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Introduction: Personalized facial beauty prediction is a critical advancement
beyond population-level models with transformative applications in
aesthetic surgery planning and user-centric recommendation systems, while
contemporary methods face limitations in modeling aesthetically sensitive facial
regions, fusing heterogeneous geometric and visual features, and reducing
extensive annotation dependency for personalization.
Methods: We propose DeepGeoFusion, a novel framework that synergizes
Vision Mamba-extracted global visual features with anatomically constrained
facial graphs (constructed from 86 landmarks via Delaunay triangulation), using
the Graph Node Attention Projection Fusion (GNAPF) block for cross-modal
alignment and a lightweight adaptation mechanism to generate personalized
preference vectors from 10 seed images via confidence-gated optimization.
Results: Extensive experiments on SCUT-FBP5500 demonstrate statistically
significant improvements in personalized prediction accuracy and robust
performance across genders and ethnicities compared to state-of-the-art
methods.
Discussion: DeepGeoFusion effectively addresses key limitations of existing
methods by integrating complementary geometric and visual features, enabling
efficient personalization with minimal annotation and highlighting practical value
for aesthetic-related applications requiring personalized assessments.

KEYWORDS

face beauty prediction, personalized beauty prediction, geometric feature, feature
fusion, graph attention

1 Introduction

Automated facial beauty prediction (FBP) lies at the intersection of computer vision
and computational aesthetics, emerging as a critical component in next-generation
intelligent systems. Its applications span a wide range of domains, including personalized
content curation in social recommendation engines, objective surgical outcome evaluation
in medical cosmetology, and emotion recognition in human-computer interaction. This
growing significance is reflected in market projections, with Grand View Research
estimating that the global beauty technology sector will grow from $66.17 billion in 2024
to $172.99 billion by 2030, driven by a 17.9% compound annual growth rate (CAGR). FBP
is a foundational technology that enables the development of personalized solutions across
these industries.

The methodological evolution of FBP can be divided into three phases, each
addressing key limitations of prior approaches. Early studies primarily relied
on geometric feature engineering, using anthropometric measurements like
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the golden ratio and facial symmetry indices to build evaluation
models (Eisenthal et al., 2006; Zhang et al., 2011; Gunes and
Piccardi, 2006; Zhang et al., 2017; Peng et al., 2023). With the
advent of deep learning, the field shifted to data-driven approaches,
leveraging convolutional neural networks (CNNs) to automatically
extract aesthetic features directly from raw pixel data (Gan et al.,
2014; Xie et al., 2015; Liang et al., 2018; Gray et al., 2010;
Bougourzi et al., 2022; Gan et al., 2024; Moridani et al., 2023;
Dornaika et al., 2020; Zhai et al., 2020; Li et al., 2018; Chen et al.,
2018). More recently, hybrid approaches have emerged, combining
geometric constraints with deep learning architectures to improve
the physiological relevance and accuracy of predictions (Wang
et al., 2022; Xiao et al., 2021; Peng et al., 2024; Sun et al., 2024a,b;
Gan et al., 2023).

While these advancements have enabled robust population-
level predictions, achieving correlations greater than 0.9 on
aggregated datasets, they overlook a crucial aspect: individual
differences in aesthetic perception. Psychological studies have
shown that personal preferences play a significant role in
beauty ratings, often surpassing other factors such as cultural
influences and image quality. This highlights a significant
gap in current models and points to the need for a paradigm
shift–toward personalized beauty prediction frameworks
(Whitehill and Movellan, 2008; Lin et al., 2023; Lebedeva
et al., 2021, 2023) that account for the subjective nature
of beauty and can adapt to individual preferences across
various contexts.

Contemporary personalized FBP research aims to model
subjective user preferences. Lebedeva et al. (2023) propose a meta-
learning framework that personalizes facial beauty assessment
based on user data, focusing on semantic features extracted by
deep convolutional networks (CNNs). Lin et al. (2023) present a
high-order predictor for the same task, aiming at personalization
through latent parameter generation. However, both methods
face critical limitations. They rely solely on deep convolutional
features (Huang et al., 2022) and neglect important facial geometry
metrics, such as golden ratios and symmetry indices, which
are known to influence aesthetic perceptions (Li et al., 2024).
Additionally, while both approaches attempt personalization, they
fail to effectively integrate user-specific aesthetic preferences, unlike
the hierarchical feature fusion strategies successfully employed
in related facial analysis tasks (Huang et al., 2022; Li et al.,
2024; Zhang et al., 2016). Consequently, these models require
extensive annotations and lack robustness across demographic
groups. These drawbacks highlight the need for a more effective
framework that combines both geometric and deep visual features
for improved personalization.

To address the critical limitations of existing personalized
FBP models, we propose a novel integrated architecture–
DeepGeoFusion. Our proposed framework overcomes these
challenges by seamlessly combining global visual features
with geometrically constrained facial topological modeling,
ensuring more accurate and personalized predictions of facial
beauty. The integration of these two types of features allows
DeepGeoFusion to offer an innovative and highly efficient solution
to predicting facial attractiveness based on both visual semantics
and geometric structure.

Our model is built on three key innovations:
(1) We enhance facial feature representation by combining

global visual features extracted via Vision Mamba with a geometric
topology constructed from 86 facial landmarks, structured
through Delaunay triangulation. These heterogeneous features
are integrated using a Graph Node Attention Projection Fusion
(GNAPF) module, capturing both fine-grained visual textures and
facial structure in a unified representation.

(2) We introduce an efficient personalization framework that
learns user-specific aesthetic preferences from a small set of seed
images. Through this process, our model generates personalized
preference vectors that are dynamically adjusted using a confidence
gating mechanism. This enables the model to tailor its predictions
to the subjective beauty standards of individual users, enhancing
the accuracy of beauty scoring based on personal tastes.

(3) Extensive evaluations across facial datasets with diverse
genders and ethnicities show that our model not only achieves high
accuracy in general beauty prediction but also retains robustness
in personalized scoring, demonstrating strong generalizability and
adaptability acros populations.

