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In the field of multi-objective evolutionary optimization, prior studies have
largely concentrated on the scalability of objective functions, with relatively
less emphasis on the scalability of decision variables. However, in practical
applications, complex optimization problems often involve multiple objectives
and large-scale decision variables. To address these challenges, this paper
proposes an innovative large-scale multi-objective evolutionary optimization
algorithm. The algorithm utilizes clustering techniques to categorize decision
variables and introduces a novel dominance relation to enhance optimization
efficiency and performance. By dividing decision variables into convergence-
related and diversity-related groups and applying distinct optimization strategies
to each, the algorithm achieves a better balance between convergence and
diversity. Additionally, the algorithm incorporates a new angle-based dominance
relationship to reduce dominance resistance during the optimization process.
Experimental results on multiple mainstream multi-objective optimization test
sets, such as standard DTLZ and UF problem sets, indicate that CLMOAS achieves
smaller IGD values relative to mainstream algorithms such as MOEA/D and LMEA,
thereby demonstrating that the proposed algorithm outperforms several existing
multi-objective evolutionary algorithms and showcases its effectiveness in
solving complex optimization problems with multiple objectives and large-scale
decision variables.

KEYWORDS

evolutionary multi-objective optimization, many-objective optimization, large-scale
optimization, clustering, dominance relationship

1 Introduction

Optimization problems are prevalent in everyday life and industry. For
example, in logistics management, optimization can minimize transportation costs
through the planned routes; in power systems, it can optimize energy use by
adjusting parameters between the nodes; and in manufacturing, it can reduce
production costs through process control and inventory management. Initially,
these problems were often solved by transforming them into multiple single-
objective problems, which are relatively straightforward to address as they have
only one goal. However, as the number of objectives and the scale of problems
increased, single-objective optimization algorithms became inadequate for quickly and

01 frontiersin.org


https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1692784
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1692784&domain=pdf&date_stamp=2025-11-06
mailto:zhaoyang@hnfnu.edu.cn
mailto:18692660866@163.com
https://doi.org/10.3389/fcomp.2025.1692784
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1692784/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Wang et al.

accurately solving these complex issues. This motivated researchers
to aim for the development of multi-objective optimization
algorithms (Wang et al., 2022; Liu Z.-Z. et al., 2023).

The multi-objective optimization problems (MOPs) have been
the focus of academic and engineering fields (Zhang et al., 2023;
Tian et al, 2021). Many real-world problems are MOPs, such
as big data analysis (Krishna et al., 2022; Cheng et al., 2021),
image processing (Guo et al., 2023; Sreedhara et al., 2023), feature
selection (Hu et al., 2021; Song et al., 2022), community detection
(Tahmasebi et al,, 2019), engineering design (Sreedhara et al.,
2023; El-Shorbagy and El-Refaey, 2022), shop floor scheduling
(Xi and Lei, 20225 Fu et al,, 2021), and medical services (Zheng
et al.,, 2022). The concept first emerged in the field of economics.
In 1881, FY. Edgeworth defined multiconditional economic
decision optimization. In 1906, Vilfredo Pareto proposed the Pareto
Optimum theory: optimal resource allocation occurs only when
optimizing one objective sacrifices others (Liu et al., 2020b; Zhou
et al., 2022b). Multi-objective optimization seeks compromises
among conflicting goals, producing the Pareto Optimal Set (Shang
et al., 2022; Zou et al., 2024).

In 1985, the Vector Evaluated Genetic Algorithm (VEGA) was
first used by Schaffer in the field of artificial intelligence. A few years
later, in 1989, Goldberg proposed using Evolutionary Algorithms
(EAs) (Liu et al., 2024a,c) to solve multi-objective problems in daily
life, guiding the research direction of Multi-Objective Evolutionary
Algorithms (MOEA) (Yuan et al, 2016; Zhang et al, 2015).
Early MOEA were relatively simple, with algorithms like NSGA
(Srinivas and Deb, 1994), MOGA, and NPGA representing this era.
Since 1993, algorithms like NSGA, MOGA, and NPGA have been
proposed, classified as the first generation of MOEAs (Zhao et al.,
2022; Zheng et al., 2023). These algorithms are characterized by
the use of Pareto dominance relationships to select solutions and
maintain diversity through adaptive value comparison strategies.
These algorithms often use non-dominated sorting, leading to
high computational costs and inefficient selection. From 1999 to
2002, the second generation of MOEAs was published, featuring
elite preservation mechanisms to improve selection efficiency.
Algorithms like SPEA, PAES, PESA, PESA-II, NPGA2, and NSGA-
II (Ben Said et al., 2010) were developed, addressing the limitations
of the first generation. However, these algorithms still face severe
diversity loss when dealing with high-dimensional problems.

From 2003 to the present, the third generation of MOEAs has
been proposed, using new mechanisms or frameworks. In 2004,
Zitzler et al. proposed the Indicator-Based EA (IBEA) (Zitzler
and Kiinzli, 2004; Liu et al., 2024b), which uses indicators to
evaluate solutions without the need for methods such as fitness
sharing to maintain diversity. In 2007, Zhang et al. proposed the
Decomposition-Based MOEA (MOEA/D) (Zhang and Li, 2007; Liu
7.-7. et al., 2025), which decomposes multiobjective optimization
problems into single-objective problems related to weights and
mutually influencing each other. The recent direction of MOEAs
has been expanding toward higher-dimensional multi-objective
problems (MaOPs) (Ishibuchi et al., 2008; Wang B.-C. et al., 2024)
and large-scale multi-objective problems (LSMOP) (Cheng et al.,
2017; Liu Y. et al., 2023).

Despite these advancements, existing large-scale multi-
objective evolutionary algorithms still face several persistent
challenges when dealing with problems involving a large number
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of decision variables. First, they often struggle to effectively balance
convergence and diversity throughout the optimization process,
particularly as the variable dimensionality increases. Second, most
algorithms lack adaptive mechanisms to dynamically adjust their
search strategies based on variable characteristics and evolutionary
states. Third, traditional dominance relationships frequently
encounter resistance in high-dimensional spaces, resulting in
insufficient selection pressure.

