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EAC-YOLO: a surface damage 
identification method of 
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Different surface damage can cause harm to membrane structures, and traditional 
manual inspection methods are inefficient and prone to missed detections and 
false alarms. At the same time, the current mainstream detection algorithms are 
highly complex, which is not conducive to deployment on resource-constrained 
devices. To achieve automatic identification of typical surface damage in membrane 
structures, we construct a dataset comprising five damage types based on common 
types of surface damage in membrane structures and propose a lightweight 
identification algorithm for membrane structure surface damage, specifically 
EAC-YOLO. Firstly, the SPPF module is reconstructed, and the ECA lightweight 
attention mechanism is introduced to enhance the model’s ability to distinguish 
easily confused features. Secondly, ADown is introduced to replace the original 
down-sampling method, improving the retention ability of multi-scale damage 
features. Finally, the CGBlock and C3k2 modules are combined and reconstructed 
in the neck network to reduce the interference of damage background factors 
and capture more features of the damage and its surrounding environment. 
Experimental evaluation results on the established dataset show that the improved 
mAP50 value reaches 87.5%, and the number of parameters, computational cost, 
and model size are reduced by approximately 28, 25, and 28%, respectively, 
compared with the original model, demonstrating the advantages of a small size 
and high accuracy.
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1 Introduction

In recent years, membrane structures have gained widespread popularity due to their 
lightweight and aesthetically pleasing appearance.

However, under the appearance of its novel shape and unique appearance, it hides the 
inherent characteristics of high sensitivity to local damage. Small holes, stain corrosion and 
small folds on the surface of membrane materials may cause the failure of some or even the 
whole structure under the action of prestress, wind, rain and snow during use, which poses a 
threat to public safety that cannot be ignored. Affected by the long-term external complex 
environment, there are many types of damage on the surface of the membrane structure. It is 
very important to define and classify the types of damage in advance, collect many different 
damages on the surface of the membrane structure in use in an all-round way, and take timely 
repair and maintenance measures according to the types of damage.
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Traditional damage detection methods rely on engineers ‘manual 
visual and empirical judgment. While the accuracy is poor, the data 
results are susceptible to engineers ‘subjective influence. It is difficult 
to provide an objective and quantifiable evaluation basis for low 
contrast or initial small damage (Tang et al., 2017; Psarommatis et al., 
2020). At the same time, some large-scale membrane structure 
buildings with high height bring great difficulty to manual detection. 
This technical bottleneck reflects that the development of an efficient, 
accurate, and convenient damage identification system is no longer a 
simple technical pursuit, but an urgent need to ensure the long-term 
safety of such critical infrastructure.

With the development of computer and artificial intelligence 
technology, machine vision has begun to be applied in the field of 
surface damage detection. This method captures the surface image of 
the product using an appropriate light source and image sensor. It uses 
the corresponding image processing algorithm to extract the feature 
information of the image. Then, according to the feature information, 
the surface damage location, identification, grading, and other 
discrimination and statistics are carried out, including storage, query, 
and other operations. Compared to the traditional manual detection 
method, this method offers higher real-time performance and 
accuracy and exhibits specific working capabilities in harsh and 
extreme environments. At the same time, convolutional neural 
networks (CNNs) have received extensive attention in the field of 
industrial defect or damage detection due to their more powerful 
feature learning and feature expression capabilities. Surface defects or 
damage detection based on deep learning learns feature representation 
from a large amount of data by constructing a neural network model 
to realize automatic identification and classification of defects and 
damage. The rapid development of machine vision endows the 
machine with the ability of visual perception and realizes the efficient 
and stable acquisition of massive image information on the surface of 
the structure. The rise of deep learning means that on the basis of 
visual perception, it combines the ability to understand and judgment 
of the machine itself. The integration of the two essentially constructs 
a closed loop from perception to cognition. In the field of defect 
detection, it has been realized the transformation from artificial vision 
to machine perception, from subjective judgment to data analysis. It 
has laid a solid foundation for the rapid and accurate diagnosis of 
non-destructive, non-contact, and full-field, and has become an 
urgent evolutionary direction in the field of structural surface 
condition monitoring.

Some scholars combine the convolutional neural network method 
with machine vision to learn the application of surface defect detection 
in different fields. He et al. (2020) designed a steel plate defect 
detection system based on deep learning and achieved 74.8/82.3 mAP 
using 300 candidate sets on the baseline network ResNet34/50. The 
detection speed of 20 ft. per second on a single GPU achieves 92% of 
the above performance. Aiming at the problems of slow detection 
speed and low detection accuracy of traditional steel surface defect 
detection methods, Wang X. et al. (2022) proposed a steel surface 
defect detection algorithm based on improved YOLOv7 and obtained 
80.2% mAP and 81.9% mAP on the GC10-DET dataset and 
NEU-DET dataset, respectively. Xue and Li (2018) proposed a fully 
convolutional network (FCN) classification model and implemented 
an automatic intelligent classification and detection method for tunnel 
lining defects. At a test time speed of 48 ms per image, the best set 
accuracy of the proposed model exceeds 95%. Aiming to address the 

issues of low network accuracy, slow speed, and numerous model 
parameters in defect detection of printed circuit boards (PCBs), Tang 
et al. (2023) proposed an improved PCB surface detection algorithm 
based on YOLOv5, which achieved a 95.97% mAP at 92.5 FPS. Dong 
et al. (2020) proposed a pyramid feature fusion and global context 
attention network for pixel-level detection of surface defects. On the 
four datasets of NEU-Seg, DAGM 2007, MT defect, and Road defect, 
the average pixel accuracy reached 82.15, 74.78, 71.31, and 79.54%, 
respectively. Xu et al. (2023) proposed a YOLOv5-IMPROVEMENT 
model for intelligent defect recognition of weld X-ray films based on 
deep learning, achieving a precision and recall of 92.2 and 92.3%, 
respectively. To solve the problem of false positives and missed 
detection of casting defects in X-ray inspection. Lin et al. (2018) 
proposed a robust detection method based on a vision attention 
mechanism and feature map deep learning. The accuracy of defect 
detection is greater than 96%. Lv et al. (2020) proposed an end-to-end 
defect detection and classification network based on a Single-Shot 
Multibox Detector (SSMD) for metal surface defect detection. Luo et 
al. (2021) proposed a decoupled two-stage target detection framework 
based on CNN for non-significant defects on flexible printed circuit 
boards and the similarity between different defects, which achieves 
mAP of 94.15%. Liu et al. (2024) proposed a wind turbine damage 
detection algorithm based on a YOLOv8 design, which achieved 
79.9% mAP.

