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Adaptive graph-theoretic
localization of radiation sources
via real-time density-aware
clustering for IoT

Wei Chen, ZiSen Qi, Lei Jiang, QingWei Meng and Hua Xu*

Information and Navigation School, Air Force Engineering University, Xi’an, China

The increasing complexity of Internet of Things and modern battlefield
electromagnetic environments poses significant challenges to radiation source
localization, especially under electronic countermeasures, cross-density
distributions, and iterative data updates. Existing methods based on fixed-
parameter clustering or single geometric discrimination often fail to handle
localization divergence caused by dynamic density variations. To overcome this
limitation, this paper proposes an adaptive graph-theoretic localization method
via real-time density-aware clustering, integrating dynamic density clustering,
probabilistic model verification, and graph clique analysis. This approach enables
real-time discrimination of potential noise during data density fluctuations and
reconstructs trusted subsets for radiation source localization. During the
dynamic clustering stage, an adaptive Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) algorithm is employed to rapidly separate
preliminary the potential noise from target clusters. Subsequently, Gaussian
Mixture Model (GMM) is utilized for the secondary partitioning of ambiguous
clusters, enhancing the accuracy of target identification. In the clique analysis
phase, a probabilistic adjacency matrix is constructed based on the outputs
of GMM. Through the application of maximum clique algorithms, consistent
targets are effectively extracted from the adjacency matrix, enabling precise
localization. Experimental results show that the proposed method improves
localization accuracy by at least 70% in dynamic updating scenarios compared
to conventional techniques, demonstrating strong practical applicability and
scalability for real-world deployments.

KEYWORDS

radiation source localization, clustering, maximum clique, adaptation strategy, Internet
of Things

1 Introduction

With the rapid advancement of information technology, radiation source localization
has emerged as a key technology in modern communication, navigation, and
public safety systems. Its applications span across military electronic warfare and
diverse civilian sectors (Feng et al., 2024; Sun et al., 2023). In civilian contexts,
stringent requirements are imposed on radiation source localization for efficient
radio spectrum resource management, collaborative positioning of Unmanned Aerial
Vehicle (UAV) swarms, and emergency signal tracking in urban environments (Chen
et al., 2025b; Feng et al., 2024). For instance, in smart cities, the proliferation
of densely deployed Internet of Things (IoT) devices demands precise spectrum
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monitoring to minimize signal interference; emergency rescue
operations rely on the swift localization of distress signals
from casualties; and the burgeoning low-altitude economy
necessitates real-time perception and analysis of surrounding radio
frequency signals for UAV path planning and obstacle avoidance.
However, in complex electromagnetic environments, the lack
of prior information fundamentally hinders the deterministic
discrimination between correct and incorrect measurements. This
limitation also precludes the accurate quantification of radiation
source cardinality and spatial coordinates. In addition, the
inclusion of incorrect measurements in localization algorithms
exacerbates spatiotemporal overlapping interference among target
signals. Under these operational constraints, instead of attempting
an explicit binary classification of the measurement validity,
a more resilient approach is to select trusted subsets from
raw measurements based on statistical regularity and internal
consistency for subsequent processing. As such, the development
of reliable measurement subset selection mechanisms under
zero/weak prior knowledge conditions has become a critical
technological bottleneck (Wang et al., 2024; Chen et al., 2025a; Lu
et al., 2022).

In order to address the issue of corrupted radiation source
localization estimates, it is essential to distinguish between correct
and incorrect measurements arising from density variations. Upon
achieving such a differentiation, invalid measurements can be
excluded from the updating process, thereby enabling the recovery
of accurate localization estimates. These existing methods primarily
employ geometric triangulation techniques or fixed-parameter
clustering algorithms, such as K-means and Density-Based Spatial
Clustering of Applications with Noise (DBSCAN). Although
these methods demonstrate satisfactory performance in scenarios
with predefined target numbers or low-noise environments,
their effectiveness is significantly compromised when applied
to dynamic open environments characterized by operational
complexity (Tin et al., 2024; Zhou et al., 2022a). Firstly, fixed-
parameter clustering algorithms encounter fundamental challenges
in adapting to spatiotemporal variations in radiation source
density. For instance, significant disparities in signal distribution
between urban cores and suburban areas are frequently observed,
where preset neighborhood radii are found to induce missed
detections in sparse regions and false clustering in dense zones.
Secondly, conventional methods exhibit inherent limitations in
separating overlapping targets effectively. When multiple radiation
sources (e.g., RF signals from adjacent base stations or densely
deployed sensor nodes) are spatially proximate, they are prone
to being erroneously aggregated into singular clusters by the
algorithm, inducing significant deviations of localization results
from ground truth values increasingly. Lastly, in complex scenarios
with dynamically updating data, certain measurements identified
as potential noise at time t-1 may become valid positioning
data at time t as measurements accumulate. This necessitates
algorithmic capabilities for real-time reconstruction of trusted
data and potential noise. However, existing methods exhibit
significant limitations in handling such dynamic data density
variations (Zhou et al., 2022b; Liu et al., 2025; Zhang et al., 2023).

