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EAC-YOLO: a surface damage
iIdentification method of

lightweight membrane structure
based on improved YOLO11

Zihang Yin, Limei Zhang*, Huarong Liu, Qiuyue Du and
Chongchong Yu

Department of Mechanical Engineering, School of Computer and Artificial Intelligence, Beijing
Technology and Business University, Beijing, China

Different surface damage can cause harm to membrane structures, and traditional
manual inspection methods are inefficient and prone to missed detections and
false alarms. At the same time, the current mainstream detection algorithms are
highly complex, which is hot conducive to deployment on resource-constrained
devices. To achieve automatic identification of typical surface damage in membrane
structures, we construct a dataset comprising five damage types based on common
types of surface damage in membrane structures and propose a lightweight
identification algorithm for membrane structure surface damage, specifically
EAC-YOLO. Firstly, the SPPF module is reconstructed, and the ECA lightweight
attention mechanism is introduced to enhance the model's ability to distinguish
easily confused features. Secondly, ADown is introduced to replace the original
down-sampling method, improving the retention ability of multi-scale damage
features. Finally, the CGBlock and C3k2 modules are combined and reconstructed
in the neck network to reduce the interference of damage background factors
and capture more features of the damage and its surrounding environment.
Experimental evaluation results on the established dataset show that the improved
MAPs, value reaches 87.5%, and the number of parameters, computational cost,
and model size are reduced by approximately 28, 25, and 28%, respectively,
compared with the original model, demonstrating the advantages of a small size
and high accuracy.

KEYWORDS

membrane structure, damage identification, YOLO11, target detection, deeplearning

1 Introduction

In recent years, membrane structures have gained widespread popularity due to their
lightweight and aesthetically pleasing appearance.

However, under the appearance of its novel shape and unique appearance, it hides the
inherent characteristics of high sensitivity to local damage. Small holes, stain corrosion and
small folds on the surface of membrane materials may cause the failure of some or even the
whole structure under the action of prestress, wind, rain and snow during use, which poses a
threat to public safety that cannot be ignored. Affected by the long-term external complex
environment, there are many types of damage on the surface of the membrane structure. It is
very important to define and classify the types of damage in advance, collect many different
damages on the surface of the membrane structure in use in an all-round way, and take timely
repair and maintenance measures according to the types of damage.

01 frontiersin.org


https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1700167&domain=pdf&date_stamp=2026-01-12
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1700167/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1700167/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1700167/full
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1700167/full
mailto:zhanglimei@btbu.edu.cn
https://doi.org/10.3389/fcomp.2025.1700167
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1700167

Yinetal.

Traditional damage detection methods rely on engineers ‘manual
visual and empirical judgment. While the accuracy is poor, the data
results are susceptible to engineers ‘subjective influence. It is difficult
to provide an objective and quantifiable evaluation basis for low
contrast or initial small damage (Tang et al., 2017; Psarommatis et al.,
2020). At the same time, some large-scale membrane structure
buildings with high height bring great difficulty to manual detection.
This technical bottleneck reflects that the development of an efficient,
accurate, and convenient damage identification system is no longer a
simple technical pursuit, but an urgent need to ensure the long-term
safety of such critical infrastructure.

With the development of computer and artificial intelligence
technology, machine vision has begun to be applied in the field of
surface damage detection. This method captures the surface image of
the product using an appropriate light source and image sensor. It uses
the corresponding image processing algorithm to extract the feature
information of the image. Then, according to the feature information,
the surface damage location, identification, grading, and other
discrimination and statistics are carried out, including storage, query,
and other operations. Compared to the traditional manual detection
method, this method offers higher real-time performance and
accuracy and exhibits specific working capabilities in harsh and
extreme environments. At the same time, convolutional neural
networks (CNNs) have received extensive attention in the field of
industrial defect or damage detection due to their more powerful
feature learning and feature expression capabilities. Surface defects or
damage detection based on deep learning learns feature representation
from a large amount of data by constructing a neural network model
to realize automatic identification and classification of defects and
damage. The rapid development of machine vision endows the
machine with the ability of visual perception and realizes the efficient
and stable acquisition of massive image information on the surface of
the structure. The rise of deep learning means that on the basis of
visual perception, it combines the ability to understand and judgment
of the machine itself. The integration of the two essentially constructs
a closed loop from perception to cognition. In the field of defect
detection, it has been realized the transformation from artificial vision
to machine perception, from subjective judgment to data analysis. It
has laid a solid foundation for the rapid and accurate diagnosis of
non-destructive, non-contact, and full-field, and has become an
urgent evolutionary direction in the field of structural surface
condition monitoring.

Some scholars combine the convolutional neural network method
with machine vision to learn the application of surface defect detection
in different fields. He et al. (2020) designed a steel plate defect
detection system based on deep learning and achieved 74.8/82.3 mAP
using 300 candidate sets on the baseline network ResNet34/50. The
detection speed of 20 ft. per second on a single GPU achieves 92% of
the above performance. Aiming at the problems of slow detection
speed and low detection accuracy of traditional steel surface defect
detection methods, Wang X. et al. (2022) proposed a steel surface
defect detection algorithm based on improved YOLOv7 and obtained
80.2% mAP and 81.9% mAP on the GCI0-DET dataset and
NEU-DET dataset, respectively. Xue and Li (2018) proposed a fully
convolutional network (FCN) classification model and implemented
an automatic intelligent classification and detection method for tunnel
lining defects. At a test time speed of 48 ms per image, the best set
accuracy of the proposed model exceeds 95%. Aiming to address the
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issues of low network accuracy, slow speed, and numerous model
parameters in defect detection of printed circuit boards (PCBs), Tang
et al. (2023) proposed an improved PCB surface detection algorithm
based on YOLOV5, which achieved a 95.97% mAP at 92.5 FPS. Dong
et al. (2020) proposed a pyramid feature fusion and global context
attention network for pixel-level detection of surface defects. On the
four datasets of NEU-Seg, DAGM 2007, MT defect, and Road defect,
the average pixel accuracy reached 82.15, 74.78, 71.31, and 79.54%,
respectively. Xu et al. (2023) proposed a YOLOv5-IMPROVEMENT
model for intelligent defect recognition of weld X-ray films based on
deep learning, achieving a precision and recall of 92.2 and 92.3%,
respectively. To solve the problem of false positives and missed
detection of casting defects in X-ray inspection. Lin et al. (2018)
proposed a robust detection method based on a vision attention
mechanism and feature map deep learning. The accuracy of defect
detection is greater than 96%. Lv et al. (2020) proposed an end-to-end
defect detection and classification network based on a Single-Shot
Multibox Detector (SSMD) for metal surface defect detection. Luo et
al. (2021) proposed a decoupled two-stage target detection framework
based on CNN for non-significant defects on flexible printed circuit
boards and the similarity between different defects, which achieves
mAP of 94.15%. Liu et al. (2024) proposed a wind turbine damage
detection algorithm based on a YOLOV8 design, which achieved
79.9% mAP.

