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Over the past few years, phishing has evolved into an increasingly prevalent
form of cybercrime, as more people use the Internet and its applications.
Phishing is a type of social engineering that targets users’ sensitive or personal
information. This paper seeks to achieve two main objectives: first, to identify the
most effective classifier for detecting phishing among 40 classifiers representing
six learning strategies. Secondly, it aims to determine which feature selection
method performs best on websites with phishing datasets. By analyzing three
unique datasets on phishing and evaluating eight metrics, this study found that
Random Forest and Random Tree were superior at identifying phishing websites
compared with other approaches. Similarly, GainRatioAttributeEval, along with
InfoGainAttributeEval, performed better than the five alternative feature selection
methods considered in this study.
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1 Introduction

Due to the widespread use of online services like e-commerce and social media and the
increased access afforded by the Internet, users are increasingly susceptible to cyberattacks
targeting sensitive information, such as usernames or credit card details. One popular
method used by attackers is called phishing, which uses fraudulent websites that appear
authentic and trick individuals into divulging their private data (Athulya and Praveen,
2020). This can be accomplished using email or text messages designed solely for this
purpose; even communication between clients and companies may contain such deceptive
links. Typically motivated by financial gain, malware infections on user machines, or
identity theft, most phishing attempts involve these motives.

Recent findings indicate a dramatic increase in unique reported instances, exceeding
199 thousand detections in December 2020 alone—an alarming statistic compared with
the Anti-Phishing Working Group’s results from previous years (APWG, 2021). Moreover,
since the early days of the pandemic in March last year, when global COVID-19 fears were
high, scammers have frequently issued phony certificates containing the words “COVID”
or “corona.” These scammers have increasingly relied on digital certification policies and
HTTPS protocols rather than on traditional tactics (Warburton, 2020).
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Broadly, there are two ways to identify phishing: through
user knowledge or anti-phishing software. Due to the realism
of phishing emails and websites, many users find it challenging
to detect them. Consequently, accurate software solutions for
detecting these threats have become increasingly necessary.
Software-based detection strategies include blocklisting, heuristics,
and machine learning (Athulya and Praveen, 2020). Previous
studies using machine learning often relied on numerous features
to achieve high accuracy; however, extracting these features
is not always possible in real-time scenarios, requiring more
resilient solutions.

The purpose of this paper is to support the worldwide effort to
combat phishing scams by leveraging advanced machine learning
techniques to predict fraudulent websites accurately.

Numerous classification models have been proposed and
employed to identify phishing websites, claiming superiority over
other approaches (Alazaidah et al., 2018). Moreover, this study aims
to determine the most suitable classification method (classifier)
for phishing datasets. To obtain a comprehensive overview of the
findings, more than 40 classifiers across six learning strategies
are evaluated using several metrics, including accuracy, precision,
recall, and F1-measure.

Feature selection is one of several necessary preprocessing steps
when creating any machine learning (ML)-based learning model.
Its purpose is to identify relevant features that aid in constructing
intended models by selecting non-redundant consistent attributes
(Alluwaici M. et al., 2020). The feature selection procedure always
prioritizes characteristics that closely align with the objective
qualities of the dataset’s attributes (Alluwaici M. et al., 2020).

To achieve the goal, 40 classifiers from six well-known learning
strategies were selected for assessment. The evaluation phase
encompasses eight diverse, commonly used metrics, including
accuracy, precision, recall, and AUC. Besides, it aims to implicitly
identify the best learning strategy among those considered
using four distinct evaluation indicators: accuracy, precision,
recall, F-Measure, MCC, PRC area, and ROC-Area (receiver
operating characteristics).

The second objective of this study is to determine the optimal
feature selection technique for predicting phishing websites. To
achieve this objective, five commonly used feature selection
methods were assessed and compared with identical classifiers used
in the first goal across three evaluation metrics: accuracy, precision,
and recall.

The remaining sections of the paper are structured as follows:
Section 2 reviews the current literature on implementing ML
techniques for phishing. In Section 3, we present our methodology,
results, and discussion. Finally, concluding remarks and future
directions are proposed in Section 4.

2 Related research

In this section, we examine prior research that has used
machine learning techniques to detect phishing. In their study on
fuzzy rough set feature selection, Zabihimayvan and Doran (2019)
used multiple features to construct a model intended to detect
fraudulent activity attempts by criminals intentionally sidestepping
existing anti-phishing measures on Iranian banking websites. They

trained and tested their system using fuzzy experts, achieving an
accuracy of around 88%. Still, they acknowledged that there is
scope for optimizing feature selection during the training/testing
phases, which could increase predictive power while reducing
prediction time.

A different approach was taken by Cui (2019), leveraging
data analytics across multiple search engines as its source
material identifying idle URLs previously exposed through
popular searches or internal links shared between identified
related sites along with additional input from frequently visited
pages from URL structural similarity evaluation utilizing twelve
(12) distinct characteristics depicting intra-relatedness/popularity
degrees among entered site structures and components; altogether
building classifiers resulting overall classification rates exceeding
nearly ninety-five percent success rate coupled at about one-
and-a-half false positives per classifying session—however may
overlook obfuscated content when analyzing linked materials such
as domain name variations generated algorithmically/hosted solely
off malicious web domains themselves/limited character string-
denser link shortening platforms commonly employed against
undetected trapping activities.

Gandotra and Gupta (2021) compared various ML techniques
using a 30-feature set comprising approximately 5,000 phishing
websites and over 6,000 authentic webpages. This study found
that incorporating feature selection enables faster creation of
effective phishing detection models while maintaining accuracy.
Notably, their results highlight that random forest classification
(RF) achieves superior accuracy regardless of whether feature
selection is used.

Detecting phishing attempts using ML often involves analyzing
lexical features of URLs. This method, pioneered by Abutaha et al.
(2021), was intended for use as a browser plug-in that scrutinizes a
webpage’s URL to alert users before they visit it. To test the efficacy
of this technique, over one million legitimate and fraudulent URLs
were used in experiments that extracted 22 variables, which were
reduced to 10 key ones.

Findings revealed an accuracy rate of 99.89% when combined
with SVM classification, surpassing the RF classifier, gradient
boosting classifier (GBC), and neural network approaches trialed
alongside it.

Chapla et al. (2019) proposed a fuzzy-logic-based framework
for detecting phishing websites, using a dataset containing both
legitimate and fraudulent URLs. The model achieved 91.4%
accuracy but was limited by a small sample size of 1,000 features
focused solely on URL-related attributes; as a result, it is less
effective at identifying other bypass techniques.

The author in Tan (2018) improved the performance of
their phishing URL detection system by using lexical features. A
model proposed in Chiew et al. (2019) achieved high accuracy
while being independent of third-party services and source
code analysis, thereby requiring less processing time. Meanwhile,
authors in Abdelhamid et al. (2014) sought to enhance the
accuracy of phishing detection systems through feature selection
and an ensemble learning approach, achieving 95% accuracy in
their experiments.

In yet another effort detailed in article (Su et al., 2023),
an innovative approach used seven distinct machine learning
algorithms for detecting potential risks posed by various unwanted
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attacks, including those utilizing zero-day exploits, with selected
implemented security features overcoming issues such as language
dependency or reliance on external parties during real-time
monitoring operations without issue!

Rahman et al.’s research also explored machine learning
classifiers’ ability concerning various datasets related to phishing
practices (Gandotra and Gupta, 2021). This initiative likewise
demonstrated equivalent results, with gradient boosting trees
(GBT) outperforming all metrics and achieving higher success rates
than other methods, such as random forest (RF).

OFS-NN was proposed by Sahingoz et al. (2019) and
combines optimal feature selection with a neural network to
mitigate overfitting by using a new metric, the feature validity
value (FVV). Experimental results on two datasets demonstrated
that FVV outperformed information gain and optimal feature
selection across various categories, including specific features such
as abnormal, domain, HTML/JavaScript, and even address-bar
features. The OFS-NN model achieved an overall accuracy of 0.945;
however, among the feature types used for detection, the highest
accuracy, 0.903, was observed with “address bar,” while the lowest,
around half accurate at 0.562, was observed with HTML/JavaScript.

Another phishing detection system was introduced by Sahingoz
et al. (2019), which comprises 40 NLP-based traits, along with
additional hybrid characteristics derived from word vectorization,
totaling about 1,700 more relevant aspects.

In their study, the authors compared seven distinct algorithms
offering diverse options but ultimately determined random forest’s
implementation made using solely natural language processing
delivered the most superior performance, scoring almost perfect
precision statistics, peaking up to staggering score amounts nearing
practically zenith level, i.e., tracing fraudulent websites based
upon this criterion managed to reach correct outcomes nearly 98
percent times—rendering maximum efficacy amongst all tested
methodologies researched herein.

In Alazaidah et al. (2024), the authors conduct a comparative
analysis of 24 classifiers across two datasets using several evaluation
metrics. The results revealed the superiority of the random
forest, filtered classifier, and J48 classifiers. The author suggests
considering additional classification models with different learning
strategies, as well as more datasets and evaluation metrics.

The research in Aljofey et al. (2025) proposed a hybrid
methodology that combines URL character embeddings with
several handcrafted features. Three datasets were used in this work:
two are benchmarks, and the third was collected and preprocessed
by the authors. The results showed excellent performance across
accuracy and other evaluation metrics.

Several deep learning optimization techniques were used in
Barik et al. (2025) to improve phishing prediction on websites.
The authors used standardization and variational autoencoder
techniques in the preprocessing step, and an enhanced grid
search optimizer to improve accuracy. The results showed superior
performance across accuracy, precision, and F1-score metrics.
Unfortunately, utilizing one dataset only does not help in
generalizing the finding of the conducted research. Several other
related research works could be find in Ganjei and Boostani (2022),
Gareth et al. (2023), Ni et al. (2022), Nti et al. (2022), Rashid et al.
(2020), Srivastava (2014), Ubing et al. (2019).

Throughout this literature review, random forests perform
comparatively better than their counterparts in detecting phishing
using machine learning. However, gradient boosting machines
(GBM) were frequently not a subject of comparison, affecting
project linearity and requiring deeper exploration, while lackluster
attempts, such as minimal input/no-noise coefficient data filtering,
were still in early phases, indicating that extensive future research
remains vital.

3 Research methodology

The methodology employed in this paper is depicted in
Figure 1. The first phase in Figure 1 involves collecting the datasets.
Afterward, the datasets are cleaned and preprocessed. Then, several
feature selection techniques are trained on the pre-processed
datasets and evaluated. Next, 40 classification models are trained
on the datasets using the selected features from the previous
step. These classifiers are compared using several well-known
evaluation metrics.