To address the aforementioned challenges, this paper proposes
an adaptive graph-theoretic localization method for radiation

sources via real-time density-aware clustering, integrating
dynamic density clustering, probabilistic model verification, and
maximum clique algorithms. The proposed method enables an
instantaneous response to measurement data variations during
density fluctuations, simultaneously reconstructing real-time
potential noise and identifying trusted data subsets. This capability
effectively mitigates overlapping interference in dense multi-target
scenarios, thereby achieving high-precision, real-time localization
of radiation sources. In the dynamic clustering layer, an adaptive
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm is implemented, which incorporates k-
Nearest-Neighbor (k-NN) statistics and quantile-based adjustment
mechanisms. This design dynamically optimizes the neighborhood
radius and minimum sample size according to local signal
density distributions, thereby achieving efficient preliminary
segregation of noise from target clusters with high computational
efficiency. At the probabilistic verification layer, Gaussian Mixture
Model (GMM) are employed for secondary partitioning of initial
clustering results. A dual-validation mechanism, which integrates
the Bayesian Information Criterion (BIC) for model selection
and silhouette coefficients for cluster compactness evaluation, is
introduced to precisely distinguish overlapping signal sources and
select trustworthy measurement subsets. To rigorously analyze
intra-cluster measurement consistency under conditions of
absent prior information, a GMM-driven probabilistic framework
is developed to construct dynamic adjacency matrices. This
formulation transforms the problem of identifying reliable
measurements into a maximum clique problem, where high-
dimensional adjacency matrices are decomposed into optimized
submatrix blocks via spectral graph partitioning to facilitate
trusted subset selection. Experimental results demonstrate
that the proposed algorithm exhibits significant advantages
over conventional methods in noise suppression, overlapping
target separation, and real-time processing capabilities. This
breakthrough establishes a robust framework for fast radiation
source localization in complex electromagnetic environments. The
main contributions of our work can be summarized as follows:

• This paper proposes a novel methodology capable of real-time
adaptation to measurement data density fluctuations, thereby
reconstructing the potential noise components and trusted
subsets to provide accurate input for reliable radiation source
localization without a priori information.

• The paper proposes an adaptive clustering method that
integrates k-nearest neighbor statistics and adaptive quantile
thresholding. This enables online parameter adaptation
through localized density characterization, effectively
addressing the limitations of conventional methods in
handling complex environments.

• By transforming pairwise consistency maximization into
maximum clique problems, the paper enhances the radiation
source localization accuracy. This approach leverages graph
theory to improve the reliability and scalability of radiation
source localization systems.

The remaining of the paper is organized as follows. Section 2
gives a review of the existing literature. Section 3 presents the
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mathematical formulation of the problem. Section 4 presents a
complete overview of the method. The experimental results are
shown in Section 5. Lastly, Section 6 concludes this paper.

2 Related work

In the field of radiation source localization, numerous studies
have focused primarily on enhancing conventional algorithms such
as Angle of Arrival (AOA), Direction of Arrival (DOA), and Time
Difference of Arrival (TDOA) to improve localization accuracy.
However, due to noise interference and environmental distortions,
raw measurements inevitably contain noise or “outliers” (Pang
et al., 2025; Feng et al., 2025; Zhou et al., 2018). However, existing
methods lack robust mechanisms for selecting trusted subsets from
raw datasets under conditions where prior information is absent.

Recent advancements in radiation source localization
have addressed challenges posed by complex electromagnetic
environments, non-Gaussian noise, and GPS-denied scenarios.
Traditional methods, such as Time Difference of Arrival (TDOA)
and Received Signal Strength (RSS), have been enhanced to
improve robustness. A Gaussian Mixture Model (GMM)-based
RSS localization algorithm was designed using semidefinite
relaxation (GMM-SDP) to handle non-Gaussian noise, achieving
superior performance in wireless sensor networks (Wang et al.,
2018). Yuan proposed K-means clustering with grid density
peak clustering (DPC) for initial localization of nearby targets,
effectively mitigating angular estimation errors caused by
sensor inaccuracies (Yuan et al., 2025). Passive bistatic radar (PBR)
systems have also gained traction, as demonstrated in Ummenhofer
et al. (2019), who utilized direction-of-arrival (DOA) estimation
and single-frequency network (SFN) configurations to achieve 3D
target localization in air traffic control scenarios.