However, there are still some issues when using the traditional
target detection model to detect surface damage in membrane
structures. For example:

(1) The dataset of surface damage of membrane structures is
scarce, and there are many types of surface damage and
significant morphological differences. The contrast between the
damage and the background is low, which can easily lead to
missed detection.

(2) The surface coverage area of the membrane structure is large.
When using mobile devices such as drones to detect, the
requirements for computer hardware and storage are high.

In the research related to handling complex background textures.
Aiming at the complex background of tunnel surface and the poor
performance of artificial feature extraction methods in detecting
tunnel defects, Xu et al. (2021) proposed a tunnel defect detection
method based on Mask R-CNN, based on path enhanced feature
pyramid network (PAFPN) and edge detection branch. Based on the
YOLOv4 model. Chen et al. (2022) embedded Gabor kernels into
Faster R-CNN, a two-stage training method based on a genetic
algorithm (GA) and backpropagation, which was designed to optimize
the application of a CNN model in fabric defect detection. Li et al.
(2023) proposed an automatic defect detection scheme for wire and
arc additive manufacturing (WAAM) by combining a channel-level
attention mechanism, multiple spatial pyramid pooling, and an
exponential moving average, aiming to address the challenges of
complex defect types and a noisy detection environment. Liu et al.
(2023) proposed an efficient feature extraction (EFE) module,
suggesting that the network achieves a satisfactory balance between
performance and efficiency. Gao et al. (2022) proposed an improved
Variant of the Swin Transformer, which enhances feature transmission
between windows by designing a new window shift scheme, making
the framework more capable of serving as the backbone for defect
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detection. The scheme achieves 94.5% mAP at a rate of at least 42
frames per second. Zhao et al. (2021) proposed a multi-scale fusion
training network using deformable convolutions to improve the
detection of small and complex defects on steel surfaces, which
increased mAP by 0.128% compared to the baseline. Tao et al. (2018)
proposed a deep convolutional neural network cascade autoencoder
(CASAE) for segmenting and positioning surface defects, addressing
the problem of metal surface defect detection in complex industrial
scenarios. Zhang et al. (2024) proposed an anchor-free network based
on DsPAN for small target detection, given the characteristics of multi-
scale, multi-type, and multi-small targets, and complex background
interference on the surface defects of industrial products, which
achieves mAP of 80.4, 95.8, and 76.3% on the three public datasets,
respectively. To improve the recognition accuracy of defect targets that
are difficult to distinguish under complex tunnel background and
illumination conditions, Zhou et al. (2022) proposed a YOLOv4-ED
model based on deep learning. The mAP, F1 score, model size, and FPS
of the model reached 81.84, 81.99%, 49.3 MB, and 43.5 fps, respectively.
To improve the detection performance of small targets. Zeng et al.
(2022) proposed a lightweight enhanced multi-scale feature fusion
method, ABFPN, for detecting small defects on the surface of PCBs,
achieving a mAP;, of 85.59%. Yuan et al. (2023) proposed an adaptive
lightweight battery current collector defect detection model, DGNet,
which achieved 91.8% mAP on the BCC surface defect dataset, the
model size is 4.0 M, 3.7 GFLOPS. Li et al. (2022) proposed a
lightweight salient object detection in optical remote sensing images
(ORSI-SOD) solution called CorrNet, which reduced the number of
parameters to 4.09 M, and solved the problem of high computational
memory and high cost. Zhang et al. (2023) combined the inverse
residual architecture with the coordinate attention (CA) mechanism
and constructed the coordinate attention movement (CAM) backbone
network for feature extraction, and designed an eflicient, lightweight
CNN model for surface defect detection of industrial products. Wang
Y. et al. (2022) proposed a lightweight PCB defect detection model
based on the improved YOLOX-MC-CA, which introduces
CSPDarknet and coordinate attention (CA). Zhao et al. (2024)
developed a lightweight defect detection model for turbine blades
based on ShuffleNetv2 and coordinate attention (SN-CA-SSD) in the
Internet of Things using single-shot multi-box detection, which
achieves a balance between precision and efficiency. Shen et al. (2024)
proposed a multi-scale interactive (MI) module and introduced it into
a lightweight multi-scale interactive network (MINet) to perform real-
time salient object detection on strip surface defects.

However, these methods are often targeted at solving the problem
of processing a specific detection target, and there is still a lack of feature
processing for surface damage in membrane structures. Based on
several of the above methods, we utilize the representative YOLO model
in the single-stage target detection algorithm to design our damage
identification model. The YOLO model has more advantages in speed,
accuracy, and ease of use, and has become one of the widely used target
detection frameworks in industry and academia. By summarizing the
morphological characteristics of the recognition target, the feature
extraction module and the down-sampling operator in the original
model are improved, aiming to enhance the model’s learning ability in
recognizing the surface damage characteristics of various complex
membrane structures. At the same time, taking into account the actual
application scenarios, the model structure is simplified while ensuring
accuracy, making it more conducive to the deployment of mobile
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terminals. In the future, the algorithm can be deployed on mobile
devices such as drones to replace manual detection methods to perform
surface damage detection and identification of membrane structures.
Combined with computer vision, it can realize automatic identification,
accurate positioning, and quantitative intelligent evaluation of
membrane structure surface damage. We construct a dataset of
membrane structure surface damage and propose a membrane structure
surface damage identification algorithm based on EAC-YOLO. The
main contributions of EAC-YOLO are included as follows.