To address the challenges, this paper proposes an enhanced
collaborative large-scale multi-objective optimization algorithm
(CLMOAS). The algorithm uses k-means clustering to divide
decision variables into convergence-related and diversity-related
groups, applying specific optimization strategies to each group,
which effectively improves its ability to handle large-scale decision
variables (Sridevi et al., 2024; Liu and Ruochen, 2024). In addition,
CLMOAS introduces Enhanced Dominance Relations (EDR) and a
dynamic niche radius adjustment mechanism based on population
diversity (Liu Y. et al., 2025), achieving a more precise balance
between convergence and diversity in dynamic optimization
settings (Pons et al., 2023; Zhong et al., 2024). Experiments on
the PlatEMO platform show that CLMOAS performs excellently
in solving large-scale multi-objective optimization problems,
especially in maintaining a balance between convergence and
diversity. With its scalability and versatility, CLMOAS shows
great potential in solving complex optimization problems in 5G
networks (Su and Xu, 20155 Guo et al., 2024). For example,
it can enhance the efficiency of network resource management
for micro-CDNs at the edge of 5G base stations (Zhou and
Abawajy, 2025), thereby improving key metrics such as cache hit
rate, response time, backhaul traffic, energy consumption, and
cost. Moreover, CLMOAS also demonstrates good adaptability in
other optimization scenarios like smart grids and autonomous
driving. Overall, with its unique clustering strategy and dynamic
adjustment mechanisms, CLMOAS shows good performance in
handling large-scale complex optimization problems and provides
an effective solution for the multi-objective optimization field.

2 Methods

Algorithm 1 outlines the core structure of CLMOAS, which
incorporates the following elements. The first part is as follows:
similar to other MOEA (Wang et al., 2023; Liu Z.-Z. et al., 2023),
the first step of the algorithm is initialization. Next, using k-means
classification based on angular clustering, the decision variables are
categorized into two different outcomes according to the size of
the angle. Then the operation is to further divide the classification
results into several smaller outcomes, where the variables will
interact with each other within one sub-outcome and not with
all the variables within the other sub-clusters. The variables
within each subgroup are also called interacting variables because
they interact with each other and therefore are not optimized
independently. The last two components are the convergence and
diversity optimization strategies, once the interaction analysis is
completed, CLMOAS starts to optimize the set sum of variables for
each segmented sub-outcome using the optimization strategy for
convergence, while the diversity method is applied for optimizing
another variable. In the optimization strategy we include the
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Input: Population size N, number of sample solutions in
clustering nSel, number of disturbances per solution
in clustering nPer, number of sample solutions in
variable correlation analysis nCor

Output: Target population P

1: P<«Initialize the population

2: [DV, CV] R
classification

Decision variable clustering
subCVs « Interaction variable analysis
while termination conditions are not met do

P < Optimization of convergence variables

g b~ W

P < Optimization of diversity variables

Algorithm 1. CLMOAS algorithm framework.

used reinforced dominance relations, replacing the traditional
dominance relations, as a way to reduce the algorithmic dominance
pressure. Figure 1 shows the overall framework of CLMOAS.

2.1 Decision variable clustering
classification

The selection of an appropriate clustering algorithm is
crucial for effectively categorizing decision variables in large-
scale optimization. After evaluating various clustering approaches,
we employed k-means due to its specific advantages for our
problem context. The algorithm’s computational efficiency is
particularly valuable given that variable clustering needs to be
performed repeatedly during the evolutionary process. Moreover,
k-means produces well-separated spherical clusters that directly
correspond to our angular-based characterization of convergence-
related and diversity-related variables. This alignment ensures that
the clustering results are not only computationally efficient but also
semantically meaningful within our optimization framework.

In the k-means clustering method for variable classification,
determining the number of clusters and initializing the cluster
centers are crucial steps that ensure the reproducibility and
reliability of the method. To determine the number of clusters, we
employ the elbow method, which involves calculating the within-
cluster sum of squares (WCSS) for different numbers of clusters.
The optimal number of clusters is identified at the point where the
WCSS starts to decrease more slowly, forming an “elbow” shape in
the plot. For initializing the cluster centers, we adopt the k-means
algorithm. This algorithm selects the initial cluster centers in a way
that reduces the likelihood of converging to suboptimal solutions
(Zhou et al., 2018). It starts by randomly selecting one data point as
the first cluster center. Then, for each subsequent cluster center, the
probability of selecting a data point is proportional to its squared
distance from the nearest existing cluster center. This process
ensures that the initial cluster centers are spread out across the data
space, leading to more stable and reliable clustering results.

Prior to angle computation, all decision variables are
normalized to zero mean and unit variance to eliminate scaling
biases. This preprocessing ensures that variables with different
magnitudes contribute equally to the clustering process.
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Figure 2 shows an example of categorizing four decision
variables through clustering. First, two sample solutions are
generated for an individual in the population using random
order numbers. Then, these solutions undergo perturbation with
minor modifications to simulate the impact of disturbances. The
resultant solutions’ objective values are shown in Figure 2a. After
normalization, a demarcation line L is constructed to split the
sample solutions into two equal subsets. As illustrated in Figure 2b,
this line is crucial for clustering as it helps categorize decision
variables based on their position relative to L. The angle between
line L and the target space line fi + ... + fur = 1 is calculated,
associating each clustering variable with several angles. Figure 2c
illustrates these angles, with variable x; linked to angles 6;; and 6.

In the decision variable clustering method, the calculated angle
measures a variable’s contribution to convergence and diversity (Liu
et al., 2020a). In the objective space, the angle between a variable’s
perturbation vector and the hyperplane f; + ... + fyr = 1 reflects
the direction of change induced by the variable. A smaller angle
indicates that the variable’s perturbations align closely with the
direction of overall objective improvement, which corresponds to
movement toward the Pareto front-thus emphasizing convergence.
Conversely, a larger angle signifies that the variable’s perturbations
cause solutions to spread more broadly across the objective space,
enhancing diversity by covering a wider range of trade-offs.
This geometric insight is consistent with Pareto-based principles:
variables that minimally alter the relative objective values (small
angles) tend to fine-tune convergence, while those that induce
significant relative shifts (large angles) promote diversity. Using
more candidate solutions (nSel) enhances measure accuracy and
ensures two distinct variable classes for optimization.

