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Wearable Activity Recognition consists of recognizing actions of people from
on-body sensor data using machine learning. Developing suitable machine
learning models typically requires substantial amounts of annotated training
data. Manually annotating large datasets is tedious and time intensive. Interactive
machine learning systems can be used to support this, with the aim of reducing
annotation time or improving accuracy. We contribute a new web-based
annotation tool for time series signals synchronized with a video recording
with integrated automated suggestions, facilitated by ML models, to assist and
improve the annotation process of annotators. This is enabled by focusing
user attention toward points of interest. This is particularly relevant for the
annotation of long periodic activities to allow fast navigation in large datasets
without skipping start and end points of activities. To evaluate the efficacy of this
system, we conducted a user study with 32 participants who were tasked with
annotating modes of locomotion in a dataset composed of multiple long (over
12 h) consecutive sensor recordings captured by body-worn accelerometers.
We analyzed the quantitative impact on annotation performance and the
qualitative impact on the user experience. The results show that the implemented
annotation assistance improved the annotation quality by 11% F1 Score but
reduced annotation speed by 20%, whereas the NASA Task Load Index results
show that participants perceived the assistance as beneficial for annotation
speed but not for annotation quality.

KEYWORDS

human activity recognition, data annotation, statistical change detection, human-
computer interaction, wearable computing, deep learning, attention mechanism,
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1 Introduction

The wide-spread usage of smartphones, fitness trackers, and interconnected devices has
resulted in a significant surge in body-worn sensors. Typical sensors capture acceleration
and rate of turn (Altun and Barshan, 2010), as well as physiological parameters like body
temperature, heart rate, and sweat rate (Chadha et al., 2023). Human activity recognition
(HAR) aims to identify the actions of people based on the time series originating from
those sensors using machine learning and deep learning techniques (Bulling et al., 2014).
Strong performance of these models, especially for deep learning, generally relies on a large
amount of available training data (Chen et al., 2021).
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In order to create a new dataset for training and evaluating
activity recognition models, it is necessary to record the wearable
sensor data and then annotate the sensor recordings to establish
a ground truth. Typically, this annotation process involves aligning
sensor data with corresponding video recordings to identify specific
time intervals that capture the relevant activities. This task is labor-
intensive due to the extended duration of observations—a point
underscored by the Opportunity dataset, where annotating video
footage took approximately 14–20 times longer than the duration
of the footage itself (Roggen et al., 2010).

To streamline the process of annotating activity datasets,
smart annotation techniques can be employed, which rely on
the implementation of online learning, interactive learning and
semi-supervised training methods, and thereby reducing the effort
required for dataset annotation. In our work, smart or automated
annotation assistance refers to the use of machine learning to
predict potential annotations for wearable sensor data which is
presented as a suggestion to the annotator, who can accept,
ignore, or adjust and improve on the suggestion. The performance
of various unsupervised and semi-supervised machine learning
methods when predicting class labels and—theoretically—assisting
manual annotation efforts, has been previously explored (Demrozi
et al., 2023). However, little research has been done to evaluate the
effect of these within a complete assistive systems considering also
the effect on the user’s accuracy, speed of work, and perception
of ease of use and mental workload. One reason for the limited
evaluations in real-world deployments is that there are only a
limited number of tools are available suitable to investigate such
assisted annotation systems (Hoelzemann and Van Laerhoven,
2024).

In order to investigate the impact of annotation assistance,
we implemented the Smart Annotation Assistance Tool (SAAT), a
new web-based annotation tool for time-series data synced with
video footage.1 SAAT uses a machine learning model [a variation
of an attention-based neural network known as MFCANN (Yang
et al., 2024)] to generate annotation suggestions, which are used
to focus the annotator’s attention toward points of interest in the
sensor material. Specifically, the system indicates the start and end
times of potential activity segments as well as potential activity
classes. This allows playback to be sped up without missing start
and end points of activities, making the assistance particularly
relevant for the annotation of long periodic activities. Instead of a
machine learning model, SAAT can also use annotations suggested
by human annotators or even synthetically generated annotations,
such as annotations generated from the ground truth with artificial
variations to evaluate the system in a controlled fashion. This allows
the performance of the overall system to be decoupled from the
underlying machine learning model, and we use this to perform a
evaluation of the system in a controlled manner. We released SAAT
publicly.2

We used SAAT to conduct a user study with 32 participants
in total to estimate the impact of annotation assistance on the
performance and experience of users. As benchmark served the
Sussex-Huawei Locomotion and Transportation dataset (Gjoreski

1 Preliminary details of the tool were presented in Gunthermann (2023).

2 https://github.com/STRCWearlab/SAAT

et al., 2018), which is characterized by multiple over 12 h long
consecutive sensor recordings captured by multiple body-worn
sensors, including accelerometers. The user study was divided
into two phases. For the first phase, we incorporated synthetic
annotation assistance which included misplaced suggested onsets
and offsets of activity segments and incorrect suggested labels,
created by manipulating the ground truth annotation. The findings
gathered in this more controlled setting were used to further refine
the tool. The second phase of the study focused on the real-
world usage of the annotation tool. For this, MFCANN was used
to obtain suggestions from an attention-based machine learning
model. Participants of the first phase were excluded from the
second phase, in order to prevent their experience with the tool and
task from skewing the results.

During both phases, each participant was asked to perform
two annotation scenarios with our system, once with annotation
assistance and once without. Each scenario required the participant
to navigate roughly 12 h of continuous first person video footage
and wearable accelerometer data in 20 min and to annotate
the modes of locomotion and transportation performed by
the dataset subjects. In order to derive objective measures of
performance, annotation speed and quality was captured. For
subjective measures, we used the NASA Task Load Index (NASA-
TLX) (Hart and Staveland, 1988) to capture the mental workload of
participants and a questionnaire to obtain further feedback.

In short, the contributions of this paper are:

1. The implementation of a new web-based tool for the annotation
of time-series data, which can use ML methods (notably
MFCANN) to assist the human annotator by highlighting start
and end point of segments of interest in a time series of wearable
sensor data, and suggests a suitable annotation label (Section 3).

2. A user study to examine the impact of the implemented
automated assistance on the annotation performance and
experience (Section 4). The evaluation considers the individual
performances of participants, but also includes a simulated
crowd-sourcing scenario.

2 Related work

Software-based activity annotation involves annotators
operating on a user interface, which displays wearable sensor
signals, video recordings, and other modalities to manually
segment (select start and end point within the time series
data) and/or label (select a class label describing a segmented
activity) activity data. In this context, we refer to annotation
assistance as a support mechanism which uses segmentation or
label suggestions provided by machine learning or other means
(e.g. other annotators), to improve annotation performance,
speed, experience, and/or other factors. This section is reviewing
methods to implement annotation assistance and to evaluate
the performance and experience of annotators. This includes
quantitative assessments such as speed and accuracy, as well as
qualitative investigations into mental aspects such as frustration,
stress, confidence, sense of accomplishment, or other perceptions
regarding the annotation task. We focus this review particularly
on the annotation of time series data recorded by inertial
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measurement units (IMU). However, more broader time series
annotation (e.g. audio signals) or comparable scenarios such as
video and image annotation are considered as well.

Manual annotation can be performed by the individual who
is performing the activity or by an external observer. Since
the individual is generally aware of what activity they are
performing, self-annotation comes with different requirements for
implementation, assistance, and evaluation (see e.g. Mairittha et al.,
2021; Hoelzemann and Van Laerhoven, 2024). In this work, we will
be focusing on automated assistance for external observers who
annotate activity data, which was previously unseen to them.

Demrozi et al. (2023) propose a taxonomy to differentiate
automated data annotation techniques in HAR, distinguishing
between automated and semi-automated approaches. Semi-
automated approaches refer to the combination of manual and
automated annotation methods. Our approach of using automated
annotations to assist manual annotation would be considered a
semi-automated approach. Although automated approaches are
scalable and faster than annotation with human involvement, they
are generally expected to be less accurate due to the lack of
guidance.