(1) The SPPF module in the backbone is improved, and SPPF-ECA
is proposed to enhance the identification of small targets and
confusing damage features.

(2) ADown operator is introduced to optimize the original down-
sampling method and reduce the number of parameters.

(3) The CGBlock module in CGNet is introduced into the neck
network to construct C3k2-CGBlock, which reduces the
number of parameters and suppresses the influence of complex
background factors on the membrane surface. It achieves a
better feature expression ability for surface damage types of
membrane structures and reduces the model’s complexity
while ensuring the accuracy requirements.

2 Related works

The YOLO (Redmon et al., 2016) series is a crucial algorithm in
the field of target detection, known for its efficient Single-stage
detection architecture. YOLO11 (Jocher and Qiu, 2024) is the latest
generation of real-time target detection model, launched by the
Ultralytics team in 2024, which has been comprehensively optimized
in terms of accuracy, speed, and ease of use.

The structure of YOLO11 is shown in Figure 1. In the backbone
and neck network of YOLO11, the latest C3k2 module is introduced
to extract features. C3k2 is inherited from the C2f module in YOLOv8
(Jocher and Qiu, 2024). The choice of whether to use the C3k layer is
added, which makes the model more flexible in scenes requiring more
flexible feature extraction, such as those involving different receptive
fields—advantages, while retaining the characteristics of C2f’s ability
to perform fast feature fusion. SPPF is a pyramid pooling module
proposed in YOLOV5. It is mainly based on the idea of Spatial Pyramid
Pooling (SPP) (He et al., 2015) and obtains multi-scale feature
information through pooling operations at different scales. The C2PSA
in its backbone network combines the C2f and Position-Sensitive
Attention (PSA) attention mechanisms, dynamically adjusting the
attention degree of various positions through these mechanisms,
which improves the model’s detection accuracy in complex scenes. The
head part introduces a deep separable convolution to the CLS branch,
reducing redundant calculations and improving efficiency.

In this paper, we use YOLOL11 as the baseline model to improve
the network structure, and a model suitable for surface damage
identification of membrane structure is proposed.

3 Improved EAC-YOLO structure

The structure of EAC-YOLO is shown in Figure 2. The modules
within the red dotted box in the figure represent the parts that have
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FIGURE 1
Structure of YOLO11.
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FIGURE 2
Structure of EAC-YOLO.
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been modified compared to the original model. The main allowing it to easily distinguish between features and extract

improvements of EAC-YOLO include:

small target features, such as small target tears and cracks.
(2) ADown operator, which improves the efficiency of down-

(1) SPPF reconstruction. We introduce the ECAttention mechanism sampling while enhancing the ability to retain multi-scale

in the Concat layer to enhance the model’s discriminative ability, features and further reduces the number of model parameters.
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(3) CGBlock is introduced into the neck network. This module is
added to the C3k2 module and reconstructed to help the model
capture the damage location and its surrounding environment
characteristics, thereby reducing the impact of the complex
background around the damage.

3.1 SPPF-ECA structure

Efficient Channel Attention (ECA) is a channel attention
mechanism proposed by Wang et al. (2020) to solve the performance
and complexity of the model. This module is improved based on
Squeeze-and-Excitation Networks (SEAttention) (Hu et al., 2018),
which avoids the dimensionality reduction operation of the fully
connected layer in the channel attention module. Through the
interaction of complete channels, the unique high-frequency features
such as edges and textures of small damage are strengthened. ECA
also employs a local cross-channel interaction strategy to develop an
adaptive method for determining its kernel size k, thereby avoiding
the need for manual tuning of k through cross-validation in fast 1D
convolution operations. This approach enables efficient calculation of
channel attention. The overall calculation process is as follows:

(1) The input feature map is transformed from (H ,W,C) to
(LLC) by Global Average Pooling (GAP) aggregation, a
convolution feature map without reducing the dimension. The
output feature vector is:

1 H W N
ZC :WZZUC(I,J) (1)

i=1j=1

Where N represents the batchsize, while H, W, and C denote the
input height, width, and channel number, respectively. U is the input
feature vector, and Z_is the output feature vector.

(2) The kernel size k is determined by an adaptive method for the
one-dimensional convolution operation. The size of the
resulting feature map is still (1,1, C ) . The adaptive adjustment
of the convolution kernel size satisfies:

logz(C) +E

v v

k=p(c)= ©)

odd

10.3389/fcomp.2025.1700167

Where k represents the size of the adaptive convolution kernel, ¢

represents the mapping function, | represents the nearest odd value

tlodd
tot, y and b are hyperparameters which are used to map the adjustment

function. We take their values as 2 and 1, respectively (Wang et al., 2020).

(3) The adaptive convolution kernel is applied to the one-dimensional
convolution operation to obtain the adaptive weight of each
channel in the feature map. A one-dimensional convolution
operation with a convolution kernel size of k is performed. The
convolution result is mapped to 0-1 by the sigmoid activation
function of the output, and the weight of each channel is obtained
as follows:

wza(Cle(y)) (3)

Where y is the input feature map, and C1Dk is a one-dimensional
convolution. The weighted feature map is obtained by multiplying the
attention weight @ by the original input feature map.

The entire calculation method significantly reduces the complexity
of the model while maintaining performance, determines the coverage
of local cross-channel interactions, and enhances the feature learning
and representation capabilities of the neural network.