The integration of machine learning and multi-agent systems
has further propelled the field. Chen et al. (2025b) developed a
distributed deep reinforcement learning framework (MURPPO)
for multi-UAV collaborative localization, which improved
convergence speed and accuracy by 38.5% compared to traditional
methods. In GPS-denied environments, Mascarich et al. (2018)
combined visual-inertial odometry with radiation sensors on aerial
robots, enabling autonomous source localization and mapping
under limited dwell time constraints. For urban environments,
the PYRL method was proposed in Feng et al. (2024), which
converts electromagnetic field strength data into grayscale maps
and employs YOLO networks for real-time localization, achieving
an average error of 4.8 meters. Multi-station fusion techniques
(He et al., 2025; Zhang et al., 2017), such as He et al. (2025)
spectrum energy-based approach, reduced localization errors by
25% through normalized power calculations and propagation
attenuation modeling. Zhou and Abawajy (2025) and Zhou et
al. (2021) combined an improved clustering algorithm with
reinforcement learning to achieve dynamic adaptive optimization
of parameters, providing an important reference for the method
of real-time adjustment of clustering parameters in scenarios
lacking prior information. These innovations highlight a shift
toward hybrid methodologies that combine physical propagation
models with data-driven algorithms to address multipath effects
and non-line-of-sight challenges.

Clustering techniques have evolved significantly, driven by
demands for efficiency and adaptability in high-dimensional
and noisy datasets. Cai (2016) addressed the maximum weight
clique problem (MWCP) in massive graphs by interleaving clique
construction and graph reduction, achieving optimal solutions in
sub-second timescales. CLIPPER+ was introduced in Fathian and
Summers (2024), which reformulated maximum clique estimation
via semidefinite relaxation and graph pruning, enabling outlier-
robust point cloud alignment with over 99% outlier rejection.
Density-based methods, the FDP-DBSCAN method (Wang et al.,
2018) automated cluster center selection by iteratively applying
density peak clustering and DBSCAN, resolving initialization
dependencies inherent in traditional K-means.

Comparative studies have underscored the strengths of specific
clustering paradigms. Omari et al. (2025) evaluated nine algorithms
for image compression, identifying K-means, divisive clustering,
and CLIQUE as optimal for balancing compression ratios and
structural similarity. In customer segmentation, Ling and Weiling
(2025) demonstrated K-means++’s superiority over Gaussian
mixture models (GMM) and DBSCAN, achieving higher silhouette
scores (0.62) in RFM-based e-marketing analytics. Meanwhile,
the graph-theoretic formulation was used to transform pairwise
consistency maximization into maximum clique problems to
improve multi-robot SLAM accuracy (Cai, 2016; Mangelson
et al., 2018). These advancements emphasize the importance
of algorithm hybridization—e.g., combining density peaks with
spectral clustering or integrating geometric constraints with deep
learning (Kassir et al., 2024) to handle heterogeneous data
structures and improve scalability.

The reviewed studies illustrate a symbiotic relationship
between radiation source localization and clustering algorithms.
Although current research efforts have been predominantly focused
on front-end radiation source measurement techniques, critical
back-end data processing modules have been systematically
overlooked. They do not focus on internal set consistency as
we do. This work proposes a novel approach that constructs
dynamic adjacency matrices and a multi-criteria optimization
framework to differentiate potential noise from raw measurement
datasets in real-time while selecting trusted subsets. This offers a
paradigm-shift solution for reliable radiation source localization in
electromagnetically complex environments.

3 Problem formulation

This paper aims to select the optimal localization subsets
given all the available information provided by different
platforms, either incrementally or in batch. We assume that
Dt = {x1, x2, . . . , xn} ,

(
xi ∈ R

d
)

denotes number of the raw
measurements is n at time t. The dataset Dt can be decomposed
into the union of multiple clusters, formally, there exist N disjoint
clusters C1, C2, . . . , CN , such that: Dt = ⋃N

i=1 Ci, where Ci denote
the cluster of measurement points associated with the i − th
radiation source. Each radiation source corresponds to a distinct
cluster Ci exhibiting high intra-cluster similarity, while maintaining
inter-cluster statistical independence. This characteristic aligns
with the empirical observation that distinct radiation sources follow
heterogeneous spatial-temporal distributions. In more complex
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FIGURE 1

An illustration of the largest consistent subset maximization method for fast radiation sources localization. (a) These are a large amount of radiation
source position information detected without prior information, which are then subjected to initial clustering. The gray points denote potential noise
at the current moment, implying that they might be identified as new radiation sources in the subsequent dynamic update process. (b) For each initial
cluster, an internal adjacency matrix is constructed, whose advantage lies in converting a huge high dimension into multiple matrix blocks. (c) The
optimization problem is transformed into a maximum clique problem to obtain a trustworthy internally consistent subset, thereby enabling the
rejection of erroneous measurements.

scenarios characterized by a non-stationary number of radiation
sources, spatially overlapping clusters Ci ∩Cj �= ∅, CN (∃i �= j), and
dynamic changes in data density, the selection of a reliable trusted
subset D∗

t from the raw measurements Dt becomes imperative. The
trusted subset D∗

t can be formulated as

D∗
t =

{⋃
i=1

S∗i

}
(1)

S∗i = arg max
Ci⊆D

(
λ1 · Consistency (Ci) ⊕ λ2 · Noise (Ci)

)
where λ1 and λ2 denotes the weighting coefficient, Noise (Ci)

represents outliers within the i − th cluster, and Consistency (Ci)

corresponds to the internal consistency function of cluster i, the
operator ⊕ indicates that, under the current state, each initial
cluster consists of a consistent subset and potential noise. It should
be noted that the term “potential noise” herein refers to certain
measurement information that is temporarily regarded as noise at
the current moment during the dynamic update process, but may
be re-identified as new radiation sources in subsequent data updates
due to data accumulation, as shown in Figure 1.

