
learning and transfer across platforms (Oculus Quest 3 VR; Android) 
and interaction modes (with/without LLM avatars), using common 
tasks, rubrics, and telemetry to ensure comparability. The goal is to 
determine whether early, hands-on understanding of extruder physics, 
sensing, and multiloop control (Phase 1) improves the quality and speed 
of decisions when students face line-level trade-offs in throughput, WIP 
(work in progress), reliability, energy, and sustainability (Phase 3), with 
expert avatars (Phase 2) providing structured guidance and soft-skills 
practice along the way.

Proposed experimental setup:

	•	 Participants & assignment: senior undergraduate/early graduate 
engineering students are block-randomized by a short 
prerequisite quiz and preferred device/language into four 
conditions: Full VR–LLM, VR-only, LLM-only (mobile/desktop), 
and business-as-usual control.

	•	 Platforms: two builds deliver identical learning objectives: (1) 
Oculus Quest 3 (fully immersive, 3D avatars), (2) Android 
(performance-optimized, same tasks; avatars omitted).

	•	 Core modules:

	 o	 FrED device module (extruder anatomy, sensing, control, 
safety, test/characterization).

	 o	 Avatar guidance module (diagnosis, safe parameter/policy 
edits, ethics & communication).

	 o	 Factory module (production-line optimization via GA; line-
status forecasting via ANN; Penta-S sustainability lens).

	•	 Data & instruments: FrED rubric + CTS rubric, pre/post 
knowledge tests, capstone defense, and system telemetry (tool 
use, GA convergence, ANN metrics, dialogue traces).

In this proposed laboratory, the curriculum could be 
intentionally staged so that the variables students control on FrED, 
temperature zoning, torque/speed envelopes, sensor placement and 
calibration, controller tuning, and safe interlocks—map directly to 
the variables that drive line performance (failure/repair rates, buffer 
sizes, cycle times, energy per unit, defect risk). Students first learn to 
sense, control, and validate at the device level; then they encounter 
the same constructs as parameters in a production line, where they 
must balance throughput, WIP, reliability, and cost. This continuity 
prevents a “hard jump” from a single machine to a factory: the 
factory simply aggregates device-level physics and control decisions 
into system-level trade-offs that are optimized with GA and forecast 
with ANN.

Learning objectives (stated before procedures):

	 1.	 Device-level technical mastery (Phase 1): decompose the 
extruder into subsystems; derive and apply governing relations; 
instrument and control multiloop dynamics; run safe tests; 
generate clean, versioned datasets.

	 2.	 Human–AI collaboration & soft skills (Phase 2): obtain targeted 
diagnostics from avatars; translate natural-language guidance into 
safe, typed actions with bounds/units; design avatar-in-the-loop 
experiments; communicate decisions ethically with auditable logs.

	 3.	 Factory-level decision making (Phase 3): optimize buffers/
reliability/throughput/cost with a loss-driven GA; anticipate 
states and maintenance with ANN; justify policies under the 
Penta-S sustainability frame; defend decisions to technical and 
executive audiences.

Minimum apparatus and materials required:

	•	 Software/hardware: unity 5 application; Oculus XR plugin (VR); 
custom Android input; ChatGPT-based avatar services; Firebase 
for profiles/telemetry; in-app oscilloscope and CSV viewers; GA 
(tournament selection, crossover, mutation) and ANN (trained 
on VR-simulated robotic-arm data).

	•	 Instructional assets: three activity tracks (Energy Efficiency 
Mastery; Precision & Quality Assurance; Stability & Control), 
avatar playbooks, and bilingual prompts (EN/ES).

Measures and evidence:

	•	 Primary: capstone performance (FrED rubric + CTS composite) 
on a novel factory scenario with a 3-min oral defense.

	•	 Secondary: knowledge/skill gain (pre–post), transfer efficiency 
(time-to-stable policy; constraint violations), decision quality 
(expert scores), inclusivity (device/language subgroups).

	•	 Mechanism traces: GA convergence and final loss; ANN 
accuracy/confusion matrix; avatar dialogue density/intent; 
oscilloscope/CSV interaction logs.

The FrED VR laboratory is specifically designed to develop 
communication, teamwork, leadership, and informed decision-
making in sustainable manufacturing scenarios. Radianti et al. 
(2020) reports that a small percentage of the surveyed immersive 
VR applications target these types of learning content, and that 
most evaluations focus on usability and user experience rather 
than on measurable learning or skill development. Against this 
backdrop, FrED VR Lab positions soft skills not as a secondary 
outcome but as a central target of the VR–LLM experience, 
embedded in realistic factory-level decision problems in 
engineering education.

Soft-skill outcomes are operationalized through an analytic rubric 
that combines a FrED-specific performance scale with a Creative 
Thinking Skills (CTS) rubric, reflecting the roles of critical thinking, 
problem-solving, collaboration, and leadership, which were previously 
identified as essential but often underrepresented in technical training. 
The composite rubric includes observable indicators such as: clarity, 
structure, and audience awareness when explaining factory-level 
policies; justification of decisions in terms of trade-offs among 
throughput, reliability, and sustainability; collaborative problem-
solving (e.g., referencing teammates’ ideas, negotiating constraints, 
and reaching shared decisions); and leadership behaviors, such as 
coordinating roles, framing next steps, and managing risk. These 
descriptors are applied to students’ capstone performance on a novel 
factory scenario and to a three-minute oral defense, which trained 
evaluators independently rate. This approach directly addresses a 
challenge highlighted in prior work: soft-skill outcomes are often 
considered intangible, and their transfer in VR-based training is 
challenging to evaluate.
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Beyond human ratings, the environment logs rich dialogue traces 
between learners and LLM-driven avatars (e.g., turn counts, dialogue 
acts, and quality of rationale) alongside in-world actions (policy edits, 
constraint violations, and experiment design choices). These traces are 
mapped to the rubric dimensions to provide a complementary, 
telemetry-based view of soft-skill practice—for example, how often 
learners proactively request feedback, how they negotiate conflicting 
objectives with the avatar, or how they revise decisions after critical 
questioning. In Paszkiewicz et al. (2021), it is shown that only a small 
fraction of existing studies exploit exams, expert judgments, or sensor/
trace data to assess learning outcomes, despite frequent claims about 
the effectiveness of VR for skills development. By combining expert 
ratings with trace-based analytics, the FrED lab responds to this gap 
with a multi-method evaluation strategy tailored to soft skills in 
engineering.

To evaluate transferability, soft-skill scores and decision-quality 
indicators will be analyzed across conditions (full VR–LLM, VR-only, 
LLM-only, and business-as-usual) and across tasks that differ in 
proximity to the training context. Near transfer is assessed within the 
virtual factory using measures such as time-to-stable policy, 
constraint-respecting decisions, and expert ratings of justification 
quality. Far transfer is examined through follow-up oral defenses and 
written reports in related courses or projects, applying the same rubric 
to determine whether the communication, teamwork, and leadership 
behaviors practiced in the virtual lab reappear in new, non-VR tasks. 
This design directly addresses calls from the systematic review for 
more robust evaluation of learning outcomes, not only user 
experience, and for more substantial evidence on how soft skills 
trained in immersive VR transfer to authentic higher-education and 
professional contexts.

Tailoring education—requirements of operators
To enhance the learning experience, learners are profiled based 

on the Big Five Inventory (BFI) and categorized into gamified 
player types. The Openness trait appreciates divergent thinking, 
curiosity, and creativity. Conscientiousness indicates a rule-
following attitude with clear goals. Extraversion involves social 
interaction and optimism. Agreeableness is associated with 
altruism and tolerance, while neuroticism is related to 
impulsiveness and stress.

Personality traits classification
An online survey with 35 questions was conducted from 

November 2020 to December 2022, collecting 645 responses. The 
dataset was filtered to include five questions for each personality 
trait and 30 questions on gamification preferences. The survey 
aimed to understand user preferences in three areas: reward types, 
main page elements, and activity interests within an educational 
platform.

	(1)	 Reward preferences: users were asked, “What type of rewards 
would you prefer after completing exercises or activities?” 
Options included badges, coupons, no recognition, random 
rewards, sharing points, social recognition, money, extra 
points, store discounts, physical rewards, and diplomas.

	(2)	 Main page preferences: users were asked, “What game elements 
would you prefer on the platform’s main page?” Options 

included avatar, total points, username, top 5, active challenges, 
improvement tips, winning tips, recent badge, pending 
challenges, leaderboard, and using their real name.

	(3)	 Activity preferences: users were asked, “What types of activities 
interest you on an educational platform?” Options included 
activity badges, individual challenges, feedback, community 
challenges, social sharing, team challenges, topic-linked 
activities, and freedom to perform activities without 
affecting scores.

Responses were evaluated using a 5-point Likert scale to 
measure user preferences, ranging from “strongly disagree” (1) to 
“strongly agree” (5), which were then linked to different 
gamification options. A probabilistic approach was used to analyze 
results, with a threshold of 0.5 set to balance excluding unlikely 
options while capturing relevant elements (the highest probability 
was 0.75).

Figure 4 illustrates the game elements selected based on 
personality traits. The most preferred gamification elements included 
store discounts, diplomas, avatar, username, improvement tips, 
individual challenges, feedback, and topic-linked activities. Based on 
the results depicted in Figure 4, a tailored environment should 
consider the gamification elements depicted in Figure 5.

FrED’s rubric
In addition, the FrED’s rubric is a comprehensive tool for 

evaluating advanced manufacturing systems. It defines subsections 
such as digital systems, control systems, electric systems, and 
sensor actuators, with each subsystem having its own rubric. 
Figure 6 presents the rubric, which assesses extruder design across 
five key criteria: Design, Integration into Manufacturing 
Processes, Performance and Cost Efficiency, Innovation and 
Problem Solving, and Utilization of Technology and Tools. This 
image illustrates the logical structure and detailed considerations 
that ensure a comprehensive evaluation of extruder design 
projects, facilitating continuous improvement and alignment with 
industry standards.