The structure of ECA network is shown in Figure 3, and the structure
of SPPF-ECA is shown in Figure 4. Because the features of small targets,
such as holes, wrinkles, and cracks on the membrane surface, are sparse,
the dimensionality reduction operation of the conventional attention
mechanism will further weaken their identifiability. ECA directly utilizes
one-dimensional convolution to preserve the original information of all
channels, thereby strengthening the unique edges, textures, and other
high-frequency features of small damage through the interaction of
complete channels. The original SPPF structure mainly includes three
5 x 5 pooling layers and one Concat layer, and two Conv structures. The
size of the Convl structure is (CLC _,1,1) , and the size of the Conv2
structure is (c_* 4,c2,1,1) , where c1 and ¢2 are the number of input
channels and output channels, respectively, and (c_ =cl/ 2). Therefore,
to combine the advantages of SPPF and ECA, ECA is introduced after the
Concat layer in SPPE further improving the model’s feature expression
ability through efficient channel attention calculation and an effective
receptive field. At the same time, the lightweight attention structure has
an almost negligible additional calculation amount for introducing the
SPPF structure, which has advantages in the scene of membrane structure
surface damage detection that requires considering both accuracy
and speed.

Feature map

FIGURE 3
Structure of ECA network.
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Structure of SPPF-ECA.

FIGURE 5
Structure of down-sampling operators. (A) Conv; (B) ADown.
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Conv2 layer

3.2 ADown operator

The down-sampling operator in YOLO is used to reduce the
spatial size of the feature map, thereby reducing the computational
requirements and the number of parameters. The down-sampling
operator in the original model is a convolution with a step size of 2,
including Conv2d, BatchNorm2d, and SiLU layers. The structure is
relatively simple, but when dealing with small or complex texture
damage in damage identification work, its single convolution kernel
may not be able to capture multi-scale features, resulting in a loss of
information. At the same time, its large parameter quantity will have
a greater impact on the deployment of mobile terminals.

ADown (Wang et al.,, 2024) is a lightweight down-sampling
operation that enhances the model’s sensitivity to various damage
features through multi-branch processing, combining maximum
pooling and average pooling methods. Additionally, reducing the
number of parameters may improve computational efficiency and

Frontiers in Computer Science

make it suitable for use in resource-constrained environments. The
feature map first undergoes an average pooling operation to minimize
noise interference and retain the overall texture features of the
membrane surface; after that, the output feature map is evenly divided
along the channel dimension. One part of the feature map, after
equalization, captures the main features of the damage through
convolution with a kernel size of 3. In contrast, the other part retains
the input features after maximum pooling, reducing the amount of
data. The result is merged with the feature map of the other part after
a 1 x 1 convolution fusion of feature information.

After the above improvements, the computational complexity of
the model is significantly reduced, and the feature expression ability
is enhanced. While maintaining down-sampling efficiency, the feature
retention ability of multi-scale surface damage is preserved, making it
suitable for membrane structure detection tasks that require high-
precision positioning. The structure of Conv and ADown is shown in
Figure 5.

frontiersin.org


https://doi.org/10.3389/fcomp.2025.1700167
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Yinetal.

3.3 C3k2-CGBlock structure

Context-Guided Network (CGNet) is a lightweight neural
network designed for semantic segmentation, proposed by Wu et
al. (2020). It understands the scene by simulating the context
information of the human visual system and then performs
effective feature extraction and fusion of context information.
Context-Guided Block (CGBlock) is an important module in
CGNet; the structure of CGBlock is shown in Figure 6. The input
damage feature map of the membrane structure is compressed by
the conv channel, and the dual-path feature extraction of f,. and
fsur is performed.

The data is extracted in the fj,. through the standard 3 x 3
convolutional layer to extract the local features in the feature map.
At the same time, the size of the 3 x 3 dilated convolutional
receptive field is utilized in fy,,, thereby enhancing the capture of
damage features and background factor information from the
surrounding membrane surface, and compensating for the
limitations of the Bottleneck model in deep networks. It may not
effectively capture the shortcomings of continuous folds and cracks
on the membrane surface, as well as the background interference
caused by the warp and weft weaving of the fabric fibers within the
membrane material. Then the data is spliced by the joint feature
extractor fjy; through the Concat layer and subjected to batch
normalization and PReLU operations. These features are used to
capture the details of the input data and the information in the
broader area. Finally, the information output by fj,; is captured by
f4lo and utilized to enhance the global information of the entire
input image, which suppresses the noise channel and enhances the
key channel, retaining features sensitive to low-contrast damage
and improving the detection ability of small wrinkles, slight
smudges, and scratches. The context information is extracted by
global average pooling and two fully connected layers and further
processed. Finally, it is combined with the original information
output by fj,; to enhance the learning of damage features by the
joint feature learner.

10.3389/fcomp.2025.1700167

4 Experiments

4.1 Dataset

Membrane structures are typically used as roofing materials for
outdoor buildings. Due to long-term exposure to the natural
environment, they will naturally withstand the influence of complex
external environmental factors such as wind, rain, and snow, resulting
in different types of surface damage. The damage comes in various
types, sizes, and shapes. According to the inspection index in the
technical specification.

Based on the membrane structure (CECS, 2015; Yu et al., 2023)
and on-the-spot investigations of tensile membrane building
structures in various locations, the five common damage typescrack,
wrinkle, scratch, tear, and smudge are selected as the research object,
as shown in Table 1.

Since there is no publicly available dataset for identifying surface
damage in membrane structures, 2,175 original damage samples were
collected through various methods, including actual shooting and
network downloads, according to the five types of damage listed in
Table 1. The samples were removed from invalid picture samples, such
as blurring and repetition, and a total of 2035 damaged picture
samples were finally obtained. The pattern is shown in Figure 7.

Subsequently, the collected image samples are cropped, and the
image is uniformly adjusted to 1,080 x 1,080 pixels. To enrich the
dataset, enhance its robustness, and improve the network model’s
generalization ability in detecting surface damage features, we simulate
these features—the state of the membrane structure in more complex
environments. The sample groups in the dataset have been changed.
Luminance, random part clipping, random angle rotation, random pixel
loss, random scale scaling, vertical mirror flipping, horizontal mirror
flipping, and other data enhancements expand the dataset to 3,930
pictures. Different data augmentation methods are shown in Figure 8.

