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Developing new products requires innovative materials and advanced manufacturing
methods. Consequently, establishing specialized laboratories capable of producing
new products or enhancing manufacturing processes has become essential.
Additionally, the complexity of product design, which involves multiple subsystems,
requires extensive iteration, making the process both challenging and costly.
Evaluating manufacturing conditions further adds to these difficulties and expenses.
In response, cutting-edge laboratories utilizing advanced technologies have been
developed. These laboratories offer several advantages, such as remote operation,
where equipment can be controlled and tests conducted systematically from
a distance. Moreover, Virtual Reality (VR) laboratories have gained traction due
to their lower costs and flexibility. VR laboratories can be adjusted and used to
train students and operators through immersive technologies that simulate real-
world scenarios. This paper proposes an innovative virtual laboratory deployed
on Oculus Quest 3 and Android devices. The VR laboratory interacts with users
through large language models. The VR laboratory features a virtual Fiber Extrusion
Device (FrED) developed at MIT, as well as expert avatars specializing in specific
topics, offering solutions to develop soft skills. Furthermore, the VR experience
is tailored to the user’'s personality, enhancing the overall experience. Factory
conditions are also simulated and optimized within the immersive laboratory
using advanced optimization algorithms.

KEYWORDS

Al-driven sustainable manufacturing, LLM, soft skills, tailored VR lab, virtual model

Introduction

In recent years, technological education has undergone significant advances, making
learning more interactive, dynamic, and realistic. This work focuses on utilizing technologies
such as Virtual Reality (VR), Artificial Intelligence (AI), and immersive laboratories to
enhance learning in engineering and manufacturing education. Integrating VR laboratories
with AI-powered tutors and immersive simulations creates unique opportunities for enhancing
practical skills and acquiring knowledge in a controlled environment.

Virtual Reality (VR) has gained recognition in STEM education, particularly for
providing an immersive, hands-on learning experience that eliminates the need for
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physical equipment, making it ideal for high-risk and costly
experimentation (Liu et al., 2024; Acevedo et al., 2024). However,
challenges such as cost, accessibility, and the need for well-
designed immersive experiences aligned with educational
objectives persist (Acevedo et al., 2024). VR-based education can
enhance learning outcomes, motivation, and user engagement,
with a focus on thoughtful design to maximize its benefits
(Acevedo et al., 2024; Yang et al., 2024).

VR integration in manufacturing processes has also advanced
significantly. VR labs provide environments for interacting with virtual
machines, allowing for training and experimentation without the costs or
risks associated with real-world operations. Studies have shown the
effectiveness of VR in training operators by replicating real-world
scenarios, which enhances engagement and retention of skills (Hoang et
al., 2022). VR laboratories also offer flexible learning and testing, allowing
users to operate virtual machines remotely. Recent improvements focus
on enhancing realism and responsiveness through the use of real-time
physics engines and high-quality models (Oliveira et al., 2007).

Al-based tutoring systems ensure personalized, adaptive learning
experiences catering to individual needs (Chen et al., 2020). Intelligent
Tutoring Systems (ITS) provide 24/7 support and effectively
complement standard teaching practices (Bezanson et al., 2023; Kim
and Kim, 2020; Fazlollahi et al., 2022). Al tutors, as described by
Fazlollahi et al, match the effectiveness of expert instruction,
providing personalized learning pathways that would otherwise be
unavailable (Fazlollahi et al., 2022). These AI systems have also been
integrated into virtual learning environments to provide tailored
content and enhance skill acquisition in various fields, including
software engineering (Frankford et al., 2024). Large Language Models
(LLMs), such as OpenAT’s GPT, enhance user interactions in virtual
learning by providing expert guidance, answering questions, and
tailoring content to user needs (Pester et al., 2024). In manufacturing-
oriented VR environments, LLMs can serve as virtual consultants,
providing expertise in machinery operation, maintenance, and
troubleshooting, while integrating domain-specific knowledge for
industry-specific tasks (Khelifi and Morris, 2024).

On the other hand, advanced manufacturing technologies,
including additive manufacturing, automated assembly, and digital
twins, are transforming product development and production lines.
Besides, Digital Twins offer real-time virtual replicas of physical
systems, enabling the monitoring and optimization of manufacturing
processes (Li, 2022). These innovations enhance predictive
maintenance, quality control, and resource management, leading to
increased productivity and lower costs. Combining VR labs with
digital twins creates opportunities for process optimization and testing
in a risk-free virtual environment (Li, 2022). Integrating Digital Twins
in VR labs also bridges the gap between traditional hands-on and
remote experiences, offering a more comprehensive learning
environment (Alsaleh et al., 2022).

In addition, optimization algorithms play a crucial role in
enhancing the performance of manufacturing systems in virtual
environments. Metaheuristic algorithms, such as Genetic Algorithms,
Particle Swarm Optimization, and Simulated Annealing, are used to
optimize factory parameters, including resource allocation, energy
consumption, and throughput (Hamid et al., 2014). These algorithms,
implemented in VR labs, provide insights into optimal processes in a
controlled, immersive setting, resulting in improved efficiency and
reduced waste (Hamid et al., 2014).
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Tailored gamification within educational systems helps improve
motivation, engagement, and learning outcomes. Personalized,
gamified systems adapted to learner preferences significantly enhance
educational experiences (Oliveira et al., 2023). However, challenges
include tailoring to individual styles and demonstrating impact
(Oliveira et al., 2023). Personalizing educational experiences using
psychological models, such as the Big Five Personality Traits, enables
content and interaction to be tailored for individual users, resulting in
increased engagement and performance (Chen et al., 2024). In VR
labs, personality tailoring adjusts task complexity, pacing, and
feedback tone, providing a more effective learning experience that
considers individual differences (Chen et al., 2024).

As a result, recent studies have highlighted the importance of
integrating soft skills training into STEM education. Soft skills, such
as communication, teamwork, and leadership, are crucial for
professional success but are often underrepresented in technical
training. VR-based simulations have shown promise in teaching soft
skills effectively (Hickman and Akdere, 2017; Abdelouahab, 2020;
Caeiro-Rodriguez et al., 2021). VR-assisted environments offer the
advantage of training both soft and hard skills, bridging the gap
between theory and application (Abdelouahab, 2020). Virtual tutors
can enhance decision-making and leadership skills by simulating real-
world industry scenarios, thereby improving the transfer of skills to
professional settings (Botke et al., 2018). Table 1 presents a comparison
of educational technologies to provide a general overview.

Early work on virtual laboratories in engineering education
established both the promise and the practical questions that later DT

TABLE 1 Comparison of technologies for education.

Technology ‘ Advantages ‘ Disadvantages

Virtual reality (VR) Immersive learning High cost, requires

enhances practical specialized hardware,
skills, ideal for complex | accessibility issues (Liu et
al., 2024; Acevedo et al.,

2024)

subjects

Al tutoring system

(ITS)

Gamification

Al-powered VR labs

Soft skills training

Personalized learning,
24/7 availability,
adaptive to student

needs

Increases motivation
and engagement,
enhances the

enjoyment of learning

Combines the benefits
of VR and ITS, real-

time adaptive learning

Develops
communication,
leadership, and
teamwork skills, with
immersive practice in a

safe setting

Limited to certain subjects,
requires careful design of
feedback (Bezanson et al.,
2023; Kim and Kim, 2020;
Fazlollahi et al., 2022)

Needs personalization,
impact on learning
outcomes not always clear

(Oliveira et al., 2023)

High development costs,
complexity in integrating
Al and VR effectively (Yang
et al., 2024; Bezanson et al.,

2023)

Intangible outcomes,
difficult to evaluate skill
transfer (Hickman and
Akdere, 2017;
Abdelouahab, 2020; Caeiro-
Rodriguez et al., 2021)
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and AI systems would inherit. In chemical and biochemical
engineering, ViRILE provided a plant-scale simulator grounded in
first-principles equations, raising enduring issues about fidelity,
verification, and how closely simulations reflect real operating
envelopes (Schofield, 2012). The next wave extended immersion to
unit operations training; for example, an immersive crude-distillation
experience showed that VR could scaffold procedure rehearsal and
hazard awareness at the plant scale (Pirola et al., 2020). By 2021,
reviews in chemical/biochemical engineering consolidated evidence
that VR improves access to complex processes while highlighting gaps
in assessment rigor and the cost/effort of content development
(Kumar et al., 2021). Parallel surveys conducted in 2023 broadened
the lens to encompass manufacturing and engineering education,
cataloging VR/XR deployments and identifying persistent barriers,
particularly in evaluation design and limited adoption beyond pilots
(de Giorgio et al., 2023; Lampropoulos et al., 2025).

From 2024 onward, digital-twin exemplars demonstrated that
fidelity and assessment can coexist. A VR bioreactor DT demonstrated
realistic operator training, including infrequent event rehearsal, while
documenting design principles, learning analytics, and evaluation
methods that translate directly to discrete manufacturing or training
contexts (Hassan et al, 2024). In 2025, comprehensive reviews
mapped how DTs and virtual learning environments can support
smart-manufacturing education, emphasizing human-centric,
Al-enabled learning flows and multi-mode access (Filho and Junior
et al., 2025). Scoping reviews in manufacturing and broader
engineering education synthesized more than a hundred studies,
offering taxonomies (domains, levels, entities) and practical roadmaps
for adoption at scale while reiterating the need for stronger causal
evaluation (Ipsita et al., 2025; Karanam and Hartman, 2025;
Lampropoulos et al., 2025).