The k-means algorithm initiates with random cluster centers
and iteratively assigns each variable to the nearest cluster based
on its angle relative to the demarcation line L. This process
repeats until the cluster assignments stabilize, resulting in two
distinct clusters: convergence variables (CV) and diversity variables
(DV). The final cluster assignments are determined by minimizing
the within-cluster sum of squares, ensuring that variables within
the same cluster exhibit similar characteristics. Specifically, the
algorithm calculates the distance from each variable to the
cluster centers and reassigns variables to the nearest cluster
in each iteration. This iterative procedure continues until the
cluster memberships no longer change significantly, indicating
that the algorithm has converged to a stable solution. The use
of the demarcation line L provides a consistent criterion for
cluster assignment throughout the iterations. Figure 2c shows the
clustering results for x;, x3, x3, and x4, where x; and x, are DVs.
In CLMOAS, variable categorization depends on disturbing nSel
solutions. Different runs may lead to different classifications due to
random sampling. The pseudocode for the algorithm is shown in

Algorithm 2.
This clustering outcome carries profound geometric
significance that directly informs our optimization strategy.

exhibit
perturbation directions that align closely with the normal direction

Variables grouped as Convergence Variables (CV)
to the Pareto front, meaning they primarily drive solutions

toward optimality in the objective space. In contrast, Diversity
Variables (DV) demonstrate perturbation directions that are
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FIGURE 1

The overall framework of CLMOAS.
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FIGURE 2

(a—c) Convergence-related variables and diversity-related variables clustering classification process.

nearly orthogonal to the front normal, enabling them to spread
solutions broadly along the Pareto front and thus enhance
population diversity. This geometric interpretation, rooted in
the fundamental trade-off between convergence and diversity
in multi-objective optimization, validates the meaningfulness
of our variable categorization and provides a principled
basis for applying distinct optimization strategies to each
variable group.

Frontiersin Computer Science 04

In our future work, we plan to explore the application
of CLMOAS’s k-means clustering module in enhancing cache
efficiency. We aim to investigate how categorizing decision
variables based on their impact on cache hit rates can help prioritize
variables that significantly improve cache performance. This could
potentially allow for more effective resource allocation, reducing
the reliance on backhaul traffic and lowering latency in various
optimization scenarios (Zhou et al., 2022a).
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Input: Current population P, number of sample solutions
in clustering nSel, number of disturbances per
solution in clustering nPer

Output: Two categories DV and CV

1: Calculate the number of variable divisions M

2: for i=1 to M do

3: Randomly select nSel sample solutions from P and
place them in S

4: for j=1 to nSel do

5: Perturb the i-th variable of S[j] nPer times to form
population SP

6: Normalize SP

7: Make a composite line L for the points in SP in the
objective space

8: Angle[i][j] <« The angle between L and the hyperplane
fi1+...+fy=1

9: MSE[i][j] <« The mean squared error of the fit;

10: CV <« {i=1,...,Dmean(MSE[i]) < 1e -2}

11: [S1, S2] to

variables into two sets based on angles

if CVNS1+#¢ and CVNS2# 0 then

cv <« CVNnS, S is the one with the smaller average

< Using k-means cluster decision
12
13:

angle in S1 and S2

14: DV < {j=1,...,D|j ¢CV}

Algorithm 2. Decision variable clustering algorithm.

2.2 Interaction variable analysis

To optimize convergence-related variables, we first lower their
dimension. We split them into subgroups based on variable
interactions. Those that interact form one group, while non-
interacting ones form another, with no interaction between groups.
For variable interaction judgment, we perform nCor trials to satisfy
Equation 5, preventing excessive computational costs due to the
complexity of the mapping function from decision to target space.
We select multiple x, ai, a2, by, and b; sets to judge and early-stop
variable rings. Interaction variables form a connected graph, with
maximal connected subgraphs as convergent variable subgroups.
After interaction analysis, formal optimization of convergent
variables begins. In Algorithm 3, lines 5-14 compare CV solutions
with existing interaction variable subgroups to determine relevance
via Equation 5, omitting function-calling details. Lines 15-16
identify independent variables and merge them into subCV. Lines
17-20 handle variables interacting with a subgroup by removing
and re-adding variables.

Note that interaction determination conditions are necessary
but not sufficient. Variables meeting the equation are regarded as
interacting, yet not all interacting variables may satisfy it. Thus, we
restrict judgments to nCor trials to find a satisfying equation. To
further clarify the interaction variable analysis, we have refined the
criteria for deeming variables as interacting. Specifically, variables
are considered interacting if their correlation coefficient exceeds
a predefined threshold. This threshold is determined based on
the problem’s characteristics and the desired level of interaction
strength (Zhou et al., 2021). By applying this correlation-based
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approach, we can more accurately identify interacting variables and
form connected subgraphs in a logical manner. The correlation
coeflicient is calculated using the formula:

_ (i = )i — )
Ty = n = n =
VG = B2 0 - 72

(1)

where x; and y; are the values of variables x and y in the i-
th sample, and X,y are the mean values of x and y, respectively.
This systematic approach ensures that variable interactions are
clearly defined, providing a solid foundation for the subsequent
optimization process.

Input: Current population P, CV, number of

solutions in correlation analysis nCor

sample
Output: Segmented Convergence Correlation Variables
subCVs

subCVs set to empty set

for all elements v in CV do

CorSet set to empty set

for all groups Group in subCVs do

for all elements u in Group do

Set flag to false

for i=1 to nCor do

o N o g W N -

Randomly select a solution p from P

e}

if variable v of p interacts with u then
10: Set flag to true

11: CorSet < CorSet U {Group}

12:
13:
14:
15:
16:
17:
18:
19:
20:

break

if flag is true then

break

if CorSet is empty then

subCVs <« subCVs U {{v}}

else

subCVs <« subCVs/CorSet

Group < Sum of all decision variables in CorSet v
subCVs <« subCVs U {Group}

Algorithm 3. Interaction variable analysis.

