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Over the past few years, phishing has evolved into an increasingly prevalent
form of cybercrime, as more people use the Internet and its applications.
Phishing is a type of social engineering that targets users’ sensitive or personal
information. This paper seeks to achieve two main objectives: first, to identify the
most effective classifier for detecting phishing among 40 classifiers representing
six learning strategies. Secondly, it aims to determine which feature selection
method performs best on websites with phishing datasets. By analyzing three
unique datasets on phishing and evaluating eight metrics, this study found that
Random Forest and Random Tree were superior at identifying phishing websites
compared with other approaches. Similarly, GainRatioAttributeEval, along with
InfoGainAttributeEval, performed better than the five alternative feature selection
methods considered in this study.
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1 Introduction

Due to the widespread use of online services like e-commerce and social media and the
increased access afforded by the Internet, users are increasingly susceptible to cyberattacks
targeting sensitive information, such as usernames or credit card details. One popular
method used by attackers is called phishing, which uses fraudulent websites that appear
authentic and trick individuals into divulging their private data (Athulya and Praveen,
2020). This can be accomplished using email or text messages designed solely for this
purpose; even communication between clients and companies may contain such deceptive
links. Typically motivated by financial gain, malware infections on user machines, or
identity theft, most phishing attempts involve these motives.

Recent findings indicate a dramatic increase in unique reported instances, exceeding
199 thousand detections in December 2020 alone—an alarming statistic compared with
the Anti-Phishing Working Group’s results from previous years (APWG, 2021). Moreover,
since the early days of the pandemic in March last year, when global COVID-19 fears were
high, scammers have frequently issued phony certificates containing the words “COVID”
or “corona.” These scammers have increasingly relied on digital certification policies and
HTTPS protocols rather than on traditional tactics (Warburton, 2020).
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Broadly, there are two ways to identify phishing: through
user knowledge or anti-phishing software. Due to the realism
of phishing emails and websites, many users find it challenging
to detect them. Consequently, accurate software solutions for
detecting these threats have become increasingly necessary.
Software-based detection strategies include blocklisting, heuristics,
and machine learning (Athulya and Praveen, 2020). Previous
studies using machine learning often relied on numerous features
to achieve high accuracy; however, extracting these features
is not always possible in real-time scenarios, requiring more
resilient solutions.

The purpose of this paper is to support the worldwide effort to
combat phishing scams by leveraging advanced machine learning
techniques to predict fraudulent websites accurately.

Numerous classification models have been proposed and
employed to identify phishing websites, claiming superiority over
other approaches (Alazaidah et al., 2018). Moreover, this study aims
to determine the most suitable classification method (classifier)
for phishing datasets. To obtain a comprehensive overview of the
findings, more than 40 classifiers across six learning strategies
are evaluated using several metrics, including accuracy, precision,
recall, and F1-measure.

Feature selection is one of several necessary preprocessing steps
when creating any machine learning (ML)-based learning model.
Its purpose is to identify relevant features that aid in constructing
intended models by selecting non-redundant consistent attributes
(Alluwaici M. et al., 2020). The feature selection procedure always
prioritizes characteristics that closely align with the objective
qualities of the dataset’s attributes (Alluwaici M. et al., 2020).

To achieve the goal, 40 classifiers from six well-known learning
strategies were selected for assessment. The evaluation phase
encompasses eight diverse, commonly used metrics, including
accuracy, precision, recall, and AUC. Besides, it aims to implicitly
identify the best learning strategy among those considered
using four distinct evaluation indicators: accuracy, precision,
recall, F-Measure, MCC, PRC area, and ROC-Area (receiver
operating characteristics).

The second objective of this study is to determine the optimal
feature selection technique for predicting phishing websites. To
achieve this objective, five commonly used feature selection
methods were assessed and compared with identical classifiers used
in the first goal across three evaluation metrics: accuracy, precision,
and recall.

The remaining sections of the paper are structured as follows:
Section 2 reviews the current literature on implementing ML
techniques for phishing. In Section 3, we present our methodology,
results, and discussion. Finally, concluding remarks and future
directions are proposed in Section 4.

2 Related research

In this section, we examine prior research that has used
machine learning techniques to detect phishing. In their study on
fuzzy rough set feature selection, Zabihimayvan and Doran (2019)
used multiple features to construct a model intended to detect
fraudulent activity attempts by criminals intentionally sidestepping
existing anti-phishing measures on Iranian banking websites. They
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trained and tested their system using fuzzy experts, achieving an
accuracy of around 88%. Still, they acknowledged that there is
scope for optimizing feature selection during the training/testing
phases, which could increase predictive power while reducing
prediction time.

A different approach was taken by Cui (2019), leveraging
data analytics across multiple search engines as its source
material identifying idle URLs previously exposed through
popular searches or internal links shared between identified
related sites along with additional input from frequently visited
pages from URL structural similarity evaluation utilizing twelve
(12) distinct characteristics depicting intra-relatedness/popularity
degrees among entered site structures and components; altogether
building classifiers resulting overall classification rates exceeding
nearly ninety-five percent success rate coupled at about one-
and-a-half false positives per classifying session—however may
overlook obfuscated content when analyzing linked materials such
as domain name variations generated algorithmically/hosted solely
off malicious web domains themselves/limited character string-
denser link shortening platforms commonly employed against
undetected trapping activities.

Gandotra and Gupta (2021) compared various ML techniques
using a 30-feature set comprising approximately 5,000 phishing
websites and over 6,000 authentic webpages. This study found
that incorporating feature selection enables faster creation of
effective phishing detection models while maintaining accuracy.
Notably, their results highlight that random forest classification
(RF) achieves superior accuracy regardless of whether feature
selection is used.

Detecting phishing attempts using ML often involves analyzing
lexical features of URLs. This method, pioneered by Abutaha et al.
(2021), was intended for use as a browser plug-in that scrutinizes a
webpage’s URL to alert users before they visit it. To test the efficacy
of this technique, over one million legitimate and fraudulent URLs
were used in experiments that extracted 22 variables, which were
reduced to 10 key ones.

Findings revealed an accuracy rate of 99.89% when combined
with SVM classification, surpassing the RF classifier, gradient
boosting classifier (GBC), and neural network approaches trialed
alongside it.

Chapla et al. (2019) proposed a fuzzy-logic-based framework
for detecting phishing websites, using a dataset containing both
legitimate and fraudulent URLs. The model achieved 91.4%
accuracy but was limited by a small sample size of 1,000 features
focused solely on URL-related attributes; as a result, it is less
effective at identifying other bypass techniques.

The author in Tan (2018) improved the performance of
their phishing URL detection system by using lexical features. A
model proposed in Chiew et al. (2019) achieved high accuracy
while being independent of third-party services and source
code analysis, thereby requiring less processing time. Meanwhile,
authors in Abdelhamid et al. (2014) sought to enhance the
accuracy of phishing detection systems through feature selection
and an ensemble learning approach, achieving 95% accuracy in
their experiments.

In yet another effort detailed in article (Su et al, 2023),
an innovative approach used seven distinct machine learning
algorithms for detecting potential risks posed by various unwanted
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attacks, including those utilizing zero-day exploits, with selected
implemented security features overcoming issues such as language
dependency or reliance on external parties during real-time
monitoring operations without issue!

Rahman et al’s research also explored machine learning
classifiers’ ability concerning various datasets related to phishing
practices (Gandotra and Gupta, 2021). This initiative likewise
demonstrated equivalent results, with gradient boosting trees
(GBT) outperforming all metrics and achieving higher success rates
than other methods, such as random forest (RF).

OFS-NN was proposed by Sahingoz et al. (2019) and
combines optimal feature selection with a neural network to
mitigate overfitting by using a new metric, the feature validity
value (FVV). Experimental results on two datasets demonstrated
that FVV outperformed information gain and optimal feature
selection across various categories, including specific features such
as abnormal, domain, HTML/JavaScript, and even address-bar
features. The OFS-NN model achieved an overall accuracy of 0.945;
however, among the feature types used for detection, the highest
accuracy, 0.903, was observed with “address bar,” while the lowest,
around half accurate at 0.562, was observed with HTML/JavaScript.

Another phishing detection system was introduced by Sahingoz
et al. (2019), which comprises 40 NLP-based traits, along with
additional hybrid characteristics derived from word vectorization,
totaling about 1,700 more relevant aspects.

In their study, the authors compared seven distinct algorithms
offering diverse options but ultimately determined random forest’s
implementation made using solely natural language processing
delivered the most superior performance, scoring almost perfect
precision statistics, peaking up to staggering score amounts nearing
practically zenith level, i.e., tracing fraudulent websites based
upon this criterion managed to reach correct outcomes nearly 98
percent times—rendering maximum efficacy amongst all tested
methodologies researched herein.

In Alazaidah et al. (2024), the authors conduct a comparative
analysis of 24 classifiers across two datasets using several evaluation
metrics. The results revealed the superiority of the random
forest, filtered classifier, and J48 classifiers. The author suggests
considering additional classification models with different learning
strategies, as well as more datasets and evaluation metrics.

The research in Aljofey et al. (2025) proposed a hybrid
methodology that combines URL character embeddings with
several handcrafted features. Three datasets were used in this work:
two are benchmarks, and the third was collected and preprocessed
by the authors. The results showed excellent performance across
accuracy and other evaluation metrics.

Several deep learning optimization techniques were used in
Barik et al. (2025) to improve phishing prediction on websites.
The authors used standardization and variational autoencoder
techniques in the preprocessing step, and an enhanced grid
search optimizer to improve accuracy. The results showed superior
performance across accuracy, precision, and Fl-score metrics.
Unfortunately, utilizing one dataset only does not help in
generalizing the finding of the conducted research. Several other
related research works could be find in Ganjei and Boostani (2022),
Gareth et al. (2023), Ni et al. (2022), Nti et al. (2022), Rashid et al.
(2020), Srivastava (2014), Ubing et al. (2019).
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Throughout this literature review, random forests perform
comparatively better than their counterparts in detecting phishing
using machine learning. However, gradient boosting machines
(GBM) were frequently not a subject of comparison, affecting
project linearity and requiring deeper exploration, while lackluster
attempts, such as minimal input/no-noise coeflicient data filtering,
were still in early phases, indicating that extensive future research
remains vital.

3 Research methodology

The methodology employed in this paper is depicted in
Figure 1. The first phase in Figure 1 involves collecting the datasets.
Afterward, the datasets are cleaned and preprocessed. Then, several
feature selection techniques are trained on the pre-processed
datasets and evaluated. Next, 40 classification models are trained
on the datasets using the selected features from the previous
step. These classifiers are compared using several well-known
evaluation metrics.

The description of three website phishing datasets used in this
research is provided in Section (A), while Sections (B, C, and D)
evaluate the performance of feature selection and machine learning
algorithms on these datasets.

Moreover, Section 4 considers which classification model is
most appropriate for phishing website datasets. Therefore, three
datasets are considered in this section.

In addition to that, Section 5 evaluates and identifies the
best among five renowned feature selection methods, as well as
identifying the most efficient classifiers, which are outlined in
Section 6 before finally discussing primary results obtained from
these sections’ analyses at length.

In addition, 40 classifiers from six learning strategies are
evaluated and contrasted in terms of their predictive efficacy
across the three datasets under consideration. These examined
classifiers encompass:

Random tree, random forest, REPTree, DecisionStump,
HoeftdingTree, LMT, J4B, and REPTree from the
learning  strategy; BayesNet, NaiveBayesUpdateable, and
learning

Trees

NaiveBayes from the Bayes strategy.  Logistic,
MultilayerPerceptron, SimpleLogistic, VotedPerceptron,
and SMO from the Functions strategy. IBK, KStar, and
LWL strategy; AdaBoostM1,
AttributeSelectedClassifier, Bagging, ClassificationViaRegression,
FilteredClassifier,

MultiClassClassifier,

RandomCommittee,

from the lazy learning
IterativeClassifierOptimizer, LogitBoost,
MultiClassClassifierUpdateable,
RandomizableFilteredClassifier,
RandomSubSpace, Stacking, WeightedInstancesHandlerWrapper,
vot, and CVParameterSelectionr from the Meta learning strategy;
DecisionTable, JRip, OneR, PART, and ZeroR learning strategy.
Finally, InputMappedClassifier from the misc learning strategy.
The WEKA software’s default settings are utilized for
all classification models. This renowned data analysis tool,
(Waikato Knowledge
Analysis), is frequently used (Rao et al, 2020). The outcome

also known as Environment for

validation process uses 10-fold cross-validation to ensure

the results.
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FIGURE 1
Research methodology workflow diagram.

To compare the considered classification models, six
performance metrics were analyzed: Accuracy, precision, recall,
F-measure, MCC (Matthews correlation coefficient), ROC Area,
and PRC Area. Next up are the equations needed to calculate
these metrics.

TP+ TN TP
Accuracy = TP rate = ————— FPrate
TP+ TN + FP + FN TP + FN
FP - TP TP
= ———— Precision = ——— Recall = ——
FP + TN TP + FP TP + FN

Accuracy is a metric that indicates how frequently a machine
learning model predicts the correct outcome. The number of right
guesses divided by the total number of forecasts yields accuracy
(Alzyoud et al., 2024; Alazaidah et al., 2023a,b).

Precision is a metric that indicates how often a machine
learning model correctly predicts the positive class. Precision can
be calculated as the number of correct positive predictions (true
positives) divided by the total number of positive predictions made
by the model (including true and false positives).

Recall is a metric that indicates how often a machine learning
model accurately detects positive examples (true positives) from all
actual positive samples in the dataset. Divide the number of true
positives by the number of positive cases to determine recall. The
latter includes true positives (correctly identified cases) and false
negatives (missed cases) (Al-Batah et al., 2023; Pei et al., 2022).