The description of three website phishing datasets used in this
research is provided in Section (A), while Sections (B, C, and D)
evaluate the performance of feature selection and machine learning
algorithms on these datasets.

Moreover, Section 4 considers which classification model is
most appropriate for phishing website datasets. Therefore, three
datasets are considered in this section.

In addition to that, Section 5 evaluates and identifies the
best among five renowned feature selection methods, as well as
identifying the most efficient classifiers, which are outlined in
Section 6 before finally discussing primary results obtained from
these sections’ analyses at length.

In addition, 40 classifiers from six learning strategies are
evaluated and contrasted in terms of their predictive efficacy
across the three datasets under consideration. These examined
classifiers encompass:

Random tree, random forest, REPTree, DecisionStump,
HoeffdingTree, LMT, J4B, and REPTree from the Trees
learning strategy; BayesNet, NaiveBayesUpdateable, and
NaiveBayes from the Bayes learning strategy. Logistic,
MultilayerPerceptron, SimpleLogistic, VotedPerceptron,
and SMO from the Functions strategy. IBK, KStar, and
LWL from the lazy learning strategy; AdaBoostM1,
AttributeSelectedClassifier, Bagging, ClassificationViaRegression,
FilteredClassifier, IterativeClassifierOptimizer, LogitBoost,
MultiClassClassifier, MultiClassClassifierUpdateable,
RandomCommittee, RandomizableFilteredClassifier,
RandomSubSpace, Stacking, WeightedInstancesHandlerWrapper,
vot, and CVParameterSelectionr from the Meta learning strategy;
DecisionTable, JRip, OneR, PART, and ZeroR learning strategy.
Finally, InputMappedClassifier from the misc learning strategy.

The WEKA software’s default settings are utilized for
all classification models. This renowned data analysis tool,
also known as (Waikato Environment for Knowledge
Analysis), is frequently used (Rao et al., 2020). The outcome
validation process uses 10-fold cross-validation to ensure
the results.
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FIGURE 1

Research methodology workflow diagram.

To compare the considered classification models, six
performance metrics were analyzed: Accuracy, precision, recall,
F-measure, MCC (Matthews correlation coefficient), ROC Area,
and PRC Area. Next up are the equations needed to calculate
these metrics.

Accuracy = TP + TN
TP + TN + FP + FN

TP rate = TP
TP + FN

FPrate

= FP
FP + TN

Precision = TP
TP + FP

Recall = TP
TP + FN

Accuracy is a metric that indicates how frequently a machine
learning model predicts the correct outcome. The number of right
guesses divided by the total number of forecasts yields accuracy
(Alzyoud et al., 2024; Alazaidah et al., 2023a,b).

Precision is a metric that indicates how often a machine
learning model correctly predicts the positive class. Precision can
be calculated as the number of correct positive predictions (true
positives) divided by the total number of positive predictions made
by the model (including true and false positives).

Recall is a metric that indicates how often a machine learning
model accurately detects positive examples (true positives) from all
actual positive samples in the dataset. Divide the number of true
positives by the number of positive cases to determine recall. The
latter includes true positives (correctly identified cases) and false
negatives (missed cases) (Al-Batah et al., 2023; Pei et al., 2022).

MCC is the best single-value classification metric for
summarizing a confusion or error matrix. A confusion matrix has
four entities:

• True positives (TP)
• True negatives (TN)
• False positives (FP)
• False negatives (FN)

And is calculated by the formula:

MCC = TN × TP − FN × FP√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

F-measure is an alternative machine learning evaluation metric
that assesses the predictive skill of a model by elaborating on
its class-wise performance rather than its overall performance,
as done by accuracy. The F1 score combines two competing
metrics—precision and recall—of a model, making it widely used
in recent literature.

F − measure = 2
∗ Recall ∗ Precision
Recall + Precision

ROCArea: a metric that graphically assesses classifier
performance across varying thresholds by plotting the false positive
rate on the x-axis and the true positive rate on the y-axis.

True Positives (TPs): instances in which the model correctly
identifies examples.

True Negatives (TNs): represent cases where the model
correctly recognizes and labels negative examples.

False Positives (FPs): occur once the model mistakenly
identifies examples as positive. In words, these are instances where
negative examples are mistakenly labeled as “positive.”

False Negatives (FNs): arise when positive examples are
incorrectly classified as negative. These are cases in which positive
examples are incorrectly labeled as “negative.”

3.1 Description of datasets

In the study, three datasets are available for download from
the UCI repository. The first dataset, a binary classification
set, contains 11,055 instances with 30 integer features. Most
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TABLE 1 Datasets characteristic.

Name Instances Features No. of classes Feature type References

DS1 11,055 30 3 Integer Su et al., 2023

DS2 10,000 18 3 Integer Alluwaici M. A. et al., 2020

DS3 2,670 13 2 Integer Mohammad et al., 2015

TABLE 2 Categories of features for the two datasets.

Dataset code Feature category Feature examples

DS1 URL based having_IP_Address,
URL_Length,
HTTPS_token, etc.

Abnormal based Request_URL,
URL_of_Anchor,
Links_in_tags, etc.

HTML/js Based Redirect, on_mouseover,
RightClick,
popUpWindow, etc.

Domain based DNSRecord, web_traffic,
Page_Rank,
Google_Index, etc.

DS2 HTML/JS based,
URL based

Redirect, on_mouseover,
RightClick,
popUpWindow, etc.

DS2 URL based NumDots, UrlLength,
AtSymbol, etc.

Abnormal AbnormalExtFormAction,
ExtMetaScriptLinkRT, etc.

HTML/Js Based RightClickDisabled,
ExtFavicon,
PopUpWindow, etc.

of these features are binary. On the other hand, the second
dataset comprises three class labels, supports multiclassification,
and provides nine integer-type features and 10,000 examples;
the third dataset comprises two class labels, consists of 13
integer-type features, and provides 2,670 instances. Table 1
presents the distinguishing qualities of both sets for quick
reference. This research focuses on the first two datasets,
which are the largest and have 3 class labels, while the third
dataset is relatively small with only two classes: selection
and understanding.

This step focused on collecting datasets and understanding
the attributes. Three datasets, denoted DS1, DS2, and DS3 (Su
et al., 2023; Alluwaici M. A. et al., 2020), and DS3 (Mohammad
et al., 2015), were selected, as they have different numbers of
features and only some are common. Table 2 summarizes the
feature categories across the three datasets. DS1, DS2, and DS3
contain both internal features (i.e., derived from webpage URLs
and HTML/JavaScript source code available on the webpage
itself) and external features (i.e., obtained from querying third-
party services such as DNS, search engines, and WHOIS
records). DS2 only contains internal features (Mohammad et al.,
2015).

3.2 Data preparation

Data preprocessing involves operations such as handling
missing values, removing outliers, and eliminating redundant
information. As stated in reference (Alazaidah et al., 2023a), the
DS1, DS2, and DS3 datasets were free of missing data but required
cleaning before use. For instance, the HttpsInHostname attribute
in DS3 had all values set to 0, making it unnecessary for analysis.

To identify common attributes across these datasets (DS1-
DS2-DS3), the authors checked their descriptions available in
references (Mohammad et al., 2015) and (Alzyoud et al., 2024). The
authors’ citations for each dataset feature significantly simplified
this preprocessing step.

It was noted that some feature pairs captured similar
information expressed in different formats, such as UrlLength,
which is numeric, and its counterpart, “UrlLengthRT,” which is
categorical. In cases where those occurred only once, they would be
mapped to the same variable, URL_Length, found solely in dataset
DP1; otherwise, they would remain separate. Ultimately, after
scrutinizing these intricate details across variables, we discovered
a match between 18 key attributes among the three aforementioned
sources (as shown in Table 3).

3.3 Feature selection

The significance of independent features was assessed using
P-values, with a threshold of 0.05 to identify statistically
significant features.

To begin with, the Spearman rank-order correlation method
assessed collinearity between feature pairs. In Figure 2, we show
the correlation matrix for the DS1-2-3 matching feature, with the
pop-up window and on-mouse-over having the highest observed
value at 0.73, followed by the pop-up window and favicon pair,
which had a corresponding score of 0.66. Most pairs showed small
or negligible correlations.

To identify multicollinearity—where three or more variables
converge even when no two have high individual similarities—the
Variance inflation factor (VIF) scores were used (Ubing et al., 2019).

Each trait received its VIF rating calculated as follows:

VIFi = 1
1 − R2

i

R2
i =Unadjusted coefficient of determination for regressing the

ith independent variable on the remaining ones.
Based on VIF analysis, in addition to p-values, the combined

DS1-2-3 data identified 15 features as noteworthy and independent.
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TABLE 3 The matched features between ds1, ds2 and ds3 dataset with the features after feature selection.

DS1 DS2 DS3 DS1-1-2-3

having_IP_Address IpAddress IP_Address

having_Sub_Domain SubdomainLevel∗ Sub_Domain
√

Links_pointing_to_page PctExtHyperlinks∗ Links _to_page
√

Submitting_to_email SubmitInfoToEmail Submitting_to_email
√

double_slash_redirecting DoubleSlashInPath double_redirecting
√

URL_Length UrlLength∗ URL_Length
√

Favicon ExtFavicon Favicon
√

Prefix_Suffix NumDashInHostname∗ Prefix_Suffix
√

SFH AbnormalFormAction SFH
√

Iframe IframeOrFrame Iframe
√

having_At_Symbol AtSymbol _At_Symbol
√

SSLfinal_State NoHttps SSLfinal_State

on_mouseover FakeLinkInStatusBar on_mouseover

URL_of_Anchor PctNullSelfRedirectHyperlinks∗ URL_of_Anchor
√

popUpWidnow PopUpWindow popUpWidnow

Request_URL PctExtResourceUrls∗ Request_URL
√

RightClick RightClickDisabled Right_Click

Links_in_tags ‘ExtMetaScriptLinkRT∗ Links _tags
√

∗ indicates numeric features,
√

indicates selected features.

This process used various Python packages, including
statsmodels to calculate VIF scores and p-values, scikit-learn to
build logistic regression models, and Matplotlib and Seaborn to
generate visualizations.