However, there are still some issues when using the traditional 
target detection model to detect surface damage in membrane 
structures. For example:

	(1)	 The dataset of surface damage of membrane structures is 
scarce, and there are many types of surface damage and 
significant morphological differences. The contrast between the 
damage and the background is low, which can easily lead to 
missed detection.

	(2)	 The surface coverage area of the membrane structure is large. 
When using mobile devices such as drones to detect, the 
requirements for computer hardware and storage are high.

In the research related to handling complex background textures. 
Aiming at the complex background of tunnel surface and the poor 
performance of artificial feature extraction methods in detecting 
tunnel defects, Xu et al. (2021) proposed a tunnel defect detection 
method based on Mask R-CNN, based on path enhanced feature 
pyramid network (PAFPN) and edge detection branch. Based on the 
YOLOv4 model. Chen et al. (2022) embedded Gabor kernels into 
Faster R-CNN, a two-stage training method based on a genetic 
algorithm (GA) and backpropagation, which was designed to optimize 
the application of a CNN model in fabric defect detection. Li et al. 
(2023) proposed an automatic defect detection scheme for wire and 
arc additive manufacturing (WAAM) by combining a channel-level 
attention mechanism, multiple spatial pyramid pooling, and an 
exponential moving average, aiming to address the challenges of 
complex defect types and a noisy detection environment. Liu et al. 
(2023) proposed an efficient feature extraction (EFE) module, 
suggesting that the network achieves a satisfactory balance between 
performance and efficiency. Gao et al. (2022) proposed an improved 
Variant of the Swin Transformer, which enhances feature transmission 
between windows by designing a new window shift scheme, making 
the framework more capable of serving as the backbone for defect 
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detection. The scheme achieves 94.5% mAP at a rate of at least 42 
frames per second. Zhao et al. (2021) proposed a multi-scale fusion 
training network using deformable convolutions to improve the 
detection of small and complex defects on steel surfaces, which 
increased mAP by 0.128% compared to the baseline. Tao et al. (2018) 
proposed a deep convolutional neural network cascade autoencoder 
(CASAE) for segmenting and positioning surface defects, addressing 
the problem of metal surface defect detection in complex industrial 
scenarios. Zhang et al. (2024) proposed an anchor-free network based 
on DsPAN for small target detection, given the characteristics of multi-
scale, multi-type, and multi-small targets, and complex background 
interference on the surface defects of industrial products, which 
achieves mAP of 80.4, 95.8, and 76.3% on the three public datasets, 
respectively. To improve the recognition accuracy of defect targets that 
are difficult to distinguish under complex tunnel background and 
illumination conditions, Zhou et al. (2022) proposed a YOLOv4-ED 
model based on deep learning. The mAP, F1 score, model size, and FPS 
of the model reached 81.84, 81.99%, 49.3 MB, and 43.5 fps, respectively. 
To improve the detection performance of small targets. Zeng et al. 
(2022) proposed a lightweight enhanced multi-scale feature fusion 
method, ABFPN, for detecting small defects on the surface of PCBs, 
achieving a mAP50 of 85.59%. Yuan et al. (2023) proposed an adaptive 
lightweight battery current collector defect detection model, DGNet, 
which achieved 91.8% mAP on the BCC surface defect dataset, the 
model size is 4.0 M, 3.7 GFLOPS. Li et al. (2022) proposed a 
lightweight salient object detection in optical remote sensing images 
(ORSI-SOD) solution called CorrNet, which reduced the number of 
parameters to 4.09 M, and solved the problem of high computational 
memory and high cost. Zhang et al. (2023) combined the inverse 
residual architecture with the coordinate attention (CA) mechanism 
and constructed the coordinate attention movement (CAM) backbone 
network for feature extraction, and designed an efficient, lightweight 
CNN model for surface defect detection of industrial products. Wang 
Y. et al. (2022) proposed a lightweight PCB defect detection model 
based on the improved YOLOX-MC-CA, which introduces 
CSPDarknet and coordinate attention (CA). Zhao et al. (2024) 
developed a lightweight defect detection model for turbine blades 
based on ShuffleNetv2 and coordinate attention (SN-CA-SSD) in the 
Internet of Things using single-shot multi-box detection, which 
achieves a balance between precision and efficiency. Shen et al. (2024) 
proposed a multi-scale interactive (MI) module and introduced it into 
a lightweight multi-scale interactive network (MINet) to perform real-
time salient object detection on strip surface defects.

However, these methods are often targeted at solving the problem 
of processing a specific detection target, and there is still a lack of feature 
processing for surface damage in membrane structures. Based on 
several of the above methods, we utilize the representative YOLO model 
in the single-stage target detection algorithm to design our damage 
identification model. The YOLO model has more advantages in speed, 
accuracy, and ease of use, and has become one of the widely used target 
detection frameworks in industry and academia. By summarizing the 
morphological characteristics of the recognition target, the feature 
extraction module and the down-sampling operator in the original 
model are improved, aiming to enhance the model’s learning ability in 
recognizing the surface damage characteristics of various complex 
membrane structures. At the same time, taking into account the actual 
application scenarios, the model structure is simplified while ensuring 
accuracy, making it more conducive to the deployment of mobile 

terminals. In the future, the algorithm can be deployed on mobile 
devices such as drones to replace manual detection methods to perform 
surface damage detection and identification of membrane structures. 
Combined with computer vision, it can realize automatic identification, 
accurate positioning, and quantitative intelligent evaluation of 
membrane structure surface damage. We construct a dataset of 
membrane structure surface damage and propose a membrane structure 
surface damage identification algorithm based on EAC-YOLO. The 
main contributions of EAC-YOLO are included as follows.

	(1)	 The SPPF module in the backbone is improved, and SPPF-ECA 
is proposed to enhance the identification of small targets and 
confusing damage features.