This rubric provides a structured and fair assessment of extruder 
design projects, covering critical areas such as design quality, 
integration, performance, innovation, and technology utilization. Each 
criterion ensures that all aspects are thoroughly evaluated, leading to 
better outcomes and continuous improvement in extruder design.

FrED’S training activities and system division
FrED has multiple subsystems, including the Electronics Stage, 

Temperature Control System, Digital Control System, Computer 
Vision System, Mechanical Tensioning and Spooling System, and 
Sensor and Driver Integration, which address distinct aspects of the 
fiber extrusion process. The interconnected functionality of these 
systems highlights the importance of precise adjustments and real-
time monitoring in ensuring high-quality fiber output.

To facilitate a structured, gamified learning experience, the 
training program is divided into three activities, depicted as challenge 
or activity elements within the VR environment (Figure 7), which 
reflect the distinct operational goals of each subsystem.

Each activity is designed to tackle a specific aspect of FrED’s 
operation, guiding learners through real-world scenarios that 
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challenge them to apply technical knowledge in a practical context. 
The three activities are:

	 1)	 Activity 1: energy efficiency mastery: learners engage in 
scenarios that challenge them to optimize FrED’s energy 
efficiency by adjusting settings in the Power Electronics Stage 
and Temperature Control System.

	 2)	 Activity 2: precision and quality assurance: this activity focuses 
on enhancing the quality and consistency of fiber production 
through precise control adjustments in the Computer Vision 
System and Digital Control System.

	 3)	 Activity 3: stability and control: the goal of this activity is to 
ensure system stability and responsiveness, focusing on 
preventing material breakage and lag in system responses 
through the integration of the Mechanical Tensioning and 
Spooling System with sensors and Drivers.

The scoring system across all activities is designed to encourage 
learners to improve and reinforce their knowledge. Each activity 
consists of four scenarios, with first-attempt correct answers 
earning 25% and second-attempt answers yielding 20%. Once the 
activity is completed, a diploma will appear with one of the 

FIGURE 4

Game elements are based on the five personality traits: Openness (O), Conscientiousness (C), Extraversion (E), Agreeableness (A), and Neuroticism (N). 
Being 1, the strongly disagree option, to 5, from strongly agree, in Likert responses.
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following seals depending on the student’s knowledge level (see 
Figure 8).

Discovering Penta-S materials
Understanding the materials used in the manufacturing process is 

crucial to predicting the final product’s features. Additionally, it is 
essential to outline how the material can be improved. The VR 
laboratory features a materials expert who can assist the end user in 
understanding the material and its properties, enabling the user to 
propose a new material for the application. Nowadays, a broad 
spectrum of materials can be used in manufacturing systems, so 
selecting the correct material for a learning person could be 
challenging because the person requires a holistic view of the materials. 

Additionally, the recycling process of materials must be considered to 
modify the product life cycle and ensure the best possible economic 
and ecological outcomes. The study of materials in manufacturing 
systems affects the machinery process, enabling increased productivity 
and quality control. The materials are studied under the concept of 
Penta-S materials. These materials include the following five features: 
smart, sustainable, social, sensing, and safe (Molina et al., 2025).

Tailored application—FrEd virtual laboratory
The virtual environment was developed using Unity Engine 5 and 

Oculus Quest technology, simulating the laboratory environment with 
key elements outlined in this study. The application is designed for two 
platforms: Oculus Quest 3 and Android devices.

FIGURE 5

5-Likert response to gamification by each personality trait, with 1 being strongly disagree and 5 being strongly agree. O = Ocean, 
C = Conscientiousness, E = Extraversion, A = Agreeableness, N = Neuroticism.
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Key features include a player input controller tailored for both VR 
and Android versions. The integration of OpenAI allows interactive, 
natural language conversations with virtual experts, creating a 
personalized setup experience.

For the Oculus Quest 3, a customized version of the Oculus XR 
Plugin was utilized to handle player movement and interactions, with 
a focus on hand tracking, head movement, keyboard input, and object 
interaction, ensuring seamless VR engagement. For Android, a 

custom script enables 3D movement through on-screen joysticks and 
gestures, providing an intuitive interface like the VR version.

The saving system stores progress through local storage, with 
Firebase Realtime Database ensuring cloud backups. The application 
also includes interaction with the FrED machine, allowing users to 
visualize subsystems and use an integrated oscilloscope for real-time 
analysis of output data, offering an interactive way to observe and 
manipulate machine performance.

FIGURE 6

FrED’s rubric showcases each criterion with the level of proficiency.
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Manufacturing proposal: soft skills in 
engineering

Problem-solving is a cornerstone of engineering, but it does not 
stand alone—it is closely intertwined with skills such as innovation, 
brainstorming, critical thinking, research, and leadership (Caeiro-
Rodríguez et al., 2021). These interconnected skills are essential not 
only for solving technical challenges but also for enhancing project 
management and business efficiency.

Figure 9 illustrates key soft skills in engineering, including critical 
thinking, innovation, problem-solving, and teamwork. Several 
important branches are highlighted:

	(1)	 Brainstorming: linked to critical thinking and innovation, 
demonstrating their role in effective brainstorming sessions in 
engineering.

	(2)	 Problem solving: involves skills like validation, research, 
solution development, and problem identification, all crucial 
to the problem-solving process.

	(3)	 Team collaboration: emphasizes working together 
effectively, supported by skills like documentation and 
validation. Collaboration requires communication and 
verifying outcomes.

	(4)	 Leadership: connected to critical thinking and innovation, 
indicating that strong leadership in engineering requires both 
creative and analytical abilities.

How to implement the proposed 
laboratory in an engineering class

Traditional engineering instruction is predominantly lecture-
based, with information transmitted via slides, boards, and instructor 
exposition (Soliman et al., 2021). This mode of delivery tends to 
privilege instructor activity over student agency, which can limit 
opportunities for inquiry and knowledge construction. Blended 
formats that integrate online resources with in-person sessions, along 
with student-centered frameworks such as technology-enabled active 
learning, have demonstrated improved outcomes by increasing 
interactivity, multimodal visualization, and structured inquiry. Within 
this pedagogical shift, virtual reality functions as an enabling medium 
that transforms learners from passive recipients into active participants 
by situating them in immersive, task-relevant contexts (Soliman et al., 
2021). A growing body of research indicates that virtual reality can 
enhance cognitive and pedagogical outcomes in engineering domains, 
particularly where spatial reasoning and three-dimensional 

FIGURE 7

Activities presented in the VR environment. The seals are associated to each activity.

FIGURE 8

A diploma is sealed when the activity is completed.
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phenomena are central. In courses such as fluid mechanics, virtual 
environments support comprehension of complex motion and flow 
patterns that are difficult to convey through two-dimensional 
diagrams or verbal description alone. Studies in electronics and three-
dimensional visualization similarly report gains in achievement, 
engagement, critical thinking, and scientific attitudes (Soliman et al., 
2021). There is also suggestive evidence that experiences encoded in 
virtual environments approximate real-world mnemonic processes 
more closely than conventional screen-based learning, potentially 
strengthening retention (Soliman et al., 2021).

On the other hand, the study proposes a teacher-support workflow 
that leverages a large language model to simulate teacher–student 
interactions from an initial lesson plan, derive reflective insights from 
those simulations, and then produce a revised, higher-quality plan 
that integrates both the process and the reflections. Using high-school 
mathematics as the testbed—Statistics, Functions, Algebra, and 
Geometry; the authors compiled 240 baseline plans (including 
LLM-generated plans with and without problem-chain prompts, 
expert-written plans, and plans from pre-service teachers) and created 
240 “enhanced” plans by running one or two rounds of a simulation–
reflection–refinement pipeline. Human raters evaluated all plans on 
an eight-point scale across nine categories and nineteen dimensions 
(Hu et al., 2025).

The enhanced plans consistently outperformed their baselines and 
often matched or exceeded expert plans. Gains were most pronounced 
in Statistics and weaker in Geometry, where text-only outputs 
struggled to convey diagram-intensive content. Introducing three 
problem-chain formats, context-based, trap-based, and summary-
based, helped structure conceptual progression, although the more 
challenging trap-based questions remained a relative weakness. The 
approach was especially beneficial for pre-service teachers, improving 
practicality and alignment with lesson scope. Overall, the prompt-
driven workflow lowers barriers to “pre-class rehearsal,” supports 
human–AI co-design, and can be extended with multi-agent setups 
and human-in-the-loop review (Hu et al., 2025). These results suggest 
a promising opportunity to adapt the method to engineering 
laboratory courses as well.

Furthermore, Laboratory work remains fundamental to 
engineering education because it anchors theoretical constructs in 
inquiry and experimentation. However, physical laboratories are 
constrained by safety risks, infrastructure limitations, scheduling 
bottlenecks, and material costs. Virtual laboratories mitigate many 
of these constraints by providing safe, repeatable, and scalable 
practice without endangering learners or equipment. For distance 
learners, virtual laboratories can yield learning outcomes 
comparable to those achieved in traditional settings, thereby 
expanding access while maintaining educational quality. 
Accessibility can also improve for learners who benefit from seated 
operation and captioned content, although fully immersive head-
mounted displays are not suitable for those with visual 
impairments. Cost remains a salient consideration: high-end 
systems provide greater immersion at a higher expense, whereas 
mobile solutions increase access at the cost of fidelity (Soliman et 
al., 2021).