Concurrently, immersive Al tutoring matured from concept to
reference architecture. An LLM-centric design for intelligent tutoring
within VR specified core capabilities—real-time dialogue with
non-player experts, hand/gaze/haptic multimodality, as well as
synchronized speech and embodiment—creating a concrete blueprint
for avatar-mediated instruction in labs (El Hajji et al., 2025). The
broader ITS literature in 2025 introduced methodological guardrails,
with systematic reviews generally documenting positive learning
effects but calling for stronger experimental designs (e.g., blocking,
pre/post ANCOVA) and clearer links between telemetry and
outcomes, as well as an Al-driven intelligent tutoring system
(Létourneau et al.,, 2025; Liu et al., 2025). At the authoring layer,
studies in Nature’s education journals have shown that lesson plans
can be improved through LLM-simulated teacher-student interactions
and structured human-LLM workflows, which are useful for
designing avatar playbooks, prompt governance, and reflection loops
in immersive labs (Feisel and Rosa, 2005; Flores Romero et al., 2025).
Finally, open-source XR agent platforms lowered the barrier to
deploying LLM-driven virtual humans in Unity-based environments,
accelerating reproducibility and comparative evaluation (Shoa and
Friedman, 2025).

Taken together, the field has converged on three actionable
insights for manufacturing education. First, DT-backed VR can
deliver authentic process and factory experiences when fidelity is
paired with explicit assessment scaffolds (Hassan et al., 2024; Junior et
al., 2025; Karanam and Hartman, 2025; Peterson et al., 2025). Second,
LLM-driven avatars are no longer speculative; reference architectures
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and toolkits exist, but evaluation must tie dialogue and behavior
telemetry to validated learning outcomes using robust designs (El
Hajji et al., 2025; Létourneau et al., 2025). Third, new authoring
paradigms, including LLM-based simulation, structured prompting,
and open XR agents, enable scalable, multimodal laboratories,
provided governance (safety, provenance, and bias) and accessibility
(multi-device and multi-language) are treated as first-class design
constraints (Feisel and Rosa, 2005; Ipsita et al., 2025; Shoa and
Friedman, 2025).

Despite rapid progress within each strand of research, the
literature still lacks a truly end-to-end framework that integrates
immersive VR, LLM-driven tutoring or avatars, and operational
Digital Twins and Virtual Models into a single, assessable learning
environment for sustainable manufacturing, while simultaneously
cultivating soft skills such as communication, ethical reasoning,
teamwork, and decision-making. Prior studies typically examine these
components in isolation, for example, VR labs without causal
evaluation, DT implementations without explicit pedagogy, or
human-AI workflows detached from process fidelity. As a result, key
questions remain open regarding the alignment between fidelity and
assessment, human-in-the-loop safety and governance, multi-device
and multi-language accessibility, and the linkage between system
telemetry and validated learning outcomes.

This article addresses that gap by presenting a unified VR-LLM-
VM (virtual model) laboratory that combines realistic factory and
process behavior with LLM-guided avatar guidance and analytics-
supported decision tools (e.g., optimization and forecasting), while
embedding soft-skills training through avatar-mediated critiques, oral
defenses, and ethical audit trails. The environment is engineered for
inclusivity (headset and mobile pathways, bilingual interaction),
measurement (rubrics tied to system telemetry and key performance
indicators), and governance (traceable prompts, bounded actions,
rollback), and it is paired with a rigorous evaluation design that uses
pre/post testing, blocked assignment, and blinded rating to generate
credible evidence at scale. Although VR has been used effectively in
STEM education, with a primary emphasis on procedural and
technical competence (Liu et al., 2024; Acevedo et al., 2024), the
systematic development of soft skills in immersive settings remains
comparatively underexplored (Hickman and Akdere, 2017;
Abdelouahab, 2020; Caeiro-Rodriguez et al., 2021). Existing studies
indicate that immersion and realism can enhance soft-skill rehearsal
and near transfer; however, consistent far transfer to authentic
workplaces is challenging because these skills are partly tacit, highly
contextual, and difficult to measure objectively at scale (Caeiro-
Rodriguez et al., 2021). A promising direction is the integration of
LLM-based virtual tutors that adopt varied, role-specific personae (for
example, supervisor, peer, customer), creating context-specific
dialogues, critiques, and decision checkpoints that mirror real
interactions and yield structured, auditable evidence for assessment
(Botke et al., 2018). Embedding these LLM roles directly into VR task
flows, alongside high-fidelity virtual models of the extruder and
factory (with associated production metrics), enables concurrent
practice of both technical operations and soft skills without yet
requiring a full real-time digital twin connection. Telemetry such as
dialogue turns, quality of rationale, and team-coordination traces can
be mapped to rubrics and performance outcomes, thereby addressing
both the learning-design gap and the evaluation challenge
documented in prior work (Liu et al., 2024; Acevedo et al., 2024;
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Hickman and Akdere, 2017; Abdelouahab, 2020; Caeiro-Rodriguez et
al., 2021; Botke et al., 2018).

As a result, this combination of technological tools enhances
technical skill training while developing critical soft skills, offering
personalized content and continuous, contextual feedback. On the
other hand, the use of a didactic Fiber Extrusion Device (FrED) offers
an interactive, hands-on experience that enables trainees to engage
directly with manufacturing processes, thereby enhancing their
understanding of sustainable digital manufacturing practices.

It is essential to consider that implementing a virtual reality course
laboratory presents several recurring limitations. Physiological effects
such as dizziness, nausea, headache, eye strain, and difficulty
concentrating can restrict session length and exclude a subset of
learners. Rich visuals, fast motion, and nonessential interactables
often lead to cognitive overload and distraction, diverting attention
away from the learning objective. Ergonomic issues, such as fatigue,
neck strain, and heat buildup, accumulate during extended headset
use, forcing shorter, more frequent sessions that reduce instructional
time. Accessibility remains uneven: fully immersive head-mounted
displays are a poor fit for students with visual impairments and
challenging for some neurodivergent or vestibular-sensitive learners,
making it hard to guarantee true equivalence of experience. Safety and
liability concerns persist because occluded vision and cabling
introduce collision and trip hazards, requiring supervision, clear
space, sanitation routines, and incident procedures (Soliman et al.,
2021). In addition, cost and resources are substantial: high-fidelity
headsets, capable computers, tracking systems, and consumables
demand ongoing funding, while maintenance and replacement cycles
are accelerated by wear and rapid obsolescence. Infrastructure and
logistics complicate delivery; VR labs require generous floor space,
reliable power and ventilation, storage, booking systems, and device
fleet management. Throughput is limited by the number of headsets
and the time required for the turnaround between groups.
Development is complex, as educational scenarios require expertise
in game engines, three-dimensional modeling, interaction design, and
software engineering. Commercial assets tend to prioritize
entertainment over assessment or pedagogy, so bespoke scripting is
common (Soliman et al., 2021).

Pedagogical alignment and validation are non-trivial: without an
explicit mapping to learning outcomes and iterative testing,
engagement may increase without corresponding measurable learning
gains. Assessment and data integrity pose further challenges because
telemetry must be interpreted with caution, and proctoring within
immersive environments is particularly difficult. Privacy and ethics
introduce administrative burdens, as VR can capture sensitive signals
such as gaze, posture, voice, and biometrics that require strict consent,
minimization, retention, and access controls. Staffing and training
needs increase for instructors and assistants who must handle setup,
troubleshooting, hygiene, and safety, and reliability remains fragile
due to firmware updates, tracking glitches, and driver conflicts that
can derail scheduled sessions. Interoperability with campus platforms
is often fragile, resulting in ad hoc integration with learning-
management systems and analytics. Finally, transfer to real equipment
is not guaranteed; gaps in haptics, force feedback, and material
behavior mean that skills learned in virtual environments may not
generalize without complementary hands-on work (Soliman et al.,
2021). As a result, this paper attempts to address some of these
limitations by utilizing an Al-enabled virtual laboratory that integrates
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large language models with the FrED extrusion system within an
interactive VR environment. In this environment, learners interact in
real-time with expert avatars and other non-player characters, which
maintain their own conversation histories to preserve context. To
broaden access, the lab is deployed in two complementary formats: a
fully immersive Oculus Quest 3 experience with 3D avatars, and a
performance-optimized Android version that omits avatars to ensure
smooth operation while preserving core learning goals. Both versions
support voice and text interaction in English and Spanish, enhancing
inclusivity without compromising functionality.

Across platforms, the laboratory offers a coherent suite of 14
interactive elements that guide learners from profile setup and
subsystem exploration to Al-assisted analysis. Within this progression,
predictive analytics play a central role. For production optimization,
a loss-driven genetic algorithm iteratively searches operating
conﬁgurations using tournament selection, crossover, and mutation.
The objective function penalizes low throughput, oversized buffers,
and failure or repair rates that deviate from baseline targets, guiding
the search toward efficient and cost-effective operating points and
demonstrating convergence across successive generations. In parallel,
a neural network trained on data from VR-simulated robotic arms
forecasts line status, enabling proactive decisions about operations and
maintenance inside the factory scenario. The technical content is
framed by a materials-education perspective through the Penta-S
framework, which emphasizes smart, sustainable, social, sensing, and
safe considerations. This lens connects process choices to product
properties and sustainability outcomes, ensuring that optimization
and forecasting are not purely algorithmic but also pedagogically
meaningful. Taken together, the design fosters critical thinking,
problem-solving, collaboration, adaptability, and leadership, while
remaining inclusive and portable across various hardware tiers.

What is FrED?

FrED (fiber extrusion device) is a compact, affordable desktop
fiber extrusion system designed primarily for educational purposes,
developed at MIT. While not a high-fidelity replica of industrial
setups, it simulates fiber draw mechanisms, enabling hands-on
learning in smart manufacturing, control systems, data acquisition,
and computer vision. Acting as a bridge between theory and practice,
FrED enhances understanding of advanced manufacturing concepts.
FrED consists of key components: an extrusion subassembly, a
diameter measurement subassembly, a cooling subassembly, and a
spooling subassembly. The process involves heating and melting
material in the extrusion subassembly, measuring fiber diameter with
a USB camera, cooling the fiber, and winding it evenly in the spooling
subassembly. A built-in control feedback loop supports real-world
learning in manufacturing environments. Developed to support MIT
courses, FrED has evolved through multiple iterations. The first
“Research FrED” targeted high-performance educational use (Bradley,
2023). One of the first versions prioritized affordability with simplified
designs and lower-cost materials, making it widely accessible. This
version was then enhanced with cooling, control algorithms, and
mechanical stability to achieve even lower production costs (Xu,
2024). The next version, detailed by Rosko (2024) and Zhang (2024),
introduced closed-loop control for precise diameter regulation,
enhanced mechanical stability, an optimized cooling system, and a
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redesigned user interface. These upgrades represent a significant
advancement, featuring dynamic motor speed and heating
adjustments based on real-time feedback, which further bridge the
gap between academic learning and industrial practices. Figure 1
illustrates FrED’s most recent version, bringing advancements in cost
efficiency, mechanical stability, control systems, and educational
usability. FrED has the following main systems:

a) Extrusion sub-assembly that extrudes the preform using a
stepper motor that pushes the preform into the heater block
with a gear. The heater block heats up the preform to form
a fiber.