For the feature selection and ranking step, four techniques
have been considered and evaluated. The first technique is called
Correlation Attribute Evaluator (CAE). CAE measures the linear
correlations between the input features and the output feature
(class) and is usually implemented using Pearson’s correlation
coefficient. The second technique is the Gain Ratio Attribute
Evaluator (GRAE). This technique assesses feature significance
by measuring each feature’s gain ratio relative to the class label.
The third technique is dubbed the Information Gain Attribute
Evaluator (IGAE). IAGE measures how a feature is worth based
on the value of information gain for this feature with respect to
the class label. The last technique is the Principal Components
Analysis (PCA). This technique aims to reduce data dimensionality
by transforming a large dataset into a smaller one with low-
correlated features.

4 Comparative analysis amongst the
classification models in the domain of
website phishing

This section describes the process of determining the ideal
classification model for phishing datasets. To attain this objective,
three distinct sets of data cognate to phishing have been analyzed
in detail. Table 4 outlines the highlighted attributes associated with

these datasets, all of which can be obtained from the UCI repository
with ease.

The results of using 40 classifiers on the phishing website
dataset 1 (DS1) are presented in Table 4 and analyzed with
respect to accuracy and pre-session metrics. The data reveal that
IBK achieves the highest accuracy, whereas RandomCommittee
achieves outstanding accuracy and precision.

Evaluating learning strategies indicates that Lazy
achieves optimal accuracy, while RandomCommittee yields
superior precision.

The Recall and MCC metric results for the phishing website
dataset after applying 40 classifiers are outlined in Table 5. The
table shows that random forest classification models have produced
superior results when evaluated against these criteria.

Additionally, Tree outperforms other learning strategies on
both precision and MCC metrics in this dataset (DS1).

A comparative analysis of 40 classifiers on the phishing dataset,
in terms of accuracy and precision, is presented in Table 5.

Random forest outperforms the other considered classifiers in
accuracy and precision on the phishing dataset (DS1), as shown in
the table.

Moreover, among the eight learning strategies assessed using
these two measures, the Functions Tree strategy yields better
outcomes than its counterparts.

The precision metrics obtained from applying 40 classifiers to
the phishing dataset are shown in Table 6. According to the table,
among all classification models, the RandomCommittee learning
strategy achieves the highest precision. Similarly, for the Random
Forest metric, based on Table 6 and the Trees learning strategy,
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FIGURE 2

Spearman correlation heatmap based on the merged Dataset 1, 2, and besides 3 datasets, showing some collinearity between the different features
(note that Result is the class attribute).

we can see that the Random Forest classification model delivers
superior outcomes.

In conclusion, regarding optimizing the precision metrics
shown in Table 6, function learning is our preferred approach,
yielding the best results compared to other available strategies.

In Table 7, the random forest classification models achieve the
best recall and MCC results on the phishing dataset (DS1). The
random forest classifier belongs to the Tree learning strategy.

Moreover, regarding the best learning strategy, Table 7 shows
that the tree learning strategy achieves the best results for the recall
and MCC metrics.

According to Table 8, the classifier in the tree learning strategy,
random forest, has the highest precision metric. Additionally, when
it comes to the accuracy metric and other compared classifiers,
this same classifier performs best again. Furthermore, among the
seven considered learning strategies, Tree stands out as achieving
superior results across comparisons.

The outcomes of the 40 classifiers applied to the phishing
website dataset, with respect to recall and MCC, are shown in
Table 9.

Analysis of Table 9 indicates that, among all classification
models, the random tree classifier achieved the highest accuracy
and precision on the given dataset (DS2). Additionally,
compared with other learning strategies exhibited by the
remaining classifying algorithms in Table 9, the tree strategy
was found to outperform others in terms of efficient
data processing.

The results from implementing 40 classifiers on the phishing
website dataset (DS2) are shown in the table, including accuracy
and precision metrics.

The Random Forest model, a tree-based
learning strategy, achieves higher accuracy and
precision than other classification models, as shown
in Table 10.
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TABLE 4 Comparative analysis of 40 classifiers utilizing feature selection via CAE, on dataset DS1.

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC
area

PRC
area

Tree random tree 90.502 0.905 0.905 0.905 0.807 0.965 0.961

Random forest 90.664 0.907 0.907 0.906 0.811 0.973 0.974

REPTree 89.561 0.897 0.896 0.895 0.789 0.961 0.962

DecisionStump 84.730 0.877 0.847 0.841 0.714 0.823 0.810

HoeffdingTree 88.801 0.890 0.888 0.887 0.774 0.937 0.939

LMT 90.610 0.906 0.906 0.906 0.810 0.971 0.971

J4B 90.031 0.901 0.900 0.900 0.798 0.960 0.958

Avg 89.271 0.897 0.892 0.891 0.786 0.941 0.939

Bayes BayesNet 87.535 0.876 0.875 0.875 0.747 0.947 0.951

NaiveBayes 87.535 0.876 0.875 0.875 0.747 0.947 0.951

NaiveBayesUpdateable 55.694 0.557 1.000 0.715 0.500 0.500 0.506

Avg 76.921 0.767 0.916 0.821 0.664 0.798 0.802

Functions Logistic 88.647 0.888 0.886 0.886 0.771 0.954 0.956

SGD 88.738 0.889 0.887 0.887 0.772 0.882 0.842

SimpleLogistic 88.629 0.889 0.886 0.885 0.771 0.953 0.956

SMO 88.955 0.891 0.89 0.889 0.777 0.883 0.845

VotedPerceptron 88.358 0.886 0.884 0.883 0.765 0.88 0.84

Avg 88.666 0.888 0.886 0.886 0.771 0.910 0.887

Lazy IBK 90.755 0.908 0.908 0.907 0.812 0.973 0.973

Kstar 90.393 0.905 0.904 0.903 0.806 0.97 0.972

LWL 84.730 0.877 0.847 0.841 0.714 0.945 0.947

Avg 88.652 0.891 0.886 0.885 0.773 0.927 0.913

Meta AdaBoostM1 87.435 0.876 0.874 0.873 0.746 0.938 0.941

AttributeSelectedClassifier 87.363 0.876 0.874 0.873 0.745 0.935 0.936

Bagging 89.977 0.901 0.900 0.899 0.797 0.967 0.969

ClassificationViaRegression 89.036 0.892 0.890 0.89 0.778 0.959 0.961

FilteredClassifier 90.031 0.901 0.900 0.900 0.798 0.96 0.958

IterativeClassifierOptimizer 87.806 0.880 0.878 0.877 0.754 0.948 0.951

LogitBoost 87.806 0.880 0.878 0.877 0.754 0.948 0.951

MultiClassClassifier 88.647 0.888 0.886 0.886 0.771 0.954 0.956

MultiClassClassifierUpdateable 88.738 0.889 0.887 0.887 0.772 0.882 0.842

RandomCommittee 90.755 0.908 0.908 0.907 0.812 0.971 0.969

RandomizableFilteredClassifier 90.230 0.902 0.902 0.902 0.802 0.966 0.966

RandomSubSpace 89.027 0.893 0.890 0.889 0.779 0.957 0.959

Stacking 55.694 0.557 0.557 0.715 0.500 0.500 0.506

WeightedInstancesHandlerWrapper 55.694 0.557 0.557 0.715 0.500 0.500 0.506

vot 55.694 0.557 0.557 0.715 0.500 0.500 0.506

CVParameterSelection 55.694 0.557 0.557 0.715 0.500 0.500 0.506

Avg 80.601 0.807 0.805 0.845 0.706 0.836 0.836

Rules DecisionTable 88.177 0.883 0.882 0.881 0.76 0.95 0.952

JRip 89.271 0.895 0.893 0.892 0.784 0.904 0.890

(Continued)
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TABLE 4 (Continued)

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC
area

PRC
area

OneR 84.730 0.877 0.847 0.841 0.714 0.828 0.794

PART 90.375 0.904 0.904 0.903 0.805 0.967 0.966

ZeroR 55.694 0.557 0.557 0.715 0.506 0.500 0.506

Avg 81.644 0.823 0.816 0.846 0.713 0.829 0.821

Misc InputMappedClassifier 55.694 0.557 0.557 0.715 0.500 0.500 0.506

Avg 55.694 0.557 0.557 0.715 0.500 0.500 0.506

TABLE 5 Comparative analysis of 40 classifiers utilizing feature selection via CAE, on dataset DS1.

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC
area

PRC
area

Tree Random tree 95.911 0.959 0.959 0.959 0.917 0.978 0.969

Random forest 96.436 0.964 0.964 0.964 0.928 0.993 0.993

REPTree 94.898 0.949 0.949 0.949 0.897 0.984 0.981

DecisionStump 88.891 0.889 0.889 0.889 0.774 0.882 0.854

HoeffdingTree 94.002 0.940 0.940 0.940 0.878 0.983 0.983

LMT 95.766 0.958 0.958 0.958 0.914 0.989 0.988

J4B 95.45 0.955 0.955 0.954 0.908 0.981 0.977

Avg 94.479 0.944 0.944 0.944 0.888 0.970 0.963

Bayes BayesNet 92.772 0.928 0.928 0.928 0.853 0.981 0.982

NaiveBayes 92.772 0.928 0.928 0.928 0.853 0.981 0.982

NaiveBayesUpdateable 92.772 0.928 0.928 0.928 0.853 0.981 0.982

Avg 92.772 0.928 0.928 0.928 0.853 0.981 0.982

Functions Logistic 93.369 0.934 0.934 0.934 0.866 0.985 0.986

SGD 93.306 0.933 0.933 0.933 0.864 0.931 0.904

SimpleLogistic 93.306 0.933 0.933 0.933 0.864 0.985 0.986

SMO 93.315 0.933 0.933 0.933 0.864 0.931 0.904

VotedPerceptron 93.288 0.933 0.933 0.933 0.864 0.932 0.904

Avg 88.665 0.888 0.886 0.886 0.771 0.910 0.887

Lazy IBK 96.119 0.961 0.961 0.961 0.921 0.987 0.986

Kstar 96.128 0.962 0.961 0.961 0.922 0.995 0.995

LWL 88.991 0.890 0.890 0.89 0.777 0.975 0.976

Avg 88.652 0.891 0.881 0.885 0.773 0.927 0.913

Meta AdaBoostM1 92.582 0.926 0.926 0.926 0.850 0.981 0.982

AttributeSelectedClassifier 94.400 0.944 0.944 0.944 0.886 0.980 0.978

Bagging 95.486 0.955 0.955 0.955 0.908 0.990 0.990

ClassificationViaRegression 94.536 0.945 0.945 0.945 0.889 0.988 0.988

FilteredClassifier 95.450 0.955 0.955 0.954 0.908 0.981 0.977

IterativeClassifierOptimizer 92.736 0.927 0.927 0.927 0.853 0.981 0.982

LogitBoost 92.736 0.927 0.927 0.927 0.853 0.981 0.982

MultiClassClassifier 93.369 0.934 0.934 0.934 0.866 0.985 0.986

(Continued)
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TABLE 5 (Continued)