	(2)	 ADown operator is introduced to optimize the original down-
sampling method and reduce the number of parameters.

	(3)	 The CGBlock module in CGNet is introduced into the neck 
network to construct C3k2-CGBlock, which reduces the 
number of parameters and suppresses the influence of complex 
background factors on the membrane surface. It achieves a 
better feature expression ability for surface damage types of 
membrane structures and reduces the model’s complexity 
while ensuring the accuracy requirements.

2 Related works

The YOLO (Redmon et al., 2016) series is a crucial algorithm in 
the field of target detection, known for its efficient Single-stage 
detection architecture. YOLO11 (Jocher and Qiu, 2024) is the latest 
generation of real-time target detection model, launched by the 
Ultralytics team in 2024, which has been comprehensively optimized 
in terms of accuracy, speed, and ease of use.

The structure of YOLO11 is shown in Figure 1. In the backbone 
and neck network of YOLO11, the latest C3k2 module is introduced 
to extract features. C3k2 is inherited from the C2f module in YOLOv8 
(Jocher and Qiu, 2024). The choice of whether to use the C3k layer is 
added, which makes the model more flexible in scenes requiring more 
flexible feature extraction, such as those involving different receptive 
fields—advantages, while retaining the characteristics of C2f ’s ability 
to perform fast feature fusion. SPPF is a pyramid pooling module 
proposed in YOLOv5. It is mainly based on the idea of Spatial Pyramid 
Pooling (SPP) (He et al., 2015) and obtains multi-scale feature 
information through pooling operations at different scales. The C2PSA 
in its backbone network combines the C2f and Position-Sensitive 
Attention (PSA) attention mechanisms, dynamically adjusting the 
attention degree of various positions through these mechanisms, 
which improves the model’s detection accuracy in complex scenes. The 
head part introduces a deep separable convolution to the CLS branch, 
reducing redundant calculations and improving efficiency.

In this paper, we use YOLO11 as the baseline model to improve 
the network structure, and a model suitable for surface damage 
identification of membrane structure is proposed.

3 Improved EAC-YOLO structure

The structure of EAC-YOLO is shown in Figure 2. The modules 
within the red dotted box in the figure represent the parts that have 
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FIGURE 2

Structure of EAC-YOLO.

been modified compared to the original model. The main 
improvements of EAC-YOLO include:

	(1)	 SPPF reconstruction. We introduce the ECAttention mechanism 
in the Concat layer to enhance the model’s discriminative ability, 

allowing it to easily distinguish between features and extract 
small target features, such as small target tears and cracks.

	(2)	 ADown operator, which improves the efficiency of down-
sampling while enhancing the ability to retain multi-scale 
features and further reduces the number of model parameters.

FIGURE 1

Structure of YOLO11.
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	(3)	 CGBlock is introduced into the neck network. This module is 
added to the C3k2 module and reconstructed to help the model 
capture the damage location and its surrounding environment 
characteristics, thereby reducing the impact of the complex 
background around the damage.

3.1 SPPF-ECA structure

Efficient Channel Attention (ECA) is a channel attention 
mechanism proposed by Wang et al. (2020) to solve the performance 
and complexity of the model. This module is improved based on 
Squeeze-and-Excitation Networks (SEAttention) (Hu et al., 2018), 
which avoids the dimensionality reduction operation of the fully 
connected layer in the channel attention module. Through the 
interaction of complete channels, the unique high-frequency features 
such as edges and textures of small damage are strengthened. ECA 
also employs a local cross-channel interaction strategy to develop an 
adaptive method for determining its kernel size k, thereby avoiding 
the need for manual tuning of k through cross-validation in fast 1D  
convolution operations. This approach enables efficient calculation of 
channel attention. The overall calculation process is as follows:

	(1)	 The input feature map is transformed from ( )H W C, ,  to 
( )C1,1,  by Global Average Pooling (GAP) aggregation, a 
convolution feature map without reducing the dimension. The 
output feature vector is:

	
( )

= =
= ∑∑

1 1

1 ,
H W

c c
i j

Z U i j
HW

	
(1)

Where N  represents the batchsize, while H , W , and C  denote the 
input height, width, and channel number, respectively. cU  is the input 
feature vector, and cZ is the output feature vector.

	(2)	 The kernel size k is determined by an adaptive method for the 
one-dimensional convolution operation. The size of the 
resulting feature map is still ( )C1,1, . The adaptive adjustment 
of the convolution kernel size satisfies:

	
( ) ( )

ϕ
γ γ

= = +2log

odd

C bk c
	

(2)

Where k represents the size of the adaptive convolution kernel, ϕ 
represents the mapping function, oddt  represents the nearest odd value 
to t, γ  and b are hyperparameters which are used to map the adjustment 
function. We take their values as 2 and 1, respectively (Wang et al., 2020).

	(3)	 The adaptive convolution kernel is applied to the one-dimensional 
convolution operation to obtain the adaptive weight of each 
channel in the feature map. A one-dimensional convolution 
operation with a convolution kernel size of k is performed. The 
convolution result is mapped to 0–1 by the sigmoid activation 
function of the output, and the weight of each channel is obtained 
as follows:

	 ( )( )ω σ= 1 kC D y 	 (3)

Where y is the input feature map, and 1C Dk is a one-dimensional 
convolution. The weighted feature map is obtained by multiplying the 
attention weight ω by the original input feature map.

The entire calculation method significantly reduces the complexity 
of the model while maintaining performance, determines the coverage 
of local cross-channel interactions, and enhances the feature learning 
and representation capabilities of the neural network.