The remainder of this paper is organized as follows: Section 2
provides a comprehensive review of the related literature; Section 3
details the proposed personalized evaluation framework; Section 4
presents experimental validation; and the final section provides a
summary of the key contributions of this research and outlines
potential directions for future work.

2 Related work

Based on the perspective of the rater (the aesthetic subject),
research in facial beauty prediction (FBP) falls into two main
streams (Ibrahem and Abdulazeez, 2025; Ibrahem et al., 2025):
general prediction, which aims to learn population-level aesthetic
consensus, and personalized prediction, which models individual
aesthetic variations. This section provides a systematic review of the
technical evolution and representative work within both categories.

2.1 General facial beauty prediction

The field of Facial Beauty Prediction (FBP) has undergone
a significant paradigm shift, evolving from shallow models to
deep learning approaches. Tracing its evolutionary trajectory,
methodologies for general FBP can be broadly categorized into
three primary approaches:

2.1.1 Geometric-driven methods
Early facial aesthetic assessment primarily relied on geometric

features, such as interocular distance and facial proportions, as
fundamental indicators of facial attractiveness (Juravle and Spence,
2024; Londono et al., 2024). Early research focused on handcrafted
geometric features for model training. For instance, Gunes and
Piccardi (2006) identified 16 key ratios across facial contours,
eyes, brows, nose, lips, and chin, using them as input features
for a C4.5 decision tree, achieving competitive results on a small
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dataset. Similarly, Zhang et al. (2011) developed a geometric
framework that extracted 58 features from 83 facial landmarks,
demonstrating that proximity to average facial geometry correlates
with perceived beauty. Although geometric methods are intuitive
and interpretable, they suffer from limitations such as labor-
intensive feature engineering, shallow feature expressiveness, and
high reliance on precise landmark localization and manual design.

2.1.2 Deep learning-based methods
Early advancements in deep learning for FBP were pioneered

by Gray et al. (2010), who introduced a multilayer feedforward
network, akin to modern CNNs, to assess female facial
attractiveness. Their model achieved a high correlation using
a dataset of 2,056 facial images. Bougourzi et al. (2022) further
advanced this field by designing a dual-branch architecture that
integrates ResNeXt-50 and Inception-v3 modules, outperforming
traditional regression baselines. Deep learning models, by
leveraging hierarchical representations from raw pixel data,
capture complex patterns in texture, contours, and subtle
interactions between facial attributes. While these methods provide
state-of-the-art accuracy and scalability, their “black-box” nature
limits interpretability compared to geometric or hybrid models.

2.1.3 Hybrid fusion methods
Xiao et al. (2021) proposed Beauty3DFaceNet, a deep

convolutional neural network that integrates both 3D geometric
features (from point clouds) and 2D texture features for facial
beauty prediction. Their framework introduced a fusion module
that enhanced feature learning by combining geometry and texture
and included a landmark-guided sampling method to optimize
aesthetic feature extraction. This approach was further extended
with the introduction of the ShadowFace3D dataset. Similarly,
Peng et al. (2024) developed a geometric prior guided hybrid deep
neural network that systematically combines deep convolutional
features with facial geometric priors through a hierarchical fusion
strategy. Their approach introduced a novel geometric attention
mechanism to dynamically adjust the contribution of different
facial regions based on learned aesthetic patterns, achieving
superior performance while maintaining model interpretability
through explicit geometric constraints. These hybrid models
offer promising results, yet they are still challenged by high
computational costs and limited model flexibility.In contrast, Yan
and Ye (2025) introduced the Adaptive Cross-Cultural Beauty
Fusion Network (ACBF-Net), a hybrid deep learning framework
that adapts to cultural differences by combining global visual
features with culture-specific priors. This results in more accurate
and fair predictions across diverse demographics, as demonstrated
in experiments using cross-cultural datasets.

Geometric-driven methods offer the advantage of providing
stability and interpretability by relying on easily measurable
facial features. However, they are limited by the need for
precise landmark localization and shallow feature representation.
Deep learning-based methods excel in capturing complex, high-
dimensional features from raw pixel data, leading to improved
accuracy and performance. Nevertheless, their “black-box” nature
makes them difficult to interpret. Hybrid fusion methods, which

combine the strengths of both approaches, present a promising
direction by enhancing predictive performance through the
integration of both geometric and deep features. Yet, these
methods still face challenges related to computational complexity
and model flexibility. The current research is focusing on
finding efficient ways to fuse deep features and geometric
features to overcome these limitations and enhance facial
beauty prediction.

2.2 Personalized facial beauty prediction

In contrast to generic prediction modeling population-
level consensus, personalized facial beauty prediction (PFBP)
addresses the inherent subjectivity of aesthetic preferences
across individuals–crucially enabling applications like cosmetic
recommendation and user-centric attractiveness enhancement.

Whitehill and Movellan (2008) laid the groundwork by
introducing a support vector regression (SVR) model for
personalized attractiveness assessment, although their approach
was constrained by shallow features and a limited dataset. Lebedeva
et al. (2021) enhanced prediction accuracy by employing deep
convolutional neural networks (CNNs) to extract more abstract,
high-dimensional features, incorporating individual preferences to
better capture subjective attractiveness ratings. In 2023, Lebedeva
et al. further pushed the boundaries by introducing a meta-
learning framework, enabling models to quickly adapt to individual
preferences with minimal data, showcasing superior generalization
and learning efficiency compared to traditional deep learning
methods (Lebedeva et al., 2023). The same year, Lin et al.
(2023) proposed MetaFBP, an advanced model integrating meta-
learning mechanisms that adapted more effectively to diverse
aesthetic judgments by incorporating a learnable user adaptation
module. These studies collectively highlight the progression from
traditional machine learning approaches to more sophisticated
deep learning and meta-learning techniques, although challenges
remain in terms of computational efficiency, feature selection, and
handling low- or zero-shot learning scenarios. Future research will
need to explore combining both deep and geometrical features
for a more holistic and practical approach to personalized facial
attractiveness prediction.