Existing methods do a good job of handling outlier
measurements in the constant radiation source localization,
but not in the Consistency (Ci) since no prior estimate of
initial situation information in general. This paper aims to select
corresponding trustworthy measurement subsets for each radiation
source from the raw dataset containing potential noise. The next
section describes our method for doing so.

4 Methodology

This section first establishes an adaptive clustering framework,
and subsequently formulates the selection of radiation source

measurement data as a combinatorial optimization problem,
whose objective is to identify maximal consistent subsets in
the current stage. The proposed method adopts a three-stage
architecture, namely “adaptive clustering, probabilistic verification,
and graph-theoretic optimization,” integrating the following key
technical components.

4.1 Dynamic parameter-adaptive DBSCAN
algorithm

In the absence of prior information, direct discrimination
between inliers and outliers within measurement data is inherently
intractable. Therefore, instead of performing explicit inlier-outlier
classification, this study first partitions the measurement dataset
into multiple subsets with intrinsic intra-cluster consistency using
the proposed DBSCAN algorithm. The method adopts a self-
adaptive parameter strategy that integrates k-nearest-neighbor
statistics and adaptive quantile thresholding, allowing online
parameter adaptation through localized density characterization.
This approach effectively addresses the limitation of traditional
approaches in adapting to instantaneous data density variations
in complex environments, which leads to the absence of
prior information.

For each data point in the measurement set D, we compute
the Euclidean distance (eps, minPts) to its k − th nearest neighbor
(k − NN), iteratively constructing the k distance sequence
Dk = {

dk,1, dk,2, . . . , dk,n | dk,i = ‖xk − xi‖2
}

, where k is adaptively
determined based on the dataset cardinality to ensure coverage
of local density characteristics. Then, we apply the Interquartile
Range (IQR) method to eliminate outliers in Dk, defining the
valid range χ = [Q1 − γ · IQR, Q3 + γ · IQR], where Q1 and
Q3 represent the first and third quartiles of Dk and γ denotes
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the outlier detection coefficient. This process yields the filtered
valid distance sequence D′

k = {
dk,i ∈ Dk | d ∈ χ

}
. Now, the key

parameter neighborhood radius eps of the DBSCAN algorithm
is adaptively determined in real-time by selecting the α − th
quantile of the dataset D′

k, eps = Percentile
(
D′

k, α
)
, where α is

dynamically adjusted according to the local density distribution.
This strategy enables dynamic adaptation to local density
characteristics, thereby circumventing misclassification artifacts
induced by fixed parameterization in both sparse and dense regions.
The DBSCAN algorithm’s other critical parameter, the minimum
neighborhood size minPts, is configured as a scaling function
minPts = ⌈

γ · log10
(∣∣D′

k

∣∣)⌉, where γ is a density-aware coefficient
derived from the dataset cardinality

∣∣D′
k

∣∣. The parameter minPts
meets concurrent suppression of small-scale noise and adaptive
accommodation of density variations across heterogeneous data
scales through its cardinality- sensitive formulation.

Building upon this framework, we achieve preliminary dataset
classification through adaptive tuning of DBSCAN’s critical
parameters (eps, minPts). From the measurement data containing
potential noise at the current time, we obtain initial clusters
represented by three colors (red, green, and blue), as shown
in Figure 1a. This generates high-fidelity initial clusters, which
are critical for subsequent GMM validation and maximal clique
analysis, serving as the core foundation for the system to achieve
high-precision localization.

4.2 Misclustering problem

Following the previous section, we obtain an initial candidate
cluster set C = {C1, C2, . . . , Cm}. Then the system conducts
subsequent analysis on clustering errors characterized by excessive
inter-cluster proximity or abnormal intra-cluster variance, thereby
addressing the misclustering issues induced by dense target
overlap and noise corruption. A probabilistic segmentation
framework integrating GMM with the Bayesian Information
Criterion (BIC) is developed to refine the partitioning of anomalous
clusters through model-order optimization. The misclustering
identification criteria are mainly based on inter-cluster distance
and intra-cluster variance. A cluster is flagged for segmentation
if the minimum centroid distance to neighboring clusters
falls below an adaptive threshold dmin , or if its covariance
matrix trace exceeds the variance threshold σmax , triggering
GMM-based probabilistic decomposition. Based on the two
aforementioned criteria, we iteratively traverse all clusters to
select those satisfying threshold dmin or σmax, obtaining cluster
set C′.