NOVA is an annotation tool for various types of time series
and media data, focusing on cooperative machine learning and
explainable AI (XAI) (Heimerl et al., 2019). NOVA uses machine
learning to annotate data and presents the suggested annotation to
human users for correction. In this case, the user is assisted in the
annotation process by having pre-annotated data provided instead
of starting with a blank slate. Baur et al. (2020) used NOVA for an
audio annotation experiment, which aimed to detect interruptions
in conversations. They used extracted audio features and a linear
support vector machine (SVM) model for automatic annotation
and presented low confidence annotations for manual correction.
In this semi-automatic approach, the automatic annotation of time
series data is supposed to speed up the manual annotation process.
The evaluation was performed by simulating manual annotation:
low confidence annotations were corrected by the ground truth
(not a human annotator). Finally, a model trained on the manually
annotated data (ground truth) was compared to one trained on the
semi-automatically annotated data, which showed that the latter
required 37% less manual annotation effort to achieve the same
performance.

Heimerl et al. (2022) further deployed NOVA in a user study,
in which 53 participants were asked to correct the classifications
performed by a neural network that was tasked with identifying
the emotional facial expression displayed in an image. Participants
were divided into four groups with the following additional
information configurations provided to them: none (baseline), the
confidence values of the neural network, a visualization of which
areas in the image the neural network particularly focused on,
and both the confidence values and the visualization. The NASA-
TLX questionnaire (Hart and Staveland, 1988) was used to capture
the cognitive workload, but no statistically significant difference
between the groups was measured. The speed and accuracy of
the different groups were not compared. In addition, the facial
expression annotation task is quite distinct from the time series
annotation we are concerned in human activity recognition dataset
annotation. However, although different metrics were used, the

user study utilizes comparable scenarios for different groups, where
participants were given the same data to annotate manually or with
different semi-automated approaches. Also, capturing the mental
workload via the NASA-TLX questionnaire represents a relevant
measurement for our study.

Ponnada et al. (2019) designed the annotation tools Signaligner
and Mobots to utilize gamification to crowdsource data annotation.
They conducted a user study with 182 participants to compare both
tools. Participants were asked to use the tools to annotate activities
in accelerometer data recorded by body-worn sensors. The
annotated activities were of rather broad description: “ambulation
(e.g., walking and running), sedentary (e.g., sitting, resting, working
on PC), sleep, and sensor nonwear." Signaligner is described as
a “Pattern Matching Puzzle Game" and Mobots as a “Action
Annotation Game." This study compared two very different
scenarios: Mobots users were served short 10 second segments of
the accelerometer data sampled at 16 Hz and took on average 6–
7 min to annotate a total of 9.5 min of data. Signaligner users
were served long 29–59 min segments of the data sampled at 0.2
Hz and took on average 4–5 min to annotate a total of 3.8 h of
data. Comparing the annotation accuracy revealed that participants
using Signaligner achieved a higher annotation performance (99.5%
accuracy) than their counterparts using Mobots (89.7% accuracy).
In addition to difference in length of presented data segments,
Signaligner users had unlimited time to get familiar with the tutorial
whereas Mobots users didn’t. The substantial differences between
the two groups make it difficult to draw meaningful conclusions
from the study, indicating the need to design more comparable
scenarios when conducting a user study. Furthermore, the authors
state that a “zooming" function, i.e. selecting the range of data
observed at once, would be a complex but beneficial feature to allow
users to better explore the data. Although this work is a manual
annotation approach since no automated annotation is used, the
relevance for this project lies in the quantitative evaluation of two
different annotation scenarios through a user study and the insights
gained from it.

Diete et al. (2018) used dynamic time warping on acceleration
data captured by body-worn sensors to perform automatic
annotation to support manual annotation of video recordings
synchronized with such sensor recordings, and investigated which
hyperparameters lead to the most promising results. Although no
user study was conducted to verify this semi-automated approach,
the authors state the importance of conducting a user study to
measure annotation time and annotation agreement with and
without annotation suggestions.

Palotai et al. (2014) implemented LabelMovie for video
annotation which can be used for crowdsourcing and semi-
automated annotation using synchronized time series data. For one
experiment in particular, acceleration data captured by a body-
worn sensor synchronized with video footage stemming from
eye-tracking glasses was used. LabelMovie uses dynamic time
warping and SVM to compare the similarity of annotated data
with previously annotated data with the same label. It uses a
matrix representation to visualize this similarity value. These other
annotations could be performed by domain experts and allow
less experienced annotators to compare their annotations to those
of experts.
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In a different approach utilizing visual indicators, Fabro et al.
(2013) used pattern detection of color and motion in videos
to cluster segments of coherent material. The segments are
then presented to the viewer with color coding to assist video
browsing. We will adopt the approach of using visual indicators for
segmentation in our work.

Our review concludes that an exhaustive investigation into the
impact of annotation assistance needs to be based on user studies,
which include an evaluation of individual performances (e.g. speed
and accuracy) as well as human factors, such as mental workload. In
order to obtain reliable indicators of benefits, a baseline without the
evaluated annotation assistance needs to be tested under otherwise
identical conditions. As shown in this section, the majority of the
considered research in the domain of semi-automated annotation
has not been verified by deploying a user study with actual users.
We assume that the associated costs in terms of funding, time, and
human resources might have been one of the reason preventing
such a real-world evaluation. Furthermore, in the user studies
which were conducted, none of the work we cited covered all the
relevant aspects stated above. Learning from this, our work put
particular emphasis on characterizing the human factors of an
annotation assistance system, by measuring baseline performance
(without annotation assistance) under identical conditions to the
performance with annotation assistance.

3 Smart annotation assistance tool

This section covers the implementation of Smart Annotation
Assistance Tool (SAAT), a web-based annotation tool for time-
series data synchronized with video footage.

SAAT was developed particularly to enable experiments with
annotation assistance. It includes a mechanism to shift the
annotator’s attention toward points of interest in the dataset. This
form of assistance is expected to be particularly useful for the
annotation of long duration activities since it aims to speed up
the navigation of material without missing start and end points of
activities.

The back-end of SAAT is developed in Python 3, in order to
utilize the various available machine learning libraries to obtain
annotation suggestions. The front-end consists of HTML and
Bootstrap for the design and JavaScript for functionality. Flask is
used to connect the front-end to the back-end, due to its flexibility
and native Python support.

3.1 User interface

The front-end of SAAT (Figure 1a) includes a video stream,
which shows the current frame and a preview of the previous
frame and the following frame. This is a particular design choice
suited for video streams with low captured frame-rates, resulting
in significant visual changes between consecutive frames, such as
time-lapse videos. Below the video stream is the control panel with
a slider and input field for the playback-speed (displayed in frames
per second), navigation buttons to jump backwards or forwards in
the material and toggle playback, and buttons to zoom in or out of
the sensor stream.

The sensor stream, which displays the sensor signals, is
positioned underneath. Underlying the sensor signal is a labeled
time-axis displayed to improve visual guidance: the horizontal line
represents the mean value of the sensor signal, vertical lines are
placed every nth sample based on the zoom setting, and thick
vertical lines indicate the start/end sensor samples which are
spanned by the video frames. The samples which lead up to the
current frame are marked with a gray background, which means
the sample at the end of the gray marked box [i.e. the right side
indicated by (l) in Figure 1a] was recorded the same time the video
frame was captured. Once this last sample reaches the middle of the
sensor stream [indicated by (m) in Figure 1a], the next video frame
will be displayed and the gray sample marking updated.

Blue markers in the sensor stream indicate start/end points of
user-annotated activities. Clicking on such a marker or clicking into
the sensor stream to set a new marker will open the annotation
menu, where a label can be selected (Figure 1b). Each annotation
marker is both the start point of the next activity and the end
point for the previous one. This allows to set the start point
of an activity, navigate a potentially long stretch of material,
and then set the end point independently. This is yet another
measure favoring long periodic activities. The None (null) label
can be selected for unclear activities, transition phases between two
activities, or when no activity of interest takes place. The annotation
markers can be moved via drag-and-drop. The currently displayed
annotation labels are indicated in boxes below the sensor stream.
Clicking on such a box will also open the annotation menu for the
corresponding time segment.

The front-end implementation follows the well-established
model-view-controller (MVC) framework (Leff and Rayfield,
2001). The central model element is implemented as JavaScript
class and holds all relevant information for the project and session.
This includes settings for playback speed, zoom level, and current
location in the material. Most of these settings are initially loaded
from the back-end and continuously synchronized back. This
creates redundancy by storing settings in the front-end for quick
access and in the back-end to save session details for future use.
The model also buffers sensor segments and video frames. These
buffers are pre-loaded with material to be displayed in order to
allow smooth playback.