While personalized facial attractiveness prediction has seen
substantial advancements, including the incorporation of deep
learning and meta-learning techniques, several limitations remain.
These methods still face challenges in computational efficiency, as
the need for individual user training or fine-tuning makes large-
scale deployment costly. Additionally, many approaches overly rely
on deep visual features, neglecting the significance of geometrical
features such as facial symmetry and proportionality, which are
strongly correlated with perceived attractiveness.

3 Method

We propose a deep learning framework for personalized
facial beauty prediction, illustrated in Figure 1. The architecture
comprises four core components: First, the Feature Extraction
Module employs a dual-path architecture: the Vision Mamba
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FIGURE 1

Architecture of the proposed personalized facial beauty prediction framework. Image(s) taken from Liang et al. (2018).

Block captures hierarchical visual representations from facial
images via state-space modeling, while the Geometric-Graph
Block constructs topology-aware graphs from 86 anthropometric
landmarks to encode spatial relationships. Second, the Graph Node
Attention Projection Fusion (GNAPF) module bridges the cross-
modal semantic gap by aligning and integrating geometric and
visual features through attention-based projection mechanisms.
Third, the fused representations are decoded using a Graph
Attention Network (GAT), which leverages attention-based graph
operations to predict continuous beauty scores. Finally, to enable
personalized aesthetic assessment, a dedicated Personalization
Adaptation Module incorporates user-provided ratings of seed
images to extract subjective preference priors, which are then used
to fine-tune the core model parameters, allowing the system to
generate individual-specific beauty predictions.

3.1 Feature extraction module

In the feature extraction module, we extract two
complementary feature representations from the raw facial
images for personalized facial beauty prediction: global semantic
features via the Vision Mamba architecture, and geometric graph
features constructed based on facial landmarks.

3.1.1 Vision Mamba features extraction block
We utilize Vision Mamba as our global feature extractor,

leveraging its Cross-Scan State Space Modeling (CSSM) framework
to capture comprehensive facial attributes. The processing pipeline
begins by converting input images I ∈ R

2242×3 into D-dimensional
patch embeddings (D = 192) with positional encodings. These
embeddings are then processed through L stacked Mamba blocks,
each featuring dual-parallel processing pathways.

Within each block, input features X undergo simultaneous
transformation through complementary mechanisms: (1)
A selective state-space path with dynamic parameterization
(�, B, C = τ (X)) and discretized state updates (A, B via ZOH).
(2) A linear attention path using kernel-based approximation for
efficient local feature extraction.

The core computations integrate these pathways through
residual connections and nonlinear enhancement:

Yssm = SSM(X) (1)

Yatt = φ(Q)(φ(K)�V)√
d

(with φ(x) = ELU(x) + 1)

(2)

Z = LayerNorm(Yssm + Yatt) (3)

Xout = MLP(Z) + Z (4)
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Bidirectional context modeling processes sequences in
forward/reverse orientations, with spatial aggregation yielding the
final 384-dimensional facial descriptor:

fmamba = Pool
(
[Xforward;Xbackward]

)
(5)

This CSSM-based extraction holistically encodes facial
topology, expressions, and illumination characteristics through
selective global-local feature integration.

3.1.2 Geometric-graph features extraction block
To address the limitations of global features and handcrafted

descriptors in modeling facial aesthetics, we propose a Delaunay
triangulation-based geometric graph feature. This approach
synergistically integrates anatomical constraints with semantic
features through topologically consistent mes structures, as
illustrated in Figure 2.

3.1.2.1 Landmark normalization
Input image I ∈ R

224×224×3 with 86 landmarks P undergoes
dual normalization:

Global : p′
i = s · R(θ) · (pi − c) (6)

Local : plocal
k = Rregion · (pk − cregion) (7)

where c denotes the facial centroid, s =‖ p36 − p45 ‖−1 scales
by inter-pupil distance, and θ aligns with nasal bridge orientation
−−−→p27p33. This ensures pose-invariant representation.

3.1.2.2 Anatomically constrained Delaunay triangulation
The normalized points P′ are triangulated with biological

boundary constraints preserving facial topology:

Bface = {(0, 1), . . . , (16, 0)},
Beye = {(36, 37), . . . , (41, 36)},
Blip = {(48, 49), . . . , (59, 48)}

(8)

Each vertex vi encodes biological attributes in a 10-dimensional
feature vector:

f(i)
v = [

x′i, y′i, κi, ρi, o, wi
]T (9)

where κi denotes discrete curvature, ρi represents local point
density, and o is the anatomical region encoding.

3.1.2.3 Deformation-robust edge features
Edge features incorporate biomechanical properties:

f(ij)
e =

[
lij

lmedian
, θij, αij, βij, γij, tij

]T
(10)

Critical is the rigid ratio γij = ‖pi − pj‖/‖pneu
i − pneu

j ‖,
preserving invariance under expression variations.

FIGURE 2

Facial geometric graph feature extraction pipeline. For an input face image, two parallel branches process edge and vertex geometry: Delaunay
triangulation generates edge features from inter-landmark connections, while 86 normalized landmarks yield vertex features encoding local
structure. Separate feature computation is followed by fusion into a geometric graph, which captures inherent facial structural patterns for
downstream analysis. Image(s) taken from Liang et al. (2018).
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FIGURE 3

Architecture of Graph Node Attention Projection Fusion (GNAPF) block. Image(s) taken from Liang et al. (2018).

3.1.2.4 Biomechanical energy constraints
An energy minimization framework maintains structural

integrity:

Lrigid =
∑
�ijk

∣∣∣∣ ‖pi − pj‖
‖pj − pk‖

− r0
ijk

∣∣∣∣2
(11)

Lelastic =
∑

eij

λij(lij − l0ij)
2 (12)

Tissue-specific elasticity (λbone = 1.0, λskin = 0.2) prevents
unnatural distortions.