MCC is the best single-value classification metric for
summarizing a confusion or error matrix. A confusion matrix has
four entities:

e True positives (TP)
e True negatives (TN)
e False positives (FP)
e False negatives (FN)

Frontiersin Computer Science

And is calculated by the formula:

TN x TP — FN x FP

MCC =
(TP + FP)(TP + EN)(IN + FP)(IN + FN)

F-measure is an alternative machine learning evaluation metric
that assesses the predictive skill of a model by elaborating on
its class-wise performance rather than its overall performance,
as done by accuracy. The F1 score combines two competing
metrics—precision and recall—of a model, making it widely used
in recent literature.

2" Recall " Precision

F — measure = —
Recall + Precision

ROCArea:
performance across varying thresholds by plotting the false positive

a metric that graphically assesses classifier

rate on the x-axis and the true positive rate on the y-axis.

True Positives (TPs): instances in which the model correctly
identifies examples.

True Negatives (TNs): represent cases where the model
correctly recognizes and labels negative examples.

False Positives (FPs): occur once the model mistakenly
identifies examples as positive. In words, these are instances where
negative examples are mistakenly labeled as “positive.”

False Negatives (FNs): arise when positive examples are
incorrectly classified as negative. These are cases in which positive
examples are incorrectly labeled as “negative.”

3.1 Description of datasets
In the study, three datasets are available for download from

the UCI repository. The first dataset, a binary classification
set, contains 11,055 instances with 30 integer features. Most
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TABLE 1 Datasets characteristic.

10.3389/fcomp.2025.1687867

Name Instances Features No. of classes Feature type References

DS1 11,055 30 3 Integer Su et al., 2023

Ds2 10,000 18 3 Integer Alluwaici M. A. et al., 2020
Ds3 2,670 13 2 Integer Mohammad et al., 2015

TABLE 2 Categories of features for the two datasets.

Dataset code Feature category Feature examples

DS1 URL based having IP_Address,
URL_Length,

HTTPS_token, etc.

Abnormal based Request_URL,
URL_of_Anchor,

Links_in_tags, etc.

HTML/js Based Redirect, on_mouseover,
RightClick,

popUpWindow, etc.

Domain based DNSRecord, web_traffic,
Page_Rank,

Google_Index, etc.

DS2 HTML/JS based, Redirect, on_mouseover,
URL based RightClick,
popUpWindow, etc.
Ds2 URL based NumDots, UrlLength,
AtSymbol, etc.
Abnormal AbnormalExtFormAction,
ExtMetaScriptLinkRT, etc.
HTML/Js Based RightClickDisabled,
ExtFavicon,

PopUpWindow, etc.

of these features are binary. On the other hand, the second
dataset comprises three class labels, supports multiclassification,
and provides nine integer-type features and 10,000 examples;
the third dataset comprises two class labels, consists of 13
integer-type features, and provides 2,670 instances. Table 1
presents the distinguishing qualities of both sets for quick
reference. This research focuses on the first two datasets,
which are the largest and have 3 class labels, while the third
dataset is relatively small with only two classes: selection
and understanding.

This step focused on collecting datasets and understanding
the attributes. Three datasets, denoted DS1, DS2, and DS3 (Su
et al., 2023; Alluwaici M. A. et al., 2020), and DS3 (Mohammad
et al., 2015), were selected, as they have different numbers of
features and only some are common. Table 2 summarizes the
feature categories across the three datasets. DS1, DS2, and DS3
contain both internal features (i.e., derived from webpage URLs
and HTML/JavaScript source code available on the webpage
itself) and external features (i.e., obtained from querying third-
party services such as DNS, search engines, and WHOIS
records). DS2 only contains internal features (Mohammad et al.,
2015).
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3.2 Data preparation

Data preprocessing involves operations such as handling
missing values, removing outliers, and eliminating redundant
information. As stated in reference (Alazaidah et al., 2023a), the
DS1, DS2, and DS3 datasets were free of missing data but required
cleaning before use. For instance, the HttpsinHostname attribute
in DS3 had all values set to 0, making it unnecessary for analysis.

To identify common attributes across these datasets (DS1-
DS2-DS3), the authors checked their descriptions available in
references (Mohammad et al., 2015) and (Alzyoud et al., 2024). The
authors’ citations for each dataset feature significantly simplified
this preprocessing step.

It was noted that some feature pairs captured similar
information expressed in different formats, such as UrlLength,
which is numeric, and its counterpart, “UrlLengthRT,” which is
categorical. In cases where those occurred only once, they would be
mapped to the same variable, URL_Length, found solely in dataset
DPI1; otherwise, they would remain separate. Ultimately, after
scrutinizing these intricate details across variables, we discovered
a match between 18 key attributes among the three aforementioned
sources (as shown in Table 3).

3.3 Feature selection

The significance of independent features was assessed using
P-values, with a threshold of 0.05 to identify statistically
significant features.

To begin with, the Spearman rank-order correlation method
assessed collinearity between feature pairs. In Figure 2, we show
the correlation matrix for the DS1-2-3 matching feature, with the
pop-up window and on-mouse-over having the highest observed
value at 0.73, followed by the pop-up window and favicon pair,
which had a corresponding score of 0.66. Most pairs showed small
or negligible correlations.

To identify multicollinearity—where three or more variables
converge even when no two have high individual similarities—the
Variance inflation factor (VIF) scores were used (Ubing et al., 2019).

Each trait received its VIF rating calculated as follows:

R? =Unadjusted coefficient of determination for regressing the
ith independent variable on the remaining ones.

Based on VIF analysis, in addition to p-values, the combined
DS1-2-3 dataidentified 15 features as noteworthy and independent.
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TABLE 3 The matched features between ds1, ds2 and ds3 dataset with the features after feature selection.

DS1 DS2 DS3 DS1-1-2-3
having IP_Address IpAddress IP_Address

having_Sub_Domain SubdomainLevel* Sub_Domain J
Links_pointing_to_page PctExtHyperlinks* Links _to_page v
Submitting_to_email SubmitInfoToEmail Submitting_to_email v
double_slash_redirecting DoubleSlashInPath double_redirecting v
URL_Length UrlLength* URL_Length J
Favicon ExtFavicon Favicon v
Prefix_Suffix NumDashInHostname* Prefix_Sufhix J
SFH AbnormalFormAction SFH v
Iframe IframeOrFrame Iframe v
having_At_Symbol AtSymbol _At_Symbol N
SSLfinal_State NoHttps SSLfinal_State

on_mouseover FakeLinkInStatusBar on_mouseover

URL_of_Anchor PctNullSelfRedirectHyperlinks* URL_of_Anchor J
popUpWidnow PopUpWindow popUpWidnow

Request_URL PctExtResourceUrls* Request_URL v
RightClick RightClickDisabled Right_Click

Links_in_tags ‘ExtMetaScriptLinkRT* Links _tags J

* indicates numeric features, i/ indicates selected features.

This process used various Python packages, including
statsmodels to calculate VIF scores and p-values, scikit-learn to
build logistic regression models, and Matplotlib and Seaborn to
generate visualizations.

For the feature selection and ranking step, four techniques
have been considered and evaluated. The first technique is called
Correlation Attribute Evaluator (CAE). CAE measures the linear
correlations between the input features and the output feature
(class) and is usually implemented using Pearson’s correlation
coefficient. The second technique is the Gain Ratio Attribute
Evaluator (GRAE). This technique assesses feature significance
by measuring each feature’s gain ratio relative to the class label.
The third technique is dubbed the Information Gain Attribute
Evaluator (IGAE). IAGE measures how a feature is worth based
on the value of information gain for this feature with respect to
the class label. The last technique is the Principal Components
Analysis (PCA). This technique aims to reduce data dimensionality
by transforming a large dataset into a smaller one with low-
correlated features.

4 Comparative analysis amongst the
classification models in the domain of
website phishing

This section describes the process of determining the ideal
classification model for phishing datasets. To attain this objective,
three distinct sets of data cognate to phishing have been analyzed
in detail. Table 4 outlines the highlighted attributes associated with
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these datasets, all of which can be obtained from the UCI repository
with ease.

The results of using 40 classifiers on the phishing website
dataset 1 (DS1) are presented in Table4 and analyzed with
respect to accuracy and pre-session metrics. The data reveal that
IBK achieves the highest accuracy, whereas RandomCommittee
achieves outstanding accuracy and precision.

Evaluating learning  strategies indicates that Lazy
achieves optimal accuracy, while RandomCommittee yields
superior precision.

The Recall and MCC metric results for the phishing website
dataset after applying 40 classifiers are outlined in Table 5. The
table shows that random forest classification models have produced
superior results when evaluated against these criteria.

Additionally, Tree outperforms other learning strategies on
both precision and MCC metrics in this dataset (DS1).

A comparative analysis of 40 classifiers on the phishing dataset,
in terms of accuracy and precision, is presented in Table 5.

Random forest outperforms the other considered classifiers in
accuracy and precision on the phishing dataset (DS1), as shown in
the table.

Moreover, among the eight learning strategies assessed using
these two measures, the Functions Tree strategy yields better
outcomes than its counterparts.

The precision metrics obtained from applying 40 classifiers to
the phishing dataset are shown in Table 6. According to the table,
among all classification models, the RandomCommittee learning
strategy achieves the highest precision. Similarly, for the Random
Forest metric, based on Table 6 and the Trees learning strategy,
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we can see that the Random Forest classification model delivers
superior outcomes.

In conclusion, regarding optimizing the precision metrics
shown in Table 6, function learning is our preferred approach,
yielding the best results compared to other available strategies.

In Table 7, the random forest classification models achieve the
best recall and MCC results on the phishing dataset (DS1). The
random forest classifier belongs to the Tree learning strategy.

Moreover, regarding the best learning strategy, Table 7 shows
that the tree learning strategy achieves the best results for the recall
and MCC metrics.

According to Table 8, the classifier in the tree learning strategy,
random forest, has the highest precision metric. Additionally, when
it comes to the accuracy metric and other compared classifiers,
this same classifier performs best again. Furthermore, among the
seven considered learning strategies, Tree stands out as achieving
superior results across comparisons.

Frontiers in Computer Science

The outcomes of the 40 classifiers applied to the phishing
website dataset, with respect to recall and MCC, are shown in
Table 9.

Analysis of Table 9 indicates that, among all classification
models, the random tree classifier achieved the highest accuracy
and precision on the given dataset (DS2). Additionally,
compared with other learning strategies exhibited by the
remaining classifying algorithms in Table 9, the tree strategy
was found terms of efficient
data processing.

The results from implementing 40 classifiers on the phishing
website dataset (DS2) are shown in the table, including accuracy

and precision metrics.

to outperform others in

The Random Forest model, a tree-based
learning  strategy,  achieves  higher = accuracy  and
precision than other classification models, as shown
in Table 10.
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TABLE 4 Comparative analysis of 40 classifiers utilizing feature selection via CAE, on dataset DS1.

Learning Classifier Accuracy Precision Recall F-
strategy measure
Tree random tree 90.502 0.905 0.905 0.905 0.807 0.965 0.961
Random forest 90.664 0.907 0.907 0.906 0.811 0.973 0.974
REPTree 89.561 0.897 0.896 0.895 0.789 0.961 0.962
DecisionStump 84.730 0.877 0.847 0.841 0.714 0.823 0.810
HoeffdingTree 88.801 0.890 0.888 0.887 0.774 0.937 0.939
LMT 90.610 0.906 0.906 0.906 0.810 0.971 0.971
J4B 90.031 0.901 0.900 0.900 0.798 0.960 0.958
Avg 89.271 0.897 0.892 0.891 0.786 0.941 0.939
Bayes BayesNet 87.535 0.876 0.875 0.875 0.747 0.947 0.951
NaiveBayes 87.535 0.876 0.875 0.875 0.747 0.947 0.951
NaiveBayesUpdateable 55.694 0.557 1.000 0.715 0.500 0.500 0.506
Avg 76.921 0.767 0.916 0.821 0.664 0.798 0.802
Functions Logistic 88.647 0.888 0.886 0.886 0.771 0.954 0.956
SGD 88.738 0.889 0.887 0.887 0.772 0.882 0.842
SimpleLogistic 88.629 0.889 0.886 0.885 0.771 0.953 0.956
SMO 88.955 0.891 0.89 0.889 0.777 0.883 0.845
VotedPerceptron 88.358 0.886 0.884 0.883 0.765 0.88 0.84
Avg 88.666 0.888 0.886 0.886 0.771 0.910 0.887
Lazy IBK 90.755 0.908 0.908 0.907 0.812 0.973 0.973
Kstar 90.393 0.905 0.904 0.903 0.806 0.97 0.972
LWL 84.730 0.877 0.847 0.841 0.714 0.945 0.947
Avg 88.652 0.891 0.886 0.885 0.773 0.927 0.913
Meta AdaBoostM1 87.435 0.876 0.874 0.873 0.746 0.938 0.941
AttributeSelectedClassifier 87.363 0.876 0.874 0.873 0.745 0.935 0.936
Bagging 89.977 0.901 0.900 0.899 0.797 0.967 0.969
ClassificationViaRegression 89.036 0.892 0.890 0.89 0.778 0.959 0.961
FilteredClassifier 90.031 0.901 0.900 0.900 0.798 0.96 0.958
IterativeClassifierOptimizer 87.806 0.880 0.878 0.877 0.754 0.948 0.951
LogitBoost 87.806 0.880 0.878 0.877 0.754 0.948 0.951
MultiClassClassifier 88.647 0.888 0.886 0.886 0.771 0.954 0.956
MultiClassClassifierUpdateable 88.738 0.889 0.887 0.887 0.772 0.882 0.842
RandomCommittee 90.755 0.908 0.908 0.907 0.812 0.971 0.969
RandomizableFilteredClassifier 90.230 0.902 0.902 0.902 0.802 0.966 0.966
RandomSubSpace 89.027 0.893 0.890 0.889 0.779 0.957 0.959
Stacking 55.694 0.557 0.557 0.715 0.500 0.500 0.506
WeightedInstancesHandlerWrapper 55.694 0.557 0.557 0.715 0.500 0.500 0.506
vot 55.694 0.557 0.557 0.715 0.500 0.500 0.506
CVParameterSelection 55.694 0.557 0.557 0.715 0.500 0.500 0.506
Avg 80.601 0.807 0.805 0.845 0.706 0.836 0.836
Rules DecisionTable 88.177 0.883 0.882 0.881 0.76 0.95 0.952
JRip 89.271 0.895 0.893 0.892 0.784 0.904 0.890
(Continued)
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TABLE 4 (Continued)
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Learning Classifier Accuracy Precision Recall F-
strategy measure
OneR 84.730 0.877 0.847 0.841 0.714 0.828 0.794
PART 90.375 0.904 0.904 0.903 0.805 0.967 0.966
ZeroR 55.694 0.557 0.557 0.715 0.506 0.500 0.506
Avg 81.644 0.823 0.816 0.846 0.713 0.829 0.821
Misc InputMappedClassifier 55.694 0.557 0.557 0.715 0.500 0.500 0.506
Avg 55.694 0.557 0.557 0.715 0.500 0.500 0.506

TABLE 5 Comparative analysis of 40 classifiers utilizing feature selection via CAE, on dataset DS1.