The view is realized using HTML elements displaying sensor
signals and corresponding video frames. It includes a periodic page
refresh during active playback in order to update sensor and video
to the current location in the material. The default refresh rate is
24Hz to create the impression of a moving image.

The controller includes HTML elements such as buttons to
control the playback, the sliding bar to navigate the material,
and the annotation menu popup allowing the user to perform
annotations. Some updates during playback are indirectly triggered
by the user through the use of the playback function.

3.2 Annotation assistance mechanism

Annotation assistance is implemented by incorporating
segmentation suggestions and label suggestions. Whenever the
annotator opens the annotation menu, the most likely activity
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FIGURE 1

The user interface and its functionality. (a) The user interface of the proposed annotation tool: previous video frame (a); current video frame (b); next
video frame (c); playback speed controls (d); navigation buttons (e); zoom buttons (f); sensor stream (g); user-annotations (h); navigation bar (i);
start/end sample of user-annotation (j); start sample of current video frame (k); end sample of current video frame (matching timestamps between
sample and current video frame) (l); center of sensor stream (m). (b) When a sample in the sensor stream is selected, a window opens in which the
user can choose an annotation (a). If annotation assistance is active, the suggested annotation will be pre-selected (b). (c) When the playback is
approaching a suggested start/end point of an activity, the annotation assistance will slow down the playback-speed and indicate the point of
interest with an orange line in the sensor stream (a). A click-able red cross will appear which can be used to discard the annotation suggestion (b), i.e.
remove the orange line and continue playback at the original speed.
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annotation will be highlighted and pre-selected. Annotators can
either confirm the suggestion by pressing confirm (or the enter key
on the keyboard) or select a different annotation. The idea behind
this is to speed up the annotation process by saving time and effort
on selecting the correct labels.

SAAT visualizes the activity start/end points suggested by
the assistance system in orange [indicated by (a) in Figure 1c].
When the user confirms or corrects the suggestion, it turns blue.
Whenever playback approaches one of the orange suggestion
markers, the playback-speed slows down to allow the user the
verification of the suggestion. Pressing the appearing discard
button [indicated by (b) in Figure 1c] or the delete/escape key
on the keyboard will discard the prediction, remove the orange
marker, and reset the playback-speed to its previous setting. The
discard button is symbolized by a red cross, which also serves as
an additional visual indicator for the user to notice the current
suggestion. If the annotator ignores the suggestion, the playback
will speed up to the original setting after passing the suggested
point.

Missing a start or end point while navigating the material at
high speeds might cause a significant disruption to the user since
they will have to manually scroll back and find the missed point
of interest. Navigating the material at lower speeds prevents that
issue but slows the annotation process down. In our system we
took the best of both these approaches, by having playback at high
speed which is automatically slowed down around suggested points
of interest. This allows the annotator to maintain high playback
speeds during long consistent activities or long times without
activity (null class) while reducing the risk to miss a start or end
point.

3.3 Sources of annotation suggestions

Suggested annotations can stem from various sources: machine
learning can be used to predict the suggested class label or start and
end point of segments of interest, the annotations of other users
can be used in a crowdsourcing scenario, or engineered suggestions
can be used in a controlled environment for experiments (e.g. the
ground truth with introduced variations).

3.3.1 Synthetic suggestions
Automatically generated annotation suggestions are likely to

contain some mistakes due to the use of the underlying ML
model which is itself imperfect. In order to evaluate the impact
of annotation assistance on the experience and performance
of annotators, it can be beneficial to conduct experiments in
controlled conditions with known variations rather than using less
predictable machine learning based suggestions. This tool supports
this by loading offline-generated annotation suggestions. In this
work, we use this feature to create synthetic suggestions resulting
from systematically modifying the ground truth of annotated
datasets. Those modifications include adding change points (start
or end points), removing actual change points, adding noise to
offset the position of change points, and changing the suggested
annotation label. The modifications applied to the change points
follow trends observed in the data. Changing annotation label

suggestions also aims to keep suggestions realistic, by using
common misclassifications, e.g. between classes walk and run, or
train and subway.

3.3.2 Machine learning based suggestions
Attention-based models have become increasingly important in

activity recognition tasks due to their ability to capture spatial and
temporal relationships globally unlike convolutional layers bound
to a local scope. Replacing convolution layers with attention layers
has shown to achieve state-of-the-art performance (Abedin et al.,
2021; Zhou et al., 2022). Based on benchmark tests, which included
traditional models such as DeepConvLSTM (Ordóñez and Roggen,
2016), we selected Multi-Feature Combining Attention Neural
Network (MFCANN) (Yang et al., 2024) to predict annotations on
the accelerometer data which can be used as suggestions.

MFCANN combines different feature extraction and local
and global feature attention mechanisms. It consists of multiple
Multi-Feature Combining Attention Blocks (MFCAB) which are
embedded with residual connections. The information extracted
is aggregated by applying average pooling and a fully connected
layer followed by a softmax layer is used to predict a class. Each
MFCAB applies multiple convolutions in parallel, those include
different kernel sizes, max pooling, and average pooling. After
applying batch normalization and ReLU activation to the extracted
features, the data is fed into both an intra-module attention block
(Intra-MAB) and an inter-module attention block (Inter-MAB).
Intra-MAB uses attention to weight the importance of individual
channels whereas Inter-MAB allows the adjustment of convolution
components to utilize global feature information.

In order to obtain annotation suggestions, MFCANN was used
to predict class labels for 5s long windows of the accelerometer data.
Based on the predicted likelihood, the most probable class label is
selected for each window. Consecutive windows with different class
labels were considered start points of the next activity segment.

When machine learning is used to obtain suggestions for longer
lasting activities, some form of smoothing should be applied.
Otherwise, a suggestion may be made each time a different
annotation is predicted for a consecutive timestamp, causing
unnecessary disruption. We used a rolling smoothing average filter
of 75s length and an offset of 5s was applied to consecutive
windows to obtain the final suggestions. The offset refers to the
annotation suggested 5s earlier to counteract the delay introduced
by averaging. This is configurable and was selected based on the
type of activity dataset we used for the evaluation of our system in
this paper. Although the expected offset would be 37.5s, benchmark
tests achieved better results with 5s.

4 User study

In order to estimate the impact of the proposed annotation
assistance on the performance and experience of users, we utilized
SAAT in a user study with 32 participants in total. Participants were
asked to manually annotate activities from acceleration data in a
dataset with long activities in two scenarios.

The study was conducted in two phases. In Phase 1, synthetic
annotation suggestions were used for annotation assistance. These
synthetic annotations were used in the initial phase to perform the
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experiment in a controlled manner, by including known variations
in the segmentation and label suggestions for this dataset. In
Phase 2, the suggested annotations were predicted by MFCANN
to evaluate the impact of suggestions by an actual machine learning
model. This corresponds to the real-world usage of the system. The
procedure for both phases was otherwise identical. Participants of
Phase 1 were not allowed to participate in Phase 2.

We used a counterbalanced study design to assess the impact
of the annotation assistance by comparing their performance and
experience using SAAT with annotation assistance and without
assistance (baseline). The participants were divided into two
groups. Group 1 received no assistance for the first scenario
(Scenario A) and were assisted during the second scenario
(Scenario B), whereas Group 2 received annotation assistance in
Scenario A but not in Scenario B. Otherwise Scenario A and
Scenario B were identical for both groups. Each scenario in both
phases of the study uses a different sensor recording as annotation
benchmark (four in total).

The Ethical Review Application ER/LG375/1 for the user study
was approved on August 1st 2023 by the University of Sussex
Science and Technology and Arts Cross Schools Research Ethics
Committee.

4.1 Data

For this paper, we selected the Sussex-Huawei Locomotion and
Transportation (SHL) dataset (Gjoreski et al., 2018) as benchmark
due to its long activities. The publicly available subset “Complete
User 1–Hips Phone" and in particular the three-dimensional
acceleration signal captured by a phone placed in the hip pocket was
selected for the annotation task. The sensor signals are normalized
to fit the screen better (e.g. one acceleration channel would
otherwise be significantly offset due to gravitational forces). The
‘User 1" in this dataset, who performed the recorded activities, is
referred to as subject from now on. In addition to the sensor signal,
the dataset provides body-cam footage which was recorded on chest
level by the subject and took a snapshot every 30s. Four individual
days of continuous recording were selected as test scenarios, two
for each phase of the study. These recordings ranged from 12:37h
to 12:54h as shown in Table 1.