3.2 Feature fusion module

The Graph Node Attention Projection Fusion (GNAPF) block
integrates vision mamba features with facial graph representations
through spatially-aware attention mechanisms. As illustrated in
Figure 3 and Algorithm 1, this process operates in two coordinated
stages centered on graph nodes.

3.2.1 Visual feature projection to graph nodes
Visual features V ∈ R

512×7×7 extracted from Vision Mamba
undergo spatially-conditioned projection onto facial graph nodes
G = (V, E) with ‖V‖ = 86 keypoints. The projection employs
distance-based attention to preserve geometric relationships:

eij = −λ · ‖pi − gj‖2 (13)

αij =
exp(eij)∑49

k=1 exp(eik)
(14)

Vpos
j = Vj + PE(gj) (15)

ṽi =
49∑

j=1

αijV
pos
j (16)

Input: Visual feature map: V ∈ R
512×7×7

Keypoint positions: P = {p1, · · · ,p86} ∈ R
86×2

Graph node features: X ∈ R
86×dg

Grid positions: G ∈ R
7×7×2

Output: Fused features F ∈ R
86×(dg+dv)

// Spatial projection of visual features
1 Ṽ ← 086×dv // Initialize projected features
2 for i ← 1 to 86 do

3 for j ← 1 to 49 do

4 αij ← exp
(−10 · ‖pi − gj‖2

)
5 end

6 ṽi ← ∑
j αij ·

(
φ(Vj)+ PE(gj)

)
7 Ṽ[i] ← ṽi

8 end

// Node feature augmentation
9 for i ← 1 to 86 do

10 Fi ← [
Xi; Ṽi

]
// Feature concatenation

11 end

12 return F

Algorithm 1. Visual-geometric feature fusion.

where pi ∈ R
2 denotes the coordinate of the i-th facial

keypoint, gj ∈ R
2 represents the spatial position of the j-th visual

feature grid, and PE(·) is the positional encoding layer.

3.2.2 Concatenative feature fusion
The augmented node features are generated through direct

concatenation:

Fi =
[

Xi︸︷︷︸
Original

graph feature

; ṽi︸︷︷︸
Projected

visual feature

] ∈ R
dg+dv (17)
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The concatenation operation synthesizes complementary
facial representations by merging: (1) geometric information
characterizing facial structure through Xi, (2) visual-textural
attributes describing appearance properties via ṽi, and (3)
spatial relationships implicitly maintained through position
encoding mechanisms.

The resulting feature matrix F maintains the original graph
topology while enriching each node with complementary visual
information. This spatially-aligned representation serves as input
for downstream graph processing layers.

3.3 Facial beauty prediction module

Input: Graph input features: X ∈ R
N×(dg+dv)

// Node features
Output: Predicted beauty score: ŷ ∈ [0,5]

// Step 1: Graph Attention Network (GAT) Encoding
1 H ← GAT(X) // Update node features via GAT

// Step 2: Global Graph Pooling
2 fgraph ← ∑N

i=1 αihi

3 where αi = softmax(w�hi) // Weighted sum of
node features

// Step 3: MLP Regression
4 ŷ ← MLP(fgraph) // Predict facial beauty score

5 return ŷ

Algorithm 2. Facial beauty prediction from graph representation.

3.3.1 Generic beauty prediction
Facial graph features are updated using the Graph Node

Attention Projection Fusion (GNAPF) block, which effectively
integrates vision features with geometric representations. As
illustrated in Figure 1 and Algorithm 2, these enhanced graph
features are then processed by Graph Attention Networks (GAT),
followed by global graph pooling and a fully connected MLP
regression to predict facial beauty scores.

Given an input graph consisting of 86 nodes, where each node
is characterized by a feature vector hi ∈ R

d (with d = dv +
dg), the following procedure is applied to perform facial beauty
score prediction:

To effectively model the relationship between nodes while
considering their local structure, we adopt a Graph Attention
Network (GAT). GAT introduces a self-attention mechanism that
enables each node to selectively aggregate information from its
neighbors. Specifically, the attention coefficient αij between node
i and node j is computed as:

αij =
exp

(
LeakyReLU

(
a�[Whi ‖ Whj]

))
∑

k∈N(i) exp
(
LeakyReLU

(
a�[Whi ‖ Whk]

)) (18)

Here, W is a shared linear transformation applied to each node, a is
the learnable attention vector, and ‖ denotes vector concatenation.

The updated feature representation of node i is obtained
by aggregating the features of its neighbors weighted by the
attention scores:

hGAT
i = σ

⎛
⎝ ∑

j∈N(i)

αijWhj

⎞
⎠ (19)

This step allows the model to focus on more relevant
neighboring nodes by assigning them higher attention weights
during feature aggregation.

Following the GAT layer, we perform a global pooling operation
to convert the set of node representations into a single fixed-length
graph-level representation. We utilize either mean or max pooling
across all nodes to extract holistic information:

hpool = Pooling({hGAT
i | i = 1, 2, . . . , 86}) (20)

This operation yields a compact representation that captures
the overall structure and semantic content of the entire graph,
which is essential for the final prediction task.

The pooled graph representation hpool is subsequently passed
through a fully connected Multi-Layer Perceptron (MLP) to predict
a continuous facial beauty score. The regression function can be
defined as:

s = MLP(hpool) (21)

where s ∈ [0, 5] denotes the predicted beauty score. The MLP
consists of one or more hidden layers with non-linear activation
functions, and a final output layer that maps the feature vector to a
scalar score.

3.3.2 Personalized beauty prediction
The introduced model incorporates a personalization module

into a generic beauty prediction network, enabling adaptation
to subjective aesthetic preferences. The main idea is to capture
individual aesthetic preferences by leveraging user feedback on a
small set of images, where each user provides beauty ratings for
N images (in this study, N = 10). By learning the deviations
between individual aesthetics and general public beauty perception,
the model fine-tunes the weights of the generic prediction network
to provide personalized beauty predictions that better align with the
user’s aesthetic taste.