Fiber cooling sub-assembly that has two fans that cool the fiber
before it reaches the pulleys of the diameter measurement.
The diameter measurement sub-assembly consists of a pulley
system that maintains the position of the fiber for a USB
camera to take diameter measurements optically of the fiber.
The spooling sub-assembly has a removable spool that is
controlled by a DC motor and gearbox to collect extruded fiber
neatly through rotation and single-axis translation.

A PCB board and Raspberry Pi controller stored below the base
plate. These control the FrED.

With these enhancements, FrED is well-suited as a training tool
in virtual reality (VR). Its compact design, real-time control, and data
acquisition features enable immersive simulations of the fiber

10.3389/fcomp.2025.1701666

extrusion process. This setup allows learners to safely practice skills in
a realistic, controlled environment, deepening their understanding of
complex manufacturing concepts through hands-on interaction.

Methodology

This paper proposes the development of an innovative virtual reality
(VR) laboratory using virtual models that integrates Large Language
Models (LLMs) to enhance the understanding of subsystems in the
Educational Extruder (FrED) and its associated factory. A notable feature
of FrED is its ability to assess materials, providing insights into the
feasibility of material substitution for improved performance. Figure 2
illustrates the flow diagram of the proposed VR laboratory, highlighting
its phases and components where optimization algorithms and AI could
be implemented (Ponce and Ponce, 2011).

The VR laboratory offers a personalized educational experience
by tailoring the learning environment to the Big Five personality traits.
Tailoring the environment to individual profiles ensures that
educational content resonates with each learners preferences.
Gamification further enhances this personalized approach by tailoring
rewards to individual learner traits, thereby fostering motivation and
engagement.

The core interaction phase bridges the gap between theory and
practice, enabling users to engage with specific extruder subsystems
within the VR environment, including control mechanisms, power

Preform Extrusion and
Furnace

FIGURE 1
FrED 2024 version.

Fiber Forced Cooling

Spooling
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FIGURE 2

factory simulation and optimization phase

Flow diagram of the proposed laboratory, divided into four steps: personalization, subsystem interaction, assessment and expert guidance, and the
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Collaborative Problem Solving ]
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FIGURE 3
Main advantages and disadvantages of the proposal.

Disadvanges

Learning curve for users

Dependence on accurate personality
assessment

Potential technical challenges in VR

Potential over-reliance on gamification

Complexity in system setup still present

High costs in initial implementation

systems, and material evaluation tools. Each interaction offers an
in-depth understanding, ensuring focused and effective learning.
Users then complete assessments to identify misunderstandings,
serving as feedback mechanisms to reinforce comprehension (Molina
etal., 2024).

After assessments, users engage with experts represented as
avatars in the VR environment, guiding them through complex
challenges related to the extruder’s operation. These experts assist
users in resolving technical issues, promoting collaborative problem-
solving, and developing essential soft skills, including teamwork and
effective communication.

Another key aspect of the laboratory is its simulation of factory
setup and operation. Users learn about practical considerations for
establishing and optimizing a factory, utilizing advanced optimization
algorithms to enhance data-driven performance. These simulations
offer practical insights into decision-making and strategy
implementation, enabling the achievement of operational excellence
(Ponce-Cruz et al., 2020).

Frontiers in Computer Science

The VR laboratory represents a dynamic platform for
understanding manufacturing systems (Peniche et al., 2012; Rubio et
al,, 2005), integrating technical education with personal growth. By
incorporating LLMs, personality-based customization, gamification,
and optimization algorithms, the laboratory equips users to tackle
real-world challenges with confidence.

It is worth noting that this laboratory can also run a lighter version
on Android, enabling the educational proposal to be accessed on
Android devices. This broadens the reach, enabling more users to
benefit from the program. Figure 3 outlines the core advantages and
potential disadvantages of this proposal.

General methodology description
In general, this study evaluates a unified VR-LLM-VM (virtual

models) learning environment that begins with device-level mastery on
the FrED educational extruder and then scales the same concepts to a
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factory/production-line context where students optimize flow, reliability,
buffers, and cost using analytics (GA/ANN). The experiment compares
learning and transfer across platforms (Oculus Quest 3 VR; Android)
and interaction modes (with/without LLM avatars), using common
tasks, rubrics, and telemetry to ensure comparability. The goal is to
determine whether early, hands-on understanding of extruder physics,
sensing, and multiloop control (Phase 1) improves the quality and speed
of decisions when students face line-level trade-offs in throughput, WIP
(work in progress), reliability, energy, and sustainability (Phase 3), with
expert avatars (Phase 2) providing structured guidance and soft-skills
practice along the way.
Proposed experimental setup:

« Participants & assignment: senior undergraduate/early graduate
engineering students are block-randomized by a short
prerequisite quiz and preferred device/language into four
conditions: Full VR-LLM, VR-only, LLM-only (mobile/desktop),
and business-as-usual control.

« Platforms: two builds deliver identical learning objectives: (1)
Oculus Quest 3 (fully immersive, 3D avatars), (2) Android
(performance-optimized, same tasks; avatars omitted).

« Core modules:

o FrED device module (extruder anatomy, sensing, control,
safety, test/characterization).

o Avatar guidance module (diagnosis, safe parameter/policy
edits, ethics & communication).

o Factory module (production-line optimization via GA; line-
status forecasting via ANN; Penta-S sustainability lens).

o Data & instruments: FrED rubric + CTS rubric, pre/post
knowledge tests, capstone defense, and system telemetry (tool
use, GA convergence, ANN metrics, dialogue traces).

In this proposed laboratory, the curriculum could be
intentionally staged so that the variables students control on FrED,
temperature zoning, torque/speed envelopes, sensor placement and
calibration, controller tuning, and safe interlocks—map directly to
the variables that drive line performance (failure/repair rates, buffer
sizes, cycle times, energy per unit, defect risk). Students first learn to
sense, control, and validate at the device level; then they encounter
the same constructs as parameters in a production line, where they
must balance throughput, WIP, reliability, and cost. This continuity
prevents a “hard jump” from a single machine to a factory: the
factory simply aggregates device-level physics and control decisions
into system-level trade-offs that are optimized with GA and forecast
with ANN.

Learning objectives (stated before procedures):

1. Device-level technical mastery (Phase 1): decompose the
extruder into subsystems; derive and apply governing relations;
instrument and control multiloop dynamics; run safe tests;
generate clean, versioned datasets.

2. Human-AlI collaboration & soft skills (Phase 2): obtain targeted
diagnostics from avatars; translate natural-language guidance into
safe, typed actions with bounds/units; design avatar-in-the-loop
experiments; communicate decisions ethically with auditable logs.
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3. Factory-level decision making (Phase 3): optimize buffers/
reliability/throughput/cost with a loss-driven GA; anticipate
states and maintenance with ANN; justify policies under the
Penta-S sustainability frame; defend decisions to technical and
executive audiences.

Minimum apparatus and materials required:

o Software/hardware: unity 5 application; Oculus XR plugin (VR);
custom Android input; ChatGPT-based avatar services; Firebase
for profiles/telemetry; in-app oscilloscope and CSV viewers; GA
(tournament selection, crossover, mutation) and ANN (trained
on VR-simulated robotic-arm data).

« Instructional assets: three activity tracks (Energy Efficiency
Mastery; Precision & Quality Assurance; Stability & Control),
avatar playbooks, and bilingual prompts (EN/ES).

Measures and evidence:

o Primary: capstone performance (FrED rubric + CTS composite)
on a novel factory scenario with a 3-min oral defense.

o Secondary: knowledge/skill gain (pre-post), transfer efficiency
(time-to-stable policy; constraint violations), decision quality
(expert scores), inclusivity (device/language subgroups).

o Mechanism traces: GA convergence and final loss; ANN
accuracy/confusion matrix; avatar dialogue density/intent;
oscilloscope/CSV interaction logs.

The FrED VR laboratory is specifically designed to develop
communication, teamwork, leadership, and informed decision-
making in sustainable manufacturing scenarios. Radianti et al.
(2020) reports that a small percentage of the surveyed immersive
VR applications target these types of learning content, and that
most evaluations focus on usability and user experience rather
than on measurable learning or skill development. Against this
backdrop, FrED VR Lab positions soft skills not as a secondary
outcome but as a central target of the VR-LLM experience,
embedded in realistic factory-level decision problems in
engineering education.