Then, we construct GMM to probabilistically partition each
selected cluster. To prevent overfitting and underfitting, the
number of mixture components K is dynamically configured as
K = min

(
Kmax, max

(
2,

⌊
Ncluster

δ

⌋))
during each algorithmic

invocation, where Ncluster denotes the intra-cluster point
cardinality, Kmax specifies the maximum allowable component
count, and δ represents the size-adaptive scaling factor, thereby
achieving self-adaptive parameter optimization. We further
calculate the BIC values before and after segmentation. The

mathematical formulation is formulated as

BIC = −2 ln L + k ln N (2)

where L denotes the model likelihood, k represents the number of
model parameters, and N is the sample size. Only segmentation
results with statistically significant BIC reduction are retained,
specifically executing the partition when the post-segmentation
BIC value decreases beyond the proportional threshold β , formally
expressed as BICpost < BICpre (1 − β), where β = 0.15 denotes
the empirically optimized significance level.

The BIC constrains model complexity to prevent overfitting
induced by excessive component counts. The component count K
is dynamically adjusted in real-time based on cluster scale, ensuring
statistical validity of partitioned sub-clusters while accommodating
varying density distributions. The current computed candidate
cluster set C′ = {

C′
1, C′

2, . . . , C′
n
}

has considerably mitigated
the impact of noisy measurements on localization. However,
the consistency of measurements within individual clusters
remains undetermined, indicating that erroneous measurements
may still persist within clusters. Now, we attempt to extract the
highconfidence target core regions, also called trusted subset S∗i ,
from each candidate cluster C′

i to calculate the radiation source
positions, where the measurements exhibit high consistency across
both spatial and temporal dimensions. However, it should be noted
that computing intracluster measurement consistency may require
evaluating all possible combinations of measurements, which has
been proven to exhibit exponential computational complexity. By
formulating the problem as the maximum clique problem in graph
theory, we can effectively leverage existing theoretical frameworks
to achieve efficient solutions or approximate estimations.
In practical applications, it has been observed that pairwise
consistency checks demonstrate sufficient constraint strength to
effectively filter out inconsistent measurements in datasets with
full-degree-of-freedom observations.

4.3 Selecting trust subsets via maximum
clique

The maximum clique problem seeks to identify the largest fully-
connected subgraph where all nodes are pairwise adjacent, which
essentially aims to find the largest subset in a dataset satisfying strict
consistency constraints. In radiation source localization scenarios,
we model measurement data within candidate cluster C′ as a
graph structure where nodes represent measurement points and
edges denote spatial consistency relationships between point pairs.
By constructing a probabilistic adjacency matrix and solving the
maximum clique, this approach effectively identifies the target’s
core distribution regions while eliminating peripheral noise points
and low-confidence measurements.

In graph theory, a clique is defined as a subset of vertices
in an undirected graph where every pair of distinct vertices is
connected by an edge. A graph may contain multiple cliques, with a
maximal clique being one that cannot be extended by incorporating
additional adjacent vertices—that is, no superset of vertices in
the graph forms a larger clique. The foundational consideration
in clique analysis lies in the rigorous definition of pairwise
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adjacency relationships between vertices. This paper employs
GMM probabilistic framework to adaptively assess pairwise spatial
consistency between measurement points.

For the measurement data in each candidate cluster
C′

k, it is assumed that their error distributions follow
a multimodal Gaussian mixture model. For cluster
C′

k =
{

xk
1, xk

2, . . . , xk
n | xk

i ∈ R
2
}

, we assume that it follows a
mixture distribution composed of K Gaussian components, and
the model is then trained to capture the mixture characteristics of
the noise and target distributions.

p
(
x | Cj

) = K∑
k=1

πjkN
(

x | μjk, σ 2
jk

)
(3)

Where K denotes the number of Gaussian components, πjk
represents the mixture weights, μjk and σ 2

jk correspond to the mean
and variance of the component, respectively.

Based on the GMM posterior probability p
(
x ∈ C′

k
)
, we

compute the consistency weight associated with their pairwise
distance, for any two points xk

i and xk
j within cluster C′

k, the
adjacency condition is formally defined as H(i, j),:

H(i, j) =
{

1, p
(
dij

)
> τ (ρ)

0, otherwise
(4)

where τ (ρ) denotes the dynamic threshold function and ρ

represents the local density. The elements of the adjacency matrix
H are binary-valued, where an entry of 1 denotes the existence of
an edge between the corresponding vertices, and 0 indicates the
absence of a connecting edge.