The structure of ECA network is shown in Figure 3, and the structure 
of SPPF-ECA is shown in Figure 4. Because the features of small targets, 
such as holes, wrinkles, and cracks on the membrane surface, are sparse, 
the dimensionality reduction operation of the conventional attention 
mechanism will further weaken their identifiability. ECA directly utilizes 
one-dimensional convolution to preserve the original information of all 
channels, thereby strengthening the unique edges, textures, and other 
high-frequency features of small damage through the interaction of 
complete channels. The original SPPF structure mainly includes three 
5 × 5 pooling layers and one Concat layer, and two Conv structures. The 
size of the Conv1 structure is ( )c c1, _ ,1,1 , and the size of the Conv2 
structure is ( )c c_ 4, 2,1,1∗ , where 1c  and 2c  are the number of input 
channels and output channels, respectively, and ( )=_ 1/2c c . Therefore, 
to combine the advantages of SPPF and ECA, ECA is introduced after the 
Concat layer in SPPF, further improving the model’s feature expression 
ability through efficient channel attention calculation and an effective 
receptive field. At the same time, the lightweight attention structure has 
an almost negligible additional calculation amount for introducing the 
SPPF structure, which has advantages in the scene of membrane structure 
surface damage detection that requires considering both accuracy 
and speed.

FIGURE 3

Structure of ECA network.
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3.2 ADown operator

The down-sampling operator in YOLO is used to reduce the 
spatial size of the feature map, thereby reducing the computational 
requirements and the number of parameters. The down-sampling 
operator in the original model is a convolution with a step size of 2, 
including Conv2d, BatchNorm2d, and SiLU layers. The structure is 
relatively simple, but when dealing with small or complex texture 
damage in damage identification work, its single convolution kernel 
may not be able to capture multi-scale features, resulting in a loss of 
information. At the same time, its large parameter quantity will have 
a greater impact on the deployment of mobile terminals.

ADown (Wang et al., 2024) is a lightweight down-sampling 
operation that enhances the model’s sensitivity to various damage 
features through multi-branch processing, combining maximum 
pooling and average pooling methods. Additionally, reducing the 
number of parameters may improve computational efficiency and 

make it suitable for use in resource-constrained environments. The 
feature map first undergoes an average pooling operation to minimize 
noise interference and retain the overall texture features of the 
membrane surface; after that, the output feature map is evenly divided 
along the channel dimension. One part of the feature map, after 
equalization, captures the main features of the damage through 
convolution with a kernel size of 3. In contrast, the other part retains 
the input features after maximum pooling, reducing the amount of 
data. The result is merged with the feature map of the other part after 
a 1 × 1 convolution fusion of feature information.

After the above improvements, the computational complexity of 
the model is significantly reduced, and the feature expression ability 
is enhanced. While maintaining down-sampling efficiency, the feature 
retention ability of multi-scale surface damage is preserved, making it 
suitable for membrane structure detection tasks that require high-
precision positioning. The structure of Conv and ADown is shown in 
Figure 5.

FIGURE 4

Structure of SPPF-ECA.

FIGURE 5

Structure of down-sampling operators. (A) Conv; (B) ADown.
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3.3 C3k2-CGBlock structure

Context-Guided Network (CGNet) is a lightweight neural 
network designed for semantic segmentation, proposed by Wu et 
al. (2020). It understands the scene by simulating the context 
information of the human visual system and then performs 
effective feature extraction and fusion of context information. 
Context-Guided Block (CGBlock) is an important module in 
CGNet; the structure of CGBlock is shown in Figure 6. The input 
damage feature map of the membrane structure is compressed by 
the conv channel, and the dual-path feature extraction of locf  and 

surf  is performed.
The data is extracted in the locf  through the standard 3 × 3 

convolutional layer to extract the local features in the feature map. 
At the same time, the size of the 3 × 3 dilated convolutional 
receptive field is utilized in surf , thereby enhancing the capture of 
damage features and background factor information from the 
surrounding membrane surface, and compensating for the 
limitations of the Bottleneck model in deep networks. It may not 
effectively capture the shortcomings of continuous folds and cracks 
on the membrane surface, as well as the background interference 
caused by the warp and weft weaving of the fabric fibers within the 
membrane material. Then the data is spliced by the joint feature 
extractor joif  through the Concat layer and subjected to batch 
normalization and PReLU operations. These features are used to 
capture the details of the input data and the information in the 
broader area. Finally, the information output by joif  is captured by 

glof  and utilized to enhance the global information of the entire 
input image, which suppresses the noise channel and enhances the 
key channel, retaining features sensitive to low-contrast damage 
and improving the detection ability of small wrinkles, slight 
smudges, and scratches. The context information is extracted by 
global average pooling and two fully connected layers and further 
processed. Finally, it is combined with the original information 
output by joif  to enhance the learning of damage features by the 
joint feature learner.

4 Experiments

4.1 Dataset

Membrane structures are typically used as roofing materials for 
outdoor buildings. Due to long-term exposure to the natural 
environment, they will naturally withstand the influence of complex 
external environmental factors such as wind, rain, and snow, resulting 
in different types of surface damage. The damage comes in various 
types, sizes, and shapes. According to the inspection index in the 
technical specification.

Based on the membrane structure (CECS, 2015; Yu et al., 2023) 
and on-the-spot investigations of tensile membrane building 
structures in various locations, the five common damage typescrack, 
wrinkle, scratch, tear, and smudge are selected as the research object, 
as shown in Table 1.

Since there is no publicly available dataset for identifying surface 
damage in membrane structures, 2,175 original damage samples were 
collected through various methods, including actual shooting and 
network downloads, according to the five types of damage listed in 
Table 1. The samples were removed from invalid picture samples, such 
as blurring and repetition, and a total of 2035 damaged picture 
samples were finally obtained. The pattern is shown in Figure 7.

Subsequently, the collected image samples are cropped, and the 
image is uniformly adjusted to 1,080 × 1,080 pixels. To enrich the 
dataset, enhance its robustness, and improve the network model’s 
generalization ability in detecting surface damage features, we simulate 
these features—the state of the membrane structure in more complex 
environments. The sample groups in the dataset have been changed. 
Luminance, random part clipping, random angle rotation, random pixel 
loss, random scale scaling, vertical mirror flipping, horizontal mirror 
flipping, and other data enhancements expand the dataset to 3,930 
pictures. Different data augmentation methods are shown in Figure 8.

LabelImg software is used to perform image annotation and label 
generation on the collected images. The annotation interface is shown 
in Figure 9. The rectangular box is used to mark the position 

FIGURE 6

Structure of CGBlock.
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containing the target damage type. Some of the images contain 
multiple annotations of multiple surface damage types. The text file in 
YOLO format is used to form a sample set. After the annotation is 
completed, all images are divided into a training set, a verification set, 
and a test set. The specific numbers are 2,700 images for the training 
set, 615 images for the verification set, and 615 images for the test set.