Findings are not uniformly positive. Some studies report no 
statistically significant differences between virtual and traditional 
laboratories, while early implementations document student 
preferences for conventional laboratory experiences, citing perceived 
ease of operation and flexibility. Taken together, the literature supports 
a cautious yet optimistic conclusion: when virtual reality is 
thoughtfully integrated with lectures and online materials, it can 
enhance engineering education by making it more active and inquiry-
driven, with particular advantages for topics involving complex spatial 
reasoning and for institutions seeking to broaden access to safe 
laboratory experiences. Effectiveness ultimately depends on careful 
instructional design, appropriate technological choices, and sensitivity 
to both learner and institutional contexts (Soliman et al., 2021).

Although this paper does not implement the proposed laboratory 
in a course, it describes how it could be implemented in engineering 
classes. In general, engineering laboratories lack a single definition or 
a standard program to follow (Hu et al., 2025). Since the advent of 
digital simulators, they have been used as instrumental systems to 
train engineers across diverse applications. Today, simulators can 
model highly complex systems with substantial fidelity, closely 

FIGURE 9

Soft skills in engineering.
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approximating real-world conditions. In this context, VR laboratories 
can integrate features of online laboratories and simulation 
laboratories to produce realistic environments that resemble a physical 
laboratory, complete with devices, a factory context, and expert 
avatars in specific domains.

The proposed VR laboratory would provide hands-on learning, 
enabling students to interact with equipment, domain experts in each 
section, and a virtual factory. The environment could be automatically 
adapted to different undergraduate levels, promoting dynamic 
interaction within the VR ecosystem. Rather than replicating a 
conventional, step-by-step laboratory where every student follows 
identical procedures, the design emphasizes iterative learning and 
formative feedback, eliminating the immediate pressure of summative 
grading. Flexibility and reliability would support access without fixed 
schedules or locations, as in remote-access laboratories (Steinemann 
and Braun, 2002). Because there is no rigid sequence of required 
exercises, the laboratory functions as a guided exploration space, 
allowing students to learn at their own pace. Moreover, VR 
implementation can reduce costs associated with physical maintenance 
and equipment failures. At the same time, the VR laboratory can 
incorporate both simulation-based exploration of theoretical concepts 
and experimental activities within the same environment, aiming to 
replicate the affordances of a real experimental laboratory (Steinemann 
and Braun, 2002; Balamuralithara and Woods, 2009).

Using the objectives of an engineering laboratory proposed by 
Feisel and Rosa (2005) as a reference, the fundamental objectives and 
main topics for the proposed virtual-reality laboratory using large 
language models are presented below. This course is a lab-centered 
pathway that encompasses the full lifecycle of a didactic extruder. 
Students can begin by applying first principles, decomposing 
subsystems, deriving governing relations, and mastering mechanics, 
electronics, power electronics, sensing, and multiloop control, while 
generating traceable data under explicit safety practices. They then 
utilize Expert Avatars, powered by large language models, to diagnose 
and improve the device, translate natural-language guidance into safe 
parameter and policy changes, conduct controlled experiments to 
isolate effects, perform failure analyses, and communicate results in 
an ethical manner. Finally, they apply these improvements in an 
advanced manufacturing context by preparing designs for 
manufacturability and assembly, integrating digital traceability, 
applying statistical process control, conducting controlled 
comparisons to support go/no-go decisions, and linking technical 
gains to takt time, capacity, cost per part, and return on investment. 
Across all phases, students utilize machine learning for maintenance, 
address energy and sustainability concerns, ensure accessibility, and 
maintain governance over changes and intellectual property, 
culminating in a factory-ready extruder improvement demonstrated 
through both technical and executive deliverables.

Phase 1: device-first foundations—the 
extruder and its components

Phase 1 begins by grounding students in the anatomy of the 
extruder and the first principles that govern it. Learners decompose 
the machine into its constituent parts: material feed, screw and barrel, 
heaters, drive train, die, and cooling. They then use this structure to 
derive relations for mass, momentum, energy, torque, throughput, and 

pressure. As they transition from plastic rheology and residence time 
to pressure–flow curves and torque–speed maps, the physics provides 
a practical lens for understanding overall efficiency. Those analytical 
bases carry directly into mechanics and structures, where students 
evaluate loads, tolerances, and fits for screws, barrels, bearings, 
couplings, and frames. By linking stress, strain, critical speed, thermal 
expansion, and mounting rigidity with observed noise and vibration, 
they learn to prevent wear, misalignment, and instability rather than 
reacting to it later.

With the mechanics stabilized, attention turns to thermal 
behavior. Students model heat flow across zones, design cooling paths, 
and tune profiles to deliver a stable melt with minimal overshoot. 
Concepts like conduction, convection, thermal lag, zoning strategy, 
insulation, and safety margin stop being abstract and become control 
levers for quality. The electrical layers then slot into the same systems 
picture. Learners read wiring diagrams, design safe low-voltage 
distribution and I/O systems, and apply grounding, shielding, and 
noise mitigation techniques to ensure that sensors and drives operate 
reliably. From there, they size and configure power electronics and 
drives, connecting rectification, heater control with pulse width, and 
variable-frequency or servo tuning to real current limits, harmonics, 
and protection schemes. This naturally leads to motion systems. 
Students select prime movers, gearboxes, and couplings by matching 
torque–speed envelopes to steady-state and transient demands, 
accounting for inertia, torque ripple, backlash, and alignment to 
ensure the chosen actuator can deliver what the process physics 
requires.

Sensing and control close the device loop. Learners select, place, 
calibrate, and condition sensors for temperature, pressure, torque, flow 
or throughput, and vibration, then synchronize and filter data for 
trustworthy analysis. Those signals feed multiloop control of 
temperature, motor speed, torque, and pressure, with interlocks and 
setpoint scheduling designed from the outset. The tuning work 
connects proportional–integral–derivative (PID) choices with 
feedforward, cascaded loops, anti-windup, and bumpless transfer, 
ensuring transitions are both responsive and safe. Throughout, safety 
and compliance are treated as design constraints, not afterthoughts. 
Students design guarding, emergency stops, interlocks, lockout and 
tagout awareness, safe states, thermal shielding, labeling, and markings 
so that risk reduction is documented and auditable. Phase 1 culminates 
in test and characterization. Teams plan structured experiments to 
measure throughput, energy use, melt quality, and stability, establish 
a golden batch, apply basic statistical process control, and produce 
clean, versioned datasets. By the end of the phase, device-level 
knowledge, control fluency, and data practice are woven into a single, 
testable whole.

Phase 2: expert avatars—language models 
in the loop

Phase 2 layers expert avatar guidance on top of the device 
foundations but keeps the human firmly in charge. Students first learn 
to design fast, targeted interactions that extract diagnostics, parameter 
suggestions, and design hypotheses without drifting into misleading 
responses. They use examples, bounded tool use, strict units, and 
versioned prompts so that advice remains traceable. The next step is 
translation. Avatar guidance is converted into safe, typed updates to 
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parameters, policies, and design features using an application 
programming interface (API) schema with hard bounds, declared 
units, confidence reporting, rollback capabilities, and human approval. 
In other words, language becomes a precise control surface rather than 
an informal suggestion.

To ensure rigor, learners design avatar-in-the-loop experiments 
that separate the effect of advice from the effect of mechanical or 
control changes. They preregister hypotheses, randomize or 
counterbalance trials, plan manipulation checks, and confirm that 
sample sizes have adequate power. When failures occur, students 
diagnose them across sensors, mechanics, control logic, and avatar 
guidance, then update both the physical design and the avatar 
playbook. Fault trees, root-cause analysis, guardrails, post-mortems, 
and regression tests ensure that each fix prevents recurrence. Finally, 
communication and ethics make the process accountable. Results and 
decisions are reported with transparent instruction logs and explicit 
consent for the storage of transcripts. Bias checks are conducted on 
avatar outputs, and the findings are presented in clear executive 
summaries, accompanied by technical appendices, for both technical 
and non-technical audiences. By the end of Phase 2, learners have 
integrated trustworthy language-model collaboration into a safe 
engineering workflow.

Phase 3: factory integration, mass 
production, and machine learning

Phase 3 scales the improved device into a manufacturing reality. 
Students translate their designs into manufacturable variants using jigs 
and fixtures, assembly routings, and verified tolerances, thereby 
connecting engineering and manufacturing bills of materials with 
tolerance stacks, computer-aided manufacturing files, and printable 
fixtures, ensuring serviceability. These physical flows are mirrored in 
the digital factory. At the present stage, this digital factory has been 
implemented as a high-fidelity virtual model of the FrED line. Future 
work will expand it into a comprehensive digital twin by streaming 
real-time telemetry from the physical equipment and integrating 
in-situ control updates. Learners implement traceability by linking 
unit and lot genealogy to actual parts and changes, thereby 
maintaining as-built configurations in alignment with as-designed 
specifications and capturing approvals in change records. Quality 
systems then provide the statistical backbone. Teams could create 
control plans and apply statistical process control to critical 
characteristics, such as melt temperature, pressure stability, and 
dimensions. This involves selecting sampling plans and charts, 
computing capability indices, and handling nonconformances with 
discipline.