The threshold adaptively increases with higher densities to
mitigate over-connection, while relaxing constraints under sparser
densities to prevent missed detection. In this paper, the dynamic
threshold function is formulated as

τ (ρ) = τ0(1 + log(1 + ρ)) (5)

where τ0 serves as the fundamental threshold parameter. When
the number of adjacency edges falls below a predefined lower
bound, a Euclidean distance-based fallback mechanism is activated
to enforce edge creation, thereby guaranteeing graph connectivity.
By iteratively processing all measurement data within the
cluster C′

k through the described operations, we obtain an
adjacency matrix H of dimension n × n, where n represents
the cardinality of measurement points in the cluster. Inherent
to the undirected graph representation, the adjacency matrix H
constitutes a symmetric matrix with zero-valued main diagonal
entries, satisfying the fundamental properties H(i, j) = H(j, i), ∀i �=
j, and H(i, i) = 0 by definition, as shown in Figure 1b.

The adjacency matrix and the undirected graph representations
are mutually convertible, where a zero-valued element in the matrix
indicates the absence of the corresponding edge in the graph.
As a preliminary step, we introduce fundamental graph-theoretic
concepts: an undirected graph G is formally defined as G = {V , E},
where V denotes the vertex set and E ⊆ {{i, j} | i, j ∈ V , i �= j}
represents the edge set. For each candidate cluster C′

k, we construct

its corresponding undirected graph Gk = {Vk, Ek} and extract the
maximum clique S

S = arg max
S⊆D

∑
xi ,xj∈S

Hij, s.t. |S| ≥ mmin (6)

where mmin denotes the threshold of the minimum clique
cardinality.

Now, the meanings of the nodes and edges in the undirected
graph Gk have changed. The measurement data within a cluster
become the nodes of the undirected graph, and whether an edge
exists between two measurement nodes depends on whether the
corresponding element in the adjacency matrix H is greater than
the threshold. Considering the fully connected property of the
clique model, the nodes in a clique represent that all measurements
satisfy pairwise internal consistency. Since the proposed algorithm
has achieved a relatively high accuracy in clustering radiation
sources, our objective is to find the corresponding maximum clique
S∗k in each undirected graph.

S∗ = arg max
S⊆D

(
λ1 · Consistency(S) ⊕ λ2 · Noise(S)

)
(7)

where the maximum clique S∗k represents the trusted subset with the
largest cardinality in the graph. As shown in Figure 1c, the purple
points represent the trust subset selected by the proposed algorithm
at the current moment, which comply with the full connectivity
of the clique. The existence of edges between nodes indicates that
consistency is satisfied between them. Now, we have extracted
a trust subset D∗ = {⋃

i=1 S∗i
}

with high internal consistency
from the raw data containing potential noise, thus improving the
accuracy of localization in the absence of prior information.

Note that for dynamically updated radiation source
localization, the trustworthy subsets selected by the proposed
algorithm cannot guarantee the identification of all correct
measurements. This is because, due to the lack of prior information
in the measurement data, the measurement points regarded
as potential noise at the current moment may be incorporated
into the clique in the next moment as a result of supplementary
new measurement data. However, it can be confirmed that the
trust subsets selected by the proposed algorithm at the current
moment have effectively excluded potential noise, enabling the fast
localization of radiation sources under the condition of zero/weak
prior information.

5 Experiment evaluation

This section aims to evaluate the accuracy of the proposed
algorithm through simulation analyzes. The proposed method is
implemented in python language. We collected real radiation
source localization datasets and conducted comparative
performance assessments against K-means clustering, DBSCAN,
and GMM methods (Tin et al., 2024). During experimental
validation, we observed that the number of radiation source
significantly influences measurement precision. Specifically, higher
amounts of radiation sources may introduce additional outlier
measurements, thereby substantially degrading the localization
accuracy. Consequently, our data preprocessing workflow
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FIGURE 2

Simulation results of radiation source distribution.

incorporates comparative analysis across varying target source
populations to quantify these effects. The experiments are mainly
designed from three scenarios: high-noise scenarios, densely
overlapping scenarios, and Cross-Density Scenarios scenarios. It
should be noted that the algorithm proposed in this paper aims
to solve the problem that density changes during the dynamic
incremental update of measurement data lead to the failure of
traditional algorithms, rather than merely clustering static data. It
places more emphasis on the robustness of the algorithm to density
and noise.

5.1 Boundary noise robustness assessment

In complex electromagnetic environments, radiation source
distributions often exhibit significant spatial heterogeneity. The
real targets typically reside in core regions with measurement data
conforming to Gaussian distributions, while global background
noise (conventional noise points) follows a uniform distribution.
However, boundary interference zones contain high-intensity
aggregated noise formed by boundary noise points and interference
clusters. These adverse factors cause substantial performance
degradation in boundary regions for conventional methods. Thus,
we first evaluate the proposed algorithm’s robustness against
boundary noise.

The simulation scenario includes an area of [0, 5, 000]m ×
[0, 5, 000]m, where the width of the boundary noise band is 100
m. Forty real targets are uniformly distributed in the core area

of [200, 4,800] m × [200, 4, 800]m. Conventional noise (Gaussian
noise with σ = 20) accounts for 15% of the total number of points
and is uniformly distributed throughout the area. Boundary noise
(Gaussian noise with σ = 60) accounts for 10% of the total number
of points and is intensively distributed in the boundary noise area.
Ten interference clusters are distributed in the boundary noise area
to simulate false targets, as shown in Figure 2.