Learning Classifier Accuracy Precision Recall F-
strategy measure
Tree Random tree 95.911 0.959 0.959 0.959 0.917 0.978 0.969
Random forest 96.436 0.964 0.964 0.964 0.928 0.993 0.993
REPTree 94.898 0.949 0.949 0.949 0.897 0.984 0.981
DecisionStump 88.891 0.889 0.889 0.889 0.774 0.882 0.854
HoeffdingTree 94.002 0.940 0.940 0.940 0.878 0.983 0.983
LMT 95.766 0.958 0.958 0.958 0.914 0.989 0.988
J4B 95.45 0.955 0.955 0.954 0.908 0.981 0.977
Avg 94.479 0.944 0.944 0.944 0.888 0.970 0.963
Bayes BayesNet 92.772 0.928 0.928 0.928 0.853 0.981 0.982
NaiveBayes 92.772 0.928 0.928 0.928 0.853 0.981 0.982
NaiveBayesUpdateable 92.772 0.928 0.928 0.928 0.853 0.981 0.982
Avg 92.772 0.928 0.928 0.928 0.853 0.981 0.982
Functions Logistic 93.369 0.934 0.934 0.934 0.866 0.985 0.986
SGD 93.306 0.933 0.933 0.933 0.864 0.931 0.904
SimpleLogistic 93.306 0.933 0.933 0.933 0.864 0.985 0.986
SMO 93.315 0.933 0.933 0.933 0.864 0.931 0.904
VotedPerceptron 93.288 0.933 0.933 0.933 0.864 0.932 0.904
Avg 88.665 0.888 0.886 0.886 0.771 0.910 0.887
Lazy IBK 96.119 0.961 0.961 0.961 0.921 0.987 0.986
Kstar 96.128 0.962 0.961 0.961 0.922 0.995 0.995
LWL 88.991 0.890 0.890 0.89 0.777 0.975 0.976
Avg 88.652 0.891 0.881 0.885 0.773 0.927 0.913
Meta AdaBoostM1 92.582 0.926 0.926 0.926 0.850 0.981 0.982
AttributeSelectedClassifier 94.400 0.944 0.944 0.944 0.886 0.980 0.978
Bagging 95.486 0.955 0.955 0.955 0.908 0.990 0.990
ClassificationViaRegression 94.536 0.945 0.945 0.945 0.889 0.988 0.988
FilteredClassifier 95.450 0.955 0.955 0.954 0.908 0.981 0.977
IterativeClassifierOptimizer 92.736 0.927 0.927 0.927 0.853 0.981 0.982
LogitBoost 92.736 0.927 0.927 0.927 0.853 0.981 0.982
MultiClassClassifier 93.369 0.934 0.934 0.934 0.866 0.985 0.986
(Continued)
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TABLE 5 (Continued)
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Learning Classifier Accuracy Precision Recall F-
strategy measure
MultiClassClassifierUpdateable 93.306 0.933 0.933 0.933 0.864 0.931 0.904
RandomCommittee 96.408 0.964 0.964 0.964 0.927 0.989 0.985
RandomizableFilteredClassifier 94.292 0.943 0.943 0.943 0.884 0.969 0.964
RandomSubSpace 93.414 0.935 0.934 0.934 0.867 0.984 0.985
Stacking 55.694 0.557 0.557 0.715 0.500 0.500 0.506
WeightedInstancesHandlerWrapper 55.694 0.557 0.557 0.715 0.500 0.500 0.506
vot 55.694 0.557 0.557 0.715 0.500 0.507 0.506
CVParameterSelection 55.694 0.557 0.557 0.715 0.500 0.500 0.506
Avg 84.467 0.844 0.844 0.885 0.784 0.859 0.857
Rules DecisionTable 92.863 0.929 0.929 0.929 0.855 0.979 0.98
JRip 94.753 0.948 0.948 0.947 0.894 0.96 0.953
OneR 88.891 0.889 0.889 0.889 0.774 0.886 0.845
PART 95.585 0.956 0.956 0.956 0.911 0.985 0.966
5 ZeroR 55.694 0.557 0.557 0.715 0.506 0.511 0.506
Avg 85.557 0.855 0.855 0.887 0.788 0.864 0.85
Misc InputMappedClassifier 55.694 0.557 0.557 0.715 0.500 0.506 0.506
Avg 55.694 0.557 0.557 0.715 0.500 0.506 0.506

TABLE 6 Comparative analysis of 40 classifiers utilizing feature selection via GRAE, on dataset DS1.

Learning  Classifier Accuracy Precision Recall E-

strategy measure

Tree Random tree 95.640 0.956 0.956 0.956 0.912 0.981 0.974
Random forest 96.191 0.962 0.962 0.962 0.923 0.992 0.992
REPTree 94.744 0.947 0.947 0.947 0.893 0.984 0.982
DecisionStump 88.891 0.889 0.889 0.889 0.774 0.882 0.854
HoeffdingTree 93.903 0.939 0.939 0.939 0.876 0.983 0.984
LMT 95.676 0.957 0.957 0.957 0912 0.988 0.986
J4B 95.106 0.951 0.951 0.951 0.901 0.983 0.98

Avg 94.307 0.943 0.943 0.943 0.884 0.970 0.964

Bayes BayesNet 92.636 0.927 0.926 0.926 0.851 0.980 0.981
NaiveBayes 92.645 0.927 0.926 0.926 0.851 0.980 0.981
NaiveBayesUpdateable 55.694 0.557 0.557 0715 0.500 0.500 0.506

Avg 80.327 0.803 0.803 0.855 0.734 0.820 0.822

Functions Logistic 93.378 0.934 0.934 0.934 0.866 0.985 0.986
SGD 93.514 0.935 0.935 0.935 0.868 0.933 0.906
SimpleLogistic 93.432 0.934 0.934 0.934 0.867 0.985 0.985
SMO 93.523 0.935 0.935 0.935 0.869 0.933 0.907
VotedPerceptron 93.360 0.934 0.934 0.934 0.865 0.933 0.906

Avg 88.665 0.888 0.886 0.886 0.771 0910 0.887

Lazy IBK 95.730 0.957 0.957 0.957 0913 0.988 0.987

(Continued)
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TABLE 6 (Continued)

Learning Classifier Accuracy Precision Recall F-
strategy measure
Kstar 95.649 0.957 0.956 0.956 0.912 0.994 0.994
LWL 89.018 0.890 0.890 0.89 0.777 0.974 0.974
Avg 93.465 0.934 0.934 0.934 0.867 0.985 0.985
Meta AdaBoostM1 92.582 0.926 0.926 0.926 0.85 0.981 0.982
AttributeSelectedClassifier 94.310 0.943 0.943 0.943 0.885 0.979 0.977
Bagging 95.386 0.954 0.954 0.954 0.906 0.990 0.990
ClassificationViaRegression 94.635 0.946 0.946 0.946 0.891 0.989 0.989
FilteredClassifier 95.106 0.951 0.951 0.951 0.901 0.983 0.980
IterativeClassifierOptimizer 92.736 0.927 0.927 0.927 0.853 0.981 0.982
LogitBoost 92.736 0.927 0.927 0.927 0.853 0.981 0.982
MultiClassClassifier 93.378 0.934 0.934 0.934 0.866 0.985 0.986
MultiClassClassifierUpdateable 93.514 0.935 0.935 0.935 0.868 0.933 0.906
RandomCommittee 96.408 0.964 0.964 0.964 0.927 0.989 0.985
RandomizableFilteredClassifier 94.771 0.948 0.948 0.948 0.894 0.975 0.971
RandomSubSpace 93.450 0.935 0.935 0.934 0.867 0.983 0.984
Stacking 55.694 0.557 0.557 0.715 0.500 0.500 0.506
WeightedInstancesHandlerWrapper 55.694 0.557 0.557 0.715 0.500 0.500 0.506
vot 55.694 0.557 0.557 0.715 0.500 0.507 0.506
CVParameterSelection 55.694 0.557 0.557 0.715 0.500 0.500 0.506
Avg 84.487 0.844 0.844 0.884 0.785 0.859 0.858
Rules DecisionTable 92.971 0.93 0.930 0.930 0.858 0.978 0.978
JRip 94.563 0.946 0.946 0.946 0.890 0.959 0.952
OneR 88.891 0.889 0.889 0.889 0.774 0.886 0.845
PART 95.468 0.955 0.955 0.955 0.908 0.987 0.984
ZeroR 55.694 0.557 0.557 0.715 0.506 0.511 0.506
Avg 85.517 0.855 0.855 0.887 0.787 0.864 0.853
misc InputMappedClassifier 55.694 0.557 0.557 0.715 0.500 0.506 0.506
Avg 55.694 0.557 0.557 0.715 0.500 0.506 0.506

TABLE 7 Comparative analysis of 40 classifiers utilizing feature selection via IGAE, on dataset DS1.

Learning Classifier Accuracy Precision Recall F-

strategy measure

Tree Random tree 95.649 0.956 0.956 0.956 0912 0.978 0.969
Random forest 96.255 0.963 0.963 0.963 0.924 0.992 0.991
REPTree 94.853 0.949 0.949 0.949 0.896 0.983 0.980
DecisionStump 88.891 0.889 0.889 0.889 0.774 0.882 0.854
HoeffdingTree 93.930 0.939 0.939 0.939 0.877 0.983 0.983
LMT 95.829 0.958 0.958 0.958 0915 0.989 0.988
J4B 95.630 0.956 0.956 0.956 0911 0.985 0.982

Avg 94.434 0.944 0.944 0.944 0.887 0.970 0.963

(Continued)
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TABLE 7 (Continued)

Learning Classifier Accuracy Precision Recall F-
strategy measure
Bayes BayesNet 92.781 0.928 0.928 0.928 0.854 0.981 0.982
NaiveBayes 92.781 0.928 0.928 0.928 0.854 0.981 0.982
NaiveBayesUpdateable 55.694 0.559 1.000 0.715 0.500 0.500 0.506
Avg 80.419 0.805 0.952 0.857 0.736 0.820 0.823
Functions Logistic 93.387 0.934 0.934 0.934 0.866 0.985 0.986
SGD 93.351 0.932 0.934 0.933 0.865 0.932 0.904
SimpleLogistic 93.351 0.934 0.934 0.933 0.865 0.985 0.986
SMO 93.324 0.933 0.933 0.933 0.865 0.931 0.904
VotedPerceptron 93.333 0.933 0.933 0.933 0.865 0.932 0.905
Avg 88.665 0.888 0.886 0.886 0.771 0.910 0.887
Lazy IBK 95.829 0.958 0.958 0.958 0.915 0.988 0.986
Kstar 95.983 0.960 0.960 0.960 0.919 0.994 0.994
LWL 88.973 0.890 0.890 0.890 0.776 0.975 0.975
Avg 88.652 0.891 0.886 0.885 0.773 0.927 0.912
Meta AdaBoostM1 92.582 0.926 0.926 0.926 0.850 0.981 0.982
AttributeSelectedClassifier 94.400 0.944 0.944 0.944 0.886 0.980 0.978
Bagging 95.404 0.954 0.954 0.954 0.907 0.990 0.990
ClassificationViaRegression 94.436 0.944 0.944 0.944 0.887 0.988 0.988
FilteredClassifier 95.630 0.956 0.956 0.956 0.911 0.985 0.982
IterativeClassifierOptimizer 92.736 0.927 0.927 0.927 0.853 0.981 0.982
LogitBoost 92.736 0.927 0.927 0.927 0.853 0.981 0.982
MultiClassClassifier 93.387 0.934 0.934 0.934 0.866 0.985 0.986
MultiClassClassifierUpdateable 93.351 0.934 0.934 0.933 0.865 0.932 0.904
RandomCommittee 90.755 0.908 0.908 0.907 0.812 0.971 0.969
RandomizableFilteredClassifier 90.230 0.902 0.902 0.902 0.802 0.966 0.966
RandomSubSpace 93.984 0.940 0.940 0.940 0.878 0.986 0.986
Stacking 55.694 0.557 0.557 0.715 0.500 0.500 0.506
WeightedInstancesHandlerWrapper 55.6943 0.557 0.557 0.715 0.5 0.5 0.506
vot 55.6943 0.557 0.557 0.715 0.5 0.509 0.506
CVParameterSelection 55.6943 0.557 0.557 0.715 0.5 0.5 0.506
Avg 83.90095 0.839 0.839 0.878375 0.773125 0.858438 0.857438
Rules DecisionTable 92.9986 0.93 0.93 0.93 0.858 0.981 0.981
JRip 94.5274 0.945 0.945 0.945 0.889 0.96 0.953
OneR 88.8919 0.889 0.889 0.889 0.774 0.886 0.845
PART 95.4591 0.955 0.955 0.955 0.908 0.986 0.983
ZeroR 55.6943 0.557 0.557 0.715 0.506 0.5 0.506
Avg 81.64994 0.8232 0.8166 0.8464 0.7138 0.8298 0.8216
Misc InputMappedClassifier 55.6943 0.557 0.557 0.715 0.5 0.5 0.506
Avg 55.6943 0.557 0.557 0.715 0.5 0.5 0.506
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TABLE 8 Comparative analysis of 40 classifiers utilizing feature selection via PC, on dataset DS1.