2.3 Convergence and diversity optimization
strategies

This section explains how the algorithm handles categorized
clustered variables. As shown in Algorithm 4, pre-processing
is needed before optimization. CLMOAS first uses ND_Sort
to get segmented fronts and compute Euclidean distance. For
CV optimization, CLMOAS selects parent solutions S and
produces offspring solutions. Only classified CV variables are
different. Replacement is based on metrics. Lines 7-9 of
Algorithm 4 randomly select individuals into offspring set using
random numbers and frontal numbers. Lines 11-17 generate
new solution by reorganizing specified variables. Lines 18-21
perform nondominated sorting of generated solution and original
population. In diversity variables optimization, angles between
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solutions are compared. Two parents are selected to generate
offspring by manipulating diversity-related variables.

Input: Current population P, CV classified subgroups
subCVs

Output: Next generation population P

1: Outpost < Undominated ordering of P

2: Calculate the distance of all points in space from
the ideal point

3: for all groups in subCVs do

4: Set evaluation value to @

5: while evaluation value < size of P do

6: S« ¢

7: for i=1 to size of P do

8: if rand() < Front[i]/max(Front) then

9: S« Su(i)

10: 0«0

11: for each element s in S do

12: Select two individuals p; and p, from P using binary

tournament selection

13: /* s'(Group) represents the vector composed of the
s’ values of decision variables in the group */

14: s'(Group) < recombination(p;(Group), p2(Group))

15: 8" «<s

16: s”(Group) < s’(Group)

17: 0 < 0U{s"}

18: Evaluation value « evaluation value + |O]

19: Sort the entire population (PUO) wusing non-
dominated sorting to get the front

20: Calculate the distance between each solution in 0

and the target space
21: Replace each solution in P with the corresponding
solution in O based on the distance

Algorithm 4. Convergence optimization strategy.

As in traditional non-dominated sorting methods, we select 1
to k-1 frontiers into the next generation in order, with k satisfying
the minimum value of |[F; UF, U...UF| > |P|. If there exists
an extreme case k = 1, then we want to select the more extreme
extreme point in the frontier surface into the next generation. If
there exists a last selected set of partial orders that is in the middle
of the partition line, only some of its individuals can be selected
into the next generation, for which a descending ordering based on
the angle between every two solutions is used, and they are selected
sequentially until the number reaches N. In Algorithm 5, lines 2-
7 produce an equal number of offspring using a reorganization
approach of selected partial variables from the parent generation,
after which line 8 performs a reinforced nondominated ordering
to obtain the front faces of each layer. lines 9-16 first select the
first k faces to enter the next generation, and one of the subsequent
faces selects the partial individuals to proceed to the next generation
based on the computation of the value of the smallest angle between
the two solutions.

Algorithms 4, 5 are repeated until a set number of stopping
conditions are met. It should be noted that during the execution of
the above algorithms, the evolutionary algorithm used to generate
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offspring from the parent generation can be any of the current
mainstream operators, such as Simulated Binary Crossover (SBC)
(Pan et al, 2021), Polynomial Mutation (PM) and Differential
Evolution (Carles-Bou and Galan, 2023; Sharma and Kumar, 2022;
Hua et al., 2021).

Input: Current population P, DV
Output: Next generation population Q

1: Initialize 0 as an empty set

2: for all elements p in P do

3: Randomly select p; and p, from P

4: p'(DV) < recombination(py(DV), po(DV), ps(DV))
5. p'«<p

6: p”(DV) < p'(DV)

7: 0« 0U{p"}

8:

Outpost <« Frontier-pair (PUO0) enhanced Pareto SDR
non-dominated sorting
9: Q< FqiUF,U...UFk_1,

satisfying |F1UF U...UF| > |P|

where k is the minimum value

19: if Q=0 then

11: Q < all the extreme solutions in Fy

12 Fp < Fg/Q

13: for each pair of solutions in QUF, calculate the

angle in the objective space

14: while |Q| < |P| do
15: pargmaxyer, minyegAngle[x][y]
16: Q < QU {p}

Algorithm 5. Diversity optimization strategy.

2.4 Enhanced dominance relationships EDR

Despite the advantages of the Strengthening Dominance
Relationships (SDR) in multi-objective optimization, it has
certain limitations. The SDR may cause solutions to concentrate
in a specific area due to its strict dominance conditions.
This concentration can lead to the premature elimination of
potentially valuable solutions that might contribute to diversity. To
address these limitations, we introduce the Enhanced Dominance
Relationships (EDR).
¢, which is dynamically adjusted based on the population’s

By incorporating a small positive value

diversity metrics, EDR refines the dominance conditions of
SDR. Specifically, & serves as a threshold that balances the
trade-off between convergence and diversity by controlling the
extent to which solutions with slightly inferior convergence
but significantly different diversity can still be considered non-
dominated.This modification allows for a more nuanced balance
between convergence and diversity in high-dimensional objective
spaces. A candidate solution x dominates another y, denoted as
x <spr », if and only if:

Con(x) < Con(y), Oy < 0
Con(x) * 6% < Con(y) +¢&, 0Oy > 0
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included among these

M
Con(x) = Y _fi(x) 3)
i=1
By = arccos(f (x), f(¥)) (4)

Con(x) denotes the convergence value of x as the sum of the
objective functions over all objectives at x. § is the angular range
of half a small habitat. fy, denotes the angle formed by solutions
x and y, and is found using the arccos function. Specifically,
EDR uses eto adjust the dominance relationship in the region
outside the niche. This adjustment helps prevent the premature
elimination of solutions that are slightly inferior in convergence
but significantly different in terms of diversity. Consequently, EDR
can maintain a more evenly distributed set of solutions across
the Pareto front, enhancing the algorithm’s ability to explore the
objective space effectively.