Although the SHL Dataset provides labels for each recorded
sample, those were considered too rough for the purposes of
this study. Many smaller transition activities were not labeled to
the grade of precision expected. Therefore, the annotation of the
four selected scenarios was corrected by a PhD candidate under
supervision of domain experts using our own SAAT (without the
assistance function) and these revised annotations were used as the
ground truth. Those ground truth annotations can be found in the
github repository.3

The data includes a limited amount of missing sensor signals
and body-cam footage due to technical issues, human errors, and
privacy-preservation measures. Such issues can be expected to
some degree in an annotation scenario. The impairments were

3 https://github.com/STRCWearlab/SAAT/tree/main/ground_truth/

deemed to be limited in scale and would not prevent a meaningful
annotation of the material.

Table 1 provides an overview of the amount of sensor
recordings available for different data subsets. The sensor sequences
270417, 200617, 100517, and 220617 are used as material to be
annotated in the two phases of the user study. Those sequences
are recordings collected on individual days. We used other sensor
sequences comprising the same 8 modes of locomotion and
transportation for the training of the ML model MFCANN. This
subset Training was downsampled to 13:53h of data per activity
class.

4.1.1 Phase 1
In the synthetic annotation suggestion phase, the sensor

sequence 270417 was utilized in Scenario A and 200617 in Scenario
B. 270417 contains 53 changes of activity (26 changes excluding
the null class), whereas 200617 contains 43 changes of activity (21
changes excluding the null class).

4.1.2 Phase 2
In the ML-based annotation suggestion phase, the sensor

sequence 100517 was used for Scenario A and 220617 for Scenario
B. 100517 contains 51 changes of activity (25 changes excluding the
null class) and 220617 contains 41 changes of activity (20 changes
excluding the null class). Both sensor sequences are characterized
by periods without activity, which provides an interesting aspect to
investigate since the annotation assistance might be able to save a
lot of time indicating them.

4.2 Procedure

Participants were led into an office with a computer.
They were given the participant information sheet to read
and a consent form to sign. Before engaging with the
annotation tasks, basic demographic information were requested
(Supplementary Figure S4) and participants were asked to report
their computer literacy, experience with annotating sensor signals,
and likelihood to experience health issues during long tasks in
front of a screen (Supplementary Figure S5).

Initially, participants were presented a video with instructions4

how to use SAAT and annotate sensor signals. Following the video,
the participants were able to ask questions about the procedure of
the study and were informed that the instructor would leave the
room. The instructor would not answer any questions about how
to perform the annotation task, but rather advise participants to
perform the task “to the best of their knowledge and ability” based
on the provided information.

After the instructor left the room, the participants had 10
min to familiarize themselves with the annotation tool and the
integrated assistance. Afterwards they were asked to annotate
Scenario A. Group 1 annotated this scenario without assistance,
whereas Group 2 was provided both segmentation and label
assistance. Participants had 20 min of time given to annotate

4 https://github.com/STRCWearlab/SAAT/releases/tag/intro_video_v1.0.0
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TABLE 1 Length of the sensor recordings per annotation label in each data subset.

Dataset Null Still Walking Run Bike Car Bus Train Subway Total

Training 13:53h 13:53h 13:53h 13:53h 13:53h 13:53h 13:53h 13:53h 13:53h 125:00h

270417 4:20h 2:06h 0:55h 0:32h 0:19h 0:12h 2:57h 1:29h 12:50h

200617 5:51h 0:56h 1:26h 0:48h 1:08h 0:46h 1:44h 12:40h

100517 5:20h 1:14h 1:32h 0:32h 1:02h 2:58h 12:37h

220617 7:36h 0:42h 1:18h 0:20h 2:47h 0:12h 12:54h

These subsets include the Training data used to train the ML classifier to provide the assistance in Phase 2, and the four sensor sequences used in the annotation scenarios. Those four sensor
sequences are not part of the Training data.

TABLE 2 The composition of both participant groups based on the number of participants N, average age of participants, ratio between female and male
participants, and average self-reported computer literacy and experience with sensor signals.

Phase/Group N Age F:M Computer literacy Sensor signal experience

Phase 1 Group 1 7 29.14 ± 6.51 0.43 4.43 ± 0.49 2.71 ± 1.48

Phase 1 Group 2 8 31.88 ± 7.88 0.25 4.50 ± 0.71 3.12 ± 1.54

Phase 1 All 15 30.60 ± 7.40 0.33 4.47 ± 0.62 2.93 ± 1.53

Phase 2 Group 1 8 23.75 ± 4.52 0.12 3.75 ± 0.83 2.12 ± 0.93

Phase 2 Group 2 8 25.25 ± 6.59 0.38 3.75 ± 0.66 2.12 ± 0.60

Phase 2 All 16 24.50 ± 5.70 0.25 3.75 ± 0.75 2.12 ± 0.78

Computer literacy and sensor signal experience are ranked from very low (1) to very high (5).

the material. Afterwards they were asked to fill out a NASA
Task Load Index (NASA-TLX) questionnaire(Hart and Staveland,
1988) (Supplementary Figure S6) in regards to the performed
annotation task.

This process was repeated with Scenario B, but with the
groups receiving assistance switched: Group 1 was provided
with annotation assistance whereas Group 2 used SAAT without
assistance. Participants again had 20 min to annotate the scenario
and were then asked to fill out a NASA-TLX questionnaire.

Once participants finished both scenarios and answered the
corresponding NASA-TLX questionnaires, they were asked to rate
the general experience with SAAT and the impact of annotation
assistance on multiple scales (Supplementary Figure S7). There
were also additional text fields to leave optional feedback
(Supplementary Figure S8).

The procedure was the same for Phase 1 and Phase 2, apart
from different sensor sequences to annotate (see Section 4.1.1 and
Section 4.1.2) and different sources for the provided annotation
suggestions (see Subsections 3.3.1 and 3.3.2).

4.3 Participants

Potential participants were screened to ensure that they are at
least 18 years old and not at an alleviated risk of suffering from pain
in the wrists, eyes, or the head when performing longer tasks in
front of a computer screen.

Users were split in two groups in a counterbalanced design
to account for potential order effects: one group first received
no assistance then received assistance, while the other group first
received assistance, then no assistance. The group assignment was
considering the experience with annotating sensor signals to keep
the groups balanced, this was particularly relevant in Phase 1

which included some highly experienced individuals. In Phase 1,
15 suitable participants took part in the study. They were randomly
divided into Group 1 containing seven participants and Group 2
containing eight participants. In Phase 2, 17 suitable participants
took part in the study. They were also randomly divided into two
groups. After omitting one participant who did not perform any
annotation during the study, Group 1 and Group 2 were made of
eight participants each.

Participants of Phase 1 were not allowed to participate in Phase
2, since we expected their prior experience with the tool and the
annotation tasks would skew the results.

The age of the five female and 10 male participants in Phase
1 ranged from 23 to 50, while the age of the four female and 12
male participants in Phase 2 ranged from 18 to 39. The composition
of all groups can be seen in Table 2. An individual breakdown of
participants can be found in Supplementary Tables S1, S2.

Participants of Phase 1 were on average older and more
experienced with computers and sensor signals. However the inter-
group differences in both phases were significantly smaller.

Phase 1 included participants with very high (5) experience
with sensor signals. A very high experience with identifying sensor
signals will be rare to find outside of related professions. These test
subjects stem from the author’s research environment but are not
linked to the project. Although small in numbers (within the total
population), they represent a significant user group of annotation
software for sensor signals.

4.4 Evaluation metrics

The impact of the annotation tool and the integrated assistance
on the user experience of the study participants was evaluated
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in the form of quantitative performance measures and qualitative
assessments via questionnaires.

The NASA-TLX questionnaire (Hart and Staveland, 1988) was
used to assess the perceived workload after each scenario. It
divides the workload in the categories mental, physical, temporal,
performance, effort, and frustration. Participants are asked to rank
their perceived workload for each category on a scale with 21 steps.