Soft-skill outcomes are operationalized through an analytic rubric
that combines a FrED-specific performance scale with a Creative
Thinking Skills (CTS) rubric, reflecting the roles of critical thinking,
problem-solving, collaboration, and leadership, which were previously
identified as essential but often underrepresented in technical training.
The composite rubric includes observable indicators such as: clarity,
structure, and audience awareness when explaining factory-level
policies; justification of decisions in terms of trade-offs among
throughput, reliability, and sustainability; collaborative problem-
solving (e.g., referencing teammates’ ideas, negotiating constraints,
and reaching shared decisions); and leadership behaviors, such as
coordinating roles, framing next steps, and managing risk. These
descriptors are applied to students’ capstone performance on a novel
factory scenario and to a three-minute oral defense, which trained
evaluators independently rate. This approach directly addresses a
challenge highlighted in prior work: soft-skill outcomes are often
considered intangible, and their transfer in VR-based training is
challenging to evaluate.
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Beyond human ratings, the environment logs rich dialogue traces
between learners and LLM-driven avatars (e.g., turn counts, dialogue
acts, and quality of rationale) alongside in-world actions (policy edits,
constraint violations, and experiment design choices). These traces are
mapped to the rubric dimensions to provide a complementary,
telemetry-based view of soft-skill practice—for example, how often
learners proactively request feedback, how they negotiate conflicting
objectives with the avatar, or how they revise decisions after critical
questioning. In Paszkiewicz et al. (2021), it is shown that only a small
fraction of existing studies exploit exams, expert judgments, or sensor/
trace data to assess learning outcomes, despite frequent claims about
the effectiveness of VR for skills development. By combining expert
ratings with trace-based analytics, the FrED lab responds to this gap
with a multi-method evaluation strategy tailored to soft skills in
engineering.

To evaluate transferability, soft-skill scores and decision-quality
indicators will be analyzed across conditions (full VR-LLM, VR-only,
LLM-only, and business-as-usual) and across tasks that differ in
proximity to the training context. Near transfer is assessed within the
virtual factory using measures such as time-to-stable policy,
constraint-respecting decisions, and expert ratings of justification
quality. Far transfer is examined through follow-up oral defenses and
written reports in related courses or projects, applying the same rubric
to determine whether the communication, teamwork, and leadership
behaviors practiced in the virtual lab reappear in new, non-VR tasks.
This design directly addresses calls from the systematic review for
more robust evaluation of learning outcomes, not only user
experience, and for more substantial evidence on how soft skills
trained in immersive VR transfer to authentic higher-education and
professional contexts.

Tailoring education—requirements of operators
To enhance the learning experience, learners are profiled based
on the Big Five Inventory (BFI) and categorized into gamified
player types. The Openness trait appreciates divergent thinking,
curiosity, and creativity. Conscientiousness indicates a rule-
following attitude with clear goals. Extraversion involves social
interaction and optimism. Agreeableness is associated with
related to

altruism and tolerance, while neuroticism is

impulsiveness and stress.

Personality traits classification

An online survey with 35 questions was conducted from
November 2020 to December 2022, collecting 645 responses. The
dataset was filtered to include five questions for each personality
trait and 30 questions on gamification preferences. The survey
aimed to understand user preferences in three areas: reward types,
main page elements, and activity interests within an educational
platform.

(1) Reward preferences: users were asked, “What type of rewards
would you prefer after completing exercises or activities?”
Options included badges, coupons, no recognition, random
rewards, sharing points, social recognition, money, extra
points, store discounts, physical rewards, and diplomas.

(2) Main page preferences: users were asked, “What game elements
would you prefer on the platform’s main page?” Options
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included avatar, total points, username, top 5, active challenges,
improvement tips, winning tips, recent badge, pending
challenges, leaderboard, and using their real name.

(3) Activity preferences: users were asked, “What types of activities
interest you on an educational platform?” Options included
activity badges, individual challenges, feedback, community
challenges, social sharing, team challenges, topic-linked
activities, and freedom to perform activities without
affecting scores.

Responses were evaluated using a 5-point Likert scale to
measure user preferences, ranging from “strongly disagree” (1) to
“strongly agree” (5), which were then linked to different
gamification options. A probabilistic approach was used to analyze
results, with a threshold of 0.5 set to balance excluding unlikely
options while capturing relevant elements (the highest probability
was 0.75).

Figure 4 illustrates the game elements selected based on
personality traits. The most preferred gamification elements included
store discounts, diplomas, avatar, username, improvement tips,
individual challenges, feedback, and topic-linked activities. Based on
the results depicted in Figure 4, a tailored environment should
consider the gamification elements depicted in Figure 5.

FrED's rubric

In addition, the FrED’s rubric is a comprehensive tool for
evaluating advanced manufacturing systems. It defines subsections
such as digital systems, control systems, electric systems, and
sensor actuators, with each subsystem having its own rubric.
Figure 6 presents the rubric, which assesses extruder design across
five key criteria: Design, Integration into Manufacturing
Processes, Performance and Cost Efficiency, Innovation and
Problem Solving, and Utilization of Technology and Tools. This
image illustrates the logical structure and detailed considerations
that ensure a comprehensive evaluation of extruder design
projects, facilitating continuous improvement and alignment with
industry standards.

This rubric provides a structured and fair assessment of extruder
design projects, covering critical areas such as design quality,
integration, performance, innovation, and technology utilization. Each
criterion ensures that all aspects are thoroughly evaluated, leading to
better outcomes and continuous improvement in extruder design.

FrED'S training activities and system division

FrED has multiple subsystems, including the Electronics Stage,
Temperature Control System, Digital Control System, Computer
Vision System, Mechanical Tensioning and Spooling System, and
Sensor and Driver Integration, which address distinct aspects of the
fiber extrusion process. The interconnected functionality of these
systems highlights the importance of precise adjustments and real-
time monitoring in ensuring high-quality fiber output.

To facilitate a structured, gamified learning experience, the
training program is divided into three activities, depicted as challenge
or activity elements within the VR environment (Figure 7), which
reflect the distinct operational goals of each subsystem.

Each activity is designed to tackle a specific aspect of FrED’s
operation, guiding learners through real-world scenarios that
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FIGURE 4
Game elements are based on the five personality traits: Openness (O), Conscientiousness (C), Extraversion (E), Agreeableness (A), and Neuroticism (N).
Being 1, the strongly disagree option, to 5, from strongly agree, in Likert responses.

challenge them to apply technical knowledge in a practical context.
The three activities are:

1) Activity 1: energy efficiency mastery: learners engage in
scenarios that challenge them to optimize FrED’s energy
efficiency by adjusting settings in the Power Electronics Stage
and Temperature Control System.

2) Activity 2: precision and quality assurance: this activity focuses
on enhancing the quality and consistency of fiber production
through precise control adjustments in the Computer Vision
System and Digital Control System.

Frontiers in Computer Science

3) Activity 3: stability and control: the goal of this activity is to
ensure system stability and responsiveness, focusing on
preventing material breakage and lag in system responses
through the integration of the Mechanical Tensioning and
Spooling System with sensors and Drivers.

The scoring system across all activities is designed to encourage
learners to improve and reinforce their knowledge. Each activity
consists of four scenarios, with first-attempt correct answers
earning 25% and second-attempt answers yielding 20%. Once the
activity is completed, a diploma will appear with one of the
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FIGURE 5
5-Likert response to gamification by each personality trait, with 1 being strongly disagree and 5 being strongly agree. O = Ocean,
C = Conscientiousness, E = Extraversion, A = Agreeableness, N = Neuroticism.

following seals depending on the student’s knowledge level (see
Figure 8).

Discovering Penta-S materials

Understanding the materials used in the manufacturing process is
crucial to predicting the final product’s features. Additionally, it is
essential to outline how the material can be improved. The VR
laboratory features a materials expert who can assist the end user in
understanding the material and its properties, enabling the user to
propose a new material for the application. Nowadays, a broad
spectrum of materials can be used in manufacturing systems, so
selecting the correct material for a learning person could be
challenging because the person requires a holistic view of the materials.

Frontiers in Computer Science

Additionally, the recycling process of materials must be considered to
modify the product life cycle and ensure the best possible economic
and ecological outcomes. The study of materials in manufacturing
systems affects the machinery process, enabling increased productivity
and quality control. The materials are studied under the concept of
Penta-S materials. These materials include the following five features:
smart, sustainable, social, sensing, and safe (Molina et al., 2025).

Tailored application—FrEd virtual laboratory

The virtual environment was developed using Unity Engine 5 and
Oculus Quest technology, simulating the laboratory environment with
key elements outlined in this study. The application is designed for two
platforms: Oculus Quest 3 and Android devices.
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FIGURE 6
FrED’s rubric showcases each criterion with the level of proficiency.

Key features include a player input controller tailored for both VR
and Android versions. The integration of OpenAl allows interactive,
natural language conversations with virtual experts, creating a
personalized setup experience.

For the Oculus Quest 3, a customized version of the Oculus XR
Plugin was utilized to handle player movement and interactions, with
a focus on hand tracking, head movement, keyboard input, and object
interaction, ensuring seamless VR engagement. For Android, a
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custom script enables 3D movement through on-screen joysticks and
gestures, providing an intuitive interface like the VR version.

The saving system stores progress through local storage, with
Firebase Realtime Database ensuring cloud backups. The application
also includes interaction with the FrED machine, allowing users to
visualize subsystems and use an integrated oscilloscope for real-time
analysis of output data, offering an interactive way to observe and
manipulate machine performance.
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FIGURE 7

Activities presented in the VR environment. The seals are associated to each activity.
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A diploma is sealed when the activity is completed.
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Manufacturing proposal: soft skills in
engineering

Problem-solving is a cornerstone of engineering, but it does not
stand alone—it is closely intertwined with skills such as innovation,
brainstorming, critical thinking, research, and leadership (Caeiro-
Rodriguez et al., 2021). These interconnected skills are essential not
only for solving technical challenges but also for enhancing project
management and business efficiency.

Figure 9 illustrates key soft skills in engineering, including critical
thinking, innovation, problem-solving, and teamwork. Several
important branches are highlighted:

(1) Brainstorming: linked to critical thinking and innovation,
demonstrating their role in effective brainstorming sessions in
engineering.

(2) Problem solving: involves skills like validation, research,
solution development, and problem identification, all crucial
to the problem-solving process.

(3) Team
effectively, supported by skills like documentation and

collaboration: ~ emphasizes ~working together
validation. Collaboration requires communication and

verifying outcomes.
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(4) Leadership: connected to critical thinking and innovation,
indicating that strong leadership in engineering requires both
creative and analytical abilities.