It is important to clarify that EDR’s relaxation of dominance
conditions operates within a controlled framework. While EDR
temporarily preserves solutions with valuable diversity attributes
during exploration, strict Pareto dominance is systematically
enforced in the final non-dominated sorting phase. This ensures
that all truly dominated solutions are rigorously eliminated,
maintaining the fundamental convergence guarantee while
achieving better diversity balance.

The parameter &, as a pivotal component in the EDR, is
strategically designed to address the challenges of balancing
convergence and diversity in multi-objective optimization.
Theoretically, ¢ functions as a threshold to distinguish between
solutions that are slightly inferior in convergence but offer
significant diversity benefits and those that are genuinely inferior.
This mechanism prevents the premature elimination of diverse
solutions, ensuring a more even distribution of solutions across
the Pareto front. The value of ¢ is not arbitrarily chosen but is
instead determined based on a thorough analysis of the problem’s
characteristics, such as the complexity of the objective space and
the desired distribution of solutions. A larger ¢ may be necessary
for problems with highly complex and non-convex Pareto fronts
to ensure sufficient diversity, while a smaller ¢ might suffice for
simpler problems where convergence is the primary concern.
By preventing the premature loss of diverse solutions, ¢ helps
maintain a dynamic and evolving population of solutions that can
continue to explore new regions of the search space throughout
the optimization process. This enhances the algorithm’s robustness
and adaptability, making it more effective in locating high-quality
solutions that might otherwise be overlooked.

In our experimental setup, we conducted a sensitivity analysis
to determine the optimal value of ¢ for the specific problem
instances under consideration. This involved systematically varying
¢ and observing its effects on key performance metrics such as the
Inverted Generational Distance (IGD).

Figure 3 shows an example of domination centered on x. Since
y1 lies within the niche of x (0, < 9) and the computed
convergence is worse than x (Con(x)<Con(y)), x clearly dominates
y1. y2 lies outside the niche of x 0y, > ), and the vergence
is worse than that of x, so x dominates y,. This means in each
minor habitat, diverse angles reduce the chance of the same angle,
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FIGURE 3

Dominant region under the proposed EDR. Within the niche the
original SDR still works; outside, EDR loosens the criterion by a tiny
self-adaptive ¢, letting slightly worse yet widely spread solutions
survive, so the population keeps both convergence and diversity.

making it rare for all solutions to not dominate each other. Also,
per Definition (9)’s second line, if potential solutions x and y are
in different small habitats and y converges much worse than x,
then x dominates y, ensuring the convergence of non-dominated
solutions set. For niche size, when the population size is 2N, to have
half solutions enter the next generation in non-dominated sort, the
niche size can be set as follows:

min 6 epP 5
{qu\{p} ba | P } )

In our future work, we intend to explore the application
of CLMOAS’s Enhanced Dominance Relations (EDR) module in
addressing high energy consumption issues. By introducing a small
positive value &, EDR will fine-tune the dominance conditions,
ensuring that solutions with slightly inferior convergence but
significantly different diversity are not prematurely eliminated.
This balance between convergence and diversity aims to help
CLMOAS maintain a more evenly distributed set of solutions
across the Pareto front, potentially leading to more efficient energy
usage and cost reduction in relevant scenarios.

3 Experiments

3.1 Selection of inverted generational
distance indicator

We selected the Inverted Generational Distance (IGD) metric
for performance evaluation based on its ability to provide a
comprehensive assessment of solution quality. IGD simultaneously
quantifies convergence performance by measuring the proximity to
the true Pareto front and evaluates diversity maintenance through
distribution characteristics. This balanced evaluation approach
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directly corresponds to CLMOAS’s fundamental goal of achieving
an optimal trade-off between convergence and diversity in large-
scale multi-objective optimization.

IGD (Wang Z. et al, 2024; Li et al, 2022), full name
Inverted Generational Distance, i.e., Inverse Generational Distance
evaluation metric, is calculated as follows:

16D(P, Q) — 2vep™ina(V, Q) ©)

Ipl

P is the set of solutions evenly distributed on the true Pareto front,
serving as a reference, and |P| denotes the number of solutions in
set P. Q represents the optimal Pareto solution set calculated by the
algorithm. Although the current experiment is based on standard
DTLZ and UF test sets, the problem dimensions (five objectives,
100-200 variables) and the conflicting characteristics between
objectives are highly consistent with real micro-CDN optimization
tasks. Algorithm performance is evaluated by calculating the
sum of the minimum Euclidean distances between the reference
solution set and the algorithm solution set: the smaller the
distance, the better the algorithm performance. If the algorithm
has good convergence, the d(v, Q) value is low; if the algorithm
has poor diversity and individual clustering, the d(v, Q) value is
high, indicating poor distribution performance. When the number
of objectives is expanded to 10 (WFGI-9), CLMOAS remains
leading. This cross-dimensional stability indicates that angle-
based variable clustering and SDR dominance relationships remain
effective, directly demonstrating its potential to provide high-
quality trade-off solutions in 5G micro-CDN scenarios, ensuring
the algorithm can smoothly scale to the ten-objective version of 5G
optimization problems.

10.3389/fcomp.2025.1692784

3.2 Comparison experiment

We configured the initial parameters for all algorithms as
follows: for most algorithms, the number of objectives was
configured as 5 (with exceptions of 10 for the WFG test set,
two for ZDT3, and three for RMMEDA_F4), the number of
decision variables was determined as 100 and 200 (with 200
chosen to simulate an increase in variable scale within equipment
performance limits), the population size was uniformly set to
100, and the genetic operator used was the Simulated Binary
Crossover (SBC). For the MOEA/D algorithm, the Chebyshev
decomposition function was employed, the selection neighborhood
size was set to 0.IN (N being the population size), and the
neighborhood selection probability was 0.9. For LMEA and
CLMOAS, parameters were set as nSel (number of sample solutions
selected in decision variable clustering) to 4, nPer (number
of perturbations applied in the clustering process) to 6, and
nCor (maximum number of judgments for variable relevance in
interaction analysis) to 6.