The personalization procedure involves the following
sequential operations:

Each user is asked to provide ratings for a small set of images.
These ratings are used to infer the user’s individual aesthetic
preferences and how they differ from the general public’s perception
of beauty.

The collected user ratings are then used to learn the deviation
between the user’s aesthetic preferences and the general beauty
perception encoded in the generic beauty prediction network. This
deviation is modeled as a vector du that reflects the user’s bias
toward specific beauty attributes, such as symmetry, facial features,
and expressions.

du = 1
N

N∑
i=1

(ŷuser
i − ŷgeneric

i ) (22)
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where ŷuser
i is the beauty score predicted by the personalized model

for the i-th image, and ŷgeneric
i is the beauty score predicted by the

generic model.
Based on the learned deviation vector du, the weights of

the generic model are fine-tuned to adjust for the user’s specific
aesthetic preferences. This fine-tuning is performed through a small
learning rate to ensure the generic network retains its ability to
predict beauty scores for the general population while adapting to
individual biases.

By learning from a small set of user-specific ratings and
adjusting the weights of the generic model, the proposed system can
deliver personalized beauty predictions that better reflect the user’s
individual aesthetic preferences, while still maintaining the general
applicability of the model.

Given five seed images, the ratings provided by user A
are:YA = (1, 2, 3, 4, 5), and the predictions from the universal
model are:ŶU = (1.2, 2.5, 3.3, 3.8, 4.4).

Below is an example to illustrate this process:
The deviation vector is calculated as: Vd = YA − ŶU , which

is (-0.2, -0.5, -0.3, 0.2, 0.6). Let α be the weight used to integrate
the deviation vector into the universal model prediction:ŶA =
ŶU + α · Deviation Vector For this example, setting α = 0.5, the
updated predictions are:ŶA = (1.1, 2.25, 3.15, 3.9, 4.7)

The model is fine-tuned using the Mean Squared Error (MSE)
between user A’s ratings and the model’s predictions:LMSE =
1
N

∑N
i=1(YA,i − ŶA,i)2, For the given example, the MSE is

calculated as:

LMSE = 1
5 ((1 − 1.1)2 + (2 − 2.25)2 + (3 − 3.15)2 + (4 − 3.9)2

+(5 − 4.7)2) = 0.039

After fine-tuning, the model provides a personalized prediction
for user A:ŶA = (1.1, 2.25, 3.15, 3.9, 4.7) The updated prediction for
a user’s beauty score is then calculated as:

ŷpersonalized
i = f (hi, Wgeneric + du) (23)

where hi is the feature vector for the i-th image, and f represents
the model’s output function.

4 Experiments and results

4.1 Experimental settings

4.1.1 Dataset and subsets
The SCUT-FBP5500 dataset contains 5500 frontal faces, aged

from 15 to 60, with a neutral expression. It can be divided into
four subsets with different races and genders to assess model
performance across different demographic groups. We divide the
dataset into four subsets: 2,000 Asian females, 2,000 Asian males,
750 Caucasian females, and 750 Caucasian males. Most of the
images of the SCUT-FBP5500 were collected from the Internet. All
the images are labeled with beauty scores ranging from 1 to 5.

4.1.2 Train/test splitting
For each demographic subset and the full dataset, we adopt a

five-fold cross-validation strategy. Each fold splits the data into 80%

for training and 20% for testing, ensuring non-overlapping images
between the training and test sets. We use fixed random seeds to
guarantee consistency across all experiments.

4.1.3 Training settings
All models are trained for 100 epochs with a batch size of 32

using the Adam optimizer (L2 weight decay = 1e-5) to mitigate
overfitting. The initial learning rate is set to 1e-4, and it is reduced
by a factor of 0.1 if the validation Pearson Correlation (PC) does
not surpass the historical best for 50 consecutive epochs. Early
stopping is applied with a patience of 10 epochs (i.e., training stops
if the validation PC does not improve for 10 consecutive epochs).
To ensure reproducibility, fixed random seeds are used for data
splitting, model initialization, and all training processes. The same
training settings are adopted for all baseline models to guarantee a
fair comparison.

4.1.4 Evaluation metrics
We use three metrics for facial beauty prediction–Pearson

Correlation (PC), Mean Absolute Error (MAE), and Root Mean
Square Error (RMSE).

For generic prediction, PC quantifies the linear correlation
between predicted and ground-truth beauty scores (range: [-1, 1]),
with higher values indicating stronger consistency in capturing
overall aesthetic trends.

ρX,Y = cov(X, Y)
σXσY

=
∑n

i=1(Xi − X̄)(Yi − Ȳ)√∑n
i=1(Xi − X̄)2

√∑n
i=1(Yi − Ȳ)2

(24)

MAE measures the average absolute difference between
predictions and true scores, reflecting mean prediction error (lower
values = better accuracy).

MAE = 1
n

n∑
i=1

|yi − ŷi| (25)

RMSE, the square root of the mean squared error, emphasizes
large errors to assess model stability (smaller values = more robust
performance against extreme cases).

RMSE =
√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (26)

4.1.5 Repeated trials and significance testing
(paired t-tests)

To ensure the statistical reliability of the results, we conducted
five repeated experiments for the top three performing methods
identified in the initial evaluation. This adjustment was made
in response to the need for significance testing, which aims to
verify the robustness of performance differences among high-
ranking models. The results of these repeated experiments are
used to conduct significance testing and are reported alongside
the main performance tables, including corresponding p-values
where appropriate.
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4.2 Feature extraction module analysis

Comparison of the features used in this study with other
geometric and visual features, along with their predictive
performance on the Asian female subset of the SCUT-FBP5500
dataset, is presented in Table 1. As quantitatively demonstrated in
Table 1, three core conclusions can be drawn from the analysis:

First, our proposed facial geometric graph features achieve
a statistically significant improvement in Pearson correlation
(PC) of 6%–8% over conventional geometric descriptors. This
improvement suggests that geometric graph features may
capture distinct aesthetic dimensions of facial structure–such
as the topological interplay between landmarks and local shape
curvature–that isolated geometric measurements are less likely
to reveal.