Labellmg software is used to perform image annotation and label
generation on the collected images. The annotation interface is shown
in Figure 9. The rectangular box is used to mark the position

FIGURE 6
Structure of CGBlock.
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TABLE 1 Examples, characteristics, and causes of common damage types of membrane structures.

Types Examples Characteristics Causes
Crack Linear cracks inside the membrane material Stress, Fatigue
Prestress loss, compression, or
The irregular folding shape of the membrane
Wrinkle folding during transport or storage
material
of membrane materials
Scratch Lines or depressions Surface impact treatment
Local fracture, separation, or
Irregular-shaped holes, accompanied by
Tear internal crack propagation occurs
internal fracture fiber exposure
under the action of external force
Smudge Flakes and strips of dirt on the surface Pollutant attachment

containing the target damage type. Some of the images contain
multiple annotations of multiple surface damage types. The text file in
YOLO format is used to form a sample set. After the annotation is
completed, all images are divided into a training set, a verification set,
and a test set. The specific numbers are 2,700 images for the training
set, 615 images for the verification set, and 615 images for the test set.

4.2 Training details
According to the depth of the model and the amount of

calculation, YOLO11 is divided into five different models: n, s, m, 1,
and x (Jocher and Qiu, 2024). In this experiment, YOLO11s is selected

Frontiers in Computer Science

as the baseline model. YOLO11s is a small-scale model in the YOLO11
series. It has a small model volume and calculation amount while
ensuring a high detection accuracy. It is suitable for the real-time
detection environment required for industrial membrane structure
detection. According to the experimental content, ablation
experiments, module comparison experiments, and detection model
comparison experiments were carried out. The dataset used in the
experiment is a self-built membrane structure surface damage
(MSSD). To ensure the fairness of the comparison, all the comparison
algorithms and ablation experiments in this experiment are completed
under the same experimental conditions and training parameters.

In this experiment, the Windows 11 operating system is used.
The GPU model used in the experiment is the NVIDIA GeForce
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FIGURE 7
Sample acquisition image. (A) Front; (B) back; (C) distant view; (D) close view; (E) front lighting; (F) back lighting.

FIGURE 8
Different data augmentation methods: (A) original figure; (B) changing brightness; (C) random cropping; (D) rotating; (E) random pixel missing;
(F) random scale; (G) vertical flip; (H) horizontal flip.

RTX 4070 Super, with 12 GB of memory. The CPU model is 4.3 Performance evaluation index

Intel(R) Core (TM) i9-14900K, 3.2 GHz; the Python version is

3.9.20. The deep learning framework and version used are PyTorch To objectively evaluate the experimental results of the
2.0.0, and the CUDA version is 11.8. The experimental parameters  improved model presented in this paper, precision (P), recall (R),
are shown in Table 2. model parameters, as well as Mean Average Precision (mAP) and
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TABLE 2 Experimental related training parameters. 1
P 9p AP = IOP(R)dR (6)
Parameter Value
- C
Optimizer SGD 1
mAP :—ZAP,- (7)
Epochs 250 i-1
Batch Size 16
Workers 8 .
In the formula, TP is the number of samples that the model
Learning Rate 0.01 correctly predicts the positive samples, FP is the number of negative
Images Size 640 samples misjudged as positive samples, FN is the number of
Weight Decay 0.0005 positive samples misjudged as negative samples, C is the total
number of categories in the detection task, and AP, is the average
Momentum 0.937

floating-point operations per second (FLOPS), are used as
indicators to assess the model. As shown in Equation 4, the P refers
to the proportion of correctly detected positive samples among all
predicted positive samples, as shown in Equation 5, the R is the
proportion of correctly detected positive samples among all actual
positive samples., as shown in Equations 6, 7, mAPs, refers to the
mAP of all categories when the IoU threshold is 0.5 in the detection
task, reflecting the model’s generalization ability in multi-category
scenarios. mAPs, ¢s measures the average precision of the model
across IoU thresholds from 0.5 to 0.95, and FLOPS represents the
number of floating-point operations performed by the model, used
to evaluate computing resource requirements and assess the
complexity of the algorithm model. The calculation formula of
some indexes is as follows:

TP

P=—— (4)
TP+ FP

R:L (5)
TP+ FN
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precision of every category.

The loss function is used to measure the difference between the
predicted value and the real value of the model in the target detection
task, which directly affects the performance of the model. The loss
evaluation indicators in YOLO include three types: Bounding Box
Regression Loss (box_loss), Objectness Loss (obj_loss), and
Classification Loss(cls_loss). It can be seen from Figure 10 that after
250 rounds of training, the loss function curves of the two groups tend
to converge. In the classification loss statistics of the validation set, the
value of EAC-YOLO convergence is slightly lower than that of the
YOLO11 model, which has a slight advantage.

4.4 SPPF contrast experiment

To verify the superiority of the reconstructed SPPF-
ECA. Convolutional Block Attention Module (CBAM) (Woo et al.,
2018), Efficient Multi-Scale Attention (EMA) (Ouyang et al., 2023),
Coordinate Attention (CA) (Hou et al., 2021), Large Separable Kernel
Attention (LSKA) (Lau et al., 2024), and SPPF fusion are compared
with SimSPPF (Li et al,, 2023), BasicRFB (Liu and Huang, 2018),
FocalModulation (Yang et al., 2022), and SPPF in the baseline model
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FIGURE 10
Comparison of loss curves for training of the two models. (A) YOLO11 (B) EAC-YOLO.
TABLE 3 Adding experiments of different pyramid pooling modules.
Model P/% R/% mMAPs,/% FLOPS/G Params/M
SPPF 88.2 81.5 86.5 21.3 9.41
SimSPPF 89.1 81.0 86.6 21.2 9.42
FocalModulation 87.0 75.1 82.5 21.6 9.83
BasicRFB 88.9 80.3 85.9 21.8 10.08
SPPE-CBAM 87.5 77.3 83.8 22.2 10.46
SPPF-EMA 90.1 80.8 86.1 21.6 9.43
SPPE-CA 89.8 81.8 86.9 21.4 9.52
SPPE-LSKA 88.5 82.2 86.5 22.1 10.35
SPPF-ECA 90.8 81.1 87.2 21.3 9.41

in the same way. A comparative experiment was conducted using the
MSSD dataset. The evaluation indices were selected to compare the
precision, recall, mAPs,, parameter quantity, and FLOPS. The
experimental results are shown in Table 3.