4.2 Training details

According to the depth of the model and the amount of 
calculation, YOLO11 is divided into five different models: n, s, m, l, 
and x (Jocher and Qiu, 2024). In this experiment, YOLO11s is selected 

as the baseline model. YOLO11s is a small-scale model in the YOLO11 
series. It has a small model volume and calculation amount while 
ensuring a high detection accuracy. It is suitable for the real-time 
detection environment required for industrial membrane structure 
detection. According to the experimental content, ablation 
experiments, module comparison experiments, and detection model 
comparison experiments were carried out. The dataset used in the 
experiment is a self-built membrane structure surface damage 
(MSSD). To ensure the fairness of the comparison, all the comparison 
algorithms and ablation experiments in this experiment are completed 
under the same experimental conditions and training parameters.

In this experiment, the Windows 11 operating system is used. 
The GPU model used in the experiment is the NVIDIA GeForce 

TABLE 1  Examples, characteristics, and causes of common damage types of membrane structures.

Types Examples Characteristics Causes

Crack Linear cracks inside the membrane material Stress, Fatigue

Wrinkle
The irregular folding shape of the membrane 

material

Prestress loss, compression, or 

folding during transport or storage 

of membrane materials

Scratch Lines or depressions Surface impact treatment

Tear
Irregular-shaped holes, accompanied by 

internal fracture fiber exposure

Local fracture, separation, or 

internal crack propagation occurs 

under the action of external force

Smudge Flakes and strips of dirt on the surface Pollutant attachment
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RTX 4070 Super, with 12 GB of memory. The CPU model is 
Intel(R) Core (TM) i9-14900K, 3.2 GHz; the Python version is 
3.9.20. The deep learning framework and version used are PyTorch 
2.0.0, and the CUDA version is 11.8. The experimental parameters 
are shown in Table 2.

4.3 Performance evaluation index

To objectively evaluate the experimental results of the 
improved model presented in this paper, precision (P), recall (R), 
model parameters, as well as Mean Average Precision (mAP) and 

FIGURE 7

Sample acquisition image. (A) Front; (B) back; (C) distant view; (D) close view; (E) front lighting; (F) back lighting.

FIGURE 8

Different data augmentation methods: (A) original figure; (B) changing brightness; (C) random cropping; (D) rotating; (E) random pixel missing; 
(F) random scale; (G) vertical flip; (H) horizontal flip.
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floating-point operations per second (FLOPS), are used as 
indicators to assess the model. As shown in Equation 4, the P refers 
to the proportion of correctly detected positive samples among all 
predicted positive samples, as shown in Equation 5, the R is the 
proportion of correctly detected positive samples among all actual 
positive samples., as shown in Equations 6, 7, mAP50 refers to the 
mAP of all categories when the IoU threshold is 0.5 in the detection 
task, reflecting the model’s generalization ability in multi-category 
scenarios. mAP50-95 measures the average precision of the model 
across IoU thresholds from 0.5 to 0.95, and FLOPS represents the 
number of floating-point operations performed by the model, used 
to evaluate computing resource requirements and assess the 
complexity of the algorithm model. The calculation formula of 
some indexes is as follows:

	
=

+
TPP

TP FP 	
(4)
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In the formula, TP  is the number of samples that the model 
correctly predicts the positive samples, FP is the number of negative 
samples misjudged as positive samples, FN  is the number of 
positive samples misjudged as negative samples, C  is the total 
number of categories in the detection task, and iAP  is the average 
precision of every category.

The loss function is used to measure the difference between the 
predicted value and the real value of the model in the target detection 
task, which directly affects the performance of the model. The loss 
evaluation indicators in YOLO include three types: Bounding Box 
Regression Loss (box_loss), Objectness Loss (obj_loss), and 
Classification Loss(cls_loss). It can be seen from Figure 10 that after 
250 rounds of training, the loss function curves of the two groups tend 
to converge. In the classification loss statistics of the validation set, the 
value of EAC-YOLO convergence is slightly lower than that of the 
YOLO11 model, which has a slight advantage.

4.4 SPPF contrast experiment

To verify the superiority of the reconstructed SPPF-
ECA. Convolutional Block Attention Module (CBAM) (Woo et al., 
2018), Efficient Multi-Scale Attention (EMA) (Ouyang et al., 2023), 
Coordinate Attention (CA) (Hou et al., 2021), Large Separable Kernel 
Attention (LSKA) (Lau et al., 2024), and SPPF fusion are compared 
with SimSPPF (Li et al., 2023), BasicRFB (Liu and Huang, 2018), 
FocalModulation (Yang et al., 2022), and SPPF in the baseline model 

FIGURE 9

LabelImg labeling interface.

TABLE 2  Experimental related training parameters.

Parameter Value

Optimizer SGD

Epochs 250

Batch Size 16

Workers 8

Learning Rate 0.01

Images Size 640

Weight Decay 0.0005

Momentum 0.937
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in the same way. A comparative experiment was conducted using the 
MSSD dataset. The evaluation indices were selected to compare the 
precision, recall, mAP50, parameter quantity, and FLOPS. The 
experimental results are shown in Table 3.

From the analysis results of Table 3, it can be seen that:

	(1)	 When the attention mechanism layer is added at the same 
position in the SPPF module of the baseline model, although 
the R of the SPPF-ECA model is slightly reduced, FLOPS and 
parameters remain unchanged. The P and mAP50 reached 90.8 
and 87.2%, representing improvements of 2.6 and 0.7% over 
the baseline values of 88.2 and 86.5%, respectively. FLOPS and 
parameters remain unchanged.

	(2)	 The SPPF-LSKA model has the highest R, which is 0.7% higher 
than the model, but the improvement effect of the P and the 
mAP50 is not apparent enough, and the number of parameters 
and FLOPS increase by 0.94 M and 0.9G, respectively. Excessive 
parameters will increase the computational burden of 
the model.

	(3)	 The parameter quantity and FLOPS of the model SimSPPF are 
the lowest, but the optimization effect on the R and the mAP50 
is not ideal.