Validation at scale requires evidence, not anecdotes. Students 
conduct controlled comparisons between baseline and avatar-
improved devices, ensuring adequate power, define uplift metrics and 
confidence intervals, and prepare lightweight submission packages for 
part approval when necessary. They connect technical improvement 
to production economics by translating changes into takt time, 
capacity, work in process, cost per part, and return on investment, 
using bottleneck analysis, quick changeover, sensitivity analysis, and 
make-or-buy decisions to quantify impact. Reliability and uptime are 
then addressed with machine learning. Learners engineer features 
from sensor data, build health indicators and remaining useful life 

estimates, set alert thresholds, and generate work orders, enabling 
maintenance to shift from reactive to predictive and prescriptive 
across heaters, bearings, screws, and drives. Energy and sustainability 
complete the operating picture. Students reduce energy consumption 
per unit and material waste while maintaining quality and takt, 
utilizing energy performance indicators, heater setpoint strategies, 
insulation improvements, compressed-air leak reduction, and 
improved material yield. The phase closes with handover and 
governance. Inclusive standard operating procedures and avatar-
assisted training support adoption, while provenance and compliance 
are maintained through engineering change control, digital signatures 
and hashes, access control, audit trails, and regulatory mapping. What 
began as device-level mastery evolves into a factory-ready system, 
characterized by traceable decisions, measurable quality, and clear 
economics.

Creative Thinking Skills (CTS)—mapping 
and rubric for the VR–LLM laboratory

Additionally, this paper can be linked to the Creative Thinking 
Skills (CTS) criterion presented in Forte-Celaya et al. (2021), which 
provides concrete evidence generated by the VR–LLM laboratory and 
offers a ready-to-use rubric for scoring student work. Evidence is 
drawn from in-app artifacts (capstone plan, track deliverables), 
telemetry (logs of genetic algorithm and neural network), KPI charts, 
and the oral defense transcript.

How CTS maps to the laboratory

This laboratory advances Creative Thinking Skills (CTS) by 
guiding learners from exploratory optimization to justified, 
stakeholder-ready plans while capturing auditable evidence at every 
step. In the Line Production Optimizer, students tune buffer sizes and 
reliability policies using a genetic algorithm whose objective penalizes 
low throughput, oversized buffers, and off-baseline failure/repair rates. 
Because many parameter sets can still satisfy these constraints, there 
are multiple legitimate ways to succeed. Divergence, therefore, 
captures how far a learner’s final operating plan departs from common 
or default settings while remaining viable, as shown by GA generation 
histories, the final policy vector, and the written rationale recorded 
in-app. That creative departure only matters if it benefits the factory, 
which leads directly to Impact: in the capstone, students defend their 
plan to avatar experts by balancing throughput, cost, stability, and 
maintainability. Clear KPI improvements, such as higher throughput, 
lower WIP, or better defect/energy profiles, combined with a 
persuasive oral defense, signal high Impact.

Crucially, novelty must fit the brief. The lab’s three activity tracks 
and the Penta-S materials framework (smart, sustainable, social, 
sensing, safe) create space for uncommon yet well-justified solutions, 
such as pairing an ANN early warning system with a sustainability-
driven buffer strategy. When a distinctive feature is introduced and 
explicitly tied to track objectives and Penta-S constraints, it earns 
Originality, evidenced in design notes, scenario choices, and 
justification screens. To make such novelty work in practice, learners 
must integrate ideas and tools; here, the lab’s 14 interactive elements 
come into play. By chaining subsystem exploration, oscilloscope, and 
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CSV analysis, avatar consultations, GA optimization, and ANN 
forecasting into a single reasoning arc (signals → GA objective → 
ANN interpretation → plan), students demonstrate Flexibility, 
interdisciplinary synthesis visible in tool-use logs and the narrative 
rationale.

Quality of execution underpins all of the above. Because the lab 
exposes raw/processed signals, GA runs, and ANN outputs, raters 
can judge Technique directly: are objectives and penalties set 
correctly, are model outputs interpreted properly, and is telemetry 
used to validate decisions (avoiding pitfalls like overfitting or 
misreading failure/repair rates). Evidence appears in GA convergence 
curves, ANN accuracy/confusion matrices, correctly parameterized 
objectives, and clean data handling. Resolution then closes the loop 
by asking whether the learner actually met the brief defined in the 
FrED rubric—design quality, integration into manufacturing, 
performance and cost, innovation and problem-solving, and 
technology use—alongside track-level goals. Plans that meet 
throughput/cost targets, integrate subsystems coherently, and pass 
safety/feasibility checks earn high Resolution, as verified by 
threshold attainment, pass/fail checks, and subsystem integration 
snapshots.

The Creative Thinking Skills (CTS) Rubric for the VR–LLM 
Laboratory is presented in Table 2, based on Forte-Celaya et 
al. (2021).

Scoring: 1 = Beginning, 2 = Developing, 3 = Proficient, 
4 = Exemplary. Evidence sources: in-app artifacts (capstone plan, 
track deliverables), GA/ANN/telemetry logs, KPI charts, oral defense 
transcript.

Total CTS score (max 24): sum of six criteria. Optional weighting 
(if emphasizing novelty/usefulness): Divergence, Impact, and 
Originality ×1.25; Flexibility, Technique, and Resolution ×1.0. Report 
both weighted and unweighted totals.

Results

The VR environment of the FrED Factory Learning Lab simulates 
a real-world factory setting. Figure 10 shows the spatial layout of the 
app, highlighting key training modules and activities.

The FrED Factory Learning Lab is available in two versions: for 
Android devices and for Oculus Meta Quest 3. While both versions 
aim to provide an engaging educational experience, the VR version 
supports full 3D-rendered avatars representing different engineering 
disciplines, whereas the Android version optimizes performance to 
prevent freezing by omitting avatars.

These platform-specific adjustments ensure accessibility and 
effectiveness for a diverse range of users. The VR version excels in 
immersion and interactivity, ideal for users with advanced hardware. 
The Android version offers portability, allowing engagement with 
training materials on mobile devices while maintaining core learning 
objectives.

Both versions focus on developing technical expertise and soft 
skills, offering tailored pathways for users to interact with FrED based 
on their device capabilities. This versatility makes the app suitable for 
a wide range of users, from on-the-go learners to those seeking a fully 
immersive experience.

TABLE 2  Creative Thinking Skills (CTS) rubric for the VR–LLM laboratory.

Criterion 4-exemplary 3-proficient 2-developing 1-beginning

Divergence Reframes the operating policy with multiple 

defensible differentiators; departs clearly from 

common settings while satisfying all 

constraints (evidence: GA history + rationale).

At least one clear differentiator 

beyond typical solutions; plan 

remains viable.

Small/uncertain departure from 

defaults; novelty weakly justified.

Mirrors common/baseline 

settings; no meaningful 

differentiator.

Impact Compelling KPI gains (throughput, cost, 

stability, maintainability) and a persuasive 

defense aligned to stakeholder needs; benefits 

are explicit and quantified.

Noticeable utility with trade-

offs explained; most benefits 

quantified.

Some localized benefit; 

justification is partial or weakly 

quantified.

Limited or unclear value; 

benefits not demonstrated.

Originality Distinctive feature(s) tightly aligned to track 

goals and Penta-S constraints; shows ideation 

breadth and careful selection.

At least one distinctive feature 

aligned with the brief and 

context.

Familiar ideas loosely tied to 

goals; limited justification.

No distinctive features; 

reproduces examples or defaults.

Flexibility Integrates multiple tools/domains coherently 

(signals—GA objective—ANN inference—

plan), with explicit handling of interfaces and 

trade-offs.

Purposeful combination of at 

least two tools/domains with 

clear intent.

Attempts cross-linking, but 

integration is weak or unclear.

Single-domain approach; no 

meaningful integration.

Technique Rigorous setup and execution: correct 

objectives/penalties, valid model 

interpretation, sound data handling, 

reproducible runs (evidence: GA curves, 

ANN metrics).

Mostly correct methods with 

minor errors; interpretations 

generally sound.

Noticeable method or 

interpretation errors; partial 

mismatch to the task.

Frequent errors in setup/

interpretation; results not 

credible.

Resolution Fully meets stated objectives/constraints 

(throughput/cost/safety/integration) with 

evidence; risks and limits acknowledged and 

managed.

Meets core objectives; minor 

gaps or untested constraints.

Partially meets objectives; key 

requirements are weak or missing.

Objectives largely unmet or 

unsupported by evidence.
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Figure 11 provides snapshots of the Android version, 
showcasing platform accessibility, while Figure 12 presents the 
Oculus Meta Quest 3 interface, emphasizing the enhanced 
immersive experience of VR.

Users can interact with avatars or directly with FrED through 
voice commands or text input, catering to diverse communication 
preferences. Voice interaction offers a natural experience, while text 
input provides precision, making it suitable for quiet or noisy 
environments. ChatGPT also enables multilingual interactions, 
supporting both English and Spanish, enhancing inclusivity.

The platform features 14 interactive elements, each designed to 
meet specific training objectives and develop essential skills, including 
communication, leadership, problem-solving, and collaboration. 
Features range from user profile management to advanced modules, 
including predictive analytics utilizing genetic algorithms and neural 
networks.

	 1)	 Load/save user profile: allows users to save/load progress and 
profiles through local storage or Firebase, promoting 
organization and responsibility.

FIGURE 10

General layout of the proposed application.
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	2)	 FrED’s machine brief intro: provides an overview of FrED’s 
subsystems, fostering critical thinking by linking theory to 
machine operations.

	 3)	 Personalization profiling (ChatGPT-4): offers users a 
personality-based survey for tailored gamification or a default 
learning experience, fostering self-awareness and adaptability.

	 4)	 FrED’s lab explainer (Avatar-ChatGPT-4): a virtual guide 
explains the lab environment and interactions, fostering 
communication and teamwork.

	 5)	 CEO labs perspective (Avatar-ChatGPT-4): offers a strategic view 
of lab operations, encouraging leadership and strategic thinking.

	 6)	 Optimizer expert (avatar-ChatGPT-4): guides users in applying 
optimization algorithms, enhancing problem-solving and 
innovative thinking.

	 7)	 Line production optimizer (Genetic Algorithm-C#): simulates 
production line optimization, promoting analytical thinking 
and research skills.