From the analysis results of Table 3, it can be seen that:

(1) When the attention mechanism layer is added at the same
position in the SPPF module of the baseline model, although
the R of the SPPF-ECA model is slightly reduced, FLOPS and
parameters remain unchanged. The P and mAP;, reached 90.8
and 87.2%, representing improvements of 2.6 and 0.7% over
the baseline values of 88.2 and 86.5%, respectively. FLOPS and
parameters remain unchanged.

The SPPF-LSKA model has the highest R, which is 0.7% higher
than the model, but the improvement effect of the P and the
mAP;, is not apparent enough, and the number of parameters
and FLOPS increase by 0.94 M and 0.9G, respectively. Excessive
parameters will increase the computational burden of
the model.

The parameter quantity and FLOPS of the model SimSPPF are
the lowest, but the optimization effect on the R and the mAP;,

©)

is not ideal.
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The indicators of the experimental results show the
effectiveness of SPPF-ECA deployed in the model. To further verify
the effect of each module in the practical application scenario of
membrane structure surface damage detection, Grad-Cam
(Selvaraju et al., 2020) was used to generate heat maps of the above
modules for identifying small target damage features, and each
improved module was visually evaluated. In the heat map, the
darker the color of the red area, the greater the calculation weight
of the part, and the higher the confidence of the test results. The
results are shown in Figure 11.

It can be seen from Figure 11 that most of the improved modules
have a small red area corresponding to the damage of the original
image in the detection heatmap, indicating that the attention to the
damaged parts is low. The yellow and green color distribution of the
damage background is generally higher, and the suppression effect of
background interference factors is poor.

There are some shortcomings in the application of small target
damage detection, such as small holes and scenes with complex
background interference. As shown in Figure 10], the red area
calculated by SPPF-ECA has the highest coincidence degree with the
corresponding damage area in the original image. The color
distribution of the damaged background is lower, indicating that the
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FIGURE 11

(G) SPPF-EMA; (H) SPPF-CA; (1) SPPF-LSKA; (J) SPPF-ECA.

The heatmap drawing results of each model detection. (A) Original figure; (B) SPPF; (C) SimSPPF; (D) FocalModulation; (E) BasicRFB; (F) SPPF-CBAM;

TABLE 4 Ablation experimental results.

ADown C3k2- mAPs,% mMAPs,_ FLOPS/G Params/M Size/
CGBlock 05/ % MB
v 90.8 81.1 87.2 57.3 21.3 9.41 19.2
v 90.1 80.5 86.5 58.4 17.2 7.50 154
v 90.1 80.6 86.0 57.6 20.0 8.68 19.3
v v 80.2 81.6 87.0 57.9 15.9 6.76 13.9
v v 89.7 81.3 86.7 57.3 20.0 8.68 17.7
v v 90.2 81.9 87.2 59.1 17.2 7.50 7.50
v v v 89.4 83.1 87.5 58.4 15.9 6.76 13.9
module can focus more accurately on the damaged area and minimize number of parameters and calculations. This is because the
background interference factors to the greatest extent. strategy of replacing the fully connected layer with a
convolution in the ECA introduces fewer parameters while
completing the channel attention calculation.
4.5 Ablation experiment (2) When the CGBlock and ADown are introduced separately,
the number of parameters is reduced by 0.73 M and
To evaluate the influence of each algorithm module on the surface 1.91 M, and the P of both models reached 90.1%. At the
damage identification and detection model of fabric membrane same time, the mAP50-95 is increased by 0.4% when the
structure, this experiment carried out multiple sets of ablation ADown module is introduced, with a slight decrease in R,
experiments through the gradual introduction of SPPF-ECA, ADown, demonstrating the effectiveness of introducing a
and CGBlock modules, and different combinations under the same single module.
configuration environment, and the performance evaluation indexes (3) When the SPPF-ECA and ADown modules are introduced at
in the results were counted. It can be seen from the data in Table 4. the same time, it can be seen that P of the model(90.2%) is
increased by2% by the baseline model(88.2%), the R and
(1) When the SPPF-ECA module is introduced, P and mAPs, mAP50 reached 81.9 and 87.2%, respectively, representing
reach 90.8 and 87.2%, respectively, representing absolute absolute improvements of 0.4 and 0.7% over the baseline
improvements of 2.6 and 0.7% over the baseline model. At the model, which makes up for the deficiency of the R when
same time, it almost does not bring about an increase in the SPPF-ECA is introduced alone. At the same time, the
Frontiers in Computer Science 12 frontiersin.org
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mAP50-95 index increased by 1.1%, and the parameter
quantity decreases by 1.91 M, which demonstrates the
effectiveness of the combination of the two. The combination
of the two combines the efficient channel attention
mechanism with the high down-sampling efficiency
application. The ability to retain the characteristics of minor
surface damage on the fabric membrane surface is
significantly improved.

After introducing C3k2-CGBlock based on the two modules,
although P is 0.8% lower than that of the first two modules, it
is still 1.2% higher than the baseline model. At the same time,
R and mAP50 reached 83.1 and 87.5%, respectively,
representing absolute improvements of 1.6 and 1.0% over the

(4)

baseline model. The best performance was observed across all
groups of experiments, with mAP50-95 increasing by 0.4%.
The ADown-CGBlock model and the ECA-ADown-CGBlock
model had the lowest number of parameters in all groups.
Compared with the former, the introduction of the number of
individual parameters brought by ECA is almost negligible; the
FLOPS, parameters, and model volume reached 15.9G, 6.76 M,
and 13.9 MB, which decreased by 25, 28 and 28% compared
with the original model, which met the requirements of a
lightweight model.

To visually show the actual effect of the improved algorithm, this
experiment compares the EAC-YOLO model with the YOLO11 model
to visualize the selected multiple images. The results are shown in
Figure 12.