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC
area

PRC
area

MultiClassClassifierUpdateable 93.306 0.933 0.933 0.933 0.864 0.931 0.904

RandomCommittee 96.408 0.964 0.964 0.964 0.927 0.989 0.985

RandomizableFilteredClassifier 94.292 0.943 0.943 0.943 0.884 0.969 0.964

RandomSubSpace 93.414 0.935 0.934 0.934 0.867 0.984 0.985

Stacking 55.694 0.557 0.557 0.715 0.500 0.500 0.506

WeightedInstancesHandlerWrapper 55.694 0.557 0.557 0.715 0.500 0.500 0.506

vot 55.694 0.557 0.557 0.715 0.500 0.507 0.506

CVParameterSelection 55.694 0.557 0.557 0.715 0.500 0.500 0.506

Avg 84.467 0.844 0.844 0.885 0.784 0.859 0.857

Rules DecisionTable 92.863 0.929 0.929 0.929 0.855 0.979 0.98

JRip 94.753 0.948 0.948 0.947 0.894 0.96 0.953

OneR 88.891 0.889 0.889 0.889 0.774 0.886 0.845

PART 95.585 0.956 0.956 0.956 0.911 0.985 0.966

5 ZeroR 55.694 0.557 0.557 0.715 0.506 0.511 0.506

Avg 85.557 0.855 0.855 0.887 0.788 0.864 0.85

Misc InputMappedClassifier 55.694 0.557 0.557 0.715 0.500 0.506 0.506

Avg 55.694 0.557 0.557 0.715 0.500 0.506 0.506

TABLE 6 Comparative analysis of 40 classifiers utilizing feature selection via GRAE, on dataset DS1.

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC
area

PRC
area

Tree Random tree 95.640 0.956 0.956 0.956 0.912 0.981 0.974

Random forest 96.191 0.962 0.962 0.962 0.923 0.992 0.992

REPTree 94.744 0.947 0.947 0.947 0.893 0.984 0.982

DecisionStump 88.891 0.889 0.889 0.889 0.774 0.882 0.854

HoeffdingTree 93.903 0.939 0.939 0.939 0.876 0.983 0.984

LMT 95.676 0.957 0.957 0.957 0.912 0.988 0.986

J4B 95.106 0.951 0.951 0.951 0.901 0.983 0.98

Avg 94.307 0.943 0.943 0.943 0.884 0.970 0.964

Bayes BayesNet 92.636 0.927 0.926 0.926 0.851 0.980 0.981

NaiveBayes 92.645 0.927 0.926 0.926 0.851 0.980 0.981

NaiveBayesUpdateable 55.694 0.557 0.557 0.715 0.500 0.500 0.506

Avg 80.327 0.803 0.803 0.855 0.734 0.820 0.822

Functions Logistic 93.378 0.934 0.934 0.934 0.866 0.985 0.986

SGD 93.514 0.935 0.935 0.935 0.868 0.933 0.906

SimpleLogistic 93.432 0.934 0.934 0.934 0.867 0.985 0.985

SMO 93.523 0.935 0.935 0.935 0.869 0.933 0.907

VotedPerceptron 93.360 0.934 0.934 0.934 0.865 0.933 0.906

Avg 88.665 0.888 0.886 0.886 0.771 0.910 0.887

Lazy IBK 95.730 0.957 0.957 0.957 0.913 0.988 0.987

(Continued)
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TABLE 6 (Continued)

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC
area

PRC
area

Kstar 95.649 0.957 0.956 0.956 0.912 0.994 0.994

LWL 89.018 0.890 0.890 0.89 0.777 0.974 0.974

Avg 93.465 0.934 0.934 0.934 0.867 0.985 0.985

Meta AdaBoostM1 92.582 0.926 0.926 0.926 0.85 0.981 0.982

AttributeSelectedClassifier 94.310 0.943 0.943 0.943 0.885 0.979 0.977

Bagging 95.386 0.954 0.954 0.954 0.906 0.990 0.990

ClassificationViaRegression 94.635 0.946 0.946 0.946 0.891 0.989 0.989

FilteredClassifier 95.106 0.951 0.951 0.951 0.901 0.983 0.980

IterativeClassifierOptimizer 92.736 0.927 0.927 0.927 0.853 0.981 0.982

LogitBoost 92.736 0.927 0.927 0.927 0.853 0.981 0.982

MultiClassClassifier 93.378 0.934 0.934 0.934 0.866 0.985 0.986

MultiClassClassifierUpdateable 93.514 0.935 0.935 0.935 0.868 0.933 0.906

RandomCommittee 96.408 0.964 0.964 0.964 0.927 0.989 0.985

RandomizableFilteredClassifier 94.771 0.948 0.948 0.948 0.894 0.975 0.971

RandomSubSpace 93.450 0.935 0.935 0.934 0.867 0.983 0.984

Stacking 55.694 0.557 0.557 0.715 0.500 0.500 0.506

WeightedInstancesHandlerWrapper 55.694 0.557 0.557 0.715 0.500 0.500 0.506

vot 55.694 0.557 0.557 0.715 0.500 0.507 0.506

CVParameterSelection 55.694 0.557 0.557 0.715 0.500 0.500 0.506

Avg 84.487 0.844 0.844 0.884 0.785 0.859 0.858

Rules DecisionTable 92.971 0.93 0.930 0.930 0.858 0.978 0.978

JRip 94.563 0.946 0.946 0.946 0.890 0.959 0.952

OneR 88.891 0.889 0.889 0.889 0.774 0.886 0.845

PART 95.468 0.955 0.955 0.955 0.908 0.987 0.984

ZeroR 55.694 0.557 0.557 0.715 0.506 0.511 0.506

Avg 85.517 0.855 0.855 0.887 0.787 0.864 0.853

misc InputMappedClassifier 55.694 0.557 0.557 0.715 0.500 0.506 0.506

Avg 55.694 0.557 0.557 0.715 0.500 0.506 0.506

TABLE 7 Comparative analysis of 40 classifiers utilizing feature selection via IGAE, on dataset DS1.

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC
area

PRC
area

Tree Random tree 95.649 0.956 0.956 0.956 0.912 0.978 0.969

Random forest 96.255 0.963 0.963 0.963 0.924 0.992 0.991

REPTree 94.853 0.949 0.949 0.949 0.896 0.983 0.980

DecisionStump 88.891 0.889 0.889 0.889 0.774 0.882 0.854

HoeffdingTree 93.930 0.939 0.939 0.939 0.877 0.983 0.983

LMT 95.829 0.958 0.958 0.958 0.915 0.989 0.988

J4B 95.630 0.956 0.956 0.956 0.911 0.985 0.982

Avg 94.434 0.944 0.944 0.944 0.887 0.970 0.963

(Continued)
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TABLE 7 (Continued)

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC
area

PRC
area

Bayes BayesNet 92.781 0.928 0.928 0.928 0.854 0.981 0.982

NaiveBayes 92.781 0.928 0.928 0.928 0.854 0.981 0.982

NaiveBayesUpdateable 55.694 0.559 1.000 0.715 0.500 0.500 0.506

Avg 80.419 0.805 0.952 0.857 0.736 0.820 0.823

Functions Logistic 93.387 0.934 0.934 0.934 0.866 0.985 0.986

SGD 93.351 0.932 0.934 0.933 0.865 0.932 0.904

SimpleLogistic 93.351 0.934 0.934 0.933 0.865 0.985 0.986

SMO 93.324 0.933 0.933 0.933 0.865 0.931 0.904

VotedPerceptron 93.333 0.933 0.933 0.933 0.865 0.932 0.905

Avg 88.665 0.888 0.886 0.886 0.771 0.910 0.887

Lazy IBK 95.829 0.958 0.958 0.958 0.915 0.988 0.986

Kstar 95.983 0.960 0.960 0.960 0.919 0.994 0.994

LWL 88.973 0.890 0.890 0.890 0.776 0.975 0.975

Avg 88.652 0.891 0.886 0.885 0.773 0.927 0.912

Meta AdaBoostM1 92.582 0.926 0.926 0.926 0.850 0.981 0.982

AttributeSelectedClassifier 94.400 0.944 0.944 0.944 0.886 0.980 0.978

Bagging 95.404 0.954 0.954 0.954 0.907 0.990 0.990

ClassificationViaRegression 94.436 0.944 0.944 0.944 0.887 0.988 0.988

FilteredClassifier 95.630 0.956 0.956 0.956 0.911 0.985 0.982

IterativeClassifierOptimizer 92.736 0.927 0.927 0.927 0.853 0.981 0.982

LogitBoost 92.736 0.927 0.927 0.927 0.853 0.981 0.982

MultiClassClassifier 93.387 0.934 0.934 0.934 0.866 0.985 0.986

MultiClassClassifierUpdateable 93.351 0.934 0.934 0.933 0.865 0.932 0.904

RandomCommittee 90.755 0.908 0.908 0.907 0.812 0.971 0.969

RandomizableFilteredClassifier 90.230 0.902 0.902 0.902 0.802 0.966 0.966

RandomSubSpace 93.984 0.940 0.940 0.940 0.878 0.986 0.986

Stacking 55.694 0.557 0.557 0.715 0.500 0.500 0.506

WeightedInstancesHandlerWrapper 55.6943 0.557 0.557 0.715 0.5 0.5 0.506

vot 55.6943 0.557 0.557 0.715 0.5 0.509 0.506

CVParameterSelection 55.6943 0.557 0.557 0.715 0.5 0.5 0.506

Avg 83.90095 0.839 0.839 0.878375 0.773125 0.858438 0.857438

Rules DecisionTable 92.9986 0.93 0.93 0.93 0.858 0.981 0.981

JRip 94.5274 0.945 0.945 0.945 0.889 0.96 0.953

OneR 88.8919 0.889 0.889 0.889 0.774 0.886 0.845

PART 95.4591 0.955 0.955 0.955 0.908 0.986 0.983

ZeroR 55.6943 0.557 0.557 0.715 0.506 0.5 0.506

Avg 81.64994 0.8232 0.8166 0.8464 0.7138 0.8298 0.8216

Misc InputMappedClassifier 55.6943 0.557 0.557 0.715 0.5 0.5 0.506

Avg 55.6943 0.557 0.557 0.715 0.5 0.5 0.506
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TABLE 8 Comparative analysis of 40 classifiers utilizing feature selection via PC, on dataset DS1.