The indicators of the experimental results show the 
effectiveness of SPPF-ECA deployed in the model. To further verify 
the effect of each module in the practical application scenario of 
membrane structure surface damage detection, Grad-Cam 
(Selvaraju et al., 2020) was used to generate heat maps of the above 
modules for identifying small target damage features, and each 
improved module was visually evaluated. In the heat map, the 
darker the color of the red area, the greater the calculation weight 
of the part, and the higher the confidence of the test results. The 
results are shown in Figure 11.

It can be seen from Figure 11 that most of the improved modules 
have a small red area corresponding to the damage of the original 
image in the detection heatmap, indicating that the attention to the 
damaged parts is low. The yellow and green color distribution of the 
damage background is generally higher, and the suppression effect of 
background interference factors is poor.

There are some shortcomings in the application of small target 
damage detection, such as small holes and scenes with complex 
background interference. As shown in Figure 10J, the red area 
calculated by SPPF-ECA has the highest coincidence degree with the 
corresponding damage area in the original image. The color 
distribution of the damaged background is lower, indicating that the 

FIGURE 10

Comparison of loss curves for training of the two models. (A) YOLO11 (B) EAC-YOLO.

TABLE 3  Adding experiments of different pyramid pooling modules.

Model P/% R/% mAP50/% FLOPS/G Params/M

SPPF 88.2 81.5 86.5 21.3 9.41

SimSPPF 89.1 81.0 86.6 21.2 9.42

FocalModulation 87.0 75.1 82.5 21.6 9.83

BasicRFB 88.9 80.3 85.9 21.8 10.08

SPPF-CBAM 87.5 77.3 83.8 22.2 10.46

SPPF-EMA 90.1 80.8 86.1 21.6 9.43

SPPF-CA 89.8 81.8 86.9 21.4 9.52

SPPF-LSKA 88.5 82.2 86.5 22.1 10.35

SPPF-ECA 90.8 81.1 87.2 21.3 9.41
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module can focus more accurately on the damaged area and minimize 
background interference factors to the greatest extent.

4.5 Ablation experiment

To evaluate the influence of each algorithm module on the surface 
damage identification and detection model of fabric membrane 
structure, this experiment carried out multiple sets of ablation 
experiments through the gradual introduction of SPPF-ECA, ADown, 
and CGBlock modules, and different combinations under the same 
configuration environment, and the performance evaluation indexes 
in the results were counted. It can be seen from the data in Table 4.

	(1)	 When the SPPF-ECA module is introduced, P and mAP50 
reach 90.8 and 87.2%, respectively, representing absolute 
improvements of 2.6 and 0.7% over the baseline model. At the 
same time, it almost does not bring about an increase in the 

number of parameters and calculations. This is because the 
strategy of replacing the fully connected layer with a 
convolution in the ECA introduces fewer parameters while 
completing the channel attention calculation.

	(2)	 When the CGBlock and ADown are introduced separately, 
the number of parameters is reduced by 0.73 M and 
1.91 M, and the P of both models reached 90.1%. At the 
same time, the mAP50-95 is increased by 0.4% when the 
ADown module is introduced, with a slight decrease in R, 
demonstrating the effectiveness of introducing a 
single module.

	(3)	 When the SPPF-ECA and ADown modules are introduced at 
the same time, it can be seen that P of the model(90.2%) is 
increased by2% by the baseline model(88.2%), the R and 
mAP50 reached 81.9 and 87.2%, respectively, representing 
absolute improvements of 0.4 and 0.7% over the baseline 
model, which makes up for the deficiency of the R when 
SPPF-ECA is introduced alone. At the same time, the 

FIGURE 11

The heatmap drawing results of each model detection. (A) Original figure; (B) SPPF; (C) SimSPPF; (D) FocalModulation; (E) BasicRFB; (F) SPPF-CBAM; 
(G) SPPF-EMA; (H) SPPF-CA; (I) SPPF-LSKA; (J) SPPF-ECA.

TABLE 4  Ablation experimental results.

SPPF-
ECA

ADown C3k2-
CGBlock

P/% R/% mAP50% mAP50-

95/%
FLOPS/G Params/M Size/

MB

- - - 88.2 81.5 86.5 58.0 21.3 9.41 19.2

√ - - 90.8 81.1 87.2 57.3 21.3 9.41 19.2

- √ - 90.1 80.5 86.5 58.4 17.2 7.50 15.4

- - √ 90.1 80.6 86.0 57.6 20.0 8.68 19.3

- √ √ 80.2 81.6 87.0 57.9 15.9 6.76 13.9

√ - √ 89.7 81.3 86.7 57.3 20.0 8.68 17.7

√ √ - 90.2 81.9 87.2 59.1 17.2 7.50 7.50

√ √ √ 89.4 83.1 87.5 58.4 15.9 6.76 13.9
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mAP50-95 index increased by 1.1%, and the parameter 
quantity decreases by 1.91 M, which demonstrates the 
effectiveness of the combination of the two. The combination 
of the two combines the efficient channel attention 
mechanism with the high down-sampling efficiency 
application. The ability to retain the characteristics of minor 
surface damage on the fabric membrane surface is 
significantly improved.

	(4)	 After introducing C3k2-CGBlock based on the two modules, 
although P is 0.8% lower than that of the first two modules, it 
is still 1.2% higher than the baseline model. At the same time, 
R and mAP50 reached 83.1 and 87.5%, respectively, 
representing absolute improvements of 1.6 and 1.0% over the 
baseline model. The best performance was observed across all 
groups of experiments, with mAP50-95 increasing by 0.4%. 
The ADown-CGBlock model and the ECA-ADown-CGBlock 
model had the lowest number of parameters in all groups. 
Compared with the former, the introduction of the number of 
individual parameters brought by ECA is almost negligible; the 
FLOPS, parameters, and model volume reached 15.9G, 6.76 M, 
and 13.9 MB, which decreased by 25, 28 and 28% compared 
with the original model, which met the requirements of a 
lightweight model.

To visually show the actual effect of the improved algorithm, this 
experiment compares the EAC-YOLO model with the YOLO11 model 
to visualize the selected multiple images. The results are shown in 
Figure 12.