As can be seen from Figure 12:

(1) In the identification of crack damage, YOLOL11 is missing in
the minor target ridge damage, and a small number of
transverse cracks in the dataset of MSSD are mistakenly
detected as scratch damage. The EAC-YOLO model performs
well, which shows the ability of the added ECA and the
ADown down-sampling operator to extract the characteristics
of minor target damage. At the same time, ECA optimizes the
distinction between confusing features in the case of less
distribution of transverse crack damage.

In the identification of wrinkle damage, the YOLO11 model
has missed detection when identifying wrinkle damage with

@

low background contrast, and there is a case of repeated
identification of the same feature. At the same time,
EAC-YOLO demonstrates a strong ability in low-contrast
damage detection. The positioning of damage features is also
more accurate, further demonstrating the effectiveness of the
CGBlock module addition.

In the identification of scratches and tears, YOLO11 misdetects
the background as a damage feature when there are complex
background factors around the damage, while in EAC-YOLO,
CGBlock plays a role in combining local and global features,
and there are a few cases of background factors. In addition,
the tear damage has the characteristics of multiple forms, and
the randomness of its shape brings some difficulties to the
feature extraction work. Especially in the state of image
enhancement simulating a complex environment, its feature
information is further affected, which leads to the situation that
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the baseline model is easy to causing missed detection.
However, we added the ECA to the baseline model to improve
the feature expression ability of the model, focusing on the
deep feature information of the tear part and reducing the
missed detection.

In the identification of smudge features, EAC-YOLO shows
that it has certain advantages in the learning of different scale

(4)

feature forms of the same category. In the face of the
characteristics of strong randomness of state distribution and
different morphological scales of smudges, ADown has
stronger multi-scale feature learning ability than Conv.

4.6 Comparative experiments of YOLO
series algorithms

To evaluate the effectiveness of the EAC-YOLO algorithm more
objectively, this paper conducts performance comparison experiments
with other YOLO algorithms, including YOLOvV3-tiny, YOLOV5s,
YOLOv6s, YOLOv8s, YOLOv9s, YOLOv10s, YOLOl11s,
YOLO12s. The experimental results are shown in Table 5.

and

From Table 5, we can see that among all the model
experimental comparisons, the P of EAC-YOLO is the highest,
reaching 0.894, and R, mAP5,, and mAP;, s are the best, reaching
83.1, 87.5, and 58.4%, respectively. In the comparison model, the
YOLO11 model performs best in terms of R, mAPs,, and mAPs,.
o5, achieving 81.5, 86.5, and 58%, respectively. Meanwhile, the
EAC-YOLO model increases by 1.6, 1.0, and 0.4% on this basis.
And its computational complexity, measured in FLOPS, is 15.9G,
second only to the YOLOv3-tiny model. In terms of the number
of parameters and the model volume, EAC-YOLO has the lowest
number of parameters, with both indicators approximately 28%
lower than those of the YOLO11 baseline model. The smaller
volume model achieves higher detection accuracy, making it
more suitable for mobile terminal deployment and meeting the
need for model lightweight improvement.

To further verify the superiority of the EAC-YOLO model,
Figure 13 illustrates the overall trend of precision, recall, loss, and
mAP;, as the epoch increases during the training process of each
model. From the diagram, it can be seen that in the Loss change
curve, the EAC-YOLO and YOLOVS curves are closest to the lower
end, indicating that the loss situation is the most ideal; in terms of
precision, recall, and mAPs,, EAC-YOLO is at the top compared
with other relative positions, and the curve is in a steady upward
trend, indicating that the model performs best under the relevant
indicators and is applied to the surface damage identification of
membrane structures. To comprehensively compare more
indicators, such as the number of parameters and the computational
complexity of the relevant models, comprehensive performance
index radar charts are drawn for different models. As shown in
Figure 14, the figure is integrated with precision, recall, mAPs,
mAP;,4s, parameters, FLOPS, model size, and other relevant
metrics. It can be seen more intuitively from the figure that the
regional graph of the EAC-YOLO model is fuller, indicating that
the number of parameters, the computational load, and the model
size are smaller. At the same time, its precision, recall, and mAPs,
are higher, resulting in better overall performance.
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FIGURE 12
Comparison of YOLO11 and EAC-YOLO detection effects.

To analyze the visual results of the EAC-YOLO model and the  there is a false detection in the area, and the area in the dotted box
comparison model in the surface damage identification of the indicates that there is a missed detection. We can see from
membrane structure, we used the files trained by each model to  Figure 15:
evaluate the effect of the test set. From the recognition results, we
selected several groups of representative results, as shown in (1) In the results of group (a), most of the models have missed
Figure 15. The area marked with a cross in the figure indicates that detection of cracks, and the (E) model and (H) model
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TABLE 5 Experimental results of the YOLO series on MSSD.

10.3389/fcomp.2025.1700167

R/% mAP50/ %
YOLOV3-tiny 83.9 76.2 81.0 47.5 14.3 9.52 18.2
YOLOV5s 88.5 79.3 85.7 55.1 18.7 7.82 16.0
YOLOv6s 84.8 77.9 83.5 52.5 42.8 16.00 32.2
YOLOVS8s 88.8 81.0 85.6 57.5 28.4 11.12 215
YOLOV9s 87.9 75.8 84.0 54.2 304 7.83 16.1
YOLOV10s 87.6 79.0 83.9 55.5 24.5 8.03 16.6
YOLOLl1s 88.2 81.5 86.5 58.0 213 9.41 19.2
YOLOI12s 88.2 79.1 85.3 55.2 21.2 9.23 19.0
EAC-YOLO 89.4 83.1 87.5 58.4 15.9 6.76 13.9
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FIGURE 13
Statistical comparison of training indicators for different YOLO models. (A) Precision; (B) Recall; (C) Loss; (D) mAPs,.

mistakenly damage the environmental objects other than
the membrane structure. EAC-YOLO has a more correct
identification of crack damage. This is because the crack
itself has the characteristics of high shape randomness,
multi-scale, small target features, etc., and ordinary feature
extraction methods may be difficult to solve these problems
in a targeted manner. The pooling method of ADown
introduced in this paper improves the sensitivity to multi-
scale and multi-morphological crack features in the down-
sampling calculation process of the model. The problem of
missed detection caused by different scales and variable
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shapes of partial damage on the surface of the film is solved.
At the same time, the model combined with the attention
mechanism reduces the damage weight in the picture,
reduces the interference effect, and improves the recognition
ability of small target features.