	 8)	 FrED machine (Product Model-ChatGPT-4): a detailed 3D 
model of FrED allows users to explore components, fostering 
critical thinking and problem-solving.

	 9)	 FrED’s knowledge validation (Gamification-ChatGPT-4): 
challenges users with gamified activities to validate their 
knowledge, building confidence and adaptability.

	10)	 Oscilloscope: FrED’s motor signal (CSV data reading): provides 
real-time visualization of motor metrics, enhancing data 
analysis skills.

	11)	 FrED’s experts perspective (Avatars-ChatGPT-4): users interact 
with avatars from various disciplines, fostering interdisciplinary 
collaboration.

	12)	 Production line (CSV data reading): simulates a production 
line for real-time data analysis, encouraging data-driven 
decision-making.

	13)	 Forecasting expert (Avatar-ChatGPT-4): guides users on 
predictive analytics, enhancing forecasting and planning skills.

FIGURE 11

Different views of the 14 interactive features in the Android version.
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	14)	 Line production forecasting (ANN-Python+C#): trains users 
to predict operational statuses using an ANN, emphasizing 
analytical thinking and technical expertise.

Figure 13 summarizes the soft skills employed in each interactive 
feature.

The FrED Factory Learning Lab demonstrates how immersive 
virtual environments, gamification, and AI-driven personalization 

address evolving needs in engineering education. Leveraging both 
Android and VR platforms, the lab ensures inclusivity while 
maintaining core learning objectives, providing flexible and scalable 
solutions for users with varying hardware access.

The inclusion of 14 distinct features fosters critical 
thinking, problem-solving, collaboration, adaptability, and 
leadership—skills essential in modern engineering and manufacturing 
settings.

FIGURE 12

Different views of the 14 interactive features in VR.
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Proposed plans and timeline for the 
empirical evaluation

Building on the framework outlined in Paszkiewicz et al. (2021), 
a systematic empirical evaluation shall be undertaken to assess its 
pedagogical effectiveness and usability in practical training 

environments. The assessment will concentrate on four primary 
dimensions:

Learning effectiveness
The first goal is to determine if the VR–LLM–gamified FrED 

laboratory delivers greater learning improvements than more 

FIGURE 13

Soft skills are employed in each interactive feature.
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traditional formats. Specifically, we will evaluate whether the system 
improves understanding of sustainable manufacturing, the FrED 
architecture and process flow, and the relationships between device-
level settings (such as temperature, torque, reliability) and factory-
level performance. These findings will be compared to results from 
standard instructional materials and a non-personalized VR version.

Soft-skills development
A second goal is to evaluate how effectively the laboratory 

supports the development of higher-order skills such as problem-
solving, critical thinking, collaboration, and decision-making in 
production-line scenarios. Specifically, we will analyze how learners 
justify trade-offs within the Penta-S sustainability framework, design 
and defend optimized policies, and communicate their decisions to 
both technical and non-technical audiences.

User experience and acceptance
Third, we will examine learners’ perceptions of immersion, 

usability, workload, and perceived usefulness, as well as their intention 
to adopt similar tools in the future. This involves analyzing how 
different system configurations (with or without LLM-based 
personalization and gamification) influence motivation, engagement, 
and perceived effectiveness.

Transfer and retention
Finally, we will examine whether the skills and knowledge 

acquired within the virtual laboratory are transferable to new 
scenarios, such as modified factory layouts or different failure patterns, 
and whether these competencies are retained over an extended period. 
This inquiry is particularly pertinent for industrial operators and 
engineering students, who are required to apply their learning to real 
or simulated production environments.

Study design
The empirical evaluation will be conducted using a controlled, 

between-subjects design. Participants will come from two primary 
populations: senior undergraduate and early graduate engineering 
students enrolled in courses related to manufacturing, control, or 
digital twins. Industrial operators or trainees working in sustainable 
manufacturing settings, where scenarios can be adapted to highlight 
safety, reliability, and process efficiency. To isolate the impact of VR, 
LLM-based guidance, and gamification, at least two experimental 
conditions will be implemented, with a third condition strongly 
recommended.

Treatment (T)
Full VR–LLM FrED laboratory, including personality-based 

profiles, adaptive avatars, gamified elements, and the three activity 
tracks (e.g., energy efficiency mastery, precision & quality assurance, 
stability & control).

Learners receive real-time, personalized guidance, and their actions 
are logged through the telemetry infrastructure already described (e.g., 
GA convergence, ANN performance, dialogue traces, tool usage).

Control 1 (C1)
Conventional instructional materials (slides, videos, and static 

simulations) covering the same core concepts, learning objectives, and 
approximate time-on-task as the treatment.

This condition represents a baseline close to current practice in 
many engineering programs.

Control 2 (C2) (recommended)
A non-personalized, non-gamified VR version of the laboratory, 

in which learners can explore and complete the same technical tasks 
without adaptive prompts or tailored game mechanics.

This condition allows us to isolate the added value of LLM-based 
personalization and gamification beyond the immersive VR 
medium itself.

Random assignment will be used wherever possible within each 
cohort (students and operators), and basic demographic and 
background information (e.g., prior VR experience, programming 
background, familiarity with FrED) will be collected to verify baseline 
comparability.

Measures and analysis
The evaluation will leverage both the assessment instruments and 

telemetry already designed for the virtual laboratory, as well as 
additional standardized questionnaires.

Knowledge and skills
Pre- and post-tests will assess understanding of FrED’s system 

architecture and main subsystems.
Relationships between device-level parameters (e.g., extrusion 

temperature, torque, sensor placement, and controller tuning) and 
factory-level indicators (e.g., throughput, work-in-progress, reliability, 
and energy consumption).

Core concepts of the Penta-S sustainability framework 
and the role of optimization and forecasting in sustainable 
manufacturing.

Capstone performance will be evaluated using the existing FrED 
rubric and the CTS (critical thinking and technical skills) composite. 
Learners will solve a novel factory scenario and present a short oral 
defense of their decisions, allowing expert evaluators to rate decision 
quality, argumentation, and sustainability awareness.

Performance in VR tasks and system telemetry
Objective indicators will be extracted from system logs, such as:

Task completion times and number of retries.
Error rates, constraint violations, and time-to-stable policies in 
GA-based optimization.
ANN forecasting accuracy and confusion matrices.
Interaction with in-app tools (e.g., oscilloscope, CSV viewers) and 
avatar dialogue density and intent.
These “mechanism traces” will help connect learning outcomes to 
how learners actually, explore the search space, interact with the 
avatars, and use the visualization tools.

User experience and acceptance
Standardized Likert-scale questionnaires will be administered 

after each intervention to measure:

Perceived understanding (theoretical and practical).
Motivation, engagement, and perceived effectiveness of each 
instructional form (traditional, non-personalized VR, VR–LLM– 
gamified).
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Presence/immersion, usability, and workload (e.g., using 
instruments such as SUS, NASA-TLX, or presence scales).
Intention to use and perceived usefulness, drawing on 
technology acceptance models (e.g., TAM/UTAUT) in the 
operator study.

Soft skills and collaboration
Soft-skills rubrics will be developed to assess problem-solving, 

collaboration, and decision-making during the production-line 
scenarios (e.g., bottleneck resolution, buffer sizing, reliability trade-offs).

Expert raters will score team interactions and outcomes, focusing 
on how learners negotiate constraints, justify trade-offs, and 
communicate under time pressure.

Retention and transfer
A delayed post-test (4–6 weeks after the intervention) will be 

administered to a subset of participants to evaluate retention of key 
concepts and transfer to new scenarios, such as modified line 
configurations or different failure patterns.

Data analysis
Quantitative data (pre/post scores, telemetry metrics, questionnaire 

scales) will be analyzed using mixed ANOVA or linear mixed models to 
capture both within-subject changes and between-condition differences.

Group comparisons will test hypotheses about the added value of 
VR, LLM personalization, and gamification.

Qualitative data (open-ended responses and samples of LLM–
avatar interactions) will be coded to identify common misconceptions, 
successful strategies, and user perceptions that numeric scales may not 
fully capture.

Timeline for 12-month implementation

The empirical evaluation is planned over approximately one year, 
in four main phases:

Months 1–2: design and preparation
During this phase, learning outcomes and soft skills indicators 

will be refined based on the curriculum and the existing FrED and 
CTS rubrics. Pre- and post-tests and questionnaires will be drafted, 
with items adapted from Paszkiewicz et al. (2021) on perceived 
effectiveness, recommendations, and understanding. Rubrics for 
collaboration and decision-making will be finalized. The experimental 
conditions (T, C1, optional C2), procedural scripts, and consent 
forms will be prepared, and the necessary ethical approvals 
confirmed.

Months 3–4: technical and pedagogical pilot
A small pilot study (approximately 10–15 students) will be 

conducted with one course group. The goal is to test VR logistics 
(headset deployment, network stability), task duration, user 
comfort, and instruction clarity. Initial questionnaires and short 
interviews will be collected, following a similar approach to previous 
VR deployments in education. Based on this feedback, task 
difficulty, user interface elements, and pacing will be refined, and 
equivalence of content and time-on-task across conditions will be 
checked.

Months 5–8: main controlled experiment with 
students

The primary student study will be carried out with approximately 
30–40 participants per condition (subject to a power analysis and 
course enrollment). The intervention will be integrated into an 
existing course module so that the VR laboratory replaces or 
complements part of the traditional instruction. Pre-tests will be 
administered, followed by the assigned condition (T, C1, or C2). Post-
tests, questionnaires, and telemetry data will then be collected. A 
delayed post-test will be scheduled 4–6 weeks later for retention and 
transfer analysis.