As can be seen from Figure 12:

	(1)	 In the identification of crack damage, YOLO11 is missing in 
the minor target ridge damage, and a small number of 
transverse cracks in the dataset of MSSD are mistakenly 
detected as scratch damage. The EAC-YOLO model performs 
well, which shows the ability of the added ECA and the 
ADown down-sampling operator to extract the characteristics 
of minor target damage. At the same time, ECA optimizes the 
distinction between confusing features in the case of less 
distribution of transverse crack damage.

	(2)	 In the identification of wrinkle damage, the YOLO11 model 
has missed detection when identifying wrinkle damage with 
low background contrast, and there is a case of repeated 
identification of the same feature. At the same time, 
EAC-YOLO demonstrates a strong ability in low-contrast 
damage detection. The positioning of damage features is also 
more accurate, further demonstrating the effectiveness of the 
CGBlock module addition.

	(3)	 In the identification of scratches and tears, YOLO11 misdetects 
the background as a damage feature when there are complex 
background factors around the damage, while in EAC-YOLO, 
CGBlock plays a role in combining local and global features, 
and there are a few cases of background factors. In addition, 
the tear damage has the characteristics of multiple forms, and 
the randomness of its shape brings some difficulties to the 
feature extraction work. Especially in the state of image 
enhancement simulating a complex environment, its feature 
information is further affected, which leads to the situation that 

the baseline model is easy to causing missed detection. 
However, we added the ECA to the baseline model to improve 
the feature expression ability of the model, focusing on the 
deep feature information of the tear part and reducing the 
missed detection.

	(4)	 In the identification of smudge features, EAC-YOLO shows 
that it has certain advantages in the learning of different scale 
feature forms of the same category. In the face of the 
characteristics of strong randomness of state distribution and 
different morphological scales of smudges, ADown has 
stronger multi-scale feature learning ability than Conv.

4.6 Comparative experiments of YOLO 
series algorithms

To evaluate the effectiveness of the EAC-YOLO algorithm more 
objectively, this paper conducts performance comparison experiments 
with other YOLO algorithms, including YOLOv3-tiny, YOLOv5s, 
YOLOv6s, YOLOv8s, YOLOv9s, YOLOv10s, YOLO11s, and 
YOLO12s. The experimental results are shown in Table 5.

From Table 5, we can see that among all the model 
experimental comparisons, the P of EAC-YOLO is the highest, 
reaching 0.894, and R, mAP50, and mAP50-95 are the best, reaching 
83.1, 87.5, and 58.4%, respectively. In the comparison model, the 
YOLO11 model performs best in terms of R, mAP50, and mAP50-

95, achieving 81.5, 86.5, and 58%, respectively. Meanwhile, the 
EAC-YOLO model increases by 1.6, 1.0, and 0.4% on this basis. 
And its computational complexity, measured in FLOPS, is 15.9G, 
second only to the YOLOv3-tiny model. In terms of the number 
of parameters and the model volume, EAC-YOLO has the lowest 
number of parameters, with both indicators approximately 28% 
lower than those of the YOLO11 baseline model. The smaller 
volume model achieves higher detection accuracy, making it 
more suitable for mobile terminal deployment and meeting the 
need for model lightweight improvement.

To further verify the superiority of the EAC-YOLO model, 
Figure 13 illustrates the overall trend of precision, recall, loss, and 
mAP50 as the epoch increases during the training process of each 
model. From the diagram, it can be seen that in the Loss change 
curve, the EAC-YOLO and YOLOv8 curves are closest to the lower 
end, indicating that the loss situation is the most ideal; in terms of 
precision, recall, and mAP50, EAC-YOLO is at the top compared 
with other relative positions, and the curve is in a steady upward 
trend, indicating that the model performs best under the relevant 
indicators and is applied to the surface damage identification of 
membrane structures. To comprehensively compare more 
indicators, such as the number of parameters and the computational 
complexity of the relevant models, comprehensive performance 
index radar charts are drawn for different models. As shown in 
Figure 14, the figure is integrated with precision, recall, mAP50, 
mAP50-95, parameters, FLOPS, model size, and other relevant 
metrics. It can be seen more intuitively from the figure that the 
regional graph of the EAC-YOLO model is fuller, indicating that 
the number of parameters, the computational load, and the model 
size are smaller. At the same time, its precision, recall, and mAP50 
are higher, resulting in better overall performance.
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To analyze the visual results of the EAC-YOLO model and the 
comparison model in the surface damage identification of the 
membrane structure, we used the files trained by each model to 
evaluate the effect of the test set. From the recognition results, we 
selected several groups of representative results, as shown in 
Figure 15. The area marked with a cross in the figure indicates that 

there is a false detection in the area, and the area in the dotted box 
indicates that there is a missed detection. We can see from 
Figure 15:

	(1)	 In the results of group (a), most of the models have missed 
detection of cracks, and the (E) model and (H) model 

FIGURE 12

Comparison of YOLO11 and EAC-YOLO detection effects.
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mistakenly damage the environmental objects other than 
the membrane structure. EAC-YOLO has a more correct 
identification of crack damage. This is because the crack 
itself has the characteristics of high shape randomness, 
multi-scale, small target features, etc., and ordinary feature 
extraction methods may be difficult to solve these problems 
in a targeted manner. The pooling method of ADown 
introduced in this paper improves the sensitivity to multi-
scale and multi-morphological crack features in the down-
sampling calculation process of the model. The problem of 
missed detection caused by different scales and variable 

shapes of partial damage on the surface of the film is solved. 
At the same time, the model combined with the attention 
mechanism reduces the damage weight in the picture, 
reduces the interference effect, and improves the recognition 
ability of small target features.

	(2)	 In the results of group (b), the tearing feature target in the 
image is larger, but the damage influences the background 
texture interference. In this environment, reducing the 
surface texture interference of the membrane material can 
bring higher confidence for recognition. Among the results 
of all groups, the (I) group has the highest confidence, 

TABLE 5  Experimental results of the YOLO series on MSSD.