Tables 1, 2 present the IGD index values of five algorithms
running independently ten times on the DTLZ and UF test
sets with five objectives and 100/200 decision variables. Bold
values indicate the best results in each test set. The symbols
“47, “=) and “=” respectively show whether results are
significantly superior to, inferior to, or on par with CLMOAS in
comparative statistics.

In the DTLZ test set evaluation (Table1l), CLMOAS
demonstrates marked superiority across several problems.
Taking DTLZ2 as an example-under a five-objective micro-
CDN  scenario-CLMOAS achieves IGD values of 2.04e!

TABLE 1 IGD results for five algorithms such as CLMOAS on the DTLZ test set.

Problem Ob;j. Dec. MOEA/D NSGA-III NSGA-I1I-SDR LMEA COMOA
DTLZ1 5 100 4.94¢-1 (4.16¢-1)- 1.17e+0 (5.66¢-1)— 1.83¢-1 (2.56¢-2)— 8.07¢-2 (2.85¢-3)— 6.68¢-2 (7.81¢-4)
200 7.20e-1 (1.12e-3)- 7.33e-1 (9.05¢-4)- 2.09¢-1 (3.72e-2)- 7.97e-2 (2.53¢-3)- 6.76€-2 (5.83¢-4)
DTLZ2 5 100 2.12e-1 (3.67e-6)— 2.13e-1 (5.51e-7)- 5.97e-1 (5.70e-3)- 2.24e-1 (4.85¢-3)- 2.04e-1 (1.70e-3)
200 2.12¢-1 (2.20e-8)- 2.12¢-1 (1.98¢-7)- 5.99¢-1 (1.94¢-7)= 2.24e-1 (2.99¢-3)- 2.05e-1 (1.90e-3)
DTLZ3 5 100 Llde+] (23le+1)- | 6.4le+0 (2.95e+0)- 5.97e-1 (1.24e-2)- 2.24e-1 (5.56e-3)- 2.06e-1 (1.20e-3)
200 2.49e-1 (2.68¢-2)— 2.29e-1(2.07e-3)- 5.96e-1 (5.47¢-3)- 2.04e-1 (1.24¢-3)= 2.17e-1 (1.92e-3)
DTLZ4 5 100 4.50e-1 (1.90e-1)- 2.37e-1 (9.58¢-2)= 7.41e-1 (8.08¢-2)- 2.65¢-1 (1.18¢-1)= 2.53¢-1 (1.05¢-1)
200 6.82¢-1 (4.68¢-1)- 2.88e-1 (1.33e-2)+ 7.22e-1 (6.05¢-2)= 5.11e-1 (4.49e-1)= 4.53¢-1 (3.03¢-1)
DTLZ5 5 100 3.0le-2 (8.46¢-4)— 1.85¢-1 (2.38¢-2)- 5.73¢-2 (6.76¢-3)= 6.90e-3 (4.32¢-4)— 5.61e-3 (3.55e-4)
200 3.06e-2 (1.21e-7)- 2.01e-1 (2.70e-2)- 5.98¢-2 (1.92¢-2)- 7.92e-3 (7.74¢-4)- 5.37e-3 (8.61e-5)
DTLZ6 5 100 1.09e-1 (3.91e-2)- 1.24e+0 (3.82e-1)- 1.46¢-1 (1.46e-2)- 7.15e-3 (7.92¢-4)- 5.04e-3 (2.00e-4)
200 471e-1(7.78¢-2)- 1.85e+0 (1.14e-1)- 1.61e-1 (2.49e-2)- 6.58¢-3 (9.42e-4)= 5.28e-3 (5.06e-4)
DTLZ7 5 100 9.98¢-1 (1.73¢-1)- 3.92¢-1 (1.86¢-2)- 4.25¢-1 (3.76e-2)- 3.51e-1(5.73¢-3)= 3.59¢-1(9.29¢-3)
200 9.73e-1 (1.78e-1)- 3.86e+0 (2.66e-1)- 4.64e-1 (2.29¢-2)= 3.46e-1 (3.27e-2)= 3.54e-1 (1.54e-2)
DTLZ9 5 100 - 6.25e-00 - 9.26e+00 7.99e+00
(2.95¢+00)+ (2.30+00)- (3.46¢+00)
200 - 2.09e+01 - 2.65e+01 2.26e+01
(9.80e-01)= (1.34e+01)- (2.01e+01)

Dec., decision variables (dimension); Obj., objectives (count). Boldface in the table indicates the best result.
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TABLE 2 IGD results of five algorithms such as CLMOAS on complex WFG and UF test sets.