In the results of group (b), the tearing feature target in the
image is larger, but the damage influences the background
texture interference. In this environment, reducing the
surface texture interference of the membrane material can
bring higher confidence for recognition. Among the results
of all groups, the (I) group has the highest confidence,
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FIGURE 14
The radar map drawing results of each model detection.

which is partly due to our introduction of the CGBlock
structure, which simplifies the C3k2 structure while
dynamically learning channel weights through group
convolution and global average pooling and lightweight
fully connected layers, suppresses irrelevant channels, and
enhances key feature channels, reducing the negative
background effects.

In the results of group (c), we can see that, in addition to
the (E) model and (I) model, most of the models have
missed the identification of such damage as folds, and the
identification of unidirectional folds is mainly due to the
following points. (1) This type of damage has a high shape
radial folds,
irregular accumulation folds that vary greatly in their

randomness, unidirectional folds, and
manifestations, and the overall recognition confidence of
the damage is not high; (2) the contrast between the
damage and the material background is low, which is easily
to cause missed detection. In this regard, we introduce the
dilated convolution in the CGBlock structure introduced
in the original C3k2 structure to expand the receptive
field, and extract the defect features and the background
factors of the surrounding membrane surface, thus
alleviating the low contrast problem caused by the multi-
form wrinkles and poor lighting conditions.

5 Conclusion

To achieve the automatic identification of surface damage on
membrane structures and address the complexity of current
mainstream detection algorithms, which are unsuitable for
deployment on resource-constrained devices, we construct a
membrane structure surface damage dataset named MSSD and
propose a lightweight EAC-YOLO algorithm. Firstly, the ECA
mechanism is introduced into the SPPF module and restructured,
with almost no change in parameters; the mAPs, and precision
increased to 90.8 and 87.2%, from 88.2 and 86.5%. Through the
heatmap test results, it is found that the introduction of this
module has a good ability to extract features of small targets, such
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as holes, and reduces the interference of complex background
textures. Secondly, to enhance the model’s multi-scale feature
learning ability and further reduce the number of parameters, the
ADown down-sampling operator is introduced. Compared to
previous work, mAPs, ¢; was increased from 57.3 to 59.1%, the
number of parameters was reduced by 1.91 M, and FLOPS were
decreased by 4.1G, thereby optimizing the model’s ability to
extract features of multi-scale tears, smudges, etc. Finally, the
CGBlock is introduced, and the C3k2 module is restructured.
The number of parameters and FLOPS are reduced to 6.76 M and
15.9G, respectively, suppressing the texture background noise
channels and enhancing the key information channels. Overall,
the precision, recall, and mAPs, of the EAC-YOLO model reach
89.4, 83.1, and 87.5%, respectively. The number of parameters,
computational cost, and model size are reduced by 28, 25, and
28%, respectively. Compared with the YOLO series algorithms,
the comprehensive performance of EAC-YOLO is the most
outstanding, optimizing the feature extraction ability for multi-
type,
surface damage.

multi-scale, and low-contrast membrane structure

In this paper, a new method for damage identification of
membrane structures is proposed, which solves some problems
in the process of identification. However, there are still many
problems to be solved, such as:

(1) A certain number of damaged samples of membrane
structure are collected. However, due to the limited
number of membrane structures in reality and the high
maintenance frequency of some membrane structures, the
surface damage of many structures is less, and the number
of samples collected is limited. At the same time, the
surface damage types of the membrane structure require
further investigation and enrichment.

We
identification of membrane structure surface damage.

have made in the automatic

(2) some progress
According to the current test results, among all the
recognition types, common tears, cracks, and smudges can
be accurately identified. This shows that the relevant
modules we introduce can learn small target features,
multi-morphological and multi-scale features, and
low-contrast features. However, for the recognition of
scratches and wrinkles, although there is a certain room
for improvement, since these two types of damage are
often dense when they occur, and the uncertainty of
direction and shape is high. The probability of overlap is
also high, which presents significant challenges to the
labeling work, and the recognition accuracy needs to be
improved. The recognition accuracy of these two types of
damage needs to be further investigated. For the
improvement of model detection accuracy, there are
mainly the following aspects:

Add more damage samples to enhance the generalization of
the model.

Select a more complex and advanced neural network
training model. These models may have a more powerful
learning ability but may bring more computation and

burden to model training.
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¢ In terms of the lightweight design of the model, the model
we proposed reduces the calculation amount, parameter
quantity, and model size by about one-third of the volume,
respectively. However, from the perspective of the model
as a whole, the number of model parameters of YOLO11s
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reaches nearly 10 million, and the complexity is not low,
which means that there is still a lot of room for
improvement in lightweight processing, especially the
head part, which is expected to propose better
improvement strategies.
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FIGURE 15
Visualization results of damage identification in comparative models. (A) YOLOv3-tiny; (B) YOLOvS5s; (C) YOLOv6s; (D) YOLOVSs; (E) YOLOVOs;
(F) YOLOV10s; (G) YOLO11s; (H) YOLO12s; (I) EAC-YOLO.

In the future, the proposed method is expected to be deployed
on high-definition camera groups or inspection drones
surrounding large membrane structures, such as stadiums, which
will automatically collect membrane surface image data regularly
along preset routes. These data are transmitted in real time over
the network to the cloud-based diagnostic center, where the
algorithm is deployed. Efficiently complete a comprehensive
physical examination of the entire building in a short period of
time and automatically generate detailed reports including the
type, location, size, and severity of damage. It lays a solid
foundation for non-destructive, non-contact, full-field rapid and
accurate diagnosis, and has certain significance for the
maintenance of membrane structure.
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