Months 9–10: extension to operators and 
external cohorts

In this phase, the scenarios and instruments will be adapted for 
industrial operators, with a focus on safety, reliability, and operational 
decision-making. A smaller but ecologically rich study (around 15–25 
participants) will be run, typically comparing the treatment condition 
to one of the control conditions. User-acceptance measures (e.g., 
intention to use, perceived usefulness) will be included. Comparisons 
will be made between student and operator populations to explore 
generalizability and differences in usage patterns.

Months 11–12: analysis and iteration
The final phase will focus on comprehensive statistical analysis 

and triangulation of quantitative results with qualitative feedback and 
interaction logs. Based on the findings, the FrED VR laboratory will 
be refined (e.g., adjusting scenario complexity, feedback mechanisms, 
and gamification loops). The goal is also to package the evaluation 
framework so it can be reused in future multi-site studies across 
different campuses and institutions.

Discussion

The combination of VR, large language models, and AI has 
significant potential for transforming education and training in 
sustainable manufacturing. VR provides hands-on experiences, 
helping learners understand complex manufacturing processes 
without the need for physical machinery, thereby reducing costs and 
risks compared to traditional training methods. This aligns with 
Industry 4.0 and 5.0, which focus on enhancing efficiency while 
prioritizing worker empowerment and education.

By leveraging genetic algorithms and neural networks, the VR lab 
simulates production scenarios and optimizes key parameters, 
enabling learners to visualize the impact of various factors in real-
time. The iterative optimization process helps users understand the 
balance required in industrial settings, including production rates, 
machine reliability, and cost efficiency.

The VR lab emphasizes the Penta-S approach, contributing to 
understanding sustainable practices by demonstrating efficient 
organization and resource management. This focus on sustainability 
is timely given the global push to reduce environmental impact in 
manufacturing.

Despite the advanced capabilities of VR and AI, challenges such 
as accessibility and the learning curve must be addressed to maximize 
their benefits. Ensuring a user-friendly VR environment and providing 
sufficient training are key to overcoming these challenges.
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The use of a loss function that penalizes inefficiencies highlights 
the emphasis on efficiency but may limit flexible, creative exploration 
that learners sometimes need. Expanding the VR lab to include real-
time collaboration among users in different locations could make it a 
valuable global educational resource.

The adaptability of large language models to provide real-time 
guidance in the VR lab enhances the learning experience through 
personalized support, using text or voice interfaces to cater to diverse 
learning preferences.

In designing the FrED VR–LLM lab, the user interface, scaffolding 
mechanisms, and pacing are intentionally tailored to boost presence 
while minimizing cognitive overload. First, the UI follows cognitive 
load theory and CTML principles by removing unnecessary, purely 
decorative elements and showing only task-relevant information, 
since excessive visual stimulation and ornamental details in VR can 
hinder learning despite increasing presence (Sari et al., 2024). In 
practice, this is achieved through a small number of stable, color-
coded panels (device view, parameter sliders, oscilloscope/CSV 
viewers, and GA/ANN dashboards) that are reused across the three 
core modules—FrED device, avatar guidance, and factory—so 
learners do not have to relearn the interface when moving from the 
extruder to the production line.

A simplified, performance-optimized Android version with 
fundamental interactions (no 3D avatars, same tasks and metrics) is 
available for lower-end devices or beginners, aligning with evidence 
that accessible, easy-to-use interfaces and straightforward menus help 
reduce cognitive load and improve perceived learning effectiveness in 
immersive VR.

Instructional scaffolding is provided through both the activity 
structure and the LLM-driven avatars. The training program is divided 
into three VR activities (Energy Efficiency Mastery, Precision and 
Quality Assurance, Stability and Control), each focusing on a specific 
subsystem of FrED and increasing in complexity.

Within each activity, learners receive step-by-step prompts, 
immediate feedback, and gamified scoring with sealed diplomas that 
show progress without overwhelming the interface with raw data.

Avatars like the Lab Explainer, CEO perspective, Optimizer, and 
Forecasting experts serve as just-in-time tutors: they translate domain 
jargon into natural language, suggest bounded parameter edits, and 
prompt reflection on trade-offs between throughput, reliability, and 
sustainability, rather than just adding more information. This guided 
experimentation approach echoes research on self-presence and avatar 
design, where carefully tuned embodiment and feedback (e.g., 
synchronized movements, consistent responses) support cognitive 
performance without unnecessary sensory complexity (Jahn et 
al., 2019).

To explicitly reduce cognitive overload, the FrED lab adopts three 
complementary strategies supported by recent empirical work on VR 
and cognitive load. First, task–technology fit is ensured by making 
sure every interactive feature (such as line optimizer, oscilloscope, 
knowledge-validation mini-games) directly supports a specific 
learning goal, avoiding tempting but irrelevant details that would 
increase extraneous load. Second, complexity is increased gradually 
across phases, from device-level tests to avatar-guided diagnostics to 
factory-level GA/ANN optimization, so the intrinsic load grows 
slowly, and learners can reuse earlier schemas instead of starting from 
scratch in the factory module. Third, during pilots, interaction logs 
and questionnaires inspired by cognitive overload studies (e.g., ratings 
of task difficulty and mental effort) are used to identify screens or 

sequences that produce high load. These are then redesigned with 
simpler menus, fewer simultaneous elements, or additional avatar 
prompts. All these UI and pedagogical choices aim to keep FrED’s 
immersive experience in the utilitarian zone, supporting reflection 
and skill transfer, rather than letting presence and stimulation 
undermine learning effectiveness.

Future work

Although the proposed VR laboratory integrates advanced 
technologies such as LLMs, gamification, and optimization algorithms, 
it has not yet been validated through a systematic user study. Future 
work will include a controlled experiment to evaluate the educational 
effectiveness of the system. A planned design involves a between-
subjects study with a treatment group (VR–LLM laboratory with 
personalization and gamification) and a control group (standard 
materials or a non-personalized VR version). Participants will include 
senior undergraduate and early graduate engineering students, as well 
as operators, ensuring comparable baseline preparation.

Conclusion

This proposal highlights the development of a VR laboratory 
powered by large language models and AI, demonstrating their role in 
enhancing sustainable manufacturing through the FrED system. FrED 
serves as an AI-driven framework for discovering and optimizing 
Penta-S materials, products, and sustainable practices. A key 
contribution of this work is the application of AI to optimize production 
parameters, including buffer size, production rate, and machine 
reliability, as well as the use of neural networks for forecasting. This 
approach maximizes efficiency while minimizing costs and downtimes.

The optimization process results are presented through visual 
feedback, which shows the evolution of key parameters across 
generations, providing insight into the progression toward more 
efficient solutions. A similar approach is used for neural network-
based forecasting.

This paper also emphasizes the educational applications of VR and 
AI, with the potential to transform learning in sustainable engineering. 
By integrating VR and AI-assisted education, the training process 
becomes more interactive and engaging, helping industry professionals 
and engineering students master sustainable manufacturing practices. 
Overall, this paper demonstrates the potential of AI and genetic 
algorithms in advancing sustainable manufacturing, while highlighting 
how VR and AI technologies can enhance education and training.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

Ethics statement

The studies involving human participants were reviewed and 
approved by Gabriela Torres Delgado, Secretary of the Institutional 

https://doi.org/10.3389/fcomp.2025.1701666
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Ponce et al.� 10.3389/fcomp.2025.1701666

Frontiers in Computer Science 24 frontiersin.org

Committee on Research Ethics, Tecnologico de Monterrey. The 
studies were conducted in accordance with the local legislation and 
institutional requirements. The participants provided their written 
informed consent to participate in this study.

Author contributions

PP: Conceptualization, Data curation, Formal analysis, Funding 
acquisition, Investigation, Methodology, Project administration, 
Resources, Software, Supervision, Validation, Visualization, 
Writing  – original draft, Writing  – review & editing. BA: 
Conceptualization, Funding acquisition, Investigation, 
Methodology, Project administration, Resources, Supervision, 
Validation, Writing – original draft, Writing – review & editing. JM: 
Conceptualization, Data curation, Formal analysis, Investigation, 
Software, Validation, Writing – original draft, Writing – review & 
editing, Methodology, Visualization. RB: Conceptualization, Data 
curation, Formal analysis, Investigation, Software, Validation, 
Writing  – original draft, Writing  – review & editing, Resources, 
Supervision. JG: Conceptualization, Data curation, Investigation, 
Software, Writing – original draft, Writing – review & editing. OM: 
Investigation, Methodology, Validation, Writing  – original draft, 
Writing – review & editing.

Funding

The author(s) declared that financial support was received for this 
work and/or its publication. This work was supported in part by the 
MIT–Tecnológico de Monterrey Program in Nanoscience and 
Nanotechnology. Also, it was supported by Institute of Advanced 
Materials for Sustainable Manufacturing, Tecnologico de Monterrey.

Conflict of interest

The author(s) declared that this work was conducted in the 
absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Generative AI statement

The author(s) declared that Generative AI was not used in the 
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this 
article has been generated by Frontiers with the support of artificial 
intelligence and reasonable efforts have been made to ensure accuracy, 
including review by the authors wherever possible. If you identify any 
issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fcomp.2025.1701666/
full#supplementary-material

References
Abdelouahab, A. (2020). Virtual reality–enhanced soft and hard skills development 

environment for higher education. In The Proceedings of the Third International 
Conference on Smart City Applications (pp. 255–267). Cham: Springer International 
Publishing.