Learning Classifier Accuracy Precision Recall F-
strategy measure
Tree Random tree 94.219 0.942 0.942 0.942 0.883 0.982 0.978
Random forest 94.473 0.945 0.945 0.945 0.888 0.987 0.986
REPTree 93.523 0.936 0.935 0.935 0.869 0.977 0.976
DecisionStump 88.891 0.889 0.889 0.889 0.774 0.882 0.854
HoeffdingTree 93.062 0.932 0.931 0.93 0.86 0.967 0.965
LMT 94.373 0.944 0.944 0.944 0.886 0.986 0.986
J4B 93.794 0.939 0.938 0.938 0.875 0.975 0.974
Avg 93.191 0.932 0.932 0.931 0.862 0.965 0.959
Bayes BayesNet 92.356 0.924 0.924 0.923 0.845 0.972 0.974
NaiveBayes 92.365 0.924 0.924 0.923 0.845 0.972 0.974
NaiveBayesUpdateable 92.365 0.924 0.924 0.923 0.845 0.972 0.974
Avg 92.362 0.924 0.924 0.923 0.845 0.972 0.974
Functions Logistic 92.682 0.927 0.927 0.927 0.852 0.976 0.977
SGD 91.705 0.917 0.917 0.917 0.832 0.916 0.882
SimpleLogistic 92.645 0.927 0.926 0.926 0.851 0.976 0.977
SMO 91.714 0.917 0.917 0.917 0.832 0.916 0.882
VotedPerceptron 92.555 0.926 0.926 0.925 0.849 0.924 0.894
vg 88.665 0.888 0.8866 0.886 0.7712 0.9104 0.8878
Lazy IBK 94.237 0.943 0.942 0.942 0.883 0.986 0.985
Kstar 94.165 0.942 0.942 0.941 0.882 0.986 0.986
LWL 88.991 0.890 0.890 0.890 0.777 0.966 0.967
Avg 88.652 0.891 0.886 0.885 0.773 0.927 0.913
Meta AdaBoostM1 92.166 0.922 0.922 0.922 0.841 0.973 0.974
AttributeSelectedClassifier 92.935 0.931 0.929 0.929 0.858 0.961 0.960
Bagging 93.830 0.939 0.938 0.938 0.875 0.982 0.983
ClassificationViaRegression 93.188 0.932 0.932 0.932 0.862 0.980 0.981
FilteredClassifier 93.794 0.939 0.938 0.938 0.875 0.975 0.974
IterativeClassifierOptimizer 92.220 0.923 0.922 0.922 0.842 0.974 0.975
LogitBoost 92.437 0.925 0.924 0.924 0.847 0.974 0.975
MultiClassClassifier 92.682 0.927 0.927 0.927 0.852 0.976 0.977
MultiClassClassifierUpdateable 93.830 0.938 0.938 0.938 0.875 0.981 0.980
RandomCommittee 94.409 0.944 0.944 0.944 0.887 0.986 0.984
RandomizableFilteredClassifier 90.230 0.902 0.902 0.902 0.802 0.966 0.966
RandomSubSpace 92.691 0.927 0.927 0.927 0.852 0.973 0.974
Stacking 55.694 0.557 0.557 0.715 0.500 0.500 0.506
WeightedInstancesHandlerWrapper 55.694 0.557 0.557 0.715 0.500 0.500 0.506
vot 55.694 0.557 0.557 0.715 0.500 0.509 0.506
CVParameterSelection 55.694 0.557 0.557 0.715 0.500 0.500 0.506
Avg 83.574 0.836 0.835 0.875 0.766 0.856 0.857
Rules DecisionTable 93.025 0.931 0.930 0.930 0.859 0.977 0.977
JRip 93.306 0.934 0.933 0.933 0.864 0.945 0.936
(Continued)
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Learning Classifier Accuracy Precision Recall F-
strategy measure
OneR 88.891 0.889 0.889 0.889 0.774 0.886 0.845
PART 94.355 0.944 0.944 0.943 0.886 0.983 0.983
ZeroR 55.694 0.557 0.557 0.715 0.500 0.500 0.506
Avg 85.054 0.851 0.8506 0.882 0.776 0.858 0.849
Misc InputMappedClassifier 55.694 0.557 0.557 0.715 0.500 0.500 0.506
Avg 55.694 0.557 0.557 0.715 0.500 0.500 0.506

TABLE 9 Comparative analysis of 40 classifiers utilizing feature selection via CAE, on dataset DS2.

Learning Classifier Accuracy Precision Recall F- MCC ROC area
strategy measure
Tree Random tree 88.011 0.880 0.880 0.880 0.867 0.968 0.889
Random forest 87.893 0.879 0.879 0.879 0.866 0.984 0.913
REPTree 55.255 0.550 0.553 0.550 0.499 0.925 0.613
DecisionStump 17.341 0.203 0.173 0.309 0.205 0.587 0.130
HoeffdingTree 29.076 0.341 0.291 0.268 0.224 0.754 0.289
J4B 60.422 0.602 0.604 0.603 0.558 0.946 0.715
Avg 56.333 0.575 0.563 0.581 0.536 0.860 0.591
bayes BayesNet 72.783 0.732 0.728 0.729 0.699 0.975 0.822
NaiveBayes 25.797 0.295 0.258 0.242 0.187 0.740 0.27
NaiveBayesUpdateable 25.797 0.295 0.258 0.242 0.187 0.74 0.27
Avg 41.459 0.440 0.414 0.404 0.357 0.818 0.454
functions Logistic 27.989 0.291 0.280 0.249 0.187 0.77 0.282
MultilayerPerceptron 36.445 0.358 0.364 0.353 0.285 0.819 0.385
SimpleLogistic 28.107 0.294 0.281 0.250 0.188 0.769 0.281
SMO 29.360 0.335 0.294 0.265 0.21 0.745 0.243
Avg 30.475 0.319 0.304 0.279 0.217 0.775 0.297
Lazy IBK 87.717 0.877 0.877 0.877 0.863 0.95 0.859
Kstar 62.781 0.642 0.628 0.625 0.590 0.941 0.698
LWL 23.439 0.267 0.234 0.373 0.284 0.742 0.289
Avg 57.979 0.595 0.579 0.625 0.579 0.877 0.615
Meta AdaBoostM1 17.341 0.203 0.173 0.309 0.205 0.587 0.130
AttributeSelectedClassifier 65.404 0.667 0.654 0.647 0.615 0.966 0.775
Bagging 64.425 0.642 0.644 0.642 0.602 0.953 0.718
ClassificationViaRegression 56.292 0.563 0.563 0.556 0.511 0.926 0.627
FilteredClassifier 74.623 0.745 0.746 0.744 0.716 0.977 0.863
IterativeClassifierOptimizer 34.400 0.359 0.344 0.338 0.270 0.810 0.356
LogitBoost 34.400 0.359 0.344 0.338 0.270 0.810 0.356
MultiClassClassifier 27.128 0.272 0.271 0.236 0.173 0.765 0.276
MultiClassClassifierUpdateable 13.857 0.139 0.139 0.243 0.243 0.499 0.105
RandomCommittee 87.874 0.878 0.879 0.878 0.865 0.980 0.936
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TABLE 9 (Continued)

Learning Classifier Accuracy Precision Recall F- MCC ROC area
strategy measure
RandomizableFilteredClassifier 87.336 0.873 0.873 0.873 0.859 0.949 0.860
RandomSubSpace 74.584 0.745 0.746 0.743 0.716 0.974 0.822
Stacking 13.857 0.139 0.139 0.243 0.243 0.499 0.105
WeightedInstancesHandlerWrapper 13.857 0.139 0.139 0.243 0.243 0.499 0.105
vot 13.857 0.139 0.139 0.243 0.243 0.499 0.105
CVParameterSelection 13.857 0.139 0.139 0.243 0.243 0.499 0.105
Avg 43.318 0.437 0.433 0.469 0.438 0.762 0.455
Rules DecisionTable 65.551 0.667 0.656 0.648 0.616 0.966 0.748
JRip 45.221 0.605 0.452 0.463 0.437 0.817 0.463
OneR 63.897 0.646 0.639 0.625 0.594 0.798 0.448
PART 59.776 0.597 0.598 0.597 0.551 0.945 0.708
ZeroR 13.857 0.139 0.139 0.243 0.243 0.499 0.105
Avg 49.661 0.5308 0.4968 0.5152 0.4882 0.805 0.4944
Misc InputMappedClassifier 13.857 0.139 0.139 0.243 0.243 0.499 0.105
Avg 13.857 0.139 0.139 0.243 0.243 0.499 0.105

TABLE 10 Comparative analysis of 40 classifiers utilizing feature selection via CAE on dataset DS2.

Learning Classifier Accuracy Precision Recall F-
strategy measure
Tree Random tree 91.886 0.919 0.919 0.919 0.91 0.971 0.903
Random forest 92.170 0.922 0.922 0.922 0.913 0.991 0.947
REPTree 57.349 0.571 0.573 0.571 0.522 0.931 0.635
DecisionStump 18.183 0.14 0.182 0.243 0.135 0.596 0.149
HoeffdingTree 27.402 0.232 0.274 0.233 0.167 0.720 0.265
J4B 62.301 0.621 0.623 0.621 0.577 0.951 0.741
Avg 58.215 0.567 0.582 0.584 0.537 0.86 0.606
Bayes BayesNet 70.992 0.713 0.710 0.707 0.677 0.972 0.807
NaiveBayes 27.216 0.230 0.272 0.231 0.164 0.72 0.265
NaiveBayesUpdateable 27.216 0.230 0.272 0.231 0.164 0.72 0.265
Avg 41.808 0.391 0.418 0.389 0.335 0.804 0.445
Functions Logistic 26.590 0.145 0.266 0.155 —0.008 0.716 0.245
SGD 43.933 0.351 0.439 0.325 0.211 0.767 0.401
SimpleLogistic 26.561 0.146 0.266 0.155 0.006 0.715 0.244
SMO 29.477 0.185 0.295 0.06 0.004 0.708 0.217
Avg 31.640 0.206 0.316625 0.173 0.048 0.726 0.238
lazy IBK 91.661 0.917 0.917 0.917 0.907 0.954 0.875
Kstar 53.210 0.543 0.532 0.517 0.474 0.914 0.569
LWL 23.576 0.446 0.236 0.159 0.187 0.724 0.250
Avg 56.149 0.635 0.561 0.531 0.522 0.864 0.564
Meta AdaBoostM1 18.183 0.140 0.182 0.243 0.135 0.596 0.149
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Learning Classifier Accuracy Precision Recall F-
strategy measure
AttributeSelectedClassifier 65.404 0.667 0.654 0.647 0.615 0.966 0.775
Bagging 68.036 0.677 0.68 0.678 0.641 0.961 0.754
ClassificationViaRegression 58.896 0.583 0.589 0.581 0.535 0.934 0.643
FilteredClassifier 73.106 0.730 0.731 0.728 0.699 0.975 0.848
IterativeClassifierOptimizer 33.940 0.396 0.339 0.316 0.266 0.785 0.342
LogitBoost 33.940 0.396 0.339 0.316 0.266 0.785 0.342
MultiClassClassifier 25.944 0.142 0.259 0.152 0.053 0.715 0.239
MultiClassClassifierUpdateable 13.857 0.139 0.139 0.243 0.499 0.499 0.105
RandomCommittee 91.935 0.920 0.919 0.919 0.910 0.987 0.962
RandomizableFilteredClassifier 90.781 0.908 0.908 0.908 0.897 0.957 0.881
RandomSubSpace 76.874 0.770 0.769 0.767 0.742 0.978 0.849
Stacking 13.857 0.139 0.139 0.243 0.139 0.499 0.105
WeightedInstancesHandlerWrapper 55.694 0.557 0.557 0.715 0.500 0.500 0.506
vot 13.857 0.139 0.139 0.243 0.139 0.499 0.105
CVParameterSelection 13.857 0.139 0.139 0.243 0.139 0.499 0.105
Avg 46.760 0.465 0.467 0.496 0.448 0.758 0.470
Rules DecisionTable 65.394 0.668 0.654 0.645 0.614 0.967 0.755
JRip 44.969 0.625 0.450 0.460 0.439 0.808 0.453
OneR 63.897 0.646 0.639 0.625 0.594 0.798 0.448
PART 62.771 0.625 0.628 0.625 0.582 0.950 0.738
ZeroR 13.857 0.139 0.139 0.243 0.139 0.499 0.105
Avg 50.178 0.540 0.502 0.519 0.476 0.804 0.499
Misc InputMappedClassifier 13.857 0.139 0.139 0.243 0.139 0.499 0.105
Avg 13.857 0.139 0.139 0.243 0.139 0.499 0.105

TABLE 11 Comparative analysis of 40 classifiers utilizing feature selection via GRAE, on dataset DS2.