Evaluating participants’ mental workload provides insight
beyond what speed and quality metrics alone can capture. While
performance measures capture how efficiently and accurately tasks
are completed, they do not reflect the cognitive effort required.
High workload can lead to fatigue, reduced engagement, and
lower performance over time (Hernandez et al., 2023), even
if initial results appear satisfactory. Therefore, incorporating
cognitive workload measures establishes a more comprehensive
understanding of user experience and system effectiveness.

The quantitative evaluation of the performance of participants
in both scenarios is based on their speed and error rate. It estimates
how fast they were performing the annotation task and how well
their annotations fit the reference expert annotations.

Some participants completed annotating one or both scenarios
in less than the available 20 min while others did not complete the
annotation of the material within this time. We used the logfiles
to estimate the amount of material sighted by each participant.
Participants had the option to finish a scenario prematurely if
they considered the task to be completed, in those cases Ta was
set to the time it took them from the start until they pressed
the ‘Finish’ button in the scenario. We were concerned that
participants might finish the material earlier but then wait for
the timer to run out. However, that turned out to be unfounded.
Comparing the time it took participants to reach the furthest point
in material, the time until they performed the last annotation task,
and Ta showed that all participants performed their last action
soon before the time ran out or before they finished the scenario
prematurely.

The speed factor S of each participant refers to the length
of material sighted per unit of time spent annotating. For each
participant we calculated S for both scenarios based on the time
spent annotating Ta and the length of the material sighted Ts as
shown in Equation 1. SA and SB refer to the speed factors measured
in Scenario A and Scenario B respectively.

S = Ts

Ta
(1)

In order to measure the quality of an annotation performed
by a participant on a provided scenario, two kinds of metrics were
chosen:

First, the weighted F1 Score F1W was calculated (Equation 2).
This provides a rough estimate of the performance. For this paper
F1W is shortened to FA when referring to the results of Scenario A
and FB for the results of Scenario B.

F1W =
C∑

i=0

wi

N
· F1i (2)

Due to domain-specific challenges, we also used the
Continuous Activity Recognition Performance Metrics (CARPM)

(Ward et al., 2011). Based on these, the annotated samples were
divided into the following groups: true positives TP (correctly
identified activities), true negatives TN (correctly identified null
class), overfilled CO, underfilled CU, merged CM, fragmented CF,
inserted CI, deleted CD, and substituted CS.

If a participant did not finish annotating all of the material,
only the part of the material they annotated was considered for the
computation of the F1 and CARPM metrics.

5 Results

First, we estimate the quality of the annotation suggestions
provided to participants of the user study. Next, we look
into the performance of the participants. For both phases
of the user study, the quantitative results are separated
into annotation speed and quality, while qualitative results
are separated into NASA-TLX and general questionnaire
answers. Additionally, we combine annotations of participants
within the same groups to simulate and evaluate the potential
performance if this approach were further used in a crowdsourcing
scenario.

A breakdown of participant’s individual performance
results and reported workload can be found in
Supplementary Tables S3, S4. One participant in Phase 2 failed
to perform any annotation and was therefore excluded from the
evaluation of the study.

5.1 Quality of annotation suggestions

MFCANN was trained on 5s long windows of the data subset
Training (Table 1), which includes 13.9h of data sampled at 100Hz
for each of the eight locomotion classes and the null class. As
optimiser served AdamW with a learning rate of 0.0001.

This section reviews the baseline quality of the annotation
suggestions before the users adjust or confirm the suggestions. If
the annotation suggestions were 100% accurate, users could simply
apply all of them and deliver perfect annotation. This is unlikely
to be the case and even if it occurs would require some amount of
manual checking by the users.

Accounting for every individual data point, the synthetic
annotation suggestions in Phase 1 are designed to have 42%
FA and 32% FB. That is a significantly lower quality than
the annotation suggestions predicted by MFCANN for Phase
2, which achieved 62% FA and 70% FB. However, it is
expected that the precise placement of the suggested change
points would have an higher impact on the performance
and experience of annotation assistance than the correct label
suggestion.

The CARPM metrics in Figure 2 offer a more detailed
breakdown: The synthetic suggestions consist mostly of true
positives as well as insertion and substitution errors. The
suggestions predicted by MFCANN show a more varied error range
and significantly more true negatives. The CARPM metrics also
show that the synthetic suggestions offer a slightly higher true
positive rate per scenario compared to the ML based suggestions
in Phase 2, despite significantly lower weighted F1 scores.
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FIGURE 2

CARPM metrics applied to the annotation suggestions of each scenario in both phases: True Positive TP, True Negative TN, Overfill CO, Underfill CU,
Merge CM, Fragmentation CF, Insertion CI, Deletion CD, and Substitution CS.

TABLE 3 The speed factor S indicates the length of material sighted and annotated by a participant in a unit of time: “Assisted" refers to the results of
Group 2 for Scenario A and Group 1 for Scenario B, whereas “Non-Assisted" indicates Group 1 for Scenario A and Group 2 for Scenario B.

Scenario All Assisted Non-assisted t-statistic p-value

Combined SA 24.92 ± 11.00 22.14 ± 9.41 27.88 ± 11.78 –1.454 0.157

Combined SB 39.63 ± 19.14 35.10 ± 14.12 43.88 ± 22.04 –1.267 0.215

Phase 1 SA 25.53 ± 12.76 21.73 ± 10.94 29.87 ± 13.29 –1.211 0.247

Phase 1 SB 41.82 ± 20.03 42.61 ± 13.30 41.14 ± 24.42 0.132 0.897

Phase 2 SA 24.35 ± 9.02 22.56 ± 7.54 26.15 ± 9.97 –0.759 0.460

Phase 2 SB 37.58 ± 18.03 28.54 ± 11.26 46.62 ± 18.97 –2.168 0.048*

“Combined” refers to a combination of the results of Phase 1 and Phase 2. The t-statistic and p-value represent the independent samples t-test comparison of assisted vs. non-assisted F1 Scores
for each scenario. A single asterisk (*) indicates results which are significant at the p ≤ 0.05 level.

5.2 Annotation speed

In Phase 1—within the 20 min time limit—Scenario A was
completed by two participants without assistance and one with
assistance while Scenario B was completed by four participants
without assistance and five with assistance. The results in Table 3
show that—on average—both groups were faster in Scenario B
compared to the first scenario, regardless of the presence or absence
of annotation assistance. In both scenarios Group 1 completed the
material in less time than Group 2, also regardless of the presence
or absence of annotation assistance.

In Phase 2, Scenario A was completed by two participants
without assistance and none with assistance while Scenario B was
completed by six participants without assistance and three with
assistance. The results in Table 3 show that—on average—both
groups were faster in the second Scenario B compared to the
first scenario and in both scenarios the group without annotation
assistance finished the task faster. Phase 2 showed a statistically
significant (p < 0.05) negative correlation between annotation
assistance and annotation speed.

No clear correlation between speed and reported experience
with sensor signals could be observed neither in Phase 1
nor Phase 2.

5.3 Annotation quality

As shown in Table 4, in both scenarios of Phase 1 the group
provided with annotation assistance achieved a 4%-12% higher F1
Score compared to the group without annotation assistance. The
results for Phase 2 show that both groups achieved similar F1 Scores
in Scenario A whether they were assisted or not. However, Group 1
achieved a 17% higher F1 Score in Scenario B (i.e., with assistance)
compared to Group 2 (i.e., without assistance).

Applying the more sophisticated CARPM evaluation to the
results of Phase 1 as portrayed in Figure 3a show that Merge
and Fragmentation are basically not present in either scenario. In
Scenario A, the group provided with annotation assistance achieved
a higher rate of correctly annotated true positives TP, but less
correctly identified true negatives TN. The situation is reversed for
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TABLE 4 The mean F1 scores achieved by participants on both annotation scenarios: “Assisted" refers to the results of Group 2 for Scenario A and Group
1 for Scenario B, whereas “Non-Assisted" indicates Group 1 for Scenario A and Group 2 for Scenario B.