Second, the deep features extracted using the visual Mamba
mechanism in this study exhibit a significant improvement over the
traditional ResNet-50 features. This highlights the superior ability
of the visual Mamba mechanism in modeling long-range spatial
dependencies, which are crucial for the perception of overall beauty.

Third, our proposed combined feature method (Ours)
shows favorable performance over baseline approaches across
all four demographic subsets of the SCUT-FBP5500 dataset,
achieving the highest PC scores. This result underscores the
potential effectiveness of our fusion strategy, which integrates
geometric graph features with visual embeddings to capture
both structural precision and texture harmony. This approach
appears to be more effective than the baselines’ simpler fusion
of these modalities, which may not fully leverage their cross-
modal synergy. Such integration aligns with human beauty
judgments, which rely on both structural proportions and textural
qualities, suggesting the benefit of a unified representation for
automated assessment.

To investigate the impact of fusion between different sizes of
Vision Mamba features and facial geometric graph features on facial
beauty prediction, we conducted experiments with four different
feature sizes. The results are presented in Figure 4. As shown, the 7
× 7 feature size yielded the best performance, indicating that this
size provides an optimal balance between local details and global
context. Therefore, all subsequent experiments in this study will be
conducted using this feature size.

Moreover, as shown in Table 2, statistical significance tests
were conducted to evaluate the performance differences among
the feature extraction strategies. The results confirm that the
improvements achieved by the proposed feature strategy are not
only consistent across subsets but also statistically significant
when compared to conventional approaches. This supports the
robustness and validity of our design choices from a statistical
perspective, indicating that the performance gains observed are
unlikely to be due to random chance.

4.3 Feature fusion module analysis

To rigorously evaluate the performance of our proposed
Graph Node Attention Projection Fusion (GNAPF) mechanism,

we conducted comparative experiments with two heterogeneous
feature fusion baselines, designed to isolate the contribution of our
attention-driven, spatially aware fusion strategy.

The first baseline, Flatten-Concat, employs a straightforward
fusion strategy: Graph features consist of two components—86
node (landmark) features, each encoded as a 10-dimensional
vector, resulting in a total of 860 dimensions (86 × 10), and 168
edge (triangulation) features, each represented as a 6-dimensional
vector, contributing 1,008 dimensions (168 × 6). These node and
edge features are first concatenated along the feature dimension to
form a combined graph feature vector, which is then flattened into
a single one-dimensional vector (860 + 1,008 = 1,868 dimensions).
This flattened graph vector is subsequently concatenated with the
192-dimensional visual features extracted from Vision Mamba,
resulting in a final fused feature vector of 2,060 dimensions
(1,868 + 192).

The second baseline, AvgAgg-Concat, introduces a
dimensionality reduction technique through aggregation:
The graph features are independently aggregated by computing
the mean of the 86 node features (each 10-dimensional), which
results in a 10-dimensional vector, and the mean of the 168 edge
features (each 6-dimensional), yielding a 6-dimensional vector.
These two averaged representations (10 + 6 = 16 dimensions) are
then concatenated with the 192-dimensional Vision Mamba visual
features, producing a final fused feature vector of 208 dimensions
(16 + 192).

Experimental results are presented in Table 3. As shown, the
proposed GNAPF mechanism achieves statistically significant
improvements over both baseline fusion approaches, indicating
its effectiveness in capturing and integrating the complementary
information from facial geometric structures and deep visual
representations. Rather than relying on definitive claims
of superiority, we frame these gains in terms of favorable
performance trends supported by statistical evidence. In
addition to evaluating fusion strategies, we also investigated
the influence of position encoding on prediction performance. The
inclusion of position encoding consistently led to improved
results, suggesting that spatial contextualization plays an
important role in enhancing the model’s capacity to model
facial attractiveness.

To further validate these observations, we conducted
statistical significance tests (paired t-tests) on the performance
metrics of different fusion strategies reported in Table 2.
The results demonstrate that the improvements achieved
by GNAPF are statistically significant when compared with
the other two strategies, reinforcing the reliability and
generalizability of the proposed fusion mechanism from a
statistical standpoint.

As illustrated in Table 4, the four models–Inception-v3,
ResNet50, ViT, and ViM–exhibit substantial performance
improvements in the personalized facial attractiveness prediction
task upon integration with the three fusion strategies (GNAPF,
AvgAgg-Concat, and Flatten-Concat). Notably, while the
numerical discrepancies in general facial attractiveness prediction
across these models (with or without the fusion strategies) are
relatively marginal, the performance gains in the personalized
setting are remarkably prominent: our proposed method
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TABLE 1 Ablation analysis: feature performance on SCUT-FBP5500 subsets.

Feature representation Asian female Asian male Caucasian female Caucasian male

PC MAE RMSE PC MAE RMSE PC MAE RMSE PC MAE RMSE

Geometric features

GeomFeat 1a 0.682 0.367 0.458 0.659 0.368 0.467 0.695 0.362 0.453 0.650 0.361 0.476

GeomFeat 2b 0.671 0.376 0.472 0.647 0.386 0.485 0.683 0.381 0.475 0.638 0.391 0.492

Geo-Graph 0.735 0.356 0.451 0.729 0.367 0.458 0.738 0.351 0.448 0.731 0.364 0.454

Vision features

Inception-v3 0.889 0.252 0.316 0.884 0.273 0.346 0.891 0.252 0.311 0.887 0.266 0.328

ResNet50 0.907 0.219 0.289 0.902 0.232 0.301 0.912 0.231 0.281 0.904 0.229 0.284

ViT 0.910 0.215 0.283 0.904 0.230 0.296 0.914 0.227 0.277 0.906 0.226 0.283

ViMc 0.916 0.213 0.279 0.907 0.228 0.290 0.921 0.222 0.269 0.912 0.225 0.275

Combined features

GeomFeat 1+ViM 0.919 0.210 0.276 0.911 0.223 0.286 0.920 0.217 0.261 0.914 0.222 0.273