The proposed algorithm, K-means clustering, DBSCAN, and
GMM methods are run for distribution to extract cluster sets,
and the False Positive Count (FPC) of the quantization algorithm
mistakenly judging boundary noise as real targets is quantified.

FPC =
∑
n=1

I
(
Ck is false target

)
(8)

where Ck is the target cluster output by the algorithm, and I denotes
the indicator function.Then, each cluster is sequentially traversed to
check whether it simultaneously satisfies the following two criteria,
and if both are satisfied, it is counted into the FPC. Criteria 1:
The centroid of the cluster is located in the boundary noise area;
Criteria 2: The proportion of boundary noise within the cluster is
greater than 70%, ∣∣{xi ∈ C′

k | xi ∈ ∂

}∣∣∣∣C′

k

∣∣ ≥ 0.7 (9)

Where ∂
 is the boundary noise region. During the
experimental analysis, we comprehensively analyze the
performance of different algorithms using the Monte Carlo idea,
repeating the experiments 20 times with different random seeds.
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FIGURE 3

The simulation results of Scenario 1. (a) Simulation results of the FPC trend. (b) Schematic diagram of FPC error bars.

Figures 3a, b show the trend of variation and the average
results of the FPC, respectively. The reason for the poor result
of the DBSCAN method lies in the excessive clustering of
fixed parameters in the dense boundary area. The experimental
results demonstrate that the proposed algorithm exhibits higher
robustness to boundary noise compared with other methods.
This is because the adaptive DBSCAN method proposed in this
paper automatically increases eps in the sparse boundary region
to prevent small noise from forming clusters. Meanwhile, the
clique model eliminates low-confidence clusters and only retains
highly consistent clusters. The experimental result of FPC < 1
indicates that the proposed algorithm achieves a “FPC approaching
zero” in the strong interference boundary region, which can meet
complex scenarios.

5.2 Dense overlapping scenarios
assessment

In the previous section, we validated the robustness of
the proposed method against boundary noise. In this section,
we verify its effectiveness in overlapping scenarios. In dense
overlapping scenes, the spatial positions of multiple radiation
sources may exhibit high proximity (partial or complete
overlap), compounded by adverse factors such as high noise,
dynamic data distributions, and heterogeneous interference.
These conditions cause traditional methods to be prone to
misclustering, target adhesion, and noise misclassification
in such scenarios. Therefore, in this section, we establish
simulation scenarios to simulate extreme environments where
multiple radiation source positions exhibit high proximity and
signals mutually interfere, to systematically test the proposed
method’s robustness, accuracy, and adaptability under complex
electromagnetic conditions. The average positioning error
(Euclidean distance) is mainly used to verify the accuracy of the
proposed algorithm. The mathematical expression of the average

localization error is

Eavg = 1
N

N∑
i=1

min
j

∥∥xi − tj
∥∥ (10)

where xi denotes the measurement data derived from the
algorithm, tj represents the location of the true radiation source,
and N is the detection count.

The experimental scenario includes five groups of radiation
sources, where the number of radiation sources in each group can
be dynamically adjusted for experimental analysis. Figure 4 shows
the Monte Carlo experiment with 50 simulations per run. The
dashed line represents the average error of the method in one
Monte Carlo experiment, and the length of the vertical error bar
indicates the standard deviation of the localization error of each
method in each run. The maximum spacing constraint within a
group is <2.0 km, and the offset range of radiation sources within
a group is [–1.0, 1.0] km. To ensure the universality of the data,
each radiation source generates 40 Gaussian points distributed with
rotational perturbation, and 20% uniformly distributed random
noise points are added. As mentioned above, the increase in the
number of radiation sources in dense scenarios deteriorates the
positioning error of the algorithm. In the experiment, the number
of radiation sources in each group gradually increased from 3 to
10, which means that the total number of measurements in the
measurement area increased from 600 to 2,000.

In dense scenarios, the proposed algorithm simultaneously
considers geometric distances and radiation source attribution
relationships, significantly improving the accuracy of point-to-
point associations. This ensures that each real radiation source
retains only one high-quality cluster, avoiding repeated detections.
In Figure 4, the error curve of the proposed method is consistently
at the bottom, while the error fluctuation ranges of other algorithms
are significantly larger. During simulation, traditional methods
exhibit error spikes (misidentification in dense regions). And as the
number of radiation sources per group increases, the localization
error of the method gradually increases, yet the proposed method
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FIGURE 4

Experiment on localization error in dense scenarios. (a) Number of radiation sources per group is 3. (b) Number of radiation sources per group is 10.

always maintains a significant advantage. The traditional DBSCAN
method uses a fixed parameter eps, making it impossible to adapt
to regions with different densities. As a result, a large number
of boundary points in dense scenarios are misclassified as noise,
leading to the worst localization performance.