Acevedo, P., Magana, A. J., Benes, B., and Mousas, C. (2024). A systematic review of 
immersive virtual reality in STEM education: advantages and disadvantages on learning 
and user experience. IEEE Access 12, 1–28. doi: 10.1109/ACCESS.2024.3489233

Alsaleh, S., Tepljakov, A., Köse, A., Belikov, J., and Petlenkov, E. (2022). Reimagine lab: 
bridging the gap between hands-on, virtual and remote control engineering laboratories 
using digital twins and extended reality. IEEE Access 10, 89924–89943. doi: 10.1109/
ACCESS.2022.3199371

Balamuralithara, B., and Woods, P. C. (2009). Virtual laboratories in engineering 
education: the simulation lab and remote lab. Comput. Appl. Eng. Educ. 17, 108–118. 
doi: 10.1002/cae.20186

Bezanson, K., Soberanis, L., Thomas, B., Brooks, R., and Rojas-Muñoz, E. (2023). 
Towards an intelligent tutoring system for virtual reality learning environments. In 2023 
IEEE Frontiers in Education Conference (FIE). Texas, USA: IEEE. 1–5.

Botke, J. A., Jansen, P. G., Khapova, S. N., and Tims, M. (2018). Work factors 
influencing the transfer stages of soft skills training: a literature review. Educ. Res. Rev. 
24, 130–147. doi: 10.1016/j.edurev.2018.04.001

Bradley, R. (2023). Design and manufacturing of educational fiber extrusion device 
and smart factory. Cambridge, MA: Massachusetts Institute of Technology, Department 
of Mechanical Engineering.

Caeiro-Rodríguez, M., Manso-Vázquez, M., Mikic-Fonte, F. A., Llamas-Nistal, M., 
Fernández-Iglesias, M. J., Tsalapatas, H., et al. (2021). Teaching soft skills in engineering 
education: an European perspective. IEEE Access 9, 29222–29242. doi: 10.1109/
ACCESS.2021.3059516

Chen, L., Cai, Y., Wang, R., Ding, S., Tang, Y., Hansen, P., et al. (2024). 
Supporting text entry in virtual reality with large language models. In 2024 IEEE 
Conference Virtual Reality and 3D User Interfaces (VR), Orlando, Florida, USA: 
IEEE. 524–534.

Chen, L., Chen, P., and Lin, Z. (2020). Artificial intelligence in education: a review. 
IEEE Access 8, 75264–75278. doi: 10.1109/ACCESS.2020.2988510

de Giorgio, A., Gargiulo, F., Greco, A., Reina, G., and D’Addona, D. M. (2023). 
Adopting extended reality? A systematic review of opportunities, challenges and 
practices in manufacturing education. J. Vocat. Behav. 146:103858. doi: 10.1016/j.
jvb.2023.103858

El Hajji, M., Ait Baha, T., Berka, A., Ait Nacer, H., El Aouifi, H., and Es-Saady, Y. 
(2025). An architecture for intelligent tutoring in virtual reality: integrating LLMs and 
multimodal interaction for immersive learning. Information 16:556. doi: 10.3390/
info16070556

Fazlollahi, A. M., Bakhaidar, M., Alsayegh, A., Yilmaz, R., Winkler-Schwartz, A., 
Mirchi, N., et al. (2022). Effect of artificial intelligence tutoring vs expert instruction on 
learning simulated surgical skills among medical students: a randomized clinical trial. 
JAMA Netw. Open 5:e2149008. doi: 10.1001/jamanetworkopen.2021.49008

Feisel, L. D., and Rosa, A. J. (2005). The role of the laboratory in undergraduate 
engineering education. J. Eng. Educ. 94, 121–130. doi: 10.1002/j.2168-9830.2005.
tb00833.x

Filho, P. T. J. C., and Junior, O. C. (2025). Digital Twin in Industry 4.0: Systematic 
review and content analysis and an architectural reference model. Proce. Com. Sci. 253, 
2919–2928. doi: 10.1016/j.procs.2025.02.016

Flores Romero, P., Shaw, R. S., Hirsh, D., and Pirolli, P. (2025). Structured human-LLM 
interaction design reveals information foraging patterns in pedagogical content creation. 
Humanit. Soc. Sci. Commun. 12:405. doi: 10.1057/s41539-025-00332-3

https://doi.org/10.3389/fcomp.2025.1701666
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1701666/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1701666/full#supplementary-material
https://doi.org/10.1109/ACCESS.2024.3489233
https://doi.org/10.1109/ACCESS.2022.3199371
https://doi.org/10.1109/ACCESS.2022.3199371
https://doi.org/10.1002/cae.20186
https://doi.org/10.1016/j.edurev.2018.04.001
https://doi.org/10.1109/ACCESS.2021.3059516
https://doi.org/10.1109/ACCESS.2021.3059516
https://doi.org/10.1109/ACCESS.2020.2988510
https://doi.org/10.1016/j.jvb.2023.103858
https://doi.org/10.1016/j.jvb.2023.103858
https://doi.org/10.3390/info16070556
https://doi.org/10.3390/info16070556
https://doi.org/10.1001/jamanetworkopen.2021.49008
https://doi.org/10.1002/j.2168-9830.2005.tb00833.x
https://doi.org/10.1002/j.2168-9830.2005.tb00833.x
https://doi.org/10.1016/j.procs.2025.02.016
https://doi.org/10.1057/s41539-025-00332-3


Ponce et al.� 10.3389/fcomp.2025.1701666

Frontiers in Computer Science 25 frontiersin.org

Forte-Celaya, J., Ibarra, L., and Glasserman-Morales, L. D. (2021). Analysis of creative 
thinking skills development under active learning strategies. Educ. Sci. 11:621. doi: 
10.3390/educsci11100621

Frankford, E., Sauerwein, C., Bassner, P., Krusche, S., and Breu, R. (2024). AI-tutoring 
in software engineering education. In Proceedings of the 46th International Conference 
on Software Engineering: Software Engineering Education and Training (pp. 309–319).

Hamid, N. S. S., Aziz, F. A., and Azizi, A. (2014). Virtual reality applications in 
manufacturing system. In 2014 Science and Information Conference, London, United 
Kingdom: IEEE. 1034–1037.

Hassan, M., Montague, G., Iqbal, M. Z., and Fahey, J. (2024). Virtual reality-based 
bioreactor digital twin for operator training. Digit. Chem. Eng. 5:100101. doi: 10.1016/j.
dche.2024.100101

Hickman, L., and Akdere, M. (2017). “Exploring virtual reality for developing soft-
skills in STEM education” in 2017 7th world engineering education forum (WEEF). 
Kuala Lumpur, Malaysia: IEEE, 461–465.

Hoang, T., Greuter, S., and Taylor, S. (2022). An evaluation of virtual reality 
maintenance training for industrial hydraulic machines. In 2022 IEEE Conference on 
Virtual Reality and 3D User Interfaces (VR). Christchurch, New Zealand: IEEE, 573–581.

Hu, B., Zhu, J., Pei, Y., and Gu, X. (2025). Exploring the potential of LLM to enhance 
teaching plans through teaching simulation. NPJ Sci. Learn. 10:7. doi: 10.1038/
s41539-025-00300-x

Ipsita, A., Kaki, R., Liu, Z., Patel, M., Duan, R., Deshpande, L., et al. (2025). Virtual 
reality in manufacturing education: a scoping review indicating state-of-the-art, benefits, 
and challenges across domains, levels, and entities. arXiv Available online at: https://
arxiv.org/abs/2503.18805

Jahn, K., Kordyaka, B., Ressing, C., Roeding, K., and Niehaves, B. (2019). “Designing 
self-presence in immersive virtual reality to improve cognitive performance—a research 
proposal” in Information systems and neuroscience: NeuroIS retreat 2019 (Cham: 
Springer International Publishing), 83–91.

Junior, O. C., Moraes, R., and dos Santos, A. (2025). Digital twin in industry 4.0: 
systematic review and content analysis. Procedia Comput. Sci. 242, 1667–1677. doi: 
10.1016/j.procs.2025.03.207

Karanam, S. A. K., and Hartman, N. W. (2025). A systematic review of digital twin 
and virtual learning environments for smart manufacturing education. Manuf. Lett. 44, 
1597–1608. doi: 10.1016/j.mfglet.2025.06.179

Khelifi, S., and Morris, A. (2024). Mixed reality IoT smart environments with large 
language model agents. In 2024 IEEE 4th International Conference on Human-Machine 
Systems (ICHMS). Toronto Canada: IEEE, 1–7.

Kim, W. H., and Kim, J. H. (2020). Individualized AI tutor based on developmental 
learning networks. IEEE Access 8, 27927–27937. doi: 10.1109/ACCESS.2020.2972167

Kumar, V. V., Carberry, D., Beenfeldt, C., Andersson, M. P., Mansouri, S. S., and 
Gallucci, F. (2021). Virtual reality in chemical and biochemical engineering education 
and training. Educ. Chem. Eng. 36, 143–153. doi: 10.1016/j.ece.2021.05.004

Lampropoulos, G., Fernández-Arias, P., de Bosque, A., and Vergara, D. (2025). Virtual 
reality in engineering education: a scoping review. Educ. Sci. 15:1027. doi: 10.3390/
educsci15081027

Létourneau, A., Deschênes, R., and Lajoie, S. P. (2025). A systematic review of AI-
driven intelligent tutoring systems in K-12 education: effects and evaluation designs. 
Educ. Inf. Technol. doi: 10.1007/s10639-025-13269-0

Li, S. (2022). “Design of Intelligent Manufacturing Training Platform 
Combining Virtual and Real” in 2022 3rd Asia symposium on signal processing (ASSP) 
(Singapore: IEEE), 92–95.