GeomFeat 2+ViM 0.918 0.211 0.278 0.911 0.224 0.289 0.921 0.219 0.263 0.915 0.219 0.269

Ours 0.924 0.188 0.258 0.918 0.210 0.267 0.922 0.195 0.263 0.920 0.216 0.264

PC, Pearson correlation ↑; MAE, mean absolute error ↓; RMSE, root mean squared error ↓.
aGeomFeat 1: geometric features from Swift and Remington (2019).
bGeomFeat 2: geometric features from Zhang et al. (2016).
cViM, vision Mamba model (Zhu et al., 2024).
Bold values indicate the optimal performance among the different feature representations.
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FIGURE 4

Effects of feature map dimensions in Vision Mamba architecture on facial beauty prediction performance.

TABLE 2 Ablation analysis: performance significance comparison between our structural strategy and four alternative strategies on SCUT-FBP5500
subsets subsets.

Methods Asian female Asian male Caucasian female Caucasian male

Combined features

Ours vs. GeomFeat 1+ViM 0.019 0.028 0.035 0.023

Ours vs. GeomFeat 2+ViM 0.038 0.019 0.044 0.043

Fusion strategy

Ours vs. AvgAgg-Concat 0.031 0.042 0.038 0.023

Ours vs. Flatten-Concat 0.035 0.026 0.045 0.037

(backbones integrated with GNAPF) achieves a performance
gain of at least 8% compared to both the original backbones
and the variants integrated with AvgAgg-Concat/Flatten-
Concat. This significant enhancement validates that the GNAPF
module can effectively capture and leverage graph-structured
information inherent in facial images, which is critical for
modeling individual-specific aesthetic preferences. Consequently,
this enables the development of a more accurate and personalized
facial attractiveness prediction model, fully demonstrating the
unique value of the GNAPF module in addressing the personalized
prediction task.

Collectively, these findings support the rationale behind
our method’s design choices: (1) attention-driven fusion
facilitates the modeling of cross-modal dependencies between
geometric and visual features; (2) spatial contextualization
(via position encoding) is crucial for fully leveraging
the predictive value of geometric representations. These
insights highlight the broader importance of adopting
fine-grained, modality-aware integration strategies in
cross-modal prediction tasks, where naive concatenation
or aggregation often falls short of capturing complex
intermodal relationships.

4.4 Generic beauty prediction comparison

As quantitatively demonstrated in Table 5, our generic
prediction module achieves state-of-the-art performance across
all demographic subgroups while revealing critical insights into
bias mitigation.

The framework consistently shows favorable performance
across all categories, with the most pronounced gains observed in
all the subgroup cohorts (PC = 0.923), where it achieves statistically
significant improvements in Pearson correlation compared to
the prior best method. This notable margin suggests enhanced
capability in modeling nuanced aesthetic attributes prevalent in this
demographic, possibly due to our hybrid feature fusion mechanism
that jointly optimizes geometric and texture cues.

Ethnically, the model shows robust advantages for Asian
subgroups over Caucasian counterparts, a gap of 0.2% that may
reflect either training data distribution imbalances or culturally
divergent beauty annotation patterns in benchmark datasets.
Notably, gender-based analysis reveals universally higher accuracy,
with our method achieving a 0.4%–3.4% PC improvement over
multi-feature fusion baselines, indicating superior modeling of
gender-specific aesthetic traits.
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4.5 Personalization capability

This study evaluates personalized facial beauty prediction
frameworks using the SCUT-FBP5500 dataset, which includes
attractiveness ratings from 60 distinct evaluators. To assess
personalization, we divided raters into different training and testing
sets across five configurations (30, 35, 40, 45, and 50 training raters).

As shown in Figure 5 and Table 6, our method consistently
shows favorable performance compared to existing approaches.
With 50 training raters, it achieves a PC of 0.738, surpassing Lin
et al. (0.724) and Lebedeva et al. (0.701). The performance gap
widens as the number of training raters decreases, demonstrating
the robustness of our method when faced with limited personalized
data. This robustness is attributed to our personalized fine-tuning
approach, which adapts the generic beauty prediction model based
on user-specific aesthetic preferences. By leveraging a small set
of user ratings, the model effectively captures individual biases
and refines the prediction to align with the user’s tastes, reducing
overfitting while maintaining general applicability.

A deeper analysis of the top three methods across 10 test
raters in the 50-training-rater configuration, as shown in Figure 6,
reveals several key findings. Our method consistently achieves
the highest PC across all raters, demonstrating its adaptability to
diverse aesthetic preferences. In more challenging cases, such as
Rater 7, who exhibits highly unique preferences, our approach
maintains a significant lead (0.718 vs. 0.695 for Lin et al.).

This work sets a new state-of-the-art benchmark in
personalized beauty assessment, particularly in scenarios with
limited training raters or diverse aesthetic preferences. Future
research will explore cross-cultural generalization and multi-modal
preference modeling to further enhance the framework’s versatility.

As shown in Figure 7, we compare the prediction outcomes of
three different methodologies for the ratings of IMGAF3, evaluated
by ten raters. The performance analysis demonstrates that the
proposed method exceeds the baseline approach in terms of curve
fitting accuracy. This improvement reflects a notable enhancement
in both predictive precision and the ability to conduct personalized
image assessments, underscoring the method’s superior capacity to
more accurately capture the preferences of individual raters.