Learning Classifier Accuracy Precision Recall F- MCC ROC area

strategy measure

Tree Random tree 93.668 0.937 0.937 0.937 0.930 0.974 0.913
Random forest 93.844 0.938 0.938 0.938 0.931 0.992 0.957
REPTree 61.460 0.611 0.615 0.611 0.568 0.942 0.678
DecisionStump 17.341 0.203 0.173 0.309 0.205 0.587 0.130
HoeffdingTree 30.779 0.353 0.308 0.297 0.245 0.764 0.308
LMT 77.745 0.778 0.777 0.777 0.752 0.976 0.852
J4B 67.165 0.672 0.672 0.67 0.634 0.957 0.772

Avg 63.143 0.641 0.631 0.648 0.609 0.884 0.651

Bayes BayesNet 72.959 0.731 0.730 0.729 0.699 0.975 0.828
NaiveBayes 27.001 0.307 0.270 0.248 0.197 0.746 0.295
NaiveBayesUpdateable 27.001 0.307 0.270 0.715 0.197 0.746 0.295

Avg 42.320 0.448 0.423 0.564 0.364 0.822 0.477
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TABLE 11 (Continued)

Learning Classifier Accuracy Precision Recall F- MCC ROC area
strategy measure
Functions Logistic 30.847 0.253 0.308 0.322 0.279 0.763 0.301
SimpleLogistic 30.739 0.251 0.307 0.317 0.274 0.763 0.301
SMO 32.530 0.401 0.325 0.308 0.247 0.748 0.262
MultilayerPerceptron 43.305 0.426 0.433 0.418 0.36 0.857 0.467
Avg 88.665 0.888 0.886 0.886 0.771 0.910 0.887
Lazy IBK 93.550 0.936 0.936 0.935 0.928 0.958 0.886
Kstar 67.009 0.67 0.67 0.665 0.631 0.955 0.734
LWL 23.791 0.276 0.238 0.38 0.292 0.756 0.303
Avg 88.652 0.891 0.886 0.885 0.773 0.927 0.912
Meta AdaBoostM1 17.341 0.203 0.173 0.309 0.205 0.587 0.130
AttributeSelectedClassifier 65.404 0.667 0.654 0.647 0.615 0.966 0.775
Bagging 70.630 0.704 0.706 0.704 0.671 0.967 0.780
ClassificationViaRegression 62.634 0.621 0.626 0.620 0.579 0.944 0.680
FilteredClassifier 75.543 0.754 0.755 0.754 0.727 0.978 0.873
IterativeClassifierOptimizer 35.036 0.347 0.350 0.340 0.269 0.813 0.381
LogitBoost 35.036 0.347 0.350 0.340 0.269 0.813 0.381
MultiClassClassifier 30.295 0.286 0.303 0.320 0.275 0.762 0.300
MultiClassClassifierUpdateable 13.857 0.139 0.139 0.243 0.243 0.499 0.105
RandomCommittee 93.707 0.937 0.937 0.937 0.930 0.987 0.965
RandomizableFilteredClassifier 90.634 0.906 0.906 0.906 0.896 0.959 0.885
RandomSubSpace 77.432 0.774 0.774 0.773 0.748 0.977 0.848
Stacking 13.857 0.139 0.139 0.243 0.243 0.499 0.105
WeightedInstancesHandlerWrapper 13.857 0.139 0.139 0.243 0.243 0.499 0.105
vot 13.857 0.139 0.139 0.243 0.243 0.499 0.105
CVParameterSelection 13.857 0.139 0.139 0.243 0.243 0.499 0.105
Avg 45.186 0.452 0.451 0.491 0.462 0.765 0.470
Rules DecisionTable 65.551 0.667 0.656 0.648 0.616 0.966 0.748
JRip 52.329 0.641 0.523 0.536 0.506 0.861 0.533
OneR 63.897 0.646 0.639 0.625 0.594 0.798 0.448
PART 66.901 0.671 0.669 0.668 0.631 0.956 0.764
ZeroR 13.857 0.139 0.139 0.243 0.243 0.499 0.105
Avg 81.649 0.823 0.816 0.844 0.713 0.829 0.821
Misc InputMappedClassifier 13.857 0.139 0.139 0.243 0.243 0.499 0.105
Avg 55.694 0.557 0.557 0.715 0.500 0.500 0.506

TABLE 12 Comparative analysis of 40 classifiers utilizing feature selection via IGAE, on dataset DS2.

Learning Classifier Accuracy Precision Recall F-
strategy measure
Random tree 93.707 0.937 0.937 0.937 0.930 0.972 0.908
Random forest 93.707 0.937 0.937 0.937 0.930 0.993 0.959
(Continued)
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TABLE 12 (Continued)

Learning Classifier Accuracy Precision Recall F-
strategy measure
REPTree 59.238 0.591 0.592 0.509 0.543 0.935 0.652
DecisionStump 18.183 0.140 0.182 0.243 0.135 0.596 0.149
HoeffdingTree 26.893 0.249 0.269 0.214 0.174 0.732 0.272
LMT 78.606 0.788 0.786 0.786 0.762 0.974 0.859
J4B 67.175 0.671 0.672 0.671 0.633 0.956 0.781
Avg 62.501 0.616 0.625 0.625 0.586 0.879 0.654
Bayes BayesNet 72.998 0.731 0.73 0.728 0.699 0.973 0.821
NaiveBayes 71.824 0.723 0.718 0.714 0.685 0.965 0.789
NaiveBayesUpdateable 26.893 0.251 0.269 0.214 0.175 0.732 0.272
Avg 57.238 0.568 0.572 0.552 0.519 0.890 0.633
Functions Logistic 27.725 0.072 0.277 0.035 0.008 0.731 0.245
SimpleLogistic 27.676 0.078 0.277 0.032 0.01 0.73 0.244
SMO 28.831 0.157 0.288 0.064 0.051 0.713 0.213
MultilayerPerceptron 41.837 0.423 0.418 0.412 0.348 0.839 0.431
Avg 88.665 0.888 0.886 0.886 0.771 0.910 0.887
Lazy IBK 93.198 0.932 0.932 0.932 0.924 0.951 0.871
Kstar 95.649 0.957 0.956 0.956 0.912 0.951 0.994
LWL 23.791 0.345 0.238 0.058 0.009 0.739 0.267
Avg 70.879 0.744 0.706 0.648 0.642 0.880 0.710
Meta AdaBoostM1 18.183 0.140 0.182 0.243 0.135 0.596 0.149
AttributeSelectedClassifier 65.404 0.667 0.654 0.647 0.615 0.966 0.775
Bagging 71.207 0.701 0.712 0.701 0.677 0.967 0.786
ClassificationViaRegression 64.083 0.634 0.641 0.634 0.594 0.943 0.695
FilteredClassifier 77.363 0.771 0.774 0.771 0.746 0.979 0.885
IterativeClassifierOptimizer 36.191 0.386 0.362 0.344 0.286 0.799 0.306
LogitBoost 36.191 0.386 0.362 0.344 0.286 0.799 0.306
MultiClassClassifier 27.500 0.047 0.275 0.009 —0.004 0.731 0.244
MultiClassClassifierUpdateable 13.857 0.139 0.139 0.243 0.243 0.499 0.105
RandomCommittee 93.746 0.937 0.937 0.937 0.903 0.988 0.968
RandomizableFilteredClassifier 91.231 0.912 0.912 0.912 0.902 0.955 0.878
RandomSubSpace 80.456 0.806 0.805 0.803 0.781 0.981 0.878
Stacking 13.857 0.139 0.139 0.243 0.243 0.105 0.105
WeightedInstancesHandlerWrapper 13.857 0.139 0.139 0.243 0.243 0.105 0.105
vot 13.857 0.139 0.139 0.243 0.243 0.499 0.105
CVParameterSelection 13.857 0.139 0.139 0.243 0.243 0.499 0.105
Avg 45.677 0.443 0.456 0.473 0.447 0.713 0.468
Rules DecisionTable 65.394 0.668 0.654 0.645 0.614 0.967 0.755
JRip 48.375 0.657 0.484 0.494 0.476 0.826 0.492
OneR 63.89 0.646 0.639 0.625 0.594 0.798 0.448
PART 67.381 0.673 0.674 0.673 0.636 0.957 0.783
(Continued)
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Learning Classifier Accuracy Precision Recall F-
strategy measure

ZeroR 13.857 0.139 0.139 0.243 0.243 0.499 0.105
Avg 51.781 0.556 0.518 0.536 0.5126 0.809 0.516
Misc InputMappedClassifier 13.857 0.139 0.139 0.243 0.243 0.499 0.105
Avg 13.857 0.139 0.139 0.243 0.243 0.499 0.105

TABLE 13 Comparative analysis of 40 classifiers utilizing feature selection via PC, on dataset DS2.

Learning Classifier Accuracy Precision Recall = MCC ROC area
S measure
Tree Random tree 69.436 0.699 0.694 0.694 0.661 0.960 0.810
Random forest 69.397 0.699 0.694 0.694 0.661 0.965 0.812
REPTree 58.103 0.588 0.581 0.582 0.535 0.941 0.679
DecisionStump 17.341 0.203 0.173 0.309 0.205 0.587 0.130
HoeffdingTree 29.536 0.352 0.295 0.274 0.203 0.765 0.293
LMT 61.391 0.619 0.614 0.614 0.572 0.953 0.736
J4B 59.023 0.597 0.59 0.591 0.545 0.946 0.706
Avg 52.032 0.536 0.520 0.536 0.487 0.873 0.595
Bayes BayesNet 30.133 0.332 0.301 0.295 0.233 0.779 0.313
NaiveBayes 27.353 0.374 0.274 0.258 0.219 0.713 0.282
NaiveBayesUpdateable 27.353 0.374 0.274 0.258 0.219 0.713 0.282
Avg 28.280 0.306 0.283 0.273 0.223 0.735 0.292
Functions Logistic 26.629 0.308 0.266 0.245 0.185 0.748 0.292
SimpleLogistic 26.688 0.311 0.267 0.243 0.186 0.745 0.285
SMO 30.309 0.345 0.303 0.291 0.231 0.746 0.255
MultilayerPerceptron 42.464 0.447 0.425 0.429 0.367 0.840 0.469
Avg 88.665 0.888 0.886 0.886 0.771 0.910 0.887
Lazy IBK 69.436 0.699 0.694 0.693 0.661 0.96 0.809
Kstar 59.630 0.617 0.596 0.602 0.559 0.941 0.678
LWL 24.016 0.261 0.24 0.372 0.286 0.748 0.293
Avg 88.652 0.891 0.886 0.885 0.773 0.922 0.913
Meta AdaBoostM1 17.341 0.203 0.173 0.309 0.205 0.587 0.13
AttributeSelectedClassifier 48.990 0.500 0.490 0.488 0.433 0.918 0.597
Bagging 61.489 0.622 0.615 0.617 0.574 0.952 0.727
ClassificationViaRegression 55.744 0.597 0.557 0.559 0.502 0.937 0.659
FilteredClassifier 53.131 0.545 0.531 0.534 0.482 0.932 0.643
IterativeClassifierOptimizer 68.751 0.316 0.312 0.294 0.231 0.807 0.361
LogitBoost 31.248 0.316 0.312 0.294 0.231 0.807 0.361
MultiClassClassifier 26.668 0.125 0.267 0.182 0.121 0.704 0.273
MultiClassClassifierUpdateable 13.857 0.139 0.139 0.243 0.243 0.499 0.105
RandomCommittee 69.358 0.698 0.694 0.693 0.606 0.965 0.825
RandomizableFilteredClassifier 68.408 0.688 0.684 0.683 0.649 0.958 0.825
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TABLE 13 (Continued)

Learning Classifier Accuracy Precision Recall F- MCC ROC area
S measure
RandomSubSpace 51.712 0.537 0.517 0.517 0.468 0.903 0.563
Stacking 13.857 0.139 0.139 0.243 0.243 0.499 0.105
WeightedInstancesHandlerWrapper 13.857 0.139 0.139 0.243 0.243 0.499 0.105
vot 13.857 0.139 0.139 0.243 0.243 0.499 0.105
CVParameterSelection 13.857 0.139 0.139 0.243 0.243 0.499 0.105
Avg 38.883 0.364 0.365 0.399 0.361 0.750 0.404
Rules DecisionTable 50.166 0.531 0.502 0.507 0.455 0.913 0.568
JRip 46.604 0.637 0.466 0.493 0.406 0.857 0.52
OneR 21.364 0.191 0.214 0.199 0.110 0.558 0.132
PART 58.025 0.590 0.580 0.581 0.534 0.944 0.691
ZeroR 13.857 0.139 0.139 0.243 0.243 0.499 0.105
Avg 38.003 0.417 0.380 0.404 0.360 0.754 0.402
Misc InputMappedClassifier 13.857 0.139 0.139 0.243 0.243 0.499 0.105
Avg 55.694 0.557 0.557 0.715 0.500 0.500 0.506

TABLE 14 Comparative analysis of 40 classifiers utilizing feature selection via CAE, on dataset DS3.