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC
area

PRC
area

Tree Random tree 94.219 0.942 0.942 0.942 0.883 0.982 0.978

Random forest 94.473 0.945 0.945 0.945 0.888 0.987 0.986

REPTree 93.523 0.936 0.935 0.935 0.869 0.977 0.976

DecisionStump 88.891 0.889 0.889 0.889 0.774 0.882 0.854

HoeffdingTree 93.062 0.932 0.931 0.93 0.86 0.967 0.965

LMT 94.373 0.944 0.944 0.944 0.886 0.986 0.986

J4B 93.794 0.939 0.938 0.938 0.875 0.975 0.974

Avg 93.191 0.932 0.932 0.931 0.862 0.965 0.959

Bayes BayesNet 92.356 0.924 0.924 0.923 0.845 0.972 0.974

NaiveBayes 92.365 0.924 0.924 0.923 0.845 0.972 0.974

NaiveBayesUpdateable 92.365 0.924 0.924 0.923 0.845 0.972 0.974

Avg 92.362 0.924 0.924 0.923 0.845 0.972 0.974

Functions Logistic 92.682 0.927 0.927 0.927 0.852 0.976 0.977

SGD 91.705 0.917 0.917 0.917 0.832 0.916 0.882

SimpleLogistic 92.645 0.927 0.926 0.926 0.851 0.976 0.977

SMO 91.714 0.917 0.917 0.917 0.832 0.916 0.882

VotedPerceptron 92.555 0.926 0.926 0.925 0.849 0.924 0.894

vg 88.665 0.888 0.8866 0.886 0.7712 0.9104 0.8878

Lazy IBK 94.237 0.943 0.942 0.942 0.883 0.986 0.985

Kstar 94.165 0.942 0.942 0.941 0.882 0.986 0.986

LWL 88.991 0.890 0.890 0.890 0.777 0.966 0.967

Avg 88.652 0.891 0.886 0.885 0.773 0.927 0.913

Meta AdaBoostM1 92.166 0.922 0.922 0.922 0.841 0.973 0.974

AttributeSelectedClassifier 92.935 0.931 0.929 0.929 0.858 0.961 0.960

Bagging 93.830 0.939 0.938 0.938 0.875 0.982 0.983

ClassificationViaRegression 93.188 0.932 0.932 0.932 0.862 0.980 0.981

FilteredClassifier 93.794 0.939 0.938 0.938 0.875 0.975 0.974

IterativeClassifierOptimizer 92.220 0.923 0.922 0.922 0.842 0.974 0.975

LogitBoost 92.437 0.925 0.924 0.924 0.847 0.974 0.975

MultiClassClassifier 92.682 0.927 0.927 0.927 0.852 0.976 0.977

MultiClassClassifierUpdateable 93.830 0.938 0.938 0.938 0.875 0.981 0.980

RandomCommittee 94.409 0.944 0.944 0.944 0.887 0.986 0.984

RandomizableFilteredClassifier 90.230 0.902 0.902 0.902 0.802 0.966 0.966

RandomSubSpace 92.691 0.927 0.927 0.927 0.852 0.973 0.974

Stacking 55.694 0.557 0.557 0.715 0.500 0.500 0.506

WeightedInstancesHandlerWrapper 55.694 0.557 0.557 0.715 0.500 0.500 0.506

vot 55.694 0.557 0.557 0.715 0.500 0.509 0.506

CVParameterSelection 55.694 0.557 0.557 0.715 0.500 0.500 0.506

Avg 83.574 0.836 0.835 0.875 0.766 0.856 0.857

Rules DecisionTable 93.025 0.931 0.930 0.930 0.859 0.977 0.977

JRip 93.306 0.934 0.933 0.933 0.864 0.945 0.936

(Continued)
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TABLE 8 (Continued)

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC
area

PRC
area

OneR 88.891 0.889 0.889 0.889 0.774 0.886 0.845

PART 94.355 0.944 0.944 0.943 0.886 0.983 0.983

ZeroR 55.694 0.557 0.557 0.715 0.500 0.500 0.506

Avg 85.054 0.851 0.8506 0.882 0.776 0.858 0.849

Misc InputMappedClassifier 55.694 0.557 0.557 0.715 0.500 0.500 0.506

Avg 55.694 0.557 0.557 0.715 0.500 0.500 0.506

TABLE 9 Comparative analysis of 40 classifiers utilizing feature selection via CAE, on dataset DS2.

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC area PRC
area

Tree Random tree 88.011 0.880 0.880 0.880 0.867 0.968 0.889

Random forest 87.893 0.879 0.879 0.879 0.866 0.984 0.913

REPTree 55.255 0.550 0.553 0.550 0.499 0.925 0.613

DecisionStump 17.341 0.203 0.173 0.309 0.205 0.587 0.130

HoeffdingTree 29.076 0.341 0.291 0.268 0.224 0.754 0.289

J4B 60.422 0.602 0.604 0.603 0.558 0.946 0.715

Avg 56.333 0.575 0.563 0.581 0.536 0.860 0.591

bayes BayesNet 72.783 0.732 0.728 0.729 0.699 0.975 0.822

NaiveBayes 25.797 0.295 0.258 0.242 0.187 0.740 0.27

NaiveBayesUpdateable 25.797 0.295 0.258 0.242 0.187 0.74 0.27

Avg 41.459 0.440 0.414 0.404 0.357 0.818 0.454

functions Logistic 27.989 0.291 0.280 0.249 0.187 0.77 0.282

MultilayerPerceptron 36.445 0.358 0.364 0.353 0.285 0.819 0.385

SimpleLogistic 28.107 0.294 0.281 0.250 0.188 0.769 0.281

SMO 29.360 0.335 0.294 0.265 0.21 0.745 0.243

Avg 30.475 0.319 0.304 0.279 0.217 0.775 0.297

Lazy IBK 87.717 0.877 0.877 0.877 0.863 0.95 0.859

Kstar 62.781 0.642 0.628 0.625 0.590 0.941 0.698

LWL 23.439 0.267 0.234 0.373 0.284 0.742 0.289

Avg 57.979 0.595 0.579 0.625 0.579 0.877 0.615

Meta AdaBoostM1 17.341 0.203 0.173 0.309 0.205 0.587 0.130

AttributeSelectedClassifier 65.404 0.667 0.654 0.647 0.615 0.966 0.775

Bagging 64.425 0.642 0.644 0.642 0.602 0.953 0.718

ClassificationViaRegression 56.292 0.563 0.563 0.556 0.511 0.926 0.627

FilteredClassifier 74.623 0.745 0.746 0.744 0.716 0.977 0.863

IterativeClassifierOptimizer 34.400 0.359 0.344 0.338 0.270 0.810 0.356

LogitBoost 34.400 0.359 0.344 0.338 0.270 0.810 0.356

MultiClassClassifier 27.128 0.272 0.271 0.236 0.173 0.765 0.276

MultiClassClassifierUpdateable 13.857 0.139 0.139 0.243 0.243 0.499 0.105

RandomCommittee 87.874 0.878 0.879 0.878 0.865 0.980 0.936

(Continued)
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TABLE 9 (Continued)

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC area PRC
area

RandomizableFilteredClassifier 87.336 0.873 0.873 0.873 0.859 0.949 0.860

RandomSubSpace 74.584 0.745 0.746 0.743 0.716 0.974 0.822

Stacking 13.857 0.139 0.139 0.243 0.243 0.499 0.105

WeightedInstancesHandlerWrapper 13.857 0.139 0.139 0.243 0.243 0.499 0.105

vot 13.857 0.139 0.139 0.243 0.243 0.499 0.105

CVParameterSelection 13.857 0.139 0.139 0.243 0.243 0.499 0.105

Avg 43.318 0.437 0.433 0.469 0.438 0.762 0.455

Rules DecisionTable 65.551 0.667 0.656 0.648 0.616 0.966 0.748

JRip 45.221 0.605 0.452 0.463 0.437 0.817 0.463

OneR 63.897 0.646 0.639 0.625 0.594 0.798 0.448

PART 59.776 0.597 0.598 0.597 0.551 0.945 0.708

ZeroR 13.857 0.139 0.139 0.243 0.243 0.499 0.105

Avg 49.661 0.5308 0.4968 0.5152 0.4882 0.805 0.4944

Misc InputMappedClassifier 13.857 0.139 0.139 0.243 0.243 0.499 0.105

Avg 13.857 0.139 0.139 0.243 0.243 0.499 0.105

TABLE 10 Comparative analysis of 40 classifiers utilizing feature selection via CAE on dataset DS2.