Scenario All Assisted Non-assisted t-statistic p-value

Combined FA 0.79 ± 0.11 0.79 ± 0.10 0.78 ± 0.12 0.157 0.877

Combined FB 0.68 ± 0.16 0.76 ± 0.10 0.61 ± 0.17 2.800 0.009*

Phase 1 FA 0.81 ± 0.12 0.83 ± 0.12 0.79 ± 0.11 0.526 0.608

Phase 1 FB 0.68 ± 0.14 0.74 ± 0.09 0.62 ± 0.15 1.768 0.100

Phase 2 FA 0.78 ± 0.11 0.77 ± 0.08 0.79 ± 0.13 -0.342 0.737

Phase 2 FB 0.69 ± 0.18 0.77 ± 0.11 0.60 ± 0.19 2.053 0.059

“Combined” refers to a combination of the results of Phase 1 and Phase 2. The t-statistic and p-value represent the independent samples t-test comparison of assisted vs. non-assisted F1 Scores
for each scenario. A single asterisk (*) indicates results which are significant at the p ≤ 0.05 level.

a.

b.
FIGURE 3

CARPM metrics (Ward et al., 2011) applied to the annotations of each scenario in Phase 1: True Positive TP, True Negative TN, Overfill CO, Underfill
CU, Merge CM, Fragmentation CF, Insertion CI, Deletion CD, and Substitution CS. (a) Phase 1. (b) Phase 2.
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Scenario B, where the group provided with annotation assistance
identified more true negatives, but less true positives. In both
scenarios, the group with annotation assistance performed less
insertion errors CI but more substitution errors CS.

The CARPM evaluation for Phase 2 in Figure 3b reveals that in
Scenario A the group with assistance correctly identified more true
positives but less true negatives than the group without assistance.
Furthermore, the group with assistance performed less insertion
and substitution errors but more deletion errors. In Scenario B,
the group with assistance identified more true positives and true
negatives and committed less insertion and deletion errors than
the group without assistance, the number of substitution errors is
roughly the same between both groups.

5.4 Relationship between speed and
quality

Combining the results of both phases, Figure 4 shows the
achieved F1 Scores in relation to the speed of the participants. A
negative correlation between quality and speed is expected since
performing and correcting annotations takes time. This makes it
interesting that there is a slightly positive correlation measured for
assisted participants in Scenario B.

5.5 Mixed-effects model

Yij = β0 + β1Assistanceij + β2Scenarioij + β3Periodij + ui + εij

(3)

Yij = β0 + β1Assistanceij + β2Scenarioij + β3Periodij

+β4Phaseij + ui + εij (4)

To address potential confounding between learning effects,
scenario difficulty differences, and treatment effects, we employed
linear mixed-effects models. For each outcome variable (speed
factor and F1 Score), we fitted the mixed-effects model shown in
Equation 3. Where Yij represents the outcome for participant i in
scenario j, β0 is the baseline performance, β1 captures the assistance
effect of interest, β2 controls for scenario difficulty differences,
β3 accounts for period effects (learning/fatigue), ui ∼ N(0, σ 2

u )
represents participant-specific random intercepts, and εij ∼
N(0, σ 2) represents residual error. This approach distinguishes the
treatment effect from scenario differences and time-related effects.
The random intercept ui accounts for individual differences in
baseline performance. Since Phase 1 and Phase 2 use different
sensor recordings for both scenarios, the combined model takes the
study phase (β4) into account as shown in Equation 4.

The results in tab Table 5 show that the impact of the
annotation assistance on the quality of annotations is an
improvement of 11% for both phases. The results for the annotation
speed reveal a slow-down of 20%, which varies between 10% in
Phase 1 and 30% in Phase 2. This indicates a trade-off ratio of 1.8%
speed reduction per 1% F1 Score gain.

5.6 Annotation quality in simulated
crowdsourcing

Measuring the annotation quality as F1 Score as done in
Table 4, showed a reduced standard deviation for the assisted
results, especially in Scenarios B. This might indicate more
congruence in the annotations (i.e. more similar placement of
change points and selection of labels) performed by the assisted
group caused by the guiding suggestions. In order to evaluate this
aspect, we set up a simulated crowdsourcing usage, in which all
annotations within each group were taken and for each sample
a majority decision was used to establish the labeled activity. If
participants did not finish the material, only their sighted material
was taken into consideration. In case of a tie, we picked randomly
among the most selected classes.

The results were evaluated as before: For Phase 1, Table 6
shows that the crowdsourcing evens out the differences between
the assisted and non-assisted groups in both scenarios. Compared
to the individual annotation qualities shown in Table 4, the
overall annotation quality in the crowdsourcing approach has been
increased across all constellations. The CARPM results in Figure 5a
also show more aligned results between the groups.

Regarding Phase 2: Comparing the crowdsourcing results in
Table 6 to the individual results in Table 4 shows a consistent
improvement in annotation quality across scenarios and groups;
no particular trend can be identified. The CARPM results in
Figure 5b demonstrate an increase in true negatives TN, especially
for scenario A. However, not many participants finished Scenario
A which might have caused an under-representation of the null
class in Figure 3b since participants annotated less of it. More
interestingly, the crowdsourced results show a drastic reduction in
substitution errors.

5.7 NASA-TLX results

Evaluating responses of the NASA-TLX questionnaire showed
the following results: Group 1 reported a combined workload score
of 52.00 ± 13.64 in Scenario A without annotation assistance as
shown in Figure 6b and 39.69±24.34 in Scenario B with annotation
assistance as shown in Figure 6c. Group 2 reported a combined
workload score of 42.19 ± 25.26 in Scenario A with annotation
assistance as shown in Figure 6a and 53.33 ± 21.50 in Scenario B
without annotation assistance as shown in Figure 6d.

Group 1 reported a 24% decrease in perceived workload from
Scenario A without assistance to Scenario B with assistance. On
the other hand, Group 2 reported a 26% increase in perceived
workload from Scenario A with assistance to Scenario B without
assistance.

Three workload categories in particular seemed affected by this:
temporal, effort, and frustration with Group 1 reporting a 56%,
28%, and 39% decrease going from Scenario A to Scenario B,
whereas Group 2 reported a 17%, 36%, and 57% increase in those
categories. The only exception is the physical workload, where
Group 2 reported no significant change, but Group 1 claimed a 45%
increase when starting to use annotation assistance.
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a. b.
FIGURE 4

Annotation speed factor S plotted against annotation quality F, combining Phase 1 and Phase 2. Linear regression was used to analyse the
relationship between speed and quality: solid lines represent annotation assistance and dashed lines represent non-assisted annotation. (a) Scenario
A. (b) Scenario B.

TABLE 5 Absolute and relative effects of the annotation assistance (β1) on speed and F1 Score across individual study phases and combined analysis.

Phase Metric Baseline Assisted Effect Change p-value

Phase 1 Speed 35.879 32.544 –3.335 –9.3% 0.434

Phase 2 Speed 36.381 25.549 –10.832 –29.8% 0.059

Combined Speed 36.138 28.882 –7.256 –20.1% 0.051

Phase 1 F1 Score 0.692 0.771 +0.078 +11.3% 0.097

Phase 2 F1 Score 0.694 0.769 +0.075 +10.7% 0.096

Combined F1 Score 0.693 0.770 +0.077 +11.1% 0.016

Speed measured in annotation units per time period; F1 Score represents annotation quality. Effects are calculated using mixed-effects models controlling for learning effects, scenario difficulty,
individual differences, and study phase (only the combined phase). Statistical testing performed via one-sample t-tests on individual participant assistance effects (Assisted – Non-assisted
performance) against null hypothesis of zero effect. Negative speed values indicate slower annotation performance; positive F1 Score values indicate improved annotation quality.

TABLE 6 The F1 Scores achieved by each group via crowdsourcing on
both annotation scenarios: “Assisted" refers to the results of Group 2 for
Scenario A and Group 1 for Scenario B, whereas “Non-Assisted" indicates
Group 1 for Scenario A and Group 2 for Scenario B.

Scenario Assisted Non-assisted

Phase 1 FA 0.86 0.87

Phase 1 FB 0.76 0.78

Phase 2 FA 0.89 0.90

Phase 2 FB 0.89 0.82

5.8 Questionnaire results

After finishing both scenarios, participants were asked general
questions about the annotation tool and the implemented
assistance. They were also given the option to provide additional
feedback.

The results in Figure 7a show that participants reported that the
annotation assistance both improved their general experience and
the confidence in their annotation.

Figure 7b demonstrates that participants consider the general
impact and the impact on the comfort of the annotation assistance
to be positive. Controversially they rated the impact on annotation
speed positive as well, whereas they rated the impact on annotation
performance as neutral.