Learning Classifier Accuracy Precision Recall F- MCC ROC area
strategy measure
Tree Random tree 87.785 0.878 0.878 0.878 0.745 0.874 0.835
Random forest 92.219 0.922 0.922 0.922 0.837 0.972 0.972
REPTree 89.350 0.893 0.894 0.893 0.776 0.942 0.930
DecisionStump 75.527 0.753 0.755 0.75 0.476 0.747 0.729
HoeffdingTree 71.897 0.720 0.719 0.72 0.414 0.753 0.754
J4B 90.023 0.900 0.900 0.900 0.790 0.927 0.903
Avg 84.467 0.844 0.844 0.843 0.673 0.869 0.853
Bayes BayesNet 86.589 0.866 0.866 0.865 0.717 0.938 0.942
NaiveBayes 72.397 0.820 0.724 0.721 0.547 0.924 0.913
NaiveBayesUpdateable 72.397 0.820 0.724 0.721 0.547 0.924 0.913
Avg 77.128 0.835 0.771 0.769 0.603 0.928 0.667
Functions Logistic 88.133 0.881 0.881 0.880 0.750 0.945 0.944
MultilayerPerceptron 88.111 0.881 0.881 0.881 0.750 0.938 0.939
SGD 87.589 0.877 0.876 0.874 0.738 0.860 0.825
SimpleLogistic 87.980 0.880 0.880 0.879 0.746 0.944 0.944
SMO 85.807 0.861 0.858 0.855 0.701 0.837 0.801
Avg 87.524 0.876 0.875 0.873 0.737 0.904 0.890
Lazy IBK 87.893 0.879 0.879 0.879 0.746 0.886 0.855
Kstar 89.284 0.895 0.893 0.891 0.775 0.950 0.952
LWL 79.069 0.794 0.791 0.783 0.555 0.869 0.859
Avg 85.416 0.856 0.854 0.851 0.692 0.901 8,667
Meta AdaBoostM1 86.046 0.860 0.860 0.860 0.707 0.929 0.929
(Continued)
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TABLE 14 (Continued)

Learning Classifier Accuracy Precision Recall F- MCC ROC area
strategy measure
AttributeSelectedClassifier 88.089 0.881 0.881 0.880 0.749 0.930 0.910
Bagging 90.415 0.904 0.904 0.904 0.799 0.963 0.964
ClassificationViaRegression 88.459 0.884 0.885 0.884 0.757 0.949 0.948
FilteredClassifier 89.828 0.898 0.898 0.898 0.786 0.938 0.919
IterativeClassifierOptimizer 87.937 0.879 0.879 0.879 0.746 0.941 0.941
LogitBoost 87.937 0.879 0.879 0.879 0.746 0.941 0.941
MultiClassClassifier 88.133 0.881 0.881 0.880 0.750 0.945 0.944
MultiClassClassifierUpdateable 87.589 0.877 0.876 0.874 0.738 0.806 0.825
RandomCommittee 91.632 0.916 0.916 0.916 0.824 0.960 0.951
RandomizableFilteredClassifier 85.068 0.851 0.851 0.851 0.688 0.858 0.822
RandomSubSpace 90.110 0.902 0.901 0.900 0.792 0.961 0.962
Stacking 60.595 0.606 0.606 0.755 0.755 0.499 0.522
WeightedInstancesHandlerWrapper 60.595 0.606 0.606 0.755 0.755 0.499 0.522
vot 60.595 0.606 0.606 0.755 0.755 0.499 0.522
CVParameterSelection 60.595 0.606 0.606 0.755 0.755 0.499 0.522
Avg 81.476 0.814 0.814 0.851 0.756 0.825 0.821
Rules DecisionTable 65.551 0.667 0.656 0.648 0.616 0.966 0.748
JRip 45224 0.605 0.452 0.463 0.437 0.817 0.463
OneR 63.897 0.646 0.639 0.625 0.594 0.798 0.448
PART 59.776 0.597 0.598 0.597 0.551 0.945 0.708
ZeroR 13.857 0.139 0.139 0.243 0.243 0.499 0.105
Avg 49.661 0.530 0.496 0.515 0.488 0.805 0.494
Misc InputMappedClassifier 60.595 0.606 0.606 0.755 0.243 0.499 0.105
Avg 60.595 0.606 0.606 0.755 0.243 0.499 0.105

TABLE 15 Comparative analysis of 40 classifiers utilizing feature selection via CAE, on dataset DS3.

Learning Classifier Accuracy Precision Recall F-

strategy measure

Tree Random tree 90.263 0.903 0.903 0.903 0.797 0.899 0.864
Random forest 94.262 0.943 0.943 0.942 0.879 0.981 0.981
REPTree 91.045 0.911 0911 0911 0.812 0.945 0.927
DecisionStump 79.091 0.794 0.791 0.792 0.568 0.778 0.744
HoeffdingTree 82.764 0.827 0.828 0.827 0.638 0.865 0.848
J4B 91.871 0.919 0.919 0.919 0.829 0.928 0.898

Avg 88.216 0.882 0.882 0.882 0.753 0.899 0.876

Bayes BayesNet 88.350 0.884 0.884 0.882 0.754 0.946 0.95
NaiveBayes 86.763 0.867 0.868 0.867 0.721 0.922 0911
NaiveBayesUpdateable 86.763 0.867 0.868 0.867 0.721 0.922 0911

Avg 87.292 0.872 0.873 0.872 0.732 0.93 0.924

Functions Logistic 89.632 0.897 0.896 0.895 0.782 0.952 0.949

(Continued)
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TABLE 15 (Continued)

Learning Classifier Accuracy Precision Recall F-
strategy measure
SGD 89.806 0.899 0.898 0.897 0.786 0.884 0.853
MultilayerPerceptron 89.567 0.896 0.896 0.896 0.782 0.941 0.937
SimpleLogistic 89.611 0.896 0.896 0.895 0.781 0.952 0.949
SMO 87.980 0.882 0.88 0.878 0.747 0.861 0.828
Avg 89.319 0.894 0.893 0.892 0.775 0.918 0.903
Lazy IBK 89.654 0.896 0.897 0.896 0.782 0.896 0.867
Kstar 90.436 0.91 0.904 0.902 0.802 0.954 0.955
LWL 79.091 0.794 0.791 0.792 0.568 0.893 0.892
Avg 86.394 0.866 0.864 0.863 0.717 0.914 0.904
Meta AdaBoostM1 90.197 0.902 0.902 0.902 0.794 0.957 0.957
AttributeSelectedClassifier 91.436 0.914 0.914 0.914 0.82 0.939 0.918
Bagging 92.501 0.925 0.925 0.925 0.843 0.969 0.965
ClassificationViaRegression 91.002 0.910 0.911 0.911 0.811 0.961 0.958
FilteredClassifier 91.545 0.915 0.915 0.915 0.822 0.931 0.912
IterativeClassifierOptimizer 90.197 0.902 0.902 0.901 0.794 0.959 0.959
LogitBoost 90.197 0.902 0.902 0.901 0.794 0.959 0.959
MultiClassClassifier 89.632 0.897 0.896 0.895 0.782 0.952 0.949
MultiClassClassifierUpdateable 89.806 0.899 0.898 0.897 0.786 0.884 0.853
RandomCommittee 93.284 0.933 0.933 0.933 0.859 0.971 0.965
RandomizableFilteredClassifier 84.938 0.85 0.849 0.849 0.685 0.856 0.819
RandomSubSpace 91.958 0.92 0.92 0.919 0.831 0.972 0.972
Stacking 60.595 0.606 0.606 0.606 0.755 0.499 0.522
WeightedInstancesHandlerWrapper 60.595 0.606 0.606 0.606 0.755 0.499 0.522
vot 60.595 0.606 0.606 0.606 0.755 0.499 0.522
CVParameterSelection 60.595 0.606 0.606 0.606 0.755 0.499 0.522
Avg 83.067 0.830 0.83 0.830 0.790 0.831 0.829
Rules DecisionTable 89.611 0.897 0.896 0.895 0.781 0.945 0.945
JRip 91.784 0.918 0.918 0.918 0.827 0.926 0.916
OneR 78.330 0.781 0.783 0.783 0.541 0.766 0.721
PART 91.871 0.919 0.919 0.919 0.829 0.943 0.924
ZeroR 60.595 0.606 0.606 0.755 0.499 0.499 0.522
Avg 82.438 0.824 0.824 0.854 0.6954 0.8158 0.805
Misc InputMappedClassifier 60.595 0.606 0.606 0.755 0.499 0.499 0.522
Avg 60.595 0.606 0.606 0.755 0.499 0.499 0.522

TABLE 16 Comparative analysis of 40 classifiers utilizing feature selection via GRAE, on dataset DS3.

Learning Classifier Accuracy Precision Recall F- ROC area
strategy measure
Tree Random tree 91.567 0916 0916 0916 0.823 0912 0.884
Random forest 93.740 0.937 0.937 0.937 0.869 0.977 0.977
(Continued)
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TABLE 16 (Continued)

Learning Classifier Accuracy Precision Recall F- MCC ROC area
strategy measure
REPTree 91.567 0.916 0.916 0.916 0.823 0.912 0.884
DecisionStump 78.048 0.789 0.778 0.775 0.532 0.773 0.758
HoeffdingTree 77.483 0.773 0.775 0.773 0.523 0.798 0.794
LMT 92.805 0.928 0.928 0.928 0.849 0.962 0.955
J4B 92.110 0.921 0.921 0.921 0.834 0.949 0.935
Avg 88.188 0.881 0.881 0.880 0.750 0.897 0.857
Bayes BayesNet 91.523 0.916 0.915 0.915 0.822 0.971 0.971
NaiveBayes 76.505 0.838 0.765 0.765 0.603 0.949 0.940
NaiveBayesUpdateable 76.505 0.838 0.765 0.765 0.603 0.949 0.940
Avg 81.511 0.864 0.815 0.815 0.676 0.956 0.950
Functions Logistic 91.436 0.914 0.914 0.914 0.821 0.967 0.964
SimpleLogistic 91.371 0.914 0.914 0.913 0.818 0.967 0.963
SMO 88.154 0.885 0.882 0.879 0.752 0.862 0.83
MultilayerPerceptron 92.545 0.926 0.925 0.925 0.844 0.963 0.959
Avg 88.665 0.888 0.886 0.886 0.771 0.910 0.887
Lazy IBK 90.915 0.909 0.909 0.909 0.909 0.909 0.885
Kstar 91.588 0.921 0.916 0.914 0.827 0.971 0.972
LWL 77.874 0.777 0.779 0.775 0.528 0.855 0.858
Avg 88.652 0.891 0.886 0.885 0.773 0.927 0.913
Meta AdaBoostM1 77.874 0.777 0.779 0.775 0.528 0.855 0.858
AttributeSelectedClassifier 92.219 0.922 0.922 0.922 0.837 0.951 0.938
Bagging 93.066 0.931 0.931 0.930 0.854 0.974 0.973
ClassificationViaRegression 90.893 0.909 0.909 0.908 0.808 0.965 0.962
FilteredClassifier 92.916 0.929 0.929 0.929 0.851 0.942 0.928
IterativeClassifierOptimizer 90.806 0.908 0.908 0.907 0.807 0.963 0.963
LogitBoost 90.806 0.908 0.908 0.907 0.807 0.963 0.963
MultiClassClassifier 91.436 0.914 0.914 0.914 0.802 0.967 0.964
MultiClassClassifierUpdateable 90.697 0.908 0.907 0.906 0.804 0.895 0.866
RandomCommittee 93.544 0.935 0.935 0.935 0.864 0.961 0.951
RandomizableFilteredClassifier 90.197 0.902 0.902 0.902 0.794 0.904 0.880
RandomSubSpace 92.653 0.927 0.927 0.926 0.846 0.975 0.975
Stacking 60.595 0.606 0.606 0.755 0.755 0.499 0.522
WeightedInstancesHandlerWrapper 60.595 0.606 0.606 0.755 0.755 0.499 0.522
vot 60.595 0.606 0.606 0.755 0.755 0.499 0.522
CVParameterSelection 60.595 0.606 0.606 0.755 0.755 0.499 0.522
Avg 83.093 0.830 0.830 0.867 0.752 0.831 0.831
Rules DecisionTable 90.415 0.904 0.904 0.904 0.798 0.95 0.951
JRip 91.154 0.911 0.912 0.911 0.814 0.925 0.917
OneR 78.330 0.781 0.783 0.782 0.541 0.766 0.72
PART 93.001 0.93 0.93 0.93 0.853 0.969 0.963
(Continued)
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Learning Classifier Accuracy Precision Recall F- MCC ROC area
strategy measure
ZeroR 60.595 0.606 0.606 0.755 0.755 0.499 0.522
Avg 81.649 0.822 0.816 0.846 0.713 0.829 0.821
Misc InputMappedClassifier 60.595 0.606 0.606 0.755 0.755 0.499 0.522
55.694 0.557 0.557 0.715 0.505 0.506 0.506

TABLE 17 Comparative analysis of 40 classifiers utilizing feature selection via IGAE, on dataset DS3.