How to implement the proposed
laboratory in an engineering class

Traditional engineering instruction is predominantly lecture-
based, with information transmitted via slides, boards, and instructor
exposition (Soliman et al., 2021). This mode of delivery tends to
privilege instructor activity over student agency, which can limit
opportunities for inquiry and knowledge construction. Blended
formats that integrate online resources with in-person sessions, along
with student-centered frameworks such as technology-enabled active
learning, have demonstrated improved outcomes by increasing
interactivity, multimodal visualization, and structured inquiry. Within
this pedagogical shift, virtual reality functions as an enabling medium
that transforms learners from passive recipients into active participants
by situating them in immersive, task-relevant contexts (Soliman et al.,
2021). A growing body of research indicates that virtual reality can
enhance cognitive and pedagogical outcomes in engineering domains,
particularly where spatial reasoning and three-dimensional
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Soft skills in engineering.

phenomena are central. In courses such as fluid mechanics, virtual
environments support comprehension of complex motion and flow
patterns that are difficult to convey through two-dimensional
diagrams or verbal description alone. Studies in electronics and three-
dimensional visualization similarly report gains in achievement,
engagement, critical thinking, and scientific attitudes (Soliman et al.,
2021). There is also suggestive evidence that experiences encoded in
virtual environments approximate real-world mnemonic processes
more closely than conventional screen-based learning, potentially
strengthening retention (Soliman et al., 2021).

On the other hand, the study proposes a teacher-support workflow
that leverages a large language model to simulate teacher-student
interactions from an initial lesson plan, derive reflective insights from
those simulations, and then produce a revised, higher-quality plan
that integrates both the process and the reflections. Using high-school
mathematics as the testbed—Statistics, Functions, Algebra, and
Geometry; the authors compiled 240 baseline plans (including
LLM-generated plans with and without problem-chain prompts,
expert-written plans, and plans from pre-service teachers) and created
240 “enhanced” plans by running one or two rounds of a simulation-
reflection-refinement pipeline. Human raters evaluated all plans on
an eight-point scale across nine categories and nineteen dimensions
(Hu et al., 2025).

The enhanced plans consistently outperformed their baselines and
often matched or exceeded expert plans. Gains were most pronounced
in Statistics and weaker in Geometry, where text-only outputs
struggled to convey diagram-intensive content. Introducing three
problem-chain formats, context-based, trap-based, and summary-
based, helped structure conceptual progression, although the more
challenging trap-based questions remained a relative weakness. The
approach was especially beneficial for pre-service teachers, improving
practicality and alignment with lesson scope. Overall, the prompt-
driven workflow lowers barriers to “pre-class rehearsal,” supports
human-AI co-design, and can be extended with multi-agent setups
and human-in-the-loop review (Hu et al., 2025). These results suggest
a promising opportunity to adapt the method to engineering
laboratory courses as well.
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Furthermore, Laboratory work remains fundamental to
engineering education because it anchors theoretical constructs in
inquiry and experimentation. However, physical laboratories are
constrained by safety risks, infrastructure limitations, scheduling
bottlenecks, and material costs. Virtual laboratories mitigate many
of these constraints by providing safe, repeatable, and scalable
practice without endangering learners or equipment. For distance
learners, virtual laboratories can vyield learning outcomes
comparable to those achieved in traditional settings, thereby
expanding access while maintaining educational quality.
Accessibility can also improve for learners who benefit from seated
operation and captioned content, although fully immersive head-
mounted displays are not suitable for those with visual
impairments. Cost remains a salient consideration: high-end
systems provide greater immersion at a higher expense, whereas
mobile solutions increase access at the cost of fidelity (Soliman et
al,, 2021).

Findings are not uniformly positive. Some studies report no
statistically significant differences between virtual and traditional
laboratories, while early implementations document student
preferences for conventional laboratory experiences, citing perceived
ease of operation and flexibility. Taken together, the literature supports
a cautious yet optimistic conclusion: when virtual reality is
thoughtfully integrated with lectures and online materials, it can
enhance engineering education by making it more active and inquiry-
driven, with particular advantages for topics involving complex spatial
reasoning and for institutions seeking to broaden access to safe
laboratory experiences. Effectiveness ultimately depends on careful
instructional design, appropriate technological choices, and sensitivity
to both learner and institutional contexts (Soliman et al., 2021).

Although this paper does not implement the proposed laboratory
in a course, it describes how it could be implemented in engineering
classes. In general, engineering laboratories lack a single definition or
a standard program to follow (Hu et al., 2025). Since the advent of
digital simulators, they have been used as instrumental systems to
train engineers across diverse applications. Today, simulators can
model highly complex systems with substantial fidelity, closely
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approximating real-world conditions. In this context, VR laboratories
can integrate features of online laboratories and simulation
laboratories to produce realistic environments that resemble a physical
laboratory, complete with devices, a factory context, and expert
avatars in specific domains.

The proposed VR laboratory would provide hands-on learning,
enabling students to interact with equipment, domain experts in each
section, and a virtual factory. The environment could be automatically
adapted to different undergraduate levels, promoting dynamic
interaction within the VR ecosystem. Rather than replicating a
conventional, step-by-step laboratory where every student follows
identical procedures, the design emphasizes iterative learning and
formative feedback, eliminating the immediate pressure of summative
grading. Flexibility and reliability would support access without fixed
schedules or locations, as in remote-access laboratories (Steinemann
and Braun, 2002). Because there is no rigid sequence of required
exercises, the laboratory functions as a guided exploration space,
allowing students to learn at their own pace. Moreover, VR
implementation can reduce costs associated with physical maintenance
and equipment failures. At the same time, the VR laboratory can
incorporate both simulation-based exploration of theoretical concepts
and experimental activities within the same environment, aiming to
replicate the affordances of a real experimental laboratory (Steinemann
and Braun, 2002; Balamuralithara and Woods, 2009).

Using the objectives of an engineering laboratory proposed by
Feisel and Rosa (2005) as a reference, the fundamental objectives and
main topics for the proposed virtual-reality laboratory using large
language models are presented below. This course is a lab-centered
pathway that encompasses the full lifecycle of a didactic extruder.
Students can begin by applying first principles, decomposing
subsystems, deriving governing relations, and mastering mechanics,
electronics, power electronics, sensing, and multiloop control, while
generating traceable data under explicit safety practices. They then
utilize Expert Avatars, powered by large language models, to diagnose
and improve the device, translate natural-language guidance into safe
parameter and policy changes, conduct controlled experiments to
isolate effects, perform failure analyses, and communicate results in
an ethical manner. Finally, they apply these improvements in an
advanced manufacturing context by preparing designs for
manufacturability and assembly, integrating digital traceability,
applying
comparisons to support go/no-go decisions, and linking technical

statistical process control, conducting controlled
gains to takt time, capacity, cost per part, and return on investment.
Across all phases, students utilize machine learning for maintenance,
address energy and sustainability concerns, ensure accessibility, and
maintain governance over changes and intellectual property,
culminating in a factory-ready extruder improvement demonstrated

through both technical and executive deliverables.

Phase 1: device-first foundations—the
extruder and its components

Phase 1 begins by grounding students in the anatomy of the
extruder and the first principles that govern it. Learners decompose
the machine into its constituent parts: material feed, screw and barrel,
heaters, drive train, die, and cooling. They then use this structure to
derive relations for mass, momentum, energy, torque, throughput, and
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pressure. As they transition from plastic rheology and residence time
to pressure—flow curves and torque-speed maps, the physics provides
a practical lens for understanding overall efficiency. Those analytical
bases carry directly into mechanics and structures, where students
evaluate loads, tolerances, and fits for screws, barrels, bearings,
couplings, and frames. By linking stress, strain, critical speed, thermal
expansion, and mounting rigidity with observed noise and vibration,
they learn to prevent wear, misalignment, and instability rather than
reacting to it later.

With the mechanics stabilized, attention turns to thermal
behavior. Students model heat flow across zones, design cooling paths,
and tune profiles to deliver a stable melt with minimal overshoot.
Concepts like conduction, convection, thermal lag, zoning strategy,
insulation, and safety margin stop being abstract and become control
levers for quality. The electrical layers then slot into the same systems
picture. Learners read wiring diagrams, design safe low-voltage
distribution and I/O systems, and apply grounding, shielding, and
noise mitigation techniques to ensure that sensors and drives operate
reliably. From there, they size and configure power electronics and
drives, connecting rectification, heater control with pulse width, and
variable-frequency or servo tuning to real current limits, harmonics,
and protection schemes. This naturally leads to motion systems.
Students select prime movers, gearboxes, and couplings by matching
torque-speed envelopes to steady-state and transient demands,
accounting for inertia, torque ripple, backlash, and alignment to
ensure the chosen actuator can deliver what the process physics
requires.

Sensing and control close the device loop. Learners select, place,
calibrate, and condition sensors for temperature, pressure, torque, flow
or throughput, and vibration, then synchronize and filter data for
trustworthy analysis. Those signals feed multiloop control of
temperature, motor speed, torque, and pressure, with interlocks and
setpoint scheduling designed from the outset. The tuning work
connects proportional-integral-derivative (PID) choices with
feedforward, cascaded loops, anti-windup, and bumpless transfer,
ensuring transitions are both responsive and safe. Throughout, safety
and compliance are treated as design constraints, not afterthoughts.
Students design guarding, emergency stops, interlocks, lockout and
tagout awareness, safe states, thermal shielding, labeling, and markings
so that risk reduction is documented and auditable. Phase 1 culminates
in test and characterization. Teams plan structured experiments to
measure throughput, energy use, melt quality, and stability, establish
a golden batch, apply basic statistical process control, and produce
clean, versioned datasets. By the end of the phase, device-level
knowledge, control fluency, and data practice are woven into a single,
testable whole.