The open feedback section allowed participants to leave
comments or suggestions on different aspects of SAAT. These
optional comments can be found in the supplementary material
(S2). Participants were asked about general feedback and
suggestions for the tool. P1/1 (Phase 1 Participant 1) found SAAT
to be straightforward and easy to follow. The tool was described as
good-looking and helpful for speeding up the annotation process
(P1/8). Criticism was aimed at the misalignment between sensor
and video data (P1/2, P1/5, and P1/7). One participant suggested
that the time allocated for testing the tool might have been too
short, indicating a need for longer evaluation periods (P1/11).
P2/16 suggested ‘the main window image could be larger to
help detect clues’ and P2/5 expressed the desire for enhanced
functionality, like seeing more frames and faster processing speed.

Participants provided a mix of positive and negative feedback
about the implemented annotation assistance. Some found it
quite beneficial (P1/1, P1/2, P1/5, P1/8, P1/9, P1/10, and P1/11),
particularly in speeding up the annotation process by suggesting
activities, which increased comfort and efficiency (P2/3). The tool’s
capability to identify certain aspects of daily life and recognize
movements was appreciated by P2/10. Deleting multiple closely
grouped suggestions was considered helpful (P2/11). Additionally,
its potential utility for those inexperienced with lengthy sensor
recordings was noted, suggesting that SAAT could be valuable for
teams handling extensive datasets (P2/13).

Conversely, several participants highlighted areas for
improvement. They suggested slowing the playback down
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a.

b.
FIGURE 5

CARPM metrics (Ward et al., 2011) applied to the crowdsourced annotations of each scenario: True Positive TP, True Negative TN, Overfill CO,
Underfill CU, Merge CM, Fragmentation CF, Insertion CI, Deletion CD, and Substitution CS. (a) Phase 1. (b) Phase 2.

further or even pausing it (P1/5 and P1/8). P1/11 claimed to have
been slowed down since they were required to double-check and
confirm suggestions, which increased the time required. P2/7
suggested the need for better navigation features, such as the ability
to jump to points of interest and improved detection of changes.
There were concerns about the accuracy of annotations, as more
manual corrections were required than anticipated (P2/11). An
experienced participant found the frequency of false positives
particularly bothersome, suggesting that further training of the
model could mitigate these issues and improve the overall utility of
the tool (P2/13).

Furthermore, some users expressed frustrations with general
and specific aspects of both the tool and the annotation assistance:

The tool was called “not very useful" and in “need to be improved
a lot" (P2/1), whereas P2/9 commented that the assistance “was not
useful because it kept on lowering down the speed."

6 Discussion

We divide our interpretation of findings into quantitative
analysis and qualitative analysis. The quantitative analysis includes
discussing the recorded results regarding annotation speed and
annotation quality. Qualitative analysis is concerned with the
results gathered via the NASA-TLX and other questionnaires.
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a. b.

c. d.
FIGURE 6

Reported workload of each group on each scenario. Shows the following workload categories: Mental Me, Physical Ph, Temporal Te, Performance
Pe, Effort Ef, and Frustration Fr. The scale ranges from 0 (very low) to 20 (very high), except for Pe, which ranges from perfection (0) to failure (20). (a)
Scenario A Group 2 (AI). (b) Scenario A Group 1 (No AI). (c) Scenario B Group 1 (AI). (d) Scenario B Group 2 (No AI).

a. b.
FIGURE 7

Participants were asked to rank their general experiences with SAAT and the annotation assistance on a scale from 0 (very low) to 20 (very high). (a)
General experience with the baseline tool BE; general experience with SAAT with annotation assistance AE; confidence in their performed
annotations with the baseline tool BC; confidence in their performed annotations with annotation assistance AC. (b) General impact of the
annotation assistance IG; impact of the annotation assistance on the time to finish a scenario IT; impact of the annotation assistance on their
performance IP; impact of the annotation assistance on their comfort during the task IC.

TABLE 7 An overview about the measured and perceived impact of
annotation assistance on different factors.

Assessment Speed Quality Workload Experience

Measured Negative Positive – –

Perceived Positive Slightly positive Positive Positive

After that we will review the limitations of this paper and outline
future work.

Table 7 provides a summary of the findings: participants
annotated slower using assistance but achieved a higher quality.
They saw the assistance as positive but inaccurately assessed
the impact of the assistance on the speed and quality of
their annotations.

6.1 Quantitative analysis

One hypothesized benefit of motivation behind implementing
annotation assistance is to speed up the annotation process while
maintaining the same level of quality is a desired outcome.Table 3
reveals both groups in both phases achieved a higher speed factor
in the second scenario. Since both scenarios are of similar length
and composition, this is most likely explained by the learning effect,
which occurs when participants get more familiar with SAAT as
they complete the first scenario. Linear mixed-effects modeling
revealed that the assistance significantly reduced annotation speed
by 20% relative to baseline performance.

Another hypothesized benefit of utilizing annotation assistance
would be improving the quality of annotations. Table 4 shows that
both groups achieved comparable quality in Scenario A, but in
Scenario B the assisted group achieved a F1 Score of 0.76 compared
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to 0.61 by the non-assisted group. The assistance yielded an 11%
improvement in annotation accuracy as measured by F1 Score.

Collectively, these findings suggest that users without assistance
tend to skip faster through the material while users with the
implemented assistance are interrupted more and forced to engage
with the material, leading to a slower but better annotation
performance.

The CARPM evaluation for Phase 1, shown in Figure 3a,
reveals trends in the participants groups: in both scenarios, Group
1 identified less true positives and more true negatives than
Group 2. Both groups performed more substitution errors when
provided with annotation assistance compared to the scenario
without. This could suggest that users are more likely to agree
with a suggestion of the assistive system, even if it is incorrect.
Furthermore, both groups performed less insertion errors when
provided with annotation assistance. However, neither of these
effects was observed in Phase 2 (Figure 3b).

The CARPM results for the crowdsourcing approach in Phase
1 in Figure 5a show that the substitution error in Scenario B
decreased for the non-assisted group but remained on a similar
level for the assisted group compared to the individual results
in Figure 3a. This could also be caused by wrong suggestions
leading to multiple people agreeing on the same wrong label. This
aspect should also be considered in crowdsourcing scenarios, which
benefit from multiple annotators to compensate for individual
mistakes. If an annotation assistance were to be introduced in
a crowdsourcing scenario, it should vary its suggestions among
annotators in order to prevent it from becoming a dominant
decision maker when it comes to agreeing on annotations.

The crowdsourcing approach in Phase 2 improved the results
of assisted and non-assisted groups comparably. The risk of
wrong suggestions leading to more substitution errors when
crowdsourcing annotations has not manifested in this instance.
However, the results also do not indicate more consistency in the
assisted group compared to the non-assisted groups.

6.2 Qualitative analysis

As shown in Section 5.7, Group 1 reported a 56% decrease
in temporal workload when switching from annotating without
assistance to annotating with assistance. Similarly, Group 2
reported a 17% increase in temporal workload when switching from
annotating with assistance to annotating without assistance. Both
results indicate that participants perceive themselves to be faster
when annotating with assistance.

The perceived positive impact on time to solve the task is
further undermined by the general responses at the end of the
study. Figure 7b shows that participants ranked the impact of the
annotation assistance on time to finish the task as positive. This
stands in stark contrast with the quantitative results which showed
a negative impact on annotation speed.

The perceived impact on annotation quality is neutral to
slightly positive, both in the general responses (Figure 7b) and
in the perceived workload: Group 1 reports a 3% improvement
when starting to use assistance whereas Group 2 reports a 10%
decrease in quality when annotating without assistance. Although

the misalignment between measured result and perception when it
comes to annotation quality is not as significant as it is for the factor
speed, participants still underestimated the positive impact on the
quality of their annotations.

The optional comments and suggestions left in the feedback
fields further emphasize that participants felt that annotation
assistance helped them improve their speed, but no participant
directly mentioned an impact on the quality of annotation or their
confidence in their annotations.