Learning Classifier Accuracy Precision Recall F-
strategy measure
Tree Random tree 91.154 0.912 0.912 0.912 0.815 0.908 0.876
Random forest 94.631 0.946 0.946 0.946 0.887 0.983 0.982
REPTree 59.238 0.925 0.925 0.925 0.842 0.956 0.945
DecisionStump 78.048 0.78 0.78 0.775 0.532 0.773 0.758
HoeffdingTree 85.785 0.858 0.858 0.856 0.772 0.883 0.865
LMT 92.719 0.927 0.927 0.927 0.847 0.965 0.962
J4B 92.262 0.923 0.923 0.923 0.838 0.934 0.916
Avg 84.834 0.895 0.895 0.894 0.783 0.914 0.901
Bayes BayesNet 88.502 0.885 0.885 0.884 0.758 0.953 0.955
NaiveBayes 88.22 0.885 0.882 0.88 0.753 0.946 0.936
NaiveBayesUpdateable 88.22 0.885 0.882 0.88 0.753 0.946 0.936
Avg 88.314 0.885 0.883 0.881 0.754 0.948 0.943
Functions Logistic 90.697 0.907 0.907 0.906 0.804 0.963 0.961
SimpleLogistic 90.632 0.906 0.906 0.906 0.803 0.963 0.961
SMO 88.002 0.883 0.88 0.878 0.748 0.861 0.828
MultilayerPerceptron 90.806 0.908 0.908 0.908 0.807 0.958 0.954
Avg 88.665 0.888 0.886 0.886 0.771 0.910 0.887
Lazy IBK 90.241 0.902 0.902 0.902 0.795 0.9 0.872
Kstar 89.980 0.905 0.9 0.898 0.793 0.951 0.952
LWL 78.417 0.783 0.784 0.78 0.54 0.862 0.867
Avg 86.213 0.863 0.862 0.86 0.709 0.904 0.897
Meta AdaBoostM1 89.611 0.896 0.896 0.896 0.781 0.957 0.957
AttributeSelectedClassifier 92.240 0.922 0.922 0.922 0.837 0.947 0.93
Bagging 93.631 0.936 0.936 0.936 0.866 0.974 0.973
ClassificationViaRegression 92.501 0.925 0.925 0.925 0.843 0.967 0.963
FilteredClassifier 92.479 0.925 0.925 0.925 0.842 0.935 0.919
IterativeClassifierOptimizer 90.980 0.901 0.901 0.909 0.801 0.964 0.964
LogitBoost 90.980 0.901 0.901 0.909 0.811 0.964 0.964
MultiClassClassifier 90.697 0.907 0.907 0.906 0.804 0.963 0.961
MultiClassClassifierUpdateable 90.349 0.904 0.903 0.903 0.797 0.891 0.891
RandomCommittee 94.196 0.942 0.942 0.942 0.878 0.978 0.973
RandomizableFilteredClassifier 83.438 0.834 0.834 0.834 0.652 0.839 0.802
(Continued)
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TABLE 17 (Continued)

Learning Classifier Accuracy Precision Recall F-
strategy measure
RandomSubSpace 92.979 0.934 0.934 0.934 0.852 0.975 0.975
Stacking 60.595 0.606 0.606 0.755 0.755 0.499 0.522
WeightedInstancesHandlerWrapper 60.595 0.606 0.606 0.755 0.755 0.499 0.522
vot 60.595 0.606 0.606 0.755 0.755 0.499 0.522
CVParameterSelection 60.595 0.606 0.606 0.755 0.755 0.499 0.522
Avg 83.529 0.833 0.835 0.872 0.799 0.834 0.835
Rules DecisionTable 89.676 0.898 0.897 0.895 0.783 0.946 0.946
JRip 92.436 0.924 0.924 0.924 0.841 0.926 0.912
OneR 78.330 0.781 0.783 0.782 0.541 0.766 0.72
PART 92.349 0.923 0.923 0.923 0.839 0.96 0.951
ZeroR 60.595 0.606 0.606 0.755 0.755 0.499 0.522
Avg 82.677 0.826 0.826 0.855 0.751 0.819 0.812
Misc InputMappedClassifier 60.595 0.606 0.606 0.755 0.755 0.499 0.522
Avg 60.595 0.606 0.606 0.755 0.755 0.499 0.522

TABLE 18 Comparative analysis of 40 classifiers utilizing feature selection via PC, on dataset DS3.

Learning Classifier Accuracy Precision Recall F- MCC ROC area
strategy measure
Tree Random tree 89.567 0.895 0.896 0.896 0.781 0.895 0.863
Random forest 92.784 0.928 0.928 0.928 0.848 0.971 0.971
REPTree 90.154 0.901 0.902 0.901 0.793 0.939 0.926
DecisionStump 76.266 0.811 0.763 0.735 0.522 0.693 0.699
HoeffdingTree 87.068 0.871 0.871 0.870 0.728 0.909 0.891
LMT 61.391 0.619 0.614 0.614 0.572 0.953 0.736
J4B 91.132 0.911 0.911 0.911 0.814 0.931 0.911
Avg 84.052 0.847 0.840 0.836 0.722 0.898 0.714
Bayes BayesNet 87.198 0.873 0.872 0.877 0.713 0.935 0.939
NaiveBayes 87.198 0.873 0.872 0.877 0.713 0.934 0.924
NaiveBayesUpdateable 87.198 0.873 0.872 0.879 0.713 0.934 0.924
Avg 87.198 0.873 0.872 0.87 0.599 0.934 0.929
Functions Logistic 88.958 0.889 0.89 0.889 0.767 0.952 0.952
SimpleLogistic 88.567 0.886 0.886 0.884 0.759 0.952 0.949
SMO 86.742 0.867 0.867 0.865 0.721 0.847 0.812
MultilayerPerceptron 89.611 0.896 0.896 0.896 0.782 0.943 0.943
88.665 0.888 0.886 0.886 0.771 0.910 0.888
Lazy IBK 89.437 0.894 0.894 0.894 0.777 0.895 0.873
Kstar 88.611 0.893 0.886 0.883 0.765 0.938 0.941
LWL 76.266 0.811 0.763 0.735 0.522 0.894 0.893
Avg 88.652 0.891 0.886 0.885 0.773 0.927 0.912
Meta AdaBoostM1 87.524 0.875 0.875 0.874 0.737 0.94 0.942
(Continued)
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Learning Classifier Accuracy Precision Recall F- MCC ROC area
strategy measure
AttributeSelectedClassifier 89.458 0.895 0.895 0.894 0.778 0.934 0.918
Bagging 91.588 0.916 0.916 0.916 0.823 0.962 0.961
ClassificationViaRegression 88.893 0.890 0.889 0.888 0.766 0.942 0.939
FilteredClassifier 90.697 0.907 0.907 0.907 0.804 0.935 0.92
IterativeClassifierOptimizer 89.067 0.891 0.891 0.89 0.707 0.949 0.951
LogitBoost 89.067 0.891 0.891 0.89 0.707 0.949 0.951
MultiClassClassifier 88.958 0.890 0.889 0.889 0.767 0.952 0.952
MultiClassClassifierUpdateable 88.133 0.883 0.881 0.88 0.765 0.864 0.831
RandomCommittee 92.110 0.921 0.921 0.921 0.834 0.959 0.95
RandomizableFilteredClassifier 86.655 0.866 0.867 0.866 0.772 0.871 0.843
RandomSubSpace 91.219 0.913 0.912 0911 0.816 0.964 0.966
Stacking 60.595 0.606 0.606 0.755 0.755 0.499 0.522
WeightedInstancesHandlerWrapper 60.595 0.606 0.606 0.755 0.755 0.499 0.522
vot 60.595 0.606 0.606 0.755 0.755 0.499 0.522
CVParameterSelection 60.595 0.606 0.606 0.755 0.755 0.499 0.522
Avg 82.234 0.822 0.822 0.859 0.775 0.826 0.825
Rules DecisionTable 89.241 0.892 0.892 0.892 0.773 0.935 0.937
JRip 90.306 0.903 0.903 0.902 0.796 0.906 0.896
OneR 74.570 0.743 0.746 0.742 0.458 0.723 0.679
PART 89.915 0.899 0.899 0.898 0.788 0.944 0.934
ZeroR 60.595 0.606 0.606 0.755 0.755 0.499 0.522
Avg 80.925 0.808 0.809 0.837 0.714 0.801 0.793
Misc InputMappedClassifier 60.595 0.606 0.606 0.755 0.755 0.499 0.522
Avg 55.694 0.557 0.557 0.715 0.055 0.505 0.506
TABLE 19 Best classifier with respect to the evaluation metric and the dataset.
Dataset Accuracy Precision Recall MCC F-measure ROC area
DS1 IBK, RC RC, RF RF RF RT RT
DS2 RT, RF RT, RF RT, RF RT, RF RT, RF RE RF
DS3 RF RF RF RF RFE, RepTREE RE LOGISTIC

Besides, when focusing solely on optimizing the precision
metric through a strategic approach perspective, adopting the tree
learning strategy can be highly effective.

Table 11 presents the results of applying 40 classifiers to the
phishing website dataset (DS2), focusing on recall and MCC.

According to Table 11, the Random Tree classifier performs
exceptionally well on the Recall metric. At the same time, the
Random Forest model achieves the best MCC among all considered
classification models.

Furthermore, Trees prove themselves to be an exceptional
learning strategy, producing superior output compared to seven
alternative strategies from both recall and MCC perspectives.

Frontiersin Computer Science

The results obtained from the 40 classifiers applied to
the phishing website dataset (DS2) for the recall and MCC
metrics are presented in Table 12. Random tree classifier
demonstrates superior recall, while the random forest and
the random tree stand out with exceptional performance
on MCC among the classification models
Also, to the strategies
review, Trees shows better results for both the Recall and

considered.

compared seven learning under
MCC measures.

Additionally, these two classifiers have been most effective on
this dataset, as indicated by their respective evaluation scores in

Table 12.
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The accuracy and precision metrics for the phishing dataset
(DS2) were evaluated using 40 classifiers, and the results are
presented in Table 13.

From the table, it is evident that the IBK model under the
lazy learning strategy, along with the random tree model under
the tree learning approach, achieved the highest accuracy and
precision values.

Furthermore, based on the findings in Table 13 regarding
optimizing the precision metric for the Learning Strategy factor,
Tree Learning should be selected for its superior performance.

Table 14 displays the results of forty classifiers applied to a
dataset (DS3) containing phishing websites. The evaluation metrics
were F-measure and ROC area. Among these, the random forest
classifier showed exceptional performance in both F-measure and
ROC, compared with all seven learning strategies under scrutiny.
Additionally, Trees displayed better outcomes than others on
both measures.

From Table 14, the scores for each evaluation method
indicate that, among the classifiers tested, they were most
efficient on this dataset when compared with the other methods
employed herein.

The results of running 40 classifiers on the phishing website
dataset (DS3) are shown in Table 15, including F-measure and
ROC metrics. According to the table, the random forest classifier
outperforms other classification models on both F-measure and
ROC for this dataset.

Additionally, Trees is the most effective learning strategy for
achieving high marks on both evaluation measures among the
seven strategies considered here.

When 40 classifiers were applied to the phishing website
dataset (DS3), Table 16 shows the results for both the F-measure
and ROC metrics. According to this table, among the considered
classification models, the random forest classifier achieves superior
results in terms of F-measure and ROC on the same dataset.
Besides, Trees, as a learning strategy, demonstrates top-notch
performance across both evaluation criteria when juxtaposed with
seven other strategies.

The results of applying 40 classifiers to the phishing website
dataset, with respect to F-measure and ROC metrics, are shown
in Table 17. The random forest classifier outperforms the other
considered classification models on both measures for this dataset,
as shown in Table 17.

Notably, Trees proves superior as a learning strategy, based
on its performance across all evaluation criteria among the
seven strategies compared here, particularly on F-measure and
ROC metrics.

The results of using 40 classifiers on the phishing website
detection dataset (DS3) are depicted in Table 18 and analyzed using
accuracy and pre-session metrics. The data reveal that Random
Forest achieves the best F-MEASURE and ROC scores, while
other top-performing methods, Random Committee and J4B, also
achieve outstanding F-MEASURE and ROC scores.

Evaluating the learning strategy indicates that Tree attains
optimal results for F-MEASURE and ROC METRICS.

The summary of the comparative analysis of 40 classifiers across
three datasets, as presented in Tables 4-18, is shown in Table 19.
In this table, “RC” refers to a random committee, “RF” denotes
random forest, and “RT” stands for random tree.
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The study revealed that the classifier delivered superior results
across the considered metrics and datasets. According to Table 11,
the random tree classifier achieved superior results on 13 occasions,
and the random forest classifiers were best seven times. Random
committee classifiers besides IBK performed well twice.

This indicates that, for phishing datasets, random forest is
the preferred option, compared with committee classifiers, which
ranked second. The phishing website said this: the random forest
classifier excelled on the phishing dataset, where all attributes
were integer types, and it showcased excellent performance on the
phishing website detection dataset, or even the phishing website
dataset, which included integer types. Its exceptional ability to
perform well regardless of the number/types of attributes makes
it evident why random forest remains a preferred choice among
classification techniques.

5 Best feature selection method to use
with phishing website datasets

The objective of this section is to determine the optimal
feature selection approach suitable for phishing datasets. To
achieve this, five popular methods are assessed and compared:
ClassifierAttributeEval (CAE), CorrelationAttributeEval (CAE),
GainRatioAttributeEval (GRAI), InfoGainAttributeEval (IGAE),
and principal components. The default settings and parameters in
WEKA were utilized throughout all evaluations.

These feature selection methods were applied to a phishing
dataset, with 40 classification models trained using only the top-
performing 15 features, corresponding to 0.50% of the available
attributes (30).

Moreover, the evaluation metrics used earlier, such as MCC,
accuracy, and precision, will be analyzed again comprehensively
within the same segment under Section Four’s scope.

The phishing dataset underwent various feature selection
methods, after which 40 classification models were trained
using the top-performing 0.50% of features (15 out of 30).
This section evaluates the accuracy, precision, and MCC
metrics outlined in Section 4 using Table20. Dissecting
four feature selection techniques considered for this study,
applied to the phishing dataset, and evaluated for accuracy,
is showcased.

As shown in Table 20, the random forest and IBK classifiers
achieved their highest accuracies with CAE as their selected
method, also revealing the Functions strategy as superior across
accuracy-based field analyses in this particular case.

In addition, Tree performed optimally when acclimated
alongside CAFE’s specified attribute-selection methodology.

Table 20 clearly shows that using only 0.50% of the features
generally improves accuracy.