Figure 8 presents a comparative analysis of facial images,
general and personalized heatmaps derived from the weighting
information of 86 facial keypoints in the Graph Attention Network
(GAT), alongside aesthetic scores from two raters (Rater A and
Rater B). This illustration underscores the effectiveness of our
method in encapsulating individual aesthetic experiences. The
results unveil notable subjective preferences: Rater A assigned
lower scores to the first two faces and higher scores to the last
two faces compared to Rater B, thereby highlighting divergent
aesthetic judgments. These differences are further manifested in
the personalized heatmaps: Rater A’s heatmaps exhibit a more
balanced attention distribution across facial regions, signifying a
focus on overall harmony, while Rater B’s heatmaps emphasize focal
features such as the eyes and mouth, indicating a preference for
local facial details. Collectively, these findings substantiate that our
method can effectively capture and quantify individual aesthetic
tendencies, translating them into discernible heatmap patterns and
score variations.
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TABLE 4 Ablation analysis: method performance before/after integrating GNAPF/avgagg-concat/flatten-concat modules for personalized facial
attractiveness prediction (50 raters).

Methods With GNAPF w/o GNAPF AvgAgg-Concat Flatten-Concat

Inception-v3 0.517 0.467 0.478 0.487

ResNet50 0.604 0.553 0.564 0.543

VIT 0.646 0.561 0.585 0.573

VIM 0.738 (Ours) 0.642 0.658 0.637

Bold values indicate the best performance among the compared methods.

TABLE 5 Cross-demographic beauty prediction performance: Pearson correlation coefficients for six methods and statistical significance tests (our
method vs. top baselines: anchor-net & REX-INCEP)—Mean ± Std, p-values.

Method Asian Caucasian Gender Ethnic Overall

F M F M F M As Cau

Inception-v3 0.889 0.884 0.891 0.887 0.890 0.885 0.889 0.886 0.887

ResNet50 0.907 0.902 0.912 0.904 0.909 0.902 0.905 0.908 0.906

ViT 0.910 0.904 0.914 0.906 0.911 0.904 0.907 0.909 0.908

ACBFN a 0.807 0.813 0.794 0.806 0.811 0.804 0.775 0.789 0.818

Anchor-Netb 0.915±0.003 0.91 ± 0.005 0.917±0.006 0.913±0.005 0.915±0.004 0.911±0.005 0.912±0.004 0.915±0.006 0.912±0.003

REX-INCEPc 0.917±0.005 0.911±0.004 0.918±0.005 0.914±0.006 0.916±0.005 0.912±0.003 0.915±0.004 0.914±0.005 0.913±0.004

DyAttenConvd 0.909 0.903 0.913 0.905 0.911 0.903 0.906 0.908 0.906

Ours 0.924 ±
0.003

0.918 ±
0.004

0.922 ±
0.004

0.920 ±
0.003

0.924 ±
0.005

0.918 ±
0.004

0.921 ±
0.003

0.920 ±
0.005

0.922 ±
0.003

p-values

Ours vs.
Anchor-Net

0.028 0.033 0.031 0.042 0.038 0.029 0.037 0.041 0.035

Ours vs.
REX-INCEP

0.025 0.029 0.035 0.047 0.027 0.017 0.027 0.032 0.029

F/M, female/male; As/Cau, Asian/Caucasian; PC, Pearson correlation (↑ higher is better).
aACBFN, Adaptive Cross-Cultural Beauty Fusion Network (Yan and Ye, 2025).
bAnchor-Net, self-supervised learning model (Bae et al., 2024).
cREX-INCEP, robust ensemble method (Bougourzi et al., 2022).
dDyAttenConv, dynamic attentive convolution (Sun et al., 2024b).
Bold values indicate the best performance among the compared methods.

FIGURE 5

Personalized prediction performance metrics.

TABLE 6 Personalized beauty prediction performance on SCUT-FBP5500
dataset.

Method Number of raters

30 35 40 50

Inception-v3 0.359 0.384 0.451 0.517

ResNet50 0.387 0.482 0.542 0.604

Vision
transformer

0.410 0.504 0.574 0.626

MetaFBPa 0.502 0.623 0.679 0.724

AdaBeautyb 0.485 0.583 0.628 0.701

Ours 0.523 0.632 0.684 0.738

Performance metrics represent Pearson correlation coefficient (higher values indicate better
agreement with human raters).
aMetaFBP, meta-learning framework (Lin et al., 2023).
bAdaBeauty, adaptive beauty assessment (Lebedeva et al., 2023).
Bold values indicate the best performance among the compared methods.
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FIGURE 6

Performance comparison of top three methods across 10 test raters in the 50-training-rater configuration.

FIGURE 7

Comparison of prediction outcomes for IMGAF3 ratings across three methods.

5 Conclusions and future work

This study introduces an innovative framework for
personalized facial beauty evaluation, which combines global
visual features with geometric graphs constructed from 86 facial
key points. The framework effectively captures both overall
aesthetic characteristics and localized structural relationships,
allowing the system to finely tune its responses to individual
beauty preferences. Comprehensive validation on the diverse
SCUT-FBP5500 dataset confirms that the method achieves
statistically significant improvements compared to existing
approaches. Significantly, the proposed method demonstrates a
strong correlation across all test raters, highlighting its flexibility in
accommodating subjective preferences.

Our framework underscores the importance of simultaneously
modeling global visual patterns and detailed geometric

configurations for accurate facial beauty assessment. This
fusion strategy delivers robust performance across various
ethnicities, ages, genders, and facial expressions, illustrating the
versatility of the approach. Looking forward, future work will
focus on developing adaptive feature weighting mechanisms
to dynamically balance the visual and geometric components
based on individual rater characteristics. Additionally, we aim
to extend the framework to 3D facial modeling–enhancing
real-world applicability by leveraging precise structural analysis
principles, as demonstrated in recent deep learning research on
craniomaxillofacial multi-structure segmentation (Bao et al., 2024,
2025). We also plan to explore active learning techniques to reduce
the need for extensive annotations. Integrating this framework
with recommendation systems holds promising potential to
address cold-start problems in aesthetic-driven applications.
These future advancements will help bridge the gap between
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FIGURE 8

Visualization of facial images, general heatmaps, personalized heatmaps (Rater A and Rater B) with corresponding aesthetic scores. Image(s) taken
from Liang et al. (2018).

computational beauty assessment and the nuanced complexities of
human perception.
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