Model P/% R/% mAP50/% mAP50-95/% FLOPs/G Params/M Size/MB

YOLOv3-tiny 83.9 76.2 81.0 47.5 14.3 9.52 18.2

YOLOv5s 88.5 79.3 85.7 55.1 18.7 7.82 16.0

YOLOv6s 84.8 77.9 83.5 52.5 42.8 16.00 32.2

YOLOv8s 88.8 81.0 85.6 57.5 28.4 11.12 21.5

YOLOv9s 87.9 75.8 84.0 54.2 30.4 7.83 16.1

YOLOv10s 87.6 79.0 83.9 55.5 24.5 8.03 16.6

YOLO11s 88.2 81.5 86.5 58.0 21.3 9.41 19.2

YOLO12s 88.2 79.1 85.3 55.2 21.2 9.23 19.0

EAC-YOLO 89.4 83.1 87.5 58.4 15.9 6.76 13.9

FIGURE 13

Statistical comparison of training indicators for different YOLO models. (A) Precision; (B) Recall; (C) Loss; (D) mAP50.
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which is partly due to our introduction of the CGBlock 
structure, which simplifies the C3k2 structure while 
dynamically learning channel weights through group 
convolution and global average pooling and lightweight 
fully connected layers, suppresses irrelevant channels, and 
enhances key feature channels, reducing the negative 
background effects.

	(3)	 In the results of group (c), we can see that, in addition to 
the (E) model and (I) model, most of the models have 
missed the identification of such damage as folds, and the 
identification of unidirectional folds is mainly due to the 
following points. (1) This type of damage has a high shape 
randomness, unidirectional folds, radial folds, and 
irregular accumulation folds that vary greatly in their 
manifestations, and the overall recognition confidence of 
the damage is not high; (2) the contrast between the 
damage and the material background is low, which is easily 
to cause missed detection. In this regard, we introduce the 
dilated convolution in the CGBlock structure introduced 
in the original C3k2 structure to expand the receptive 
field, and extract the defect features and the background 
factors of the surrounding membrane surface, thus 
alleviating the low contrast problem caused by the multi-
form wrinkles and poor lighting conditions.

5 Conclusion

To achieve the automatic identification of surface damage on 
membrane structures and address the complexity of current 
mainstream detection algorithms, which are unsuitable for 
deployment on resource-constrained devices, we construct a 
membrane structure surface damage dataset named MSSD and 
propose a lightweight EAC-YOLO algorithm. Firstly, the ECA 
mechanism is introduced into the SPPF module and restructured, 
with almost no change in parameters; the mAP50 and precision 
increased to 90.8 and 87.2%, from 88.2 and 86.5%. Through the 
heatmap test results, it is found that the introduction of this 
module has a good ability to extract features of small targets, such 

as holes, and reduces the interference of complex background 
textures. Secondly, to enhance the model’s multi-scale feature 
learning ability and further reduce the number of parameters, the 
ADown down-sampling operator is introduced. Compared to 
previous work, mAP50-95 was increased from 57.3 to 59.1%, the 
number of parameters was reduced by 1.91 M, and FLOPS were 
decreased by 4.1G, thereby optimizing the model’s ability to 
extract features of multi-scale tears, smudges, etc. Finally, the 
CGBlock is introduced, and the C3k2 module is restructured. 
The number of parameters and FLOPS are reduced to 6.76 M and 
15.9G, respectively, suppressing the texture background noise 
channels and enhancing the key information channels. Overall, 
the precision, recall, and mAP50 of the EAC-YOLO model reach 
89.4, 83.1, and 87.5%, respectively. The number of parameters, 
computational cost, and model size are reduced by 28, 25, and 
28%, respectively. Compared with the YOLO series algorithms, 
the comprehensive performance of EAC-YOLO is the most 
outstanding, optimizing the feature extraction ability for multi-
type, multi-scale, and low-contrast membrane structure 
surface damage.

In this paper, a new method for damage identification of 
membrane structures is proposed, which solves some problems 
in the process of identification. However, there are still many 
problems to be solved, such as:

	(1)	 A certain number of damaged samples of membrane 
structure are collected. However, due to the limited 
number of membrane structures in reality and the high 
maintenance frequency of some membrane structures, the 
surface damage of many structures is less, and the number 
of samples collected is limited. At the same time, the 
surface damage types of the membrane structure require 
further investigation and enrichment.

	(2)	 We have made some progress in the automatic 
identification of membrane structure surface damage. 
According to the current test results, among all the 
recognition types, common tears, cracks, and smudges can 
be accurately identified. This shows that the relevant 
modules we introduce can learn small target features, 
multi-morphological and multi-scale features, and 
low-contrast features. However, for the recognition of 
scratches and wrinkles, although there is a certain room 
for improvement, since these two types of damage are 
often dense when they occur, and the uncertainty of 
direction and shape is high. The probability of overlap is 
also high, which presents significant challenges to the 
labeling work, and the recognition accuracy needs to be 
improved. The recognition accuracy of these two types of 
damage needs to be further investigated. For the 
improvement of model detection accuracy, there are 
mainly the following aspects:

	 a	 Add more damage samples to enhance the generalization of 
the model.

	 b	 Select a more complex and advanced neural network 
training model. These models may have a more powerful 
learning ability but may bring more computation and 
burden to model training.

FIGURE 14

The radar map drawing results of each model detection.
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	 c	 In terms of the lightweight design of the model, the model 
we proposed reduces the calculation amount, parameter 
quantity, and model size by about one-third of the volume, 
respectively. However, from the perspective of the model 
as a whole, the number of model parameters of YOLO11s 

reaches nearly 10 million, and the complexity is not low, 
which means that there is still a lot of room for 
improvement in lightweight processing, especially the 
head part, which is expected to propose better 
improvement strategies.

FIGURE 15 (Continued)
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In the future, the proposed method is expected to be deployed 
on high-definition camera groups or inspection drones 
surrounding large membrane structures, such as stadiums, which 
will automatically collect membrane surface image data regularly 
along preset routes. These data are transmitted in real time over 
the network to the cloud-based diagnostic center, where the 
algorithm is deployed. Efficiently complete a comprehensive 
physical examination of the entire building in a short period of 
time and automatically generate detailed reports including the 
type, location, size, and severity of damage. It lays a solid 
foundation for non-destructive, non-contact, full-field rapid and 
accurate diagnosis, and has certain significance for the 
maintenance of membrane structure.
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