For instance, random forest classifiers achieved the best
accuracy result (96.2) when all features were used, while the
random forest achieved (96.1). However, both classifiers attained
their highest accuracy scores with the phishing dataset by utilizing
GRAE, besides the IGAE feature selection method on just 0.50% of
its features, resulting in an overall improvement based on Table 20
analysis evidence, which suggests that employing a preprocessing
step, such as feature selection, may enhance predictive performance
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TABLE 20 Evaluation of the considered feature selection methods on the phishing dataset-(DS1) using the accuracy metric.

Learning Classifier
strategy
Tree Random tree 90.502 95.911 95.649 95.640 94.219
Random forest 90.664 96.436 96.255 96.191 94.473
REPTree 89.561 94.898 94.850 94.744 93.523
DecisionStump 84.730 88.891 88.891 88.891 88.891
HoeffdingTree 88.801 94.002 93.930 93.903 93.062
LMT 90.610 95.766 95.829 95.676 94.373
J4B 90.031 95.450 95.630 95.106 93.794
Avg 89.271 0.236 94.434 94.307 93.191
Bayes BayesNet 87.535 92.772 92.781 92.636 92.356
NaiveBayes 87.535 92.772 92.781 92.645 92.365
NaiveBayesUpd 55.694 92.772 55.694 55.694 92.365
Avg 76.921 0.173 80.419 80.325 92.362
Functions Logistic 88.647 93.369 93.387 93.378 92.682
SGD 88.738 93.306 93.351 93.514 91.705
SimpleLogistic 88.629 93.306 93.351 93.432 92.645
SMO 88.955 93.315 93.324 93.523 91.714
VotedPerceptro 88.358 93.288 93.333 93.365 92.555
Avg 86.187 0.241 88.665 88.665 88.665
Lazy IBK 90.755 96.119 95.829 95.730 94.237
Kstar 90.393 96.128 95.983 95.649 94.165
LWL 84.730 88.991 88.973 89.018 88.991
Avg 88.652 0.205 88.652 93.465 88.652
Meta AdaBoostM1 87.435 92.582 92.582 92.582 92.166
AttributeSelectedClassifier 87.363 94.400 94.400 94.310 92.935
Bagging 89.977 95.486 95.404 95.386 93.830
ClassificationViaRegression 89.036 94.536 94.436 94.635 93.188
FilteredClassifier 90.031 95.450 95.630 95.106 93.794
TterativeClassifierOptimizer 87.806 92.736 92.736 92.736 92.220
LogitBoost 87.806 92.736 92.736 92.736 92.437
MultiClassClassifier 88.647 93.369 93.387 93.378 92.682
MultiClassClassifierUpdateable 88.738 93.306 93.351 93.514 93.830
RandomCommittee 90.755 96.408 90.755 96.408 94.409
RandomizableFilteredClassifier 90.230 94.292 90.230 94.771 90.230
RandomSubSpace 89.027 93.414 93.984 93.450 92.691
Stacking 55.694 55.694 55.694 55.694 55.694
WeightedInstancesHandlerWrapper 55.694 55.694 55.694 55.694 55.694
vot 55.694 55.694 55.694 55.694 55.694
CVParameterSelection 55.694 55.694 55.694 55.694 55.694
Avg 80.602 79.996 87.202 84.487 86.661
Rules DecisionTable 88.177 92.863 92.998 92.971 93.025
(Continued)
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TABLE 20 (Continued)
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Learning Classifier
strategy
JRip 89.271 94.753 94.527 94.563 93.306
OneR 84.730 88.891 88.891 88.891 88.891
PART 90.375 95.585 95.459 95.468 94.355
ZeroR 55.694 55.694 55.694 55.694 55.694
Avg 81.649 85.557 81.649 85.517 85.054
Misc InputMappedClassifier 55.694 55.694 55.694 55.694 55.694
Avg 55.694 55.694 55.694 55.694 55.694

TABLE 21 Evaluation of the considered feature selection methods on the phishing dataset-(DS1) using the precision metric.

Learning Classifier
strategy
Tree random tree 0.880 0.919 0.937 0.937 0.810
Random forest 0.879 0.922 0.938 0.937 0.812
REPTree 0.550 0.571 0.611 0.591 0.679
DecisionStump 0.203 0.140 0.203 0.140 0.13
HoeffdingTree 0.341 0.232 0.353 0.249 0.293
LMT 0.602 0.621 0.778 0.788 0.736
J4B 0.732 0911 0.672 0.671 0.706
Avg 0.295 0.236 0.641 0.616 0.595
Bayes BayesNet 0.295 0.713 0.731 0.731 0.313
NaiveBayes 0.291 0.230 0.307 0.723 0.282
NaiveBayesUpdateable 0.358 0.230 0.307 0.251 0.282
Avg 0.294 0.520 0.448 0.568 0.292
Functions Logistic 0.335 0.145 0.253 0.072 0.292
SGD 0.877 0.351 0.251 0.078 0.285
SimpleLogistic 0.642 0.146 0.401 0.157 0.255
SMO 0.267 0.185 0.426 0.423 0.469
Avg 0.667 0.241 88.665 88.665 88.676
Lazy IBK 0.642 0.917 0.936 0.932 0.809
Kstar 0.563 0.543 0.67 0.957 0.678
LWL 0.745 0.446 0.276 0.345 0.293
Avg 0.359 0.205 88.657 0.744 88.652
Meta AdaBoostM1 0.359 0.14 0.203 0.140 0.130
AttributeSelectedClassifier 0.272 0.667 0.667 0.667 0.597
Bagging 0.139 0.677 0.704 0.710 0.727
ClassificationViaRegression 0.878 0.583 0.621 0.634 0.659
FilteredClassifier 0.873 0.730 0.754 0.771 0.643
IterativeClassifierOptimizer 0.745 0.396 0.347 0.386 0.361
(Continued)
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TABLE 21 (Continued)

Learning Classifier
strategy
LogitBoost 0.139 0.396 0.347 0.386 0.361
MultiClassClassifier 0.139 0.142 0.286 0.047 0.273
MultiClassClassifierUpdateable 0.139 0.139 0.139 0.139 0.105
RandomCommittee 0.139 0.920 0.937 0.937 0.825
RandomizableFilteredClassifier 0.667 0.908 0.906 0.912 0.800
RandomSubSpace 0.605 0.770 0.774 0.806 0.563
Stacking 0.646 0.139 0.139 0.139 0.105
WeightedInstancesHandlerWrapper 0.597 0.557 0.139 0.139 0.105
vot 0.139 0.139 0.139 0.139 0.105
CVParameterSelection 0.139 0.139 0.139 0.139 0.105
Avg 80.602 0.455 7.510 0.443 7.474
Rules DecisionTable 0.667 0.668 0.667 0.668 0.568
JRip 0.605 0.625 0.641 0.657 0.52
OneR 0.646 0.646 0.646 0.646 0.132
PART 0.597 0.625 0.671 0.673 0.691
ZeroR 0.139 0.139 0.139 0.139 0.105
Avg 81.649 0.540 81.649 0.556 0.403
Misc InputMappedClassifier 55.694 0.139 0.139 0.139 0.105
Avg 55.694 0.139 55.693 0.139 55.693

TABLE 22 Evaluation of the considered feature selection methods on the phishing dataset-(DS1) using the MCC metric.

Learning Classifier

strategy

Tree Random tree 0.745 0.797 0.823 0.815 0.781
Random forest 0.837 0.879 0.869 0.887 0.848
REPTree 0.776 0.812 0.823 0.842 0.793
DecisionStump 0.476 0.568 0.532 0.532 0.522
HoeffdingTree 0.414 0.638 0.523 0.700 0.728
J4B 0.790 0.829 0.834 0.838 0.814

Avg 0.673 0.753 0.734 0.769 0.747

Bayes BayesNet 0.717 0.754 0.822 0.758 0.730
NaiveBayes 0.547 0.721 0.603 0.753 0.730
NaiveBayesUpdateable 0.547 0.721 0.603 0.753 0.730

Avg 0.603 0.732 0.676 0.754 0.730

Functions Logistic 0.750 0.782 0.820 0.804 0.767
SGD 0.738 0.782 0.818 0.803 0.759
SimpleLogistic 0.746 0.781 0.752 0.748 0.721
SMO 0.701 0.747 0.844 0.807 0.782

Avg 0.733 0.773 0.7712 0.771 0.771

Lazy IBK 0.746 0.782 0.909 0.795 0.777
Kstar 0.775 0.802 0.827 0.793 0.765

(Continued)
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TABLE 22 (Continued)
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Learning Classifier
strategy
LWL 0.555 0.568 0.528 0.54 0.522
Avg 0.692 0.717 0.773 0.709 0.773
Meta AdaBoostM1 0.707 0.794 0.528 0.781 0.737
AttributeSelectedClassifier 0.749 0.820 0.837 0.837 0.778
Bagging 0.799 0.843 0.854 0.866 0.823
ClassificationViaRegression 0.757 0.811 0.808 0.843 0.766
FilteredClassifier 0.786 0.822 0.851 0.842 0.804
IterativeClassifierOptimizer 0.746 0.794 0.807 0.810 0.770
LogitBoost 0.746 0.794 0.807 0.810 0.770
MultiClassClassifier 0.750 0.782 0.820 0.804 0.767
MultiClassClassifierUpdateable 0.738 0.786 0.804 0.797 0.750
RandomCommittee 0.824 0.859 0.864 0.878 0.834
RandomizableFilteredClassifier 0.688 0.685 0.794 0.652 0.72
RandomSubSpace 0.792 0.831 0.846 0.852 0.816
Stacking 0.755 0.755 0.755 0.755 0.755
WeightedInstancesHandlerWrapper 0.755 0.755 0.755 0.755 0.755
vot 0.755 0.755 0.755 0.755 0.755
CVParameterSelection 0.755 0.755 0.755 0.755 0.755
Avg 0.756 0.790 0.790 0.799 0.772
Rules DecisionTable 0.616 0.781 0.798 0.783 0.773
JRip 0.437 0.827 0.814 0.841 0.796
OneR 0.594 0.541 0.541 0.541 0.458
PART 0.551 0.829 0.853 0.839 0.788
ZeroR 0.243 0.499 0.755 0.755 0.755
Avg 0.488 0.6954 0.713 0.751 0.714
Misc InputMappedClassifier 0.243 0.499 0.755 0.755 0.755
Avg 0.243 0.499 0.500 0.755 0.500

for various classification models specifically through adoption of
the CAE technique.

The evaluation results for the phishing dataset using
five feature selection methods are shown in Table 21, with
emphasis on the precision metric. The Random Forest
classifier using the GRAE method achieved the highest
precision, yielding remarkable results regardless of the feature
selection method.

Moreover, function and tree strategies proved to be efficient
learning approaches for the precision metrics in this dataset. GRAE
achieved the trees’ maximum precision.

Comparing Table 21 (utilizing all features) and using only
0.50% percentiles confirms that a general improvement in precision
results can be seen when utilizing fewer attributes such as those
demonstrated in Table 1’s findings; for instance, while utilizing
every attribute resulted in a top score reaching 0.938, lessened
usage proved more beneficial overall performance-wise across

Frontiersin Computer Science

varying methodologies examined previously through these tables
mentioned above.

Hence, according to Table 21, using feature selection as a
preprocessing step may improve the overall predictive performance
of most classification models.

Hence, according to Table 21, using feature selection as a
preprocessing step may improve the overall predictive performance
of most classification models,

Table 22 displays the assessment results for five feature selection
techniques applied to the phishing dataset, using MCC as the
metric. The Random Forest classifier achieved the highest MCC
values with the IGAE technique, and the Functions strategy
produced optimal learning results on this data set. The tree
method achieved favorable results by applying IGAE for feature
selection.

Moreover, comparing all features vs. using only 0.50% showed
an improvement in overall performance when examined against
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FIGURE 3

Evaluation of the best feature selection method to use with phishing
website datasets-(DS1).

100
80
60
40
20
PR R Ry i B B8 S B AN B
1 2 3 4 5 6 7
mCAE WCAE WGRAE MWIGAE mPC
FIGURE 4

Evaluation of the best feature selection method to use with phishing
website datasets-(DS2).
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FIGURE 5
Evaluation of the best feature selection method to use with phishing
website datasets-(DS3).

the MCC matrix, exemplified by the best-case scenario, in which
using all available features yielded a score of 0.887 via Random
Forest classification.

According to Table 15, considerable progress is expected in
refined prediction accuracy across various classification models if
appropriate feature selection is conducted during preprocessing,
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particularly when leveraging responsive methods such as those
designated “IGEA.”

The optimal approach to optimization is demonstrated in
Figure 5, which shows that IGAE Feature selection reigns supreme.

Figures 3-5 reveal that the feature selection IGAE and
GRAE, in addition to the tree learning strategy, exhibit superior
performance compared to other strategies in terms of accuracy,
precision, recall, MCC, F-measure, and ROC area across three
datasets. Moreover, the rules and misc learning strategies
demonstrate subpar results across almost all metrics for those same
three datasets.

Consequently, it is strongly advised against using rules
other than the misc learning strategy course of study for
phishing detection.

6 Conclusion and future research

This research aimed to identify optimal characteristics

for creating a stronger machine learning model for

detecting phishing websites. Over the past three decades,
machine made strides  and

learning  has significant

has been implemented in many practical applications,

including identifying malicious web pages used in scams or

identity theft.
The paper

for detecting

investigates the best classification model
types. While
classification method would best handle phishing website

these site exploring  which
detection datasets, the author discovered that an ensemble
approach combining Random Forest, Random Tree, and IBK
classifiers proved most effective. In conclusion, after evaluating
several feature selection methods for detecting fraudulent
InfoGainAttributeEval and GainRatioAttributeEval
were deemed reliable options. However, further appraisals

websites,

focusing on variables such as the additional classification styles
mentioned above should continue to be considered alongside
other metrics. Comparing their performance will provide
additional insight into refining detection accuracy for tracing illicit
online activity.
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