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC
area

PRC
area

Tree Random tree 91.886 0.919 0.919 0.919 0.91 0.971 0.903

Random forest 92.170 0.922 0.922 0.922 0.913 0.991 0.947

REPTree 57.349 0.571 0.573 0.571 0.522 0.931 0.635

DecisionStump 18.183 0.14 0.182 0.243 0.135 0.596 0.149

HoeffdingTree 27.402 0.232 0.274 0.233 0.167 0.720 0.265

J4B 62.301 0.621 0.623 0.621 0.577 0.951 0.741

Avg 58.215 0.567 0.582 0.584 0.537 0.86 0.606

Bayes BayesNet 70.992 0.713 0.710 0.707 0.677 0.972 0.807

NaiveBayes 27.216 0.230 0.272 0.231 0.164 0.72 0.265

NaiveBayesUpdateable 27.216 0.230 0.272 0.231 0.164 0.72 0.265

Avg 41.808 0.391 0.418 0.389 0.335 0.804 0.445

Functions Logistic 26.590 0.145 0.266 0.155 −0.008 0.716 0.245

SGD 43.933 0.351 0.439 0.325 0.211 0.767 0.401

SimpleLogistic 26.561 0.146 0.266 0.155 0.006 0.715 0.244

SMO 29.477 0.185 0.295 0.06 0.004 0.708 0.217

Avg 31.640 0.206 0.316625 0.173 0.048 0.726 0.238

lazy IBK 91.661 0.917 0.917 0.917 0.907 0.954 0.875

Kstar 53.210 0.543 0.532 0.517 0.474 0.914 0.569

LWL 23.576 0.446 0.236 0.159 0.187 0.724 0.250

Avg 56.149 0.635 0.561 0.531 0.522 0.864 0.564

Meta AdaBoostM1 18.183 0.140 0.182 0.243 0.135 0.596 0.149

(Continued)
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TABLE 10 (Continued)

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC
area

PRC
area

AttributeSelectedClassifier 65.404 0.667 0.654 0.647 0.615 0.966 0.775

Bagging 68.036 0.677 0.68 0.678 0.641 0.961 0.754

ClassificationViaRegression 58.896 0.583 0.589 0.581 0.535 0.934 0.643

FilteredClassifier 73.106 0.730 0.731 0.728 0.699 0.975 0.848

IterativeClassifierOptimizer 33.940 0.396 0.339 0.316 0.266 0.785 0.342

LogitBoost 33.940 0.396 0.339 0.316 0.266 0.785 0.342

MultiClassClassifier 25.944 0.142 0.259 0.152 0.053 0.715 0.239

MultiClassClassifierUpdateable 13.857 0.139 0.139 0.243 0.499 0.499 0.105

RandomCommittee 91.935 0.920 0.919 0.919 0.910 0.987 0.962

RandomizableFilteredClassifier 90.781 0.908 0.908 0.908 0.897 0.957 0.881

RandomSubSpace 76.874 0.770 0.769 0.767 0.742 0.978 0.849

Stacking 13.857 0.139 0.139 0.243 0.139 0.499 0.105

WeightedInstancesHandlerWrapper 55.694 0.557 0.557 0.715 0.500 0.500 0.506

vot 13.857 0.139 0.139 0.243 0.139 0.499 0.105

CVParameterSelection 13.857 0.139 0.139 0.243 0.139 0.499 0.105

Avg 46.760 0.465 0.467 0.496 0.448 0.758 0.470

Rules DecisionTable 65.394 0.668 0.654 0.645 0.614 0.967 0.755

JRip 44.969 0.625 0.450 0.460 0.439 0.808 0.453

OneR 63.897 0.646 0.639 0.625 0.594 0.798 0.448

PART 62.771 0.625 0.628 0.625 0.582 0.950 0.738

ZeroR 13.857 0.139 0.139 0.243 0.139 0.499 0.105

Avg 50.178 0.540 0.502 0.519 0.476 0.804 0.499

Misc InputMappedClassifier 13.857 0.139 0.139 0.243 0.139 0.499 0.105

Avg 13.857 0.139 0.139 0.243 0.139 0.499 0.105

TABLE 11 Comparative analysis of 40 classifiers utilizing feature selection via GRAE, on dataset DS2.

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC area PRC
area

Tree Random tree 93.668 0.937 0.937 0.937 0.930 0.974 0.913

Random forest 93.844 0.938 0.938 0.938 0.931 0.992 0.957

REPTree 61.460 0.611 0.615 0.611 0.568 0.942 0.678

DecisionStump 17.341 0.203 0.173 0.309 0.205 0.587 0.130

HoeffdingTree 30.779 0.353 0.308 0.297 0.245 0.764 0.308

LMT 77.745 0.778 0.777 0.777 0.752 0.976 0.852

J4B 67.165 0.672 0.672 0.67 0.634 0.957 0.772

Avg 63.143 0.641 0.631 0.648 0.609 0.884 0.651

Bayes BayesNet 72.959 0.731 0.730 0.729 0.699 0.975 0.828

NaiveBayes 27.001 0.307 0.270 0.248 0.197 0.746 0.295

NaiveBayesUpdateable 27.001 0.307 0.270 0.715 0.197 0.746 0.295

Avg 42.320 0.448 0.423 0.564 0.364 0.822 0.477

(Continued)
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TABLE 11 (Continued)

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC area PRC
area

Functions Logistic 30.847 0.253 0.308 0.322 0.279 0.763 0.301

SimpleLogistic 30.739 0.251 0.307 0.317 0.274 0.763 0.301

SMO 32.530 0.401 0.325 0.308 0.247 0.748 0.262

MultilayerPerceptron 43.305 0.426 0.433 0.418 0.36 0.857 0.467

Avg 88.665 0.888 0.886 0.886 0.771 0.910 0.887

Lazy IBK 93.550 0.936 0.936 0.935 0.928 0.958 0.886

Kstar 67.009 0.67 0.67 0.665 0.631 0.955 0.734

LWL 23.791 0.276 0.238 0.38 0.292 0.756 0.303

Avg 88.652 0.891 0.886 0.885 0.773 0.927 0.912

Meta AdaBoostM1 17.341 0.203 0.173 0.309 0.205 0.587 0.130

AttributeSelectedClassifier 65.404 0.667 0.654 0.647 0.615 0.966 0.775

Bagging 70.630 0.704 0.706 0.704 0.671 0.967 0.780

ClassificationViaRegression 62.634 0.621 0.626 0.620 0.579 0.944 0.680

FilteredClassifier 75.543 0.754 0.755 0.754 0.727 0.978 0.873

IterativeClassifierOptimizer 35.036 0.347 0.350 0.340 0.269 0.813 0.381

LogitBoost 35.036 0.347 0.350 0.340 0.269 0.813 0.381

MultiClassClassifier 30.295 0.286 0.303 0.320 0.275 0.762 0.300

MultiClassClassifierUpdateable 13.857 0.139 0.139 0.243 0.243 0.499 0.105

RandomCommittee 93.707 0.937 0.937 0.937 0.930 0.987 0.965

RandomizableFilteredClassifier 90.634 0.906 0.906 0.906 0.896 0.959 0.885

RandomSubSpace 77.432 0.774 0.774 0.773 0.748 0.977 0.848

Stacking 13.857 0.139 0.139 0.243 0.243 0.499 0.105

WeightedInstancesHandlerWrapper 13.857 0.139 0.139 0.243 0.243 0.499 0.105

vot 13.857 0.139 0.139 0.243 0.243 0.499 0.105

CVParameterSelection 13.857 0.139 0.139 0.243 0.243 0.499 0.105

Avg 45.186 0.452 0.451 0.491 0.462 0.765 0.470

Rules DecisionTable 65.551 0.667 0.656 0.648 0.616 0.966 0.748

JRip 52.329 0.641 0.523 0.536 0.506 0.861 0.533

OneR 63.897 0.646 0.639 0.625 0.594 0.798 0.448

PART 66.901 0.671 0.669 0.668 0.631 0.956 0.764

ZeroR 13.857 0.139 0.139 0.243 0.243 0.499 0.105

Avg 81.649 0.823 0.816 0.844 0.713 0.829 0.821

Misc InputMappedClassifier 13.857 0.139 0.139 0.243 0.243 0.499 0.105

Avg 55.694 0.557 0.557 0.715 0.500 0.500 0.506

TABLE 12 Comparative analysis of 40 classifiers utilizing feature selection via IGAE, on dataset DS2.

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC
area

PRC
area

Tree Random tree 93.707 0.937 0.937 0.937 0.930 0.972 0.908

Random forest 93.707 0.937 0.937 0.937 0.930 0.993 0.959

(Continued)
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TABLE 12 (Continued)

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC
area

PRC
area

REPTree 59.238 0.591 0.592 0.509 0.543 0.935 0.652

DecisionStump 18.183 0.140 0.182 0.243 0.135 0.596 0.149

HoeffdingTree 26.893 0.249 0.269 0.214 0.174 0.732 0.272

LMT 78.606 0.788 0.786 0.786 0.762 0.974 0.859

J4B 67.175 0.671 0.672 0.671 0.633 0.956 0.781

Avg 62.501 0.616 0.625 0.625 0.586 0.879 0.654

Bayes BayesNet 72.998 0.731 0.73 0.728 0.699 0.973 0.821

NaiveBayes 71.824 0.723 0.718 0.714 0.685 0.965 0.789

NaiveBayesUpdateable 26.893 0.251 0.269 0.214 0.175 0.732 0.272

Avg 57.238 0.568 0.572 0.552 0.519 0.890 0.633

Functions Logistic 27.725 0.072 0.277 0.035 0.008 0.731 0.245

SimpleLogistic 27.676 0.078 0.277 0.032 0.01 0.73 0.244

SMO 28.831 0.157 0.288 0.064 0.051 0.713 0.213

MultilayerPerceptron 41.837 0.423 0.418 0.412 0.348 0.839 0.431

Avg 88.665 0.888 0.886 0.886 0.771 0.910 0.887

Lazy IBK 93.198 0.932 0.932 0.932 0.924 0.951 0.871

Kstar 95.649 0.957 0.956 0.956 0.912 0.951 0.994

LWL 23.791 0.345 0.238 0.058 0.009 0.739 0.267

Avg 70.879 0.744 0.706 0.648 0.642 0.880 0.710

Meta AdaBoostM1 18.183 0.140 0.182 0.243 0.135 0.596 0.149

AttributeSelectedClassifier 65.404 0.667 0.654 0.647 0.615 0.966 0.775

Bagging 71.207 0.701 0.712 0.701 0.677 0.967 0.786

ClassificationViaRegression 64.083 0.634 0.641 0.634 0.594 0.943 0.695

FilteredClassifier 77.363 0.771 0.774 0.771 0.746 0.979 0.885

IterativeClassifierOptimizer 36.191 0.386 0.362 0.344 0.286 0.799 0.306

LogitBoost 36.191 0.386 0.362 0.344 0.286 0.799 0.306

MultiClassClassifier 27.500 0.047 0.275 0.009 −0.004 0.731 0.244

MultiClassClassifierUpdateable 13.857 0.139 0.139 0.243 0.243 0.499 0.105

RandomCommittee 93.746 0.937 0.937 0.937 0.903 0.988 0.968

RandomizableFilteredClassifier 91.231 0.912 0.912 0.912 0.902 0.955 0.878

RandomSubSpace 80.456 0.806 0.805 0.803 0.781 0.981 0.878

Stacking 13.857 0.139 0.139 0.243 0.243 0.105 0.105

WeightedInstancesHandlerWrapper 13.857 0.139 0.139 0.243 0.243 0.105 0.105

vot 13.857 0.139 0.139 0.243 0.243 0.499 0.105

CVParameterSelection 13.857 0.139 0.139 0.243 0.243 0.499 0.105

Avg 45.677 0.443 0.456 0.473 0.447 0.713 0.468

Rules DecisionTable 65.394 0.668 0.654 0.645 0.614 0.967 0.755

JRip 48.375 0.657 0.484 0.494 0.476 0.826 0.492

OneR 63.89 0.646 0.639 0.625 0.594 0.798 0.448

PART 67.381 0.673 0.674 0.673 0.636 0.957 0.783

(Continued)
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TABLE 12 (Continued)

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC
area

PRC
area

ZeroR 13.857 0.139 0.139 0.243 0.243 0.499 0.105

Avg 51.781 0.556 0.518 0.536 0.5126 0.809 0.516

Misc InputMappedClassifier 13.857 0.139 0.139 0.243 0.243 0.499 0.105

Avg 13.857 0.139 0.139 0.243 0.243 0.499 0.105

TABLE 13 Comparative analysis of 40 classifiers utilizing feature selection via PC, on dataset DS2.