Liu, Z., Agrawal, P., Singhal, S., Madaan, V., Kumar, M., and Verma, P. K. (2025). 
LPITutor: an LLM based personalized intelligent tutoring system using RAG and prompt 
engineering. PeerJ Comput. Sci. 11:e2991. doi: 10.7717/peerj-cs.2991

Liu, Z., Chen, D., Zhang, C., and Yao, J. (2024). Design of a virtual reality serious game 
for experiencing the colors of Dunhuang frescoes. Herit. Sci. 12:370. doi: 10.1186/
s40494-024-01477-x

Molina, A., Cortés, D., Chairez, I., Alfaro-Ponce, M., Alvarez, M. M., and Trujillo de 
Santiago, G. (2024). Comprehensive sustainable development of a multifunctional 
machine: 3D food printer and didactic platform. Int. J. Sustain. Eng. 17, 413–428. doi: 
10.1080/19397038.2024.2355895

Molina, A., Zúñiga, A. E., Medina, D. I., Zaldívar, F. G., Méndez, J. I., Ponce, P., et al. 
(2025). Digital technologies for sustainable manufacturing. Boca Raton, USA: 
CRC Press.

Oliveira, D. M., Cao, S. C., Hermida, X. F., and Rodríguez, F. M. (2007). “Virtual reality 
system for industrial training” in 2007 IEEE international symposium on industrial 
electronics. (Vigo, Spain: IEEE), 1715–1720.

Oliveira, W., Hamari, J., Shi, L., Toda, A. M., Rodrigues, L., Palomino, P. T., et al. 
(2023). Tailored gamification in education: a literature review and future agenda. Educ. 
Inf. Technol. 28, 373–406. doi: 10.1007/s10639-022-11122-4

Paszkiewicz, A., Salach, M., Strzałka, D., Budzik, G., Nikodem, A., Wójcik, H., et al. 
(2021). VR education support system—a case study of digital circuits design. Energies 
15:277. doi: 10.3390/en15010277

Peniche, A., Diaz, C., Trefftz, H., and Paramo, G. 2012). Combining virtual and 
augmented reality to improve the mechanical assembly training process in 
manufacturing. In Proceedings of the 2012 American conference on applied mathematics 
(pp. 292–297)

Pester, A., Tammaa, A., Gütl, C., Steinmaurer, A., and Abou El-Seoud, S. (2024). 
Conversational agents, virtual worlds, and beyond: a review of large language models 
enabling immersive learning. In 2024 IEEE Global Engineering Education Conference 
(EDUCON). Kos, Greece: IEEE, 1–6.

Peterson, L., Gosea, I. V., Benner, P., and Sundmacher, K. (2025). Digital twins in 
process engineering: an overview on computational and numerical methods. Comput. 
Chem. Eng. 193:108917. doi: 10.1016/j.compchemeng.2024.108917

Pirola, C., Peretti, C., and Galli, F. (2020). Immersive virtual crude distillation unit 
learning experience: the EYE4EDU project. Comput. Chem. Eng. 140:106973. doi: 
10.1016/j.compchemeng.2020.106973

Ponce, H., and Ponce, P. 2011). Artificial organic networks. In 2011 IEEE Electronics, 
Robotics and Automotive Mechanics Conference. Cuernavaca, Morelos, Mexico: 
IEEE, 29–34.

Ponce-Cruz, P., Gutiérrez, A. M., Ramírez-Mendoza, R. A., Flores, E. M., 
Espinoza, A. A. O., and Silva, D. C. B. (2020). A practical approach to metaheuristics 
using LabVIEW and MATLAB®. New York, USA: Chapman and Hall/CRC.

Radianti, J., Majchrzak, T. A., Fromm, J., and Wohlgenannt, I. (2020). A systematic 
review of immersive virtual reality applications for higher education: design elements, 
lessons learned, and research agenda. Comput. Educ. 147:103778. doi: 10.1016/j.
compedu.2019.103778

Rosko, R. S. 2024 "FrED Manufacturing - A Study in Affordable Manufacturing to 
Scale using Desktop Sized Fiber Extrusion Device." Available online at: https://dspace.
mit.edu/handle/1721.1/157212 (Accessed 11, 2024).

Rubio, E. M., Sanz, A., and Sebastián, M. A. (2005). Virtual reality applications for the 
next-generation manufacturing. Int. J. Comput. Integr. Manuf. 18, 601–609. doi: 
10.1080/09511920500069259

Sari, R. C., Pranesti, A., Solikhatun, I., Nurbaiti, N., and Yuniarti, N. (2024). Cognitive 
overload in immersive virtual reality in education: more presence but less learnt? Educ. 
Inf. Technol. 29, 12887–12909. doi: 10.1007/s10639-023-12379-z

Schofield, D. (2012). Mass effect: a chemical engineering education application of 
virtual reality simulator technology. J. Online Learn. Teach. 8:63.

Shoa, A., and Friedman, D. (2025). Milo: an LLM-based virtual human open-source 
platform for extended reality. Front. Virtual Real. 6:1555173. doi: 10.3389/
frvir.2025.1555173

Soliman, M., Pesyridis, A., Dalaymani-Zad, D., Gronfula, M., and Kourmpetis, M. 
(2021). The application of virtual reality in engineering education. Appl. Sci. 11:2879. 
doi: 10.3390/app11062879

Steinemann, M. A., and Braun, T. (2002). Remote versus traditional learning in a 
computer networks laboratory, communications and computer networks. 
Cambridge, MA, 503–507.

Xu, W. (2024). Development and production of affordable desktop fiber extrusion 
devices (fred) for educational purposes. Massachusetts, USA: Massachusetts Institute of 
Technology, Department of Mechanical Engineering.

Yang, Y., Deb, S., He, M., and Kobir, M. H. (2023). The use of virtual reality in 
manufacturing education: state-of-the-art and future directions. Manuf. Lett. 35, 
1214–1221. doi: 10.1016/j.mfglet.2023.07.023

Yang, C., Zhang, J., Hu, Y., Yang, X., Chen, M., Shan, M., et al. (2024). The impact of 
virtual reality on practical skills for students in science and engineering education: a 
meta-analysis. Int. J. STEM Educ. 11:28. doi: 10.1186/s40594-024-00487-2

Zhang, Y. 2024 "FrED Manufacturing—A Study in Affordable Manufacturing to Scale 
Using Desktop Sized Fiber Extrusion Device." Available online at: https://dspace.mit.
edu/handle/1721.1/157159?show=full

https://doi.org/10.3389/fcomp.2025.1701666
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://doi.org/10.3390/educsci11100621
https://doi.org/10.1016/j.dche.2024.100101
https://doi.org/10.1016/j.dche.2024.100101
https://doi.org/10.1038/s41539-025-00300-x
https://doi.org/10.1038/s41539-025-00300-x
https://arxiv.org/abs/2503.18805
https://arxiv.org/abs/2503.18805
https://doi.org/10.1016/j.procs.2025.03.207
https://doi.org/10.1016/j.mfglet.2025.06.179
https://doi.org/10.1109/ACCESS.2020.2972167
https://doi.org/10.1016/j.ece.2021.05.004
https://doi.org/10.3390/educsci15081027
https://doi.org/10.3390/educsci15081027
https://doi.org/10.1007/s10639-025-13269-0
https://doi.org/10.7717/peerj-cs.2991
https://doi.org/10.1186/s40494-024-01477-x
https://doi.org/10.1186/s40494-024-01477-x
https://doi.org/10.1080/19397038.2024.2355895
https://doi.org/10.1007/s10639-022-11122-4
https://doi.org/10.3390/en15010277
https://doi.org/10.1016/j.compchemeng.2024.108917
https://doi.org/10.1016/j.compchemeng.2020.106973
https://doi.org/10.1016/j.compedu.2019.103778
https://doi.org/10.1016/j.compedu.2019.103778
https://dspace.mit.edu/handle/1721.1/157212
https://dspace.mit.edu/handle/1721.1/157212
https://doi.org/10.1080/09511920500069259
https://doi.org/10.1007/s10639-023-12379-z
https://doi.org/10.3389/frvir.2025.1555173
https://doi.org/10.3389/frvir.2025.1555173
https://doi.org/10.3390/app11062879
https://doi.org/10.1016/j.mfglet.2023.07.023
https://doi.org/10.1186/s40594-024-00487-2
https://dspace.mit.edu/handle/1721.1/157159?show=full
https://dspace.mit.edu/handle/1721.1/157159?show=full

	Large language models and AI-driven virtual laboratory for FrED and FrED factory: materials, products, and sustainable digital manufacturing
	Introduction
	What is FrED?
	Methodology
	General methodology description
	Tailoring education—requirements of operators
	Personality traits classification
	FrED’s rubric
	FrED’S training activities and system division
	Discovering Penta-S materials
	Tailored application—FrEd virtual laboratory
	Manufacturing proposal: soft skills in engineering
	How to implement the proposed laboratory in an engineering class
	Phase 1: device-first foundations—the extruder and its components
	Phase 2: expert avatars—language models in the loop
	Phase 3: factory integration, mass production, and machine learning
	Creative Thinking Skills (CTS)—mapping and rubric for the VR–LLM laboratory
	How CTS maps to the laboratory

	Results
	Proposed plans and timeline for the empirical evaluation
	Learning effectiveness
	Soft-skills development
	User experience and acceptance
	Transfer and retention
	Study design
	Treatment (T)
	Control 1 (C1)
	Control 2 (C2) (recommended)
	Measures and analysis
	Knowledge and skills
	Performance in VR tasks and system telemetry
	User experience and acceptance
	Soft skills and collaboration
	Retention and transfer
	Data analysis
	Timeline for 12-month implementation
	Months 1–2: design and preparation
	Months 3–4: technical and pedagogical pilot
	Months 5–8: main controlled experiment with students
	Months 9–10: extension to operators and external cohorts
	Months 11–12: analysis and iteration

	Discussion
	Future work

	Conclusion

	References