Phase 2: expert avatars—language models
in the loop

Phase 2 layers expert avatar guidance on top of the device
foundations but keeps the human firmly in charge. Students first learn
to design fast, targeted interactions that extract diagnostics, parameter
suggestions, and design hypotheses without drifting into misleading
responses. They use examples, bounded tool use, strict units, and
versioned prompts so that advice remains traceable. The next step is
translation. Avatar guidance is converted into safe, typed updates to
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parameters, policies, and design features using an application
programming interface (API) schema with hard bounds, declared
units, confidence reporting, rollback capabilities, and human approval.
In other words, language becomes a precise control surface rather than
an informal suggestion.

To ensure rigor, learners design avatar-in-the-loop experiments
that separate the effect of advice from the effect of mechanical or
control changes. They preregister hypotheses, randomize or
counterbalance trials, plan manipulation checks, and confirm that
sample sizes have adequate power. When failures occur, students
diagnose them across sensors, mechanics, control logic, and avatar
guidance, then update both the physical design and the avatar
playbook. Fault trees, root-cause analysis, guardrails, post-mortems,
and regression tests ensure that each fix prevents recurrence. Finally,
communication and ethics make the process accountable. Results and
decisions are reported with transparent instruction logs and explicit
consent for the storage of transcripts. Bias checks are conducted on
avatar outputs, and the findings are presented in clear executive
summaries, accompanied by technical appendices, for both technical
and non-technical audiences. By the end of Phase 2, learners have
integrated trustworthy language-model collaboration into a safe
engineering workflow.

Phase 3: factory integration, mass
production, and machine learning

Phase 3 scales the improved device into a manufacturing reality.
Students translate their designs into manufacturable variants using jigs
and fixtures, assembly routings, and verified tolerances, thereby
connecting engineering and manufacturing bills of materials with
tolerance stacks, computer-aided manufacturing files, and printable
fixtures, ensuring serviceability. These physical flows are mirrored in
the digital factory. At the present stage, this digital factory has been
implemented as a high-fidelity virtual model of the FrED line. Future
work will expand it into a comprehensive digital twin by streaming
real-time telemetry from the physical equipment and integrating
in-situ control updates. Learners implement traceability by linking
unit and lot genealogy to actual parts and changes, thereby
maintaining as-built configurations in alignment with as-designed
specifications and capturing approvals in change records. Quality
systems then provide the statistical backbone. Teams could create
control plans and apply statistical process control to critical
characteristics, such as melt temperature, pressure stability, and
dimensions. This involves selecting sampling plans and charts,
computing capability indices, and handling nonconformances with
discipline.

Validation at scale requires evidence, not anecdotes. Students
conduct controlled comparisons between baseline and avatar-
improved devices, ensuring adequate power, define uplift metrics and
confidence intervals, and prepare lightweight submission packages for
part approval when necessary. They connect technical improvement
to production economics by translating changes into takt time,
capacity, work in process, cost per part, and return on investment,
using bottleneck analysis, quick changeover, sensitivity analysis, and
make-or-buy decisions to quantify impact. Reliability and uptime are
then addressed with machine learning. Learners engineer features
from sensor data, build health indicators and remaining useful life
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estimates, set alert thresholds, and generate work orders, enabling
maintenance to shift from reactive to predictive and prescriptive
across heaters, bearings, screws, and drives. Energy and sustainability
complete the operating picture. Students reduce energy consumption
per unit and material waste while maintaining quality and takt,
utilizing energy performance indicators, heater setpoint strategies,
insulation improvements, compressed-air leak reduction, and
improved material yield. The phase closes with handover and
governance. Inclusive standard operating procedures and avatar-
assisted training support adoption, while provenance and compliance
are maintained through engineering change control, digital signatures
and hashes, access control, audit trails, and regulatory mapping. What
began as device-level mastery evolves into a factory-ready system,
characterized by traceable decisions, measurable quality, and clear
economics.

Creative Thinking Skills (CTS)—mapping
and rubric for the VR-LLM laboratory

Additionally, this paper can be linked to the Creative Thinking
Skills (CTS) criterion presented in Forte-Celaya et al. (2021), which
provides concrete evidence generated by the VR-LLM laboratory and
offers a ready-to-use rubric for scoring student work. Evidence is
drawn from in-app artifacts (capstone plan, track deliverables),
telemetry (logs of genetic algorithm and neural network), KPI charts,
and the oral defense transcript.

How CTS maps to the laboratory

This laboratory advances Creative Thinking Skills (CTS) by
guiding learners from exploratory optimization to justified,
stakeholder-ready plans while capturing auditable evidence at every
step. In the Line Production Optimizer, students tune buffer sizes and
reliability policies using a genetic algorithm whose objective penalizes
low throughput, oversized buffers, and off-baseline failure/repair rates.
Because many parameter sets can still satisfy these constraints, there
are multiple legitimate ways to succeed. Divergence, therefore,
captures how far a learner’s final operating plan departs from common
or default settings while remaining viable, as shown by GA generation
histories, the final policy vector, and the written rationale recorded
in-app. That creative departure only matters if it benefits the factory,
which leads directly to Impact: in the capstone, students defend their
plan to avatar experts by balancing throughput, cost, stability, and
maintainability. Clear KPI improvements, such as higher throughput,
lower WIP, or better defect/energy profiles, combined with a
persuasive oral defense, signal high Impact.

Crucially, novelty must fit the brief. The lab’s three activity tracks
and the Penta-S materials framework (smart, sustainable, social,
sensing, safe) create space for uncommon yet well-justified solutions,
such as pairing an ANN early warning system with a sustainability-
driven buffer strategy. When a distinctive feature is introduced and
explicitly tied to track objectives and Penta-S constraints, it earns
Originality, evidenced in design notes, scenario choices, and
justification screens. To make such novelty work in practice, learners
must integrate ideas and tools; here, the labs 14 interactive elements
come into play. By chaining subsystem exploration, oscilloscope, and
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CSV analysis, avatar consultations, GA optimization, and ANN
forecasting into a single reasoning arc (signals - GA objective —
ANN interpretation — plan), students demonstrate Flexibility,
interdisciplinary synthesis visible in tool-use logs and the narrative
rationale.

Quality of execution underpins all of the above. Because the lab
exposes raw/processed signals, GA runs, and ANN outputs, raters
can judge Technique directly: are objectives and penalties set
correctly, are model outputs interpreted properly, and is telemetry
used to validate decisions (avoiding pitfalls like overfitting or
misreading failure/repair rates). Evidence appears in GA convergence
curves, ANN accuracy/confusion matrices, correctly parameterized
objectives, and clean data handling. Resolution then closes the loop
by asking whether the learner actually met the brief defined in the
FrED rubric—design quality, integration into manufacturing,
performance and cost, innovation and problem-solving, and
technology use—alongside track-level goals. Plans that meet
throughput/cost targets, integrate subsystems coherently, and pass
safety/feasibility checks earn high Resolution, as verified by
threshold attainment, pass/fail checks, and subsystem integration
snapshots.

The Creative Thinking Skills (CTS) Rubric for the VR-LLM
Laboratory is presented in Table 2, based on Forte-Celaya et
al. (2021).

Scoring: 3 = Proficient,
4 = Exemplary. Evidence sources: in-app artifacts (capstone plan,
track deliverables), GA/ANN/telemetry logs, KPI charts, oral defense
transcript.

1 = Beginning, 2 = Developing,

TABLE 2 Creative Thinking Skills (CTS) rubric for the VR—LLM laboratory.

10.3389/fcomp.2025.1701666

Total CT'S score (max 24): sum of six criteria. Optional weighting
(if emphasizing novelty/usefulness): Divergence, Impact, and
Originality x1.25; Flexibility, Technique, and Resolution x1.0. Report
both weighted and unweighted totals.

Results

The VR environment of the FrED Factory Learning Lab simulates
a real-world factory setting. Figure 10 shows the spatial layout of the
app, highlighting key training modules and activities.

The FrED Factory Learning Lab is available in two versions: for
Android devices and for Oculus Meta Quest 3. While both versions
aim to provide an engaging educational experience, the VR version
supports full 3D-rendered avatars representing different engineering
disciplines, whereas the Android version optimizes performance to
prevent freezing by omitting avatars.

These platform-specific adjustments ensure accessibility and
effectiveness for a diverse range of users. The VR version excels in
immersion and interactivity, ideal for users with advanced hardware.
The Android version offers portability, allowing engagement with
training materials on mobile devices while maintaining core learning
objectives.

Both versions focus on developing technical expertise and soft
skills, offering tailored pathways for users to interact with FrED based
on their device capabilities. This versatility makes the app suitable for
a wide range of users, from on-the-go learners to those seeking a fully
immersive experience.

Criterion  4-exemplary 3-proficient 2-developing 1-beginning

Divergence Reframes the operating policy with multiple At least one clear differentiator Small/uncertain departure from Mirrors common/baseline
defensible differentiators; departs clearly from | beyond typical solutions; plan defaults; novelty weakly justified. settings; no meaningful
common settings while satisfying all remains viable. differentiator.
constraints (evidence: GA history + rationale).

Impact Compelling KPI gains (throughput, cost, Noticeable utility with trade- Some localized benefit; Limited or unclear value;
stability, maintainability) and a persuasive offs explained; most benefits justification is partial or weakly benefits not demonstrated.
defense aligned to stakeholder needs; benefits | quantified. quantified.
are explicit and quantified.

Originality Distinctive feature(s) tightly aligned to track At least one distinctive feature Familiar ideas loosely tied to No distinctive features;
goals and Penta-S constraints; shows ideation | aligned with the brief and goals; limited justification. reproduces examples or defaults.
breadth and careful selection. context.

Flexibility Integrates multiple tools/domains coherently Purposeful combination of at Attempts cross-linking, but Single-domain approach; no
(signals—GA objective—ANN inference— least two tools/domains with integration is weak or unclear. meaningful integration.
plan), with explicit handling of interfaces and | clear intent.
trade-offs.

Technique Rigorous setup and execution: correct Mostly correct methods with Noticeable method or Frequent errors in setup/
objectives/penalties, valid model minor errors; interpretations interpretation errors; partial interpretation; results not
interpretation, sound data handling, generally sound. mismatch to the task. credible.
reproducible runs (evidence: GA curves,

ANN metrics).