Learning
S

Classifier Accuracy Precision Recall F-
measure

MCC ROC area PRC
area

Tree Random tree 69.436 0.699 0.694 0.694 0.661 0.960 0.810

Random forest 69.397 0.699 0.694 0.694 0.661 0.965 0.812

REPTree 58.103 0.588 0.581 0.582 0.535 0.941 0.679

DecisionStump 17.341 0.203 0.173 0.309 0.205 0.587 0.130

HoeffdingTree 29.536 0.352 0.295 0.274 0.203 0.765 0.293

LMT 61.391 0.619 0.614 0.614 0.572 0.953 0.736

J4B 59.023 0.597 0.59 0.591 0.545 0.946 0.706

Avg 52.032 0.536 0.520 0.536 0.487 0.873 0.595

Bayes BayesNet 30.133 0.332 0.301 0.295 0.233 0.779 0.313

NaiveBayes 27.353 0.374 0.274 0.258 0.219 0.713 0.282

NaiveBayesUpdateable 27.353 0.374 0.274 0.258 0.219 0.713 0.282

Avg 28.280 0.306 0.283 0.273 0.223 0.735 0.292

Functions Logistic 26.629 0.308 0.266 0.245 0.185 0.748 0.292

SimpleLogistic 26.688 0.311 0.267 0.243 0.186 0.745 0.285

SMO 30.309 0.345 0.303 0.291 0.231 0.746 0.255

MultilayerPerceptron 42.464 0.447 0.425 0.429 0.367 0.840 0.469

Avg 88.665 0.888 0.886 0.886 0.771 0.910 0.887

Lazy IBK 69.436 0.699 0.694 0.693 0.661 0.96 0.809

Kstar 59.630 0.617 0.596 0.602 0.559 0.941 0.678

LWL 24.016 0.261 0.24 0.372 0.286 0.748 0.293

Avg 88.652 0.891 0.886 0.885 0.773 0.922 0.913

Meta AdaBoostM1 17.341 0.203 0.173 0.309 0.205 0.587 0.13

AttributeSelectedClassifier 48.990 0.500 0.490 0.488 0.433 0.918 0.597

Bagging 61.489 0.622 0.615 0.617 0.574 0.952 0.727

ClassificationViaRegression 55.744 0.597 0.557 0.559 0.502 0.937 0.659

FilteredClassifier 53.131 0.545 0.531 0.534 0.482 0.932 0.643

IterativeClassifierOptimizer 68.751 0.316 0.312 0.294 0.231 0.807 0.361

LogitBoost 31.248 0.316 0.312 0.294 0.231 0.807 0.361

MultiClassClassifier 26.668 0.125 0.267 0.182 0.121 0.704 0.273

MultiClassClassifierUpdateable 13.857 0.139 0.139 0.243 0.243 0.499 0.105

RandomCommittee 69.358 0.698 0.694 0.693 0.606 0.965 0.825

RandomizableFilteredClassifier 68.408 0.688 0.684 0.683 0.649 0.958 0.825

(Continued)
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TABLE 13 (Continued)

Learning
S

Classifier Accuracy Precision Recall F-
measure

MCC ROC area PRC
area

RandomSubSpace 51.712 0.537 0.517 0.517 0.468 0.903 0.563

Stacking 13.857 0.139 0.139 0.243 0.243 0.499 0.105

WeightedInstancesHandlerWrapper 13.857 0.139 0.139 0.243 0.243 0.499 0.105

vot 13.857 0.139 0.139 0.243 0.243 0.499 0.105

CVParameterSelection 13.857 0.139 0.139 0.243 0.243 0.499 0.105

Avg 38.883 0.364 0.365 0.399 0.361 0.750 0.404

Rules DecisionTable 50.166 0.531 0.502 0.507 0.455 0.913 0.568

JRip 46.604 0.637 0.466 0.493 0.406 0.857 0.52

OneR 21.364 0.191 0.214 0.199 0.110 0.558 0.132

PART 58.025 0.590 0.580 0.581 0.534 0.944 0.691

ZeroR 13.857 0.139 0.139 0.243 0.243 0.499 0.105

Avg 38.003 0.417 0.380 0.404 0.360 0.754 0.402

Misc InputMappedClassifier 13.857 0.139 0.139 0.243 0.243 0.499 0.105

Avg 55.694 0.557 0.557 0.715 0.500 0.500 0.506

TABLE 14 Comparative analysis of 40 classifiers utilizing feature selection via CAE, on dataset DS3.

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC area PRC
area

Tree Random tree 87.785 0.878 0.878 0.878 0.745 0.874 0.835

Random forest 92.219 0.922 0.922 0.922 0.837 0.972 0.972

REPTree 89.350 0.893 0.894 0.893 0.776 0.942 0.930

DecisionStump 75.527 0.753 0.755 0.75 0.476 0.747 0.729

HoeffdingTree 71.897 0.720 0.719 0.72 0.414 0.753 0.754

J4B 90.023 0.900 0.900 0.900 0.790 0.927 0.903

Avg 84.467 0.844 0.844 0.843 0.673 0.869 0.853

Bayes BayesNet 86.589 0.866 0.866 0.865 0.717 0.938 0.942

NaiveBayes 72.397 0.820 0.724 0.721 0.547 0.924 0.913

NaiveBayesUpdateable 72.397 0.820 0.724 0.721 0.547 0.924 0.913

Avg 77.128 0.835 0.771 0.769 0.603 0.928 0.667

Functions Logistic 88.133 0.881 0.881 0.880 0.750 0.945 0.944

MultilayerPerceptron 88.111 0.881 0.881 0.881 0.750 0.938 0.939

SGD 87.589 0.877 0.876 0.874 0.738 0.860 0.825

SimpleLogistic 87.980 0.880 0.880 0.879 0.746 0.944 0.944

SMO 85.807 0.861 0.858 0.855 0.701 0.837 0.801

Avg 87.524 0.876 0.875 0.873 0.737 0.904 0.890

Lazy IBK 87.893 0.879 0.879 0.879 0.746 0.886 0.855

Kstar 89.284 0.895 0.893 0.891 0.775 0.950 0.952

LWL 79.069 0.794 0.791 0.783 0.555 0.869 0.859

Avg 85.416 0.856 0.854 0.851 0.692 0.901 8,667

Meta AdaBoostM1 86.046 0.860 0.860 0.860 0.707 0.929 0.929

(Continued)
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TABLE 14 (Continued)

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC area PRC
area

AttributeSelectedClassifier 88.089 0.881 0.881 0.880 0.749 0.930 0.910

Bagging 90.415 0.904 0.904 0.904 0.799 0.963 0.964

ClassificationViaRegression 88.459 0.884 0.885 0.884 0.757 0.949 0.948

FilteredClassifier 89.828 0.898 0.898 0.898 0.786 0.938 0.919

IterativeClassifierOptimizer 87.937 0.879 0.879 0.879 0.746 0.941 0.941

LogitBoost 87.937 0.879 0.879 0.879 0.746 0.941 0.941

MultiClassClassifier 88.133 0.881 0.881 0.880 0.750 0.945 0.944

MultiClassClassifierUpdateable 87.589 0.877 0.876 0.874 0.738 0.806 0.825

RandomCommittee 91.632 0.916 0.916 0.916 0.824 0.960 0.951

RandomizableFilteredClassifier 85.068 0.851 0.851 0.851 0.688 0.858 0.822

RandomSubSpace 90.110 0.902 0.901 0.900 0.792 0.961 0.962

Stacking 60.595 0.606 0.606 0.755 0.755 0.499 0.522

WeightedInstancesHandlerWrapper 60.595 0.606 0.606 0.755 0.755 0.499 0.522

vot 60.595 0.606 0.606 0.755 0.755 0.499 0.522

CVParameterSelection 60.595 0.606 0.606 0.755 0.755 0.499 0.522

Avg 81.476 0.814 0.814 0.851 0.756 0.825 0.821

Rules DecisionTable 65.551 0.667 0.656 0.648 0.616 0.966 0.748

JRip 45.224 0.605 0.452 0.463 0.437 0.817 0.463

OneR 63.897 0.646 0.639 0.625 0.594 0.798 0.448

PART 59.776 0.597 0.598 0.597 0.551 0.945 0.708

ZeroR 13.857 0.139 0.139 0.243 0.243 0.499 0.105

Avg 49.661 0.530 0.496 0.515 0.488 0.805 0.494

Misc InputMappedClassifier 60.595 0.606 0.606 0.755 0.243 0.499 0.105

Avg 60.595 0.606 0.606 0.755 0.243 0.499 0.105

TABLE 15 Comparative analysis of 40 classifiers utilizing feature selection via CAE, on dataset DS3.