These results suggest that participants’ perception of their
performance is highly skewed and unreliable. Based on the
experiments performed, it cannot be said with certainty what
caused them to perceive themselves as faster but not more
accurate while using annotation assistance. Participants may have
had preconceived ideas about automation being associated with
faster outcomes. Originally, we hypothesized that participants
might feel disrupted and slowed down by false positives.
Although this aspect was mentioned in the open feedback, it
apparently was not perceived as slowing. One the other hand,
it seems plausible that participants focused more on inaccurate
suggestions they corrected, while being less aware of suggestions
which improved their accuracy. Furthermore, many participants
had no significant domain knowledge and thus might have
struggled to accurately estimate their accuracy and recognize
their own shortcomings. The deviation between perceived and
measured performance results undermines the importance of
gathering both.

6.3 Limitations

Interpreting the results comes with multiple challenges.
The results of both phases show significant inherent differences
in annotation speed and quality between the two groups.
Multiple measures were attempted to account for this: The
self-reported experiences with computers and sensor signals
showed no relevant relationship to the imbalance between
the groups and could therefore not be used to normalize the
results. Similarly, the performance results obtained in the
initial 10 min scenario showed no or in some constellations
even a negative correlation with the results from the later
scenarios. Furthermore, no user had used the tool before and
it became evident that participants gained more experience
throughout the annotation tasks, making them better equipped
to handle Scenario B than Scenario A, regardless of the
presence or absence of annotation assistance. This left the
performance development between scenarios, i.e. how much
did each group improve between the scenarios, as only
relevant metric.

The annotation scenarios carried out in this study were rather
short with 20 min per scenario compared to actual annotation
tasks which can last up to multiple hours at a time. This is also
reflected in the results, which suggest participants took some time
to familiarize themselves with the tool. It seems likely that the
benefit of annotation assistance in a longer task would improve
while the negative impact of users having to get used to a more
complex system would diminish over time.
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6.4 Future work

In order to address the mentioned limitations in future studies,
we recommend recruiting more participants, allocating more
time to participants to familiarize themselves with the tool, and
using a baseline scenario to normalize inter-group performance
imbalances.

The open feedback included a number of complaints about
many interruptions due to the annotation assistance, meaning it
could be beneficial to identify other ways to reduce the number of
false positives.

6.4.1 Online learning
A paradigm to investigate would be an online learning

framework (see e.g. Schiemer et al., 2023; Zhang et al., 2022;
Mohamad et al., 2020), in which a classifier is updated while the
user is annotating material. However, such an approach would
require the user to perform annotations for longer periods before
a meaningful change in the predictions is achieved. Furthermore,
the differences in predictions would introduce variability and bias
in the results and experiences of the user.

Such an online learning system can initially be either untrained
or pretrained. Pretraining could be performed on few available
labeled samples, i.e. much fewer than used in this paper.
Alternatively, transfer learning could be used to utilize labeled data
from different users, devices, or tasks (Ray and Kolekar, 2024).

If there is no training data available at all, it could be worth
extending the model into an ensemble approach, e.g. with an
unsupervised method providing initial suggestions and a semi-
supervised or supervised classifier learning based on the input
provided by the user.

6.4.2 Experimental setup
One significant constraint was users not having sufficient time

to familiarize themselves with SAAT. After increasing the time for
participants to explore the tool did not solve this issue, it seems
as if participants need to be given an additional initial annotation
scenario. However, increasing the number to three scenarios while
keeping them 20 min long brings the risk of causing fatigue and
skewing the results in this other way. Potentially, three scenarios
with 15 min each might be a suitable compromise. As stated in
Section 6.3, it seems likely that a baseline scenario is required to
obtain more precise results. An initial 10 min test scenario, followed
by a 15 min baseline scenario without annotation assistance, and
then two 15 min scenarios with and without annotation assistance
could be a viable compromise between allowing participants
to familiarize themselves with the tool, obtaining a meaningful
baseline, and gather enough comparable results.

Another approach would be a long experiment spanning
days or even weeks, this would address both fatigue and the
learning effect. However, conducting such an experiment with a
large enough number of participants would be rather expensive.
Deployment in a real-world use case would enable qualitative
analysis, but only for limited quantitative analysis. Speed could be
estimated, whereas there needs to be an established ground truth to
asses accuracy.

6.4.3 Ordering of annotation suggestions
Annotation assistance was implemented by slowing down

playback-speed around predicted points of interest and pre-
selecting the suggested annotation label. Preliminary trials
experimented with ordering the current annotation labels based
on their predicted likelihood for the currently selected sample.
However, for the low number of classes present in the SHL Dataset,
this was generally viewed unfavorably. Changing the order of items
to select from is expected to slow down and add more effort to
the annotator than selecting from a fixed order they can memorize
(Mitchell and Shneiderman, 1989). For an annotation scenario with
more different annotations, where they cannot be all displayed at
once, this could be a viable option though.

6.4.4 Other forms of assistance
More scenarios could also be used to evaluate different forms

of annotation assistance: Participants could use the baseline tool
without assistance in the first scenario to establish a baseline and
then be divided into two groups, one starting with the annotation
assistance as implemented here and the other group using the
commonly used pre-annotation system (see e.g. Baur et al., 2020)
as assistance first, whereas users are asked to check and modify an
already annotated scenario. The annotations in this case would be
identical to the suggestions provided by the assistance system used
in this paper.

Although this paper only investigated one form of assistance,
the source for the annotation suggestions was different for Phase
1 and Phase 2. Section 5.1 shows that this led to different
characteristics in the suggestions, e.g. much more suggested
insertion errors in Phase 1. Between the other effects impacting
annotation performance as discussed in Section 6.3, it was not
possible to draw meaningful conclusions about the differences in
impact of these different suggestions. Such an investigation would
require further isolation of these impacts.

6.4.5 Multi-modal annotation assistance
This paper focuses on using sensor signals for annotation

assistance. Suggestions could be drawn from additional domains
such as computer vision to improve the quality of the assistance:
Egocentric action classifiers can utilize video and sound data
(Papadakis and Spyrou, 2024) or combine sensor and video data
(Hao et al., 2024) to predict activities. This is suitable for datasets
containing video recordings with higher frame rate than 1 frame
per 30 seconds as in the SHL dataset.

6.4.6 Perceived performance
In this study we used the NASA-TLX as post-task questionnaire

and a list of simple questions as post-test questionnaire. The System
Usability Scale (Brooke, 1996) might have been better suited as
post-test questionnaire, whereas the Single Ease Question (Sauro
and Dumas, 2009) could reduce the post-task feedback demand.
However, given the length of each task, the NASA-TLX seems
appropriate.

The success of a collaboration between a human user
and an AI system, such as our annotation suggestion system,
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depends partly on the user’s mental model of the involved AI
system (Bansal et al., 2019). As discussed in the qualitative
analysis (Section 6.2), participants perception on how annotation
assisted affected their performance drastically differed from
the measured impacts. Those misconceptions can lead to
frustration and decrease the user’s motivation. Therefore, we
recommend to investigate how providing individual feedback
can help participants to gain a more accurate understanding
of the impact of annotation assistance on their experience
and performance.

7 Conclusion

This paper introduced a new web-based tool for the annotation
of time-series data synced with a video stream, proposed a
method to incorporate predicted annotations as assistance into the
manual annotation performed by a human user, and described
how to conduct a user study to investigate impact of the
implemented assistance on the experience and performance of
the annotators.

The participants of the user study were asked to annotate
long periodic locomotion activities captured by inertial body-worn
sensors synced with body-cam snapshots done every 30s. They
performed two annotation scenarios, one with and one without
assistance. The first phase of the study was conducted with 15
participants and included synthetic annotation assistance, while the
second phase included annotation assistance based on predictions
made by the model MFCANN.

The study revealed that annotation assistance had a
negative impact on annotation speed (20% slow-down), whereas
participants experienced the assistance as helping them to solve
the annotation scenarios faster. Conversely, the measured results
suggests a positive impact on annotation quality (11% higher
F1 Score), although participants did not perceive it particularly
positive.

Participants also reported a lower overall workload, more
comfort, and less frustration using the annotation assistance.
The open feedback revealed complaints about interruptions
through the annotation assistance. It seems likely that false
positives both lead to frustration and reduced the annotation
speed. This illustrates the need to improve the precision of
suggested change points in order to improve annotation speed and
reduce frustration.

Due to factors like the learning effect and inter-group
differences, we recommend for future studies to recruit more
participants, to allocate more time to participants to familiarize
themselves with the tool, and to use a baseline scenario to normalize
inter-group performance imbalances.
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