Resolution Fully meets stated objectives/constraints Meets core objectives; minor Partially meets objectives; key Objectives largely unmet or
(throughput/cost/safety/integration) with gaps or untested constraints. requirements are weak or missing. | unsupported by evidence.
evidence; risks and limits acknowledged and
managed.
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FIGURE 10
General layout of the proposed application.

Figure 11 provides snapshots of the Android version,
showcasing platform accessibility, while Figure 12 presents the
Oculus Meta Quest 3 interface, emphasizing the enhanced
immersive experience of VR.

Users can interact with avatars or directly with FrED through
voice commands or text input, catering to diverse communication
preferences. Voice interaction offers a natural experience, while text
input provides precision, making it suitable for quiet or noisy
environments. ChatGPT also enables multilingual interactions,
supporting both English and Spanish, enhancing inclusivity.
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The platform features 14 interactive elements, each designed to
meet specific training objectives and develop essential skills, including
communication, leadership, problem-solving, and collaboration.
Features range from user profile management to advanced modules,
including predictive analytics utilizing genetic algorithms and neural
networks.

1) Load/save user profile: allows users to save/load progress and

profiles through local storage or Firebase, promoting
organization and responsibility.
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Different views of the 14 interactive features in the Android version.
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(Machine
Stats

2) FrED’s machine brief intro: provides an overview of FrED’s
subsystems, fostering critical thinking by linking theory to
machine operations.

W
=

Personalization profiling (ChatGPT-4): offers users a

personality-based survey for tailored gamification or a default

learning experience, fostering self-awareness and adaptability.

4) FrED’ lab explainer (Avatar-ChatGPT-4): a virtual guide
explains the lab environment and interactions, fostering
communication and teamwork.

5

N

CEO labs perspective (Avatar-ChatGPT-4): offers a strategic view

of lab operations, encouraging leadership and strategic thinking.

6) Optimizer expert (avatar-ChatGPT-4): guides users in applying
optimization algorithms, enhancing problem-solving and
innovative thinking.

7) Line production optimizer (Genetic Algorithm-C#): simulates

production line optimization, promoting analytical thinking

and research skills.
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8) FrED machine (Product Model-ChatGPT-4): a detailed 3D
model of FrED allows users to explore components, fostering
critical thinking and problem-solving.

9) FrED’s knowledge validation (Gamification-ChatGPT-4):
challenges users with gamified activities to validate their
knowledge, building confidence and adaptability.

10

=

Oscilloscope: FrED’s motor signal (CSV data reading): provides
real-time visualization of motor metrics, enhancing data
analysis skills.

11

~

FrED’s experts perspective (Avatars-ChatGPT-4): users interact
with avatars from various disciplines, fostering interdisciplinary
collaboration.

12

~

Production line (CSV data reading): simulates a production
line for real-time data analysis, encouraging data-driven
decision-making.

13) Forecasting expert (Avatar-ChatGPT-4): guides users on
predictive analytics, enhancing forecasting and planning skills.
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14) Line production forecasting (ANN-Python+C#): trains users
to predict operational statuses using an ANN, emphasizing
analytical thinking and technical expertise.

Figure 13 summarizes the soft skills employed in each interactive
feature.

The FrED Factory Learning Lab demonstrates how immersive
virtual environments, gamification, and Al-driven personalization

Frontiers in Computer Science

address evolving needs in engineering education. Leveraging both
Android and VR platforms, the lab ensures inclusivity while
maintaining core learning objectives, providing flexible and scalable
solutions for users with varying hardware access.

The
thinking, adaptability,
leadership—skills essential in modern engineering and manufacturing
settings.

inclusion of 14 distinct features fosters critical

problem-solving, collaboration, and

19 frontiersin.org


https://doi.org/10.3389/fcomp.2025.1701666
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ponce et al.

10.3389/fcomp.2025.1701666

Feature

Soft skills

Load/save user profile
FrED’s machine brief intro
Personalization profiling

(ChatGPT-4)

FrED’s Lab explainer (AVATAR-

ChatGPT-4)
CEO labs perspective

(AVATAR-ChatGPT-4)
Optimizer expert (AVATAR-

ChatGPT-4)

Line Production Optimizer

(GENETIC ALGORITHM-C#)
FrED machine (PRODUCT

MODEL-ChatGPT-4)
FrED’s Knowledge Validation

(GAMIFICATION-ChatGPT-4)

Oscilloscope: FrED’s motor
signal (CSV data reading)
FrED’s experts perspective

(AVATARS-ChatGPT-4)

Production line (CSV data

reading)

Forecasting expert (AVATAR-
ChatGPT-4)
Line production forecasting

(ANN-Python+C#)

Organization, Responsibility, Self-management

Critical Thinking, Problem Identification

Self-awareness, Decision-making, Adaptability

Communication, Teamwork

Leadership, Strategic Thinking, Innovation

Problem-solving, Analytical Thinking, Innovation

Analytical Thinking, Research Skills, Decision-making

Critical Thinking, Problem-solving, Collaboration

Confidence, Adaptability, Perseverance

Attention to Detail, Data Analysis, Curiosity

Team Collaboration, Interdisciplinary Thinking

Critical Thinking, Problem-solving, Data-driven Decision-

making

Forecasting, Planning, Innovation

Analytical Thinking, Technical Expertise, Problem-solving

FIGURE 13
Soft skills are employed in each interactive feature.

Proposed plans and timeline for the
empirical evaluation

Building on the framework outlined in Paszkiewicz et al. (2021),

a systematic empirical evaluation shall be undertaken to assess its
pedagogical effectiveness and usability in practical training

Frontiers in Computer Science

environments. The assessment will concentrate on four primary
dimensions:

Learning effectiveness
The first goal is to determine if the VR-LLM-gamified FrED
laboratory delivers greater learning improvements than more

20 frontiersin.org


https://doi.org/10.3389/fcomp.2025.1701666
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Ponce et al.

traditional formats. Specifically, we will evaluate whether the system
improves understanding of sustainable manufacturing, the FrED
architecture and process flow, and the relationships between device-
level settings (such as temperature, torque, reliability) and factory-
level performance. These findings will be compared to results from
standard instructional materials and a non-personalized VR version.

Soft-skills development

A second goal is to evaluate how effectively the laboratory
supports the development of higher-order skills such as problem-
solving, critical thinking, collaboration, and decision-making in
production-line scenarios. Specifically, we will analyze how learners
justify trade-offs within the Penta-S sustainability framework, design
and defend optimized policies, and communicate their decisions to
both technical and non-technical audiences.

User experience and acceptance

Third, we will examine learners’ perceptions of immersion,
usability, workload, and perceived usefulness, as well as their intention
to adopt similar tools in the future. This involves analyzing how
different system configurations (with or without LLM-based
personalization and gamification) influence motivation, engagement,
and perceived effectiveness.

Transfer and retention

Finally, we will examine whether the skills and knowledge
acquired within the virtual laboratory are transferable to new
scenarios, such as modified factory layouts or different failure patterns,
and whether these competencies are retained over an extended period.
This inquiry is particularly pertinent for industrial operators and
engineering students, who are required to apply their learning to real
or simulated production environments.

Study design

The empirical evaluation will be conducted using a controlled,
between-subjects design. Participants will come from two primary
populations: senior undergraduate and early graduate engineering
students enrolled in courses related to manufacturing, control, or
digital twins. Industrial operators or trainees working in sustainable
manufacturing settings, where scenarios can be adapted to highlight
safety, reliability, and process efficiency. To isolate the impact of VR,
LLM-based guidance, and gamification, at least two experimental
conditions will be implemented, with a third condition strongly
recommended.

Treatment (T)

Full VR-LLM FrED laboratory, including personality-based
profiles, adaptive avatars, gamified elements, and the three activity
tracks (e.g., energy efficiency mastery, precision & quality assurance,
stability & control).

Learners receive real-time, personalized guidance, and their actions
are logged through the telemetry infrastructure already described (e.g.,
GA convergence, ANN performance, dialogue traces, tool usage).

Control 1 (C1)

Conventional instructional materials (slides, videos, and static
simulations) covering the same core concepts, learning objectives, and
approximate time-on-task as the treatment.
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This condition represents a baseline close to current practice in
many engineering programs.

Control 2 (C2) (recommended)

A non-personalized, non-gamified VR version of the laboratory,
in which learners can explore and complete the same technical tasks
without adaptive prompts or tailored game mechanics.

This condition allows us to isolate the added value of LLM-based
personalization and gamification beyond the immersive VR
medium itself.

Random assignment will be used wherever possible within each
cohort (students and operators), and basic demographic and
background information (e.g., prior VR experience, programming
background, familiarity with FrED) will be collected to verify baseline
comparability.

Measures and analysis

The evaluation will leverage both the assessment instruments and
telemetry already designed for the virtual laboratory, as well as
additional standardized questionnaires.

Knowledge and skills

Pre- and post-tests will assess understanding of FrED’s system
architecture and main subsystems.

Relationships between device-level parameters (e.g., extrusion
temperature, torque, sensor placement, and controller tuning) and
factory-level indicators (e.g., throughput, work-in-progress, reliability,
and energy consumption).

Core concepts of the Penta-S sustainability framework
and the role of optimization and forecasting in sustainable
manufacturing.

Capstone performance will be evaluated using the existing FrED
rubric and the CTS (critical thinking and technical skills) composite.
Learners will solve a novel factory scenario and present a short oral
defense of their decisions, allowing expert evaluators to rate decision
quality, argumentation, and sustainability awareness.

Performance in VR tasks and system telemetry
Objective indicators will be extracted from system logs, such as:

Task completion times and number of retries.

Error rates, constraint violations, and time-to-stable policies in
GA-based optimization.

ANN forecasting accuracy and confusion matrices.

Interaction with in-app tools (e.g., oscilloscope, CSV viewers) and
avatar dialogue density and intent.