MOEA/D NSGA-III NSGA-I1I-SDR
WEG1 10 100 1.64e+00 1.50e+00 1.89¢+00 1.27e+00 1.24e+00
(7.91e-03)- (1.96e-01)- (8.99¢-02)- (1.11e-01)= (5.56e-02)
200 1.63e+00 1.47e+00 1.87e+00 1.29¢+00 1.30e+00 (6.87e-02)
(4.62e-03)— (1.21e-01)- (5.18e-02)- (1.10e-01)=
WEG2 10 100 1.72e+00 1.50e+00 1.75e+00 1.28e+00 1.29e+00 (4.20e-02)
(9.67¢-03)- (2.05e-01)- (1.08e-01)- (3.66€-02)=
200 1.71e+00 1.51e+00 1.83e+00 1.30e+00 1.29¢+00
(6.29¢-03)— (2.19¢-01)- (1.32e-01)- (4.01e-02)= (4.16e-02)
WEFG3 10 100 5.88e+00 1.38e+00 1.02e+00 1.39e+00 9.25e-01
(5.74e-02)— (1.77e-01)- (4.59e-01)- (3.27e+00)- (2.41e+00)
200 5.94e+00 1.72e+00 2.75e+00 2.56e+00 5.04e+00
(3.20e-02)- (1.07e+00)+ (1.03e+00)- (4.24e+00)- (4.64e+00)
WEFG4 10 100 9.38e+00 5.88e+00 5.66e+00 5.19e+00 5.13e+00
(2.81e-01)- (7.91e-02)- (1.30e-01)- (8.98e-01)= (5.39¢-01)
200 9.39e+00 5.87e+00 5.61e+00 5.18e+00 5.14e+00
(2.75e-01)- (5.24e-02)- (9.91e-02)- (4.77e-01)= (5.67e-01)
WEG5 10 100 9.19e+00 5.82e+00 5.69e+00 4.89e+00 4.88e+00
(1.60e-01)— (2.16e-04)— (1.09¢-01)- (4.14e-02)= (5.10e-02)
200 9.18e+00 5.82e+00 5.67e+00 4.86e+00 4.89e+00 (7.47e-02)
(2.03e-01)- (1.14e-04)- (1.42e-01)- - (4.92¢-02)=
WEG6 10 100 1.06e+01 5.92e+00 5.63e+00 4.99¢+00 5.03e+00 (2.48e-01)
(5.16e-01)— (2.73e-01)- (1.43e-01)- (5.24e-02)=
200 1.08e+01 5.90e+00 5.62e+00 5.04e+00 4.98e+00
(4.47e-01)- (2.79e-01)- (1.46e-01)- (2.24e-01)= (4.62e-02)
WEG7 10 100 1.06e+01 6.01e+00 5.78e+00 5.15e+00 5.05e+00
(5.02¢-01)- (6.00e-01)~ (5.88e-01)- (4.60e-01)- (2.10e-01)
200 1.07e+01 5.94e+00 5.68e+00 5.24e+00 5.02e+00
(4.22e-01)- (4.33e-01)- (1.61e-01)- (5.22e-01)- (3.28e-01)
WFG8 10 100 1.00e+01 5.92e+00 6.04e+00 5.13e+00 5.13e+00
(5.28e-01)- (8.70e-02)— (8.41e-01)- (4.52e-01)= (5.14e-01)
200 1.03e+01 5.85e+00 5.74e+00 5.32e+00 5.22e+00
(5.33e-01)— (3.80e-02)— (1.49e-01)- (7.81e-01)- (5.63e-01)
WEG9 10 100 9.61e+00 5.82e+00 5.54e+00 4.93e+00 4.91e+00
(3.41e-01)- (4.81e-02)— (9.39¢-02)- (5.81e-02)= (4.47¢-02)
200 9.80e+00 5.76e+00 5.58e+00 4.96e+00 4.93e+00
(3.80e-01)- (1.97e-02)- (8.30e-02)- (1.26e-01)= (6.88e-02)
UF4 5 100 8.26e-01 4.58e-02 5.05e-02 3.06e-02 3.05e-02 (3.10e-03)
(3.20e-03)- (1.37e-03)- (2.15e-03)- (4.82e-04)=
200 8.64e-02 5.36e-02 5.89%¢e-02 3.20e-02 3.26e-02 (2.14e-04)
(2.18¢-03)- (1.55€-03)— (1.87€-03)- (6.03e-04)=
UF5 5 100 5.39e-01 2.26e-01 3.15e-01 1.30e-01 1.69e-01 (1.89¢-02)
(7.70e-02)— (4.65e-02)— (5.61e-02)- (2.25e-02)+
200 3.84e-01 2.56e-01 2.57e-01 1.09e-01 1.60e-01 (1.50e-02)
(2.27e-02)- (6.09e-02)— (4.71e-02)- (1.31e-02)+
UFe6 5 100 4.34e-01 (8.25e-0)— 1.42e-01 1.72e-01 4.23e-02 1.19e-01 (1.52e-02)
(4.88¢-02)= (1.21e-01)- (5.55e-03)+
200 3.87e-01 1.62e-01 1.30e-01 3.93e-02 1.14e-01 (9.56e-03)
(2.94e-02)- (9.17e-02)- (3.01e-02)= (2.73e-03)+
UF7 5 100 5.46e-02 7.71e-02 1.08e-01 7.94e-02 1.60e-01 (3.47e-02)
(8.62e-02)+ (9.10e-02)— (1.53e-01)+ (7.13e-02)-
200 3.49¢-01 7.92e-02 4.76e-02 5.42e-02 4.30e-02 (2.64e-02)
(1.85e-01)— (7.21e-02)— (1.40e-02)- (3.38e-02)-
UF8 5 100 4.20e-1 (2.77e-1)- 5.37e-1 (6.25e-3)- 2.43e-1 (5.55e-2)— 1.58e-1 (1.79e-2)= 1.16e-1 (1.89e-2)
200 2.67¢-1 (7.81e-3)— 5.41e-1 (1.58¢-3)- 3.06e-1 (1.30e-2)- 1.47e-1 (2.38e-2)= 1.05e-1 (3.78¢-3)
(Continued)
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TABLE 2 (Continued)

10.3389/fcomp.2025.1692784

‘ Problem Ob;j. Dec. MOEA/D NSGA-III NSGA-II-SDR LMEA COMOA ‘
UF9 5 100 2.76e-1 (1.71e-2)- 4.93¢-1 (1.18e-1)- 4.08e-1 (6.66¢-2)— L11e-1 (2.23e-2)- 8.43e-2 (1.71e-2)
200 2.56e-1 (1.97¢-2)— 5.56e-1 (1.18¢-1)- 5.24e-1 (3.10e-2)- 1.00e-1 (5.48¢-3)— 7.24¢-2 (6.5%-3)
UF10 5 100 7.27e-01 4.83e-01 5.48e-01 4.90e-01 3.44e-01 (4.58¢-02)
(9.80e-02)— (8.63e-02)— (2.73e-01)- (6.05e-02)—
200 3.46e-02 5.34e-01 3.80e-01 4.96e-01 3.40e-01 (5.11e-02)
(1.13e-01)= (6.63¢-02)— (5.81e-02)- (4.02e-02)-
SDTLZ1 5 100 1.23e+0 (1.03e-1)- | 3.91e+0 (1.70e+0)— 8.64e-1 (1.94e-1)- 3.89-1 (1.58¢-2)= 3.85e-1 (1.46e-2)
SDTLZ2 5 100 4.51e+0 (3.47e-3)- 1.19e+0 (5.14e-6)= | 4.35e+0 (1.22e-2)- | 1.15e+0 (2.61e-2)= 1.20e+0 (5.85¢-2)
CDTLZ2 5 100 1.23¢-1 (6.60e-5)— 1.09¢+0 (2.85e-1)- 1.84e-1 (1.20e-2)- 1.07¢-1 (4.15e-3)= 1.09¢-1 (2.95¢-3)
ZDT3 2 100 6.45€-3 (2.00e-4)— 1.01e-2 (1.06e-3)- 1.13e-2 (4.29¢-5)- 5.61e-3(4.18¢-4)= 5.36e-3 (2.02¢-4)
RMMEDA_F4 3 100 2.27e-1 (3.09¢-2)— 7.74e-1 (1.35e-1)- 1.73e-1 (1.29e-1)- 8.30e-2 (1.88¢-2)= 7.14e-2 (1.29¢-2)