5.3 Cross-density scenarios assessment

Sections 5.1 and 5.2 analyze the anti-noise capacity of
the method under low-density conditions and the localization
accuracy in high-density environments. In this section, we further
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FIGURE 5

Experiment on localization error in cross-density scenarios. The gray points may be initially regarded as noise, and as the measurement information
gradually increases, they are detected as new radiation sources. (a) Simulation results of the spare region. (b) Simulation results of the transition
region 1. (c) Simulation results of the transition region 2. (d) Simulation results of the dense region.

analyze the consistency of the proposed algorithm in cross-density
scenarios, that is, evaluate the effectiveness of the algorithm when
the data volume dynamically changes by simulating different
conditions of data distribution (sparse-transition-dense). Figure 5

shows the localization results of different algorithms in the sparse,
transition, and dense regions, respectively, for an arbitrary single
trial. In the simulation experiments in this section, we extend
the experimental scenario to [0, 10] km. The generation of
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FIGURE 6

Simulation results of radiation source localization errors.

measurement data includes three phases. Phase 1 is referred to
as the sparse region, where the density of measurement data is
assumed to be 5 /km2. Phase 2 is the transition region, with a data
density of 20 /km2 and 30 /km2. Finally, Phase 3 is assumed to
be the dense region, where the density of measurement data is 50
/km2. The procedure begins with initial sparse-phase measurement
data and gradually increases the number of measurement points to
elevate the density. This thus verifies that the proposed method can
dynamically handle potential noise at different moments, ensuring
the consistency of the trust subset. Based on the Monte Carlo
method, multiple simulation analyzes were conducted.

As shown in Figure 5a, the measurement data of radiation
sources are approximately 600 in the initial stage, which are
relatively sparse, and the proportion of noise points is high
(30%). Traditional methods are disturbed by noise, leading to
large deviations in the positioning results. It should be noted
that the measurement data are relatively sparse under the current
state, with some correct measurement data being temporarily
classified as potential noise. To allow the simulation to gradually
enter Stage 2 (transition region), we adopt an incremental
update approach to increase the density of measurement data,
as shown in Figures 5b, c. In this phase, the measurement
count exceeds 2,000, yet the data distribution exhibits non-
uniformity with mixed-density regions in the scenario. Traditional
K-means/GMM methods fail to accommodate both density
variations and inhomogeneity, thereby amplifying localization
deviations. It can be observed that with the dynamic update of
measurement data, the measurement points previously regarded
as potential noise are re-selected into the trust subset at the
current moment, which verifies the adaptability of the proposed
algorithm to dynamic scenarios. In the dense region of Stage 3,
the number of measurement points exceeded 5,000, as shown in

Figure 5d. The accumulation of a large volume of measurement
data reduces inter-cluster distances, which may readily lead to
incorrect associations between distinct clusters—despite the fact
that they do not actually belong to the same cluster. The
proposed method leverages the dynamic threshold of the GMM
adjacency matrix to effectively mitigate the issue of erroneous
association between adjacent clusters in cross-density scenarios. It
prevents the incorrect merging of different clusters while improving
localization accuracy.

Figure 5 visually illustrates the variation of localization
accuracy among different algorithms during the iterative update
process of the measurement data. A quantitative analysis of
this phenomenon is now presented. Figure 6 displays the
polylines of localization error and the average errors of different
algorithms statistically obtained from 50 Monte Carlo experiments.
The simulation results indicate that the localization error of
the proposed algorithm is 0.2, and its localization accuracy
is improved by approximately 70% compared to the other
three methods. As is clearly observed in the figure, the
error curve of the proposed algorithm appears smoother,
which confirms its superior robustness against noise and
density variations.

6 Conclusions

For the challenges of high noise, target overlap, and dynamic
density variations present in radiation source measurement
data within complex environments, this paper proposes a
novel radiation source localization framework that integrates
adaptive clustering, probabilistic validation, and graph-theoretic
optimization. This paper establishes a framework incorporating
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adaptive clustering, probabilistic validation, and graph-based
optimization to address the challenges associated with processing
incrementally updated datasets. The proposed approach
resolves the limitations of conventional methods in adapting
to instantaneous density variations by dynamically partitioning
the data into intrinsically consistent subsets. Furthermore, it
employs a graph-based formulation, translating the maximization
of pairwise consistency into a maximum clique problem,
thereby enhancing localization accuracy. Experimental results
demonstrate that the proposed framework significantly improves
localization performance in complex scenarios. Specifically, it
achieves an average positioning error of 0.15 km in cross-density
scenarios, significantly outperforming traditional algorithms.
This research provides a engineering feasible solution for
radiation source localization in complex environments, and its
modular architecture lays the groundwork for future multisource
fusion applications.
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