These “mechanism traces” will help connect learning outcomes to
how learners actually, explore the search space, interact with the
avatars, and use the visualization tools.

User experience and acceptance
Standardized Likert-scale questionnaires will be administered
after each intervention to measure:

Perceived understanding (theoretical and practical).

Motivation, engagement, and perceived effectiveness of each
instructional form (traditional, non-personalized VR, VR-LLM-
gamified).
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Presence/immersion, usability, and workload (e.g., using
instruments such as SUS, NASA-TLX, or presence scales).

Intention to use and perceived usefulness, drawing on
technology acceptance models (e.g., TAM/UTAUT) in the

operator study.

Soft skills and collaboration
Soft-skills rubrics will be developed to assess problem-solving,
collaboration, and decision-making during the production-line
scenarios (e.g., bottleneck resolution, buffer sizing, reliability trade-offs).
Expert raters will score team interactions and outcomes, focusing
on how learners negotiate constraints, justify trade-offs, and
communicate under time pressure.

Retention and transfer

A delayed post-test (4-6 weeks after the intervention) will be
administered to a subset of participants to evaluate retention of key
concepts and transfer to new scenarios, such as modified line
configurations or different failure patterns.

Data analysis

Quantitative data (pre/post scores, telemetry metrics, questionnaire
scales) will be analyzed using mixed ANOVA or linear mixed models to
capture both within-subject changes and between-condition differences.

Group comparisons will test hypotheses about the added value of
VR, LLM personalization, and gamification.

Qualitative data (open-ended responses and samples of LLM-
avatar interactions) will be coded to identify common misconceptions,
successful strategies, and user perceptions that numeric scales may not
fully capture.

Timeline for 12-month implementation

The empirical evaluation is planned over approximately one year,
in four main phases:

Months 1-2: design and preparation

During this phase, learning outcomes and soft skills indicators
will be refined based on the curriculum and the existing FrED and
CTS rubrics. Pre- and post-tests and questionnaires will be drafted,
with items adapted from Paszkiewicz et al. (2021) on perceived
effectiveness, recommendations, and understanding. Rubrics for
collaboration and decision-making will be finalized. The experimental
conditions (T, C1, optional C2), procedural scripts, and consent
forms will be prepared, and the necessary ethical approvals
confirmed.

Months 3—4: technical and pedagogical pilot

A small pilot study (approximately 10-15 students) will be
conducted with one course group. The goal is to test VR logistics
(headset deployment, network stability), task duration, user
comfort, and instruction clarity. Initial questionnaires and short
interviews will be collected, following a similar approach to previous
VR deployments in education. Based on this feedback, task
difficulty, user interface elements, and pacing will be refined, and
equivalence of content and time-on-task across conditions will be
checked.
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Months 5-8: main controlled experiment with
students

The primary student study will be carried out with approximately
30-40 participants per condition (subject to a power analysis and
course enrollment). The intervention will be integrated into an
existing course module so that the VR laboratory replaces or
complements part of the traditional instruction. Pre-tests will be
administered, followed by the assigned condition (T, C1, or C2). Post-
tests, questionnaires, and telemetry data will then be collected. A
delayed post-test will be scheduled 4-6 weeks later for retention and
transfer analysis.

Months 9-10: extension to operators and
external cohorts

In this phase, the scenarios and instruments will be adapted for
industrial operators, with a focus on safety, reliability, and operational
decision-making. A smaller but ecologically rich study (around 15-25
participants) will be run, typically comparing the treatment condition
to one of the control conditions. User-acceptance measures (e.g.,
intention to use, perceived usefulness) will be included. Comparisons
will be made between student and operator populations to explore
generalizability and differences in usage patterns.

Months 11-12: analysis and iteration

The final phase will focus on comprehensive statistical analysis
and triangulation of quantitative results with qualitative feedback and
interaction logs. Based on the findings, the FrED VR laboratory will
be refined (e.g., adjusting scenario complexity, feedback mechanisms,
and gamification loops). The goal is also to package the evaluation
framework so it can be reused in future multi-site studies across
different campuses and institutions.

Discussion

The combination of VR, large language models, and AI has
significant potential for transforming education and training in
sustainable manufacturing. VR provides hands-on experiences,
helping learners understand complex manufacturing processes
without the need for physical machinery, thereby reducing costs and
risks compared to traditional training methods. This aligns with
Industry 4.0 and 5.0, which focus on enhancing efficiency while
prioritizing worker empowerment and education.

By leveraging genetic algorithms and neural networks, the VR lab
simulates production scenarios and optimizes key parameters,
enabling learners to visualize the impact of various factors in real-
time. The iterative optimization process helps users understand the
balance required in industrial settings, including production rates,
machine reliability, and cost efficiency.

The VR lab emphasizes the Penta-S approach, contributing to
understanding sustainable practices by demonstrating efficient
organization and resource management. This focus on sustainability
is timely given the global push to reduce environmental impact in
manufacturing.

Despite the advanced capabilities of VR and Al challenges such
as accessibility and the learning curve must be addressed to maximize
their benefits. Ensuring a user-friendly VR environment and providing
sufficient training are key to overcoming these challenges.
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The use of a loss function that penalizes inefficiencies highlights
the emphasis on efficiency but may limit flexible, creative exploration
that learners sometimes need. Expanding the VR lab to include real-
time collaboration among users in different locations could make it a
valuable global educational resource.

The adaptability of large language models to provide real-time
guidance in the VR lab enhances the learning experience through
personalized support, using text or voice interfaces to cater to diverse
learning preferences.

In designing the FrED VR-LLM lab, the user interface, scaffolding
mechanisms, and pacing are intentionally tailored to boost presence
while minimizing cognitive overload. First, the UI follows cognitive
load theory and CTML principles by removing unnecessary, purely
decorative elements and showing only task-relevant information,
since excessive visual stimulation and ornamental details in VR can
hinder learning despite increasing presence (Sari et al., 2024). In
practice, this is achieved through a small number of stable, color-
coded panels (device view, parameter sliders, oscilloscope/CSV
viewers, and GA/ANN dashboards) that are reused across the three
core modules—FrED device, avatar guidance, and factory—so
learners do not have to relearn the interface when moving from the
extruder to the production line.

A simplified, performance-optimized Android version with
fundamental interactions (no 3D avatars, same tasks and metrics) is
available for lower-end devices or beginners, aligning with evidence
that accessible, easy-to-use interfaces and straightforward menus help
reduce cognitive load and improve perceived learning effectiveness in
immersive VR.

Instructional scaffolding is provided through both the activity
structure and the LLM-driven avatars. The training program is divided
into three VR activities (Energy Efficiency Mastery, Precision and
Quality Assurance, Stability and Control), each focusing on a specific
subsystem of FrED and increasing in complexity.

Within each activity, learners receive step-by-step prompts,
immediate feedback, and gamified scoring with sealed diplomas that
show progress without overwhelming the interface with raw data.

Avatars like the Lab Explainer, CEO perspective, Optimizer, and
Forecasting experts serve as just-in-time tutors: they translate domain
jargon into natural language, suggest bounded parameter edits, and
prompt reflection on trade-offs between throughput, reliability, and
sustainability, rather than just adding more information. This guided
experimentation approach echoes research on self-presence and avatar
design, where carefully tuned embodiment and feedback (e.g.,
synchronized movements, consistent responses) support cognitive
performance without unnecessary sensory complexity (Jahn et
al., 2019).

To explicitly reduce cognitive overload, the FrED lab adopts three
complementary strategies supported by recent empirical work on VR
and cognitive load. First, task-technology fit is ensured by making
sure every interactive feature (such as line optimizer, oscilloscope,
knowledge-validation mini-games) directly supports a specific
learning goal, avoiding tempting but irrelevant details that would
increase extraneous load. Second, complexity is increased gradually
across phases, from device-level tests to avatar-guided diagnostics to
factory-level GA/ANN optimization, so the intrinsic load grows
slowly, and learners can reuse earlier schemas instead of starting from
scratch in the factory module. Third, during pilots, interaction logs
and questionnaires inspired by cognitive overload studies (e.g., ratings
of task difficulty and mental effort) are used to identify screens or
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sequences that produce high load. These are then redesigned with
simpler menus, fewer simultaneous elements, or additional avatar
prompts. All these UI and pedagogical choices aim to keep FrED’s
immersive experience in the utilitarian zone, supporting reflection
and skill transfer, rather than letting presence and stimulation
undermine learning effectiveness.

Future work

Although the proposed VR laboratory integrates advanced
technologies such as LLMs, gamification, and optimization algorithms,
it has not yet been validated through a systematic user study. Future
work will include a controlled experiment to evaluate the educational
effectiveness of the system. A planned design involves a between-
subjects study with a treatment group (VR-LLM laboratory with
personalization and gamification) and a control group (standard
materials or a non-personalized VR version). Participants will include
senior undergraduate and early graduate engineering students, as well
as operators, ensuring comparable baseline preparation.

Conclusion

This proposal highlights the development of a VR laboratory
powered by large language models and AI, demonstrating their role in
enhancing sustainable manufacturing through the FrED system. FrED
serves as an Al-driven framework for discovering and optimizing
Penta-S materials, products, and sustainable practices. A key
contribution of this work is the application of AI to optimize production
parameters, including buffer size, production rate, and machine
reliability, as well as the use of neural networks for forecasting. This
approach maximizes efficiency while minimizing costs and downtimes.

The optimization process results are presented through visual
feedback, which shows the evolution of key parameters across
generations, providing insight into the progression toward more
efficient solutions. A similar approach is used for neural network-
based forecasting.

This paper also emphasizes the educational applications of VR and
AL with the potential to transform learning in sustainable engineering.
By integrating VR and Al-assisted education, the training process
becomes more interactive and engaging, helping industry professionals
and engineering students master sustainable manufacturing practices.
Overall, this paper demonstrates the potential of Al and genetic
algorithms in advancing sustainable manufacturing, while highlighting
how VR and AT technologies can enhance education and training.
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