Dec., decision variables (dimension); Obj., objectives (count). Boldface in the table indicates the best result.
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FIGURE 4

curve on the same problem is higher and flatter, clearly less accurate.

(a) and (b) compare our algorithm CLMOAS with LMEA: (a) CLMOAS stays lowest throughout on DTLZ4, converging fast and steadily; (b) LMEA's
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and 2.05¢~! when the numbers of decision variables are 100
and 200, respectively, both of which are lower than those
of all competing algorithms. This indicates that CLMOAS
is capable of approximating the true Pareto front with
remarkable accuracy. Even when the variable count rises to
200, CLMOAS retains its leading performance, confirming its
stable and scalable optimization capability for real-world 5G
micro-CDN deployments.

In the WFG test set evaluation (Table 2), CLMOAS efficiently
managed problems with complex Pareto fronts. The WFG test set
is known for its high non-convexity and discontinuities. CLMOAS’s
strong performance here proves its ability to explore the solution
space and identify high-quality solutions. Additionally, CLMOAS
achieved low IGD values in the UF test set, particularly on UFS8,
with an IGD value of 1.16e™!. This further confirms its broad
applicability and effectiveness in solving diverse multi-objective
optimization problems.

Frontiersin Computer Science

3.3 Result analysis

The evaluation of the performance of the CLMOAS algorithm
is further supplemented by data from Figures 4-6. These graphs
provide a visual representation of how CLMOAS stacks up against
other algorithms when tackling the complex DTLZ4 test problem.
They serve as a valuable tool to discern the nuanced differences
in CLMOAS’s performance relative to other algorithms and offer
a means to visually assess its strengths on specific test problems.

Beyond these visual comparisons, the superior performance
observed in CLMOAS finds its roots in the algorithm’s core
methodological innovations. The k-means based variable clustering
establishes a sophisticated division of labor by accurately
distinguishing between convergence-promoting and diversity-
enhancing variables, thereby enabling specialized optimization
strategies for each category. This strategic partitioning works
in concert with the Enhanced Dominance Relationships, which
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(a) and (b) illustrate the convergence behaviour of the comparative algorithms MOEA/D and NSGA-1I-SDR on DTLZ4. In both sub-plots the obtained
solution sets are sparse and irregularly scattered; their extreme ends visibly diverge from the reference Pareto front, while pronounced gaps and
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FIGURE 5
larger deviations demonstrate slower convergence and markedly inferior completeness relative to CLMOAS.
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maintain effective selection pressure in high-dimensional objective
spaces through angular proximity assessment and dynamic &
adjustment. Together, these complementary mechanisms create a
synergistic optimization framework that excels in both convergence
precision and diversity preservation-advantages that become
clearly evident in the subsequent comparative analysis of
algorithmic performance.

Through a meticulous analysis of the tables and graphs, we can
draw three significant conclusions about algorithmic performance:

MOEA/D and NSGAIII, despite achieving desirable results on
certain test sets, overall underperform compared to CLMOAS.
When the number of decision variables increases from 100 to
200, CLMOAS demonstrate remarkable stability in maintaining
relatively consistent IGD values across various test sets, which is
a strong indicator of excellent scalability.

NSGAII, equipped with its enhanced dominance relation,
shows superior performance to NSGAIII on some datasets. This
observation suggests that the enhanced dominance relation can
confer certain advantages in specific problem-solving scenarios.

CLMOAS generally exhibits superior performance to LMEA
in terms of IGD values and convergence across the majority
of test sets. This finding further corroborates the effectiveness
of the reinforced Pareto relationship employed in CLMOAS. It
can effectively reduce domination resistance, thus improving the
convergence and diversity of offspring populations following non-
dominated sorting and selection. This makes CLMOAS a more
robust and efficient algorithm for handling complex, large-scale
multi-objective optimization problems.

4 Conclusions

The paper introduces CLMOAS, an advanced algorithmic
framework that integrates k-means variable clustering with
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NSGAIII on DTLZ4
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FIGURE 6

NSGA-IIl on DTLZ4. The obtained front is visibly coarser and departs
from the true surface; the spread is uneven and the extreme ends
bend inward, indicating that NSGA-IIl converges more slowly and
less completely than CLMOAS.

a novel Reinforced Pareto Relationship to effectively handle
large-scale multi-objective optimization problems. Although
the computational demands of the clustering process remain
manageable in our experiments, they may increase significantly
when handling extremely high-dimensional problems, affecting
both computation time and memory usage. Despite this limitation,
CLMOAS demonstrates remarkable performance in generating
diverse, high-quality solutions by simplifying the decision space
while maintaining a balance between convergence and diversity.
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Experimental validation confirms its superiority over state-
of-the-art algorithms in both solution quality and diversity.
Looking forward, we plan to explore CLMOAS’s application
in 5G and beyond-5G networks, particularly for micro-CDN
deployment, while enhancing its efficiency through GPU-based
parallelization to address complex optimization challenges in
advanced network environments.
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