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC
area

PRC
area

Tree Random tree 90.263 0.903 0.903 0.903 0.797 0.899 0.864

Random forest 94.262 0.943 0.943 0.942 0.879 0.981 0.981

REPTree 91.045 0.911 0.911 0.911 0.812 0.945 0.927

DecisionStump 79.091 0.794 0.791 0.792 0.568 0.778 0.744

HoeffdingTree 82.764 0.827 0.828 0.827 0.638 0.865 0.848

J4B 91.871 0.919 0.919 0.919 0.829 0.928 0.898

Avg 88.216 0.882 0.882 0.882 0.753 0.899 0.876

Bayes BayesNet 88.350 0.884 0.884 0.882 0.754 0.946 0.95

NaiveBayes 86.763 0.867 0.868 0.867 0.721 0.922 0.911

NaiveBayesUpdateable 86.763 0.867 0.868 0.867 0.721 0.922 0.911

Avg 87.292 0.872 0.873 0.872 0.732 0.93 0.924

Functions Logistic 89.632 0.897 0.896 0.895 0.782 0.952 0.949

(Continued)
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TABLE 15 (Continued)

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC
area

PRC
area

SGD 89.806 0.899 0.898 0.897 0.786 0.884 0.853

MultilayerPerceptron 89.567 0.896 0.896 0.896 0.782 0.941 0.937

SimpleLogistic 89.611 0.896 0.896 0.895 0.781 0.952 0.949

SMO 87.980 0.882 0.88 0.878 0.747 0.861 0.828

Avg 89.319 0.894 0.893 0.892 0.775 0.918 0.903

Lazy IBK 89.654 0.896 0.897 0.896 0.782 0.896 0.867

Kstar 90.436 0.91 0.904 0.902 0.802 0.954 0.955

LWL 79.091 0.794 0.791 0.792 0.568 0.893 0.892

Avg 86.394 0.866 0.864 0.863 0.717 0.914 0.904

Meta AdaBoostM1 90.197 0.902 0.902 0.902 0.794 0.957 0.957

AttributeSelectedClassifier 91.436 0.914 0.914 0.914 0.82 0.939 0.918

Bagging 92.501 0.925 0.925 0.925 0.843 0.969 0.965

ClassificationViaRegression 91.002 0.910 0.911 0.911 0.811 0.961 0.958

FilteredClassifier 91.545 0.915 0.915 0.915 0.822 0.931 0.912

IterativeClassifierOptimizer 90.197 0.902 0.902 0.901 0.794 0.959 0.959

LogitBoost 90.197 0.902 0.902 0.901 0.794 0.959 0.959

MultiClassClassifier 89.632 0.897 0.896 0.895 0.782 0.952 0.949

MultiClassClassifierUpdateable 89.806 0.899 0.898 0.897 0.786 0.884 0.853

RandomCommittee 93.284 0.933 0.933 0.933 0.859 0.971 0.965

RandomizableFilteredClassifier 84.938 0.85 0.849 0.849 0.685 0.856 0.819

RandomSubSpace 91.958 0.92 0.92 0.919 0.831 0.972 0.972

Stacking 60.595 0.606 0.606 0.606 0.755 0.499 0.522

WeightedInstancesHandlerWrapper 60.595 0.606 0.606 0.606 0.755 0.499 0.522

vot 60.595 0.606 0.606 0.606 0.755 0.499 0.522

CVParameterSelection 60.595 0.606 0.606 0.606 0.755 0.499 0.522

Avg 83.067 0.830 0.83 0.830 0.790 0.831 0.829

Rules DecisionTable 89.611 0.897 0.896 0.895 0.781 0.945 0.945

JRip 91.784 0.918 0.918 0.918 0.827 0.926 0.916

OneR 78.330 0.781 0.783 0.783 0.541 0.766 0.721

PART 91.871 0.919 0.919 0.919 0.829 0.943 0.924

ZeroR 60.595 0.606 0.606 0.755 0.499 0.499 0.522

Avg 82.438 0.824 0.824 0.854 0.6954 0.8158 0.805

Misc InputMappedClassifier 60.595 0.606 0.606 0.755 0.499 0.499 0.522

Avg 60.595 0.606 0.606 0.755 0.499 0.499 0.522

TABLE 16 Comparative analysis of 40 classifiers utilizing feature selection via GRAE, on dataset DS3.

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC area PRC
area

Tree Random tree 91.567 0.916 0.916 0.916 0.823 0.912 0.884

Random forest 93.740 0.937 0.937 0.937 0.869 0.977 0.977

(Continued)
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TABLE 16 (Continued)

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC area PRC
area

REPTree 91.567 0.916 0.916 0.916 0.823 0.912 0.884

DecisionStump 78.048 0.789 0.778 0.775 0.532 0.773 0.758

HoeffdingTree 77.483 0.773 0.775 0.773 0.523 0.798 0.794

LMT 92.805 0.928 0.928 0.928 0.849 0.962 0.955

J4B 92.110 0.921 0.921 0.921 0.834 0.949 0.935

Avg 88.188 0.881 0.881 0.880 0.750 0.897 0.857

Bayes BayesNet 91.523 0.916 0.915 0.915 0.822 0.971 0.971

NaiveBayes 76.505 0.838 0.765 0.765 0.603 0.949 0.940

NaiveBayesUpdateable 76.505 0.838 0.765 0.765 0.603 0.949 0.940

Avg 81.511 0.864 0.815 0.815 0.676 0.956 0.950

Functions Logistic 91.436 0.914 0.914 0.914 0.821 0.967 0.964

SimpleLogistic 91.371 0.914 0.914 0.913 0.818 0.967 0.963

SMO 88.154 0.885 0.882 0.879 0.752 0.862 0.83

MultilayerPerceptron 92.545 0.926 0.925 0.925 0.844 0.963 0.959

Avg 88.665 0.888 0.886 0.886 0.771 0.910 0.887

Lazy IBK 90.915 0.909 0.909 0.909 0.909 0.909 0.885

Kstar 91.588 0.921 0.916 0.914 0.827 0.971 0.972

LWL 77.874 0.777 0.779 0.775 0.528 0.855 0.858

Avg 88.652 0.891 0.886 0.885 0.773 0.927 0.913

Meta AdaBoostM1 77.874 0.777 0.779 0.775 0.528 0.855 0.858

AttributeSelectedClassifier 92.219 0.922 0.922 0.922 0.837 0.951 0.938

Bagging 93.066 0.931 0.931 0.930 0.854 0.974 0.973

ClassificationViaRegression 90.893 0.909 0.909 0.908 0.808 0.965 0.962

FilteredClassifier 92.916 0.929 0.929 0.929 0.851 0.942 0.928

IterativeClassifierOptimizer 90.806 0.908 0.908 0.907 0.807 0.963 0.963

LogitBoost 90.806 0.908 0.908 0.907 0.807 0.963 0.963

MultiClassClassifier 91.436 0.914 0.914 0.914 0.802 0.967 0.964

MultiClassClassifierUpdateable 90.697 0.908 0.907 0.906 0.804 0.895 0.866

RandomCommittee 93.544 0.935 0.935 0.935 0.864 0.961 0.951

RandomizableFilteredClassifier 90.197 0.902 0.902 0.902 0.794 0.904 0.880

RandomSubSpace 92.653 0.927 0.927 0.926 0.846 0.975 0.975

Stacking 60.595 0.606 0.606 0.755 0.755 0.499 0.522

WeightedInstancesHandlerWrapper 60.595 0.606 0.606 0.755 0.755 0.499 0.522

vot 60.595 0.606 0.606 0.755 0.755 0.499 0.522

CVParameterSelection 60.595 0.606 0.606 0.755 0.755 0.499 0.522

Avg 83.093 0.830 0.830 0.867 0.752 0.831 0.831

Rules DecisionTable 90.415 0.904 0.904 0.904 0.798 0.95 0.951

JRip 91.154 0.911 0.912 0.911 0.814 0.925 0.917

OneR 78.330 0.781 0.783 0.782 0.541 0.766 0.72

PART 93.001 0.93 0.93 0.93 0.853 0.969 0.963

(Continued)
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TABLE 16 (Continued)

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC area PRC
area

ZeroR 60.595 0.606 0.606 0.755 0.755 0.499 0.522

Avg 81.649 0.822 0.816 0.846 0.713 0.829 0.821

Misc InputMappedClassifier 60.595 0.606 0.606 0.755 0.755 0.499 0.522

55.694 0.557 0.557 0.715 0.505 0.506 0.506

TABLE 17 Comparative analysis of 40 classifiers utilizing feature selection via IGAE, on dataset DS3.

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC
area

PRC
area

Tree Random tree 91.154 0.912 0.912 0.912 0.815 0.908 0.876

Random forest 94.631 0.946 0.946 0.946 0.887 0.983 0.982

REPTree 59.238 0.925 0.925 0.925 0.842 0.956 0.945

DecisionStump 78.048 0.78 0.78 0.775 0.532 0.773 0.758

HoeffdingTree 85.785 0.858 0.858 0.856 0.772 0.883 0.865

LMT 92.719 0.927 0.927 0.927 0.847 0.965 0.962

J4B 92.262 0.923 0.923 0.923 0.838 0.934 0.916

Avg 84.834 0.895 0.895 0.894 0.783 0.914 0.901

Bayes BayesNet 88.502 0.885 0.885 0.884 0.758 0.953 0.955

NaiveBayes 88.22 0.885 0.882 0.88 0.753 0.946 0.936

NaiveBayesUpdateable 88.22 0.885 0.882 0.88 0.753 0.946 0.936

Avg 88.314 0.885 0.883 0.881 0.754 0.948 0.943

Functions Logistic 90.697 0.907 0.907 0.906 0.804 0.963 0.961

SimpleLogistic 90.632 0.906 0.906 0.906 0.803 0.963 0.961

SMO 88.002 0.883 0.88 0.878 0.748 0.861 0.828

MultilayerPerceptron 90.806 0.908 0.908 0.908 0.807 0.958 0.954

Avg 88.665 0.888 0.886 0.886 0.771 0.910 0.887

Lazy IBK 90.241 0.902 0.902 0.902 0.795 0.9 0.872

Kstar 89.980 0.905 0.9 0.898 0.793 0.951 0.952

LWL 78.417 0.783 0.784 0.78 0.54 0.862 0.867

Avg 86.213 0.863 0.862 0.86 0.709 0.904 0.897

Meta AdaBoostM1 89.611 0.896 0.896 0.896 0.781 0.957 0.957

AttributeSelectedClassifier 92.240 0.922 0.922 0.922 0.837 0.947 0.93

Bagging 93.631 0.936 0.936 0.936 0.866 0.974 0.973

ClassificationViaRegression 92.501 0.925 0.925 0.925 0.843 0.967 0.963

FilteredClassifier 92.479 0.925 0.925 0.925 0.842 0.935 0.919

IterativeClassifierOptimizer 90.980 0.901 0.901 0.909 0.801 0.964 0.964

LogitBoost 90.980 0.901 0.901 0.909 0.811 0.964 0.964

MultiClassClassifier 90.697 0.907 0.907 0.906 0.804 0.963 0.961

MultiClassClassifierUpdateable 90.349 0.904 0.903 0.903 0.797 0.891 0.891

RandomCommittee 94.196 0.942 0.942 0.942 0.878 0.978 0.973

RandomizableFilteredClassifier 83.438 0.834 0.834 0.834 0.652 0.839 0.802

(Continued)
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TABLE 17 (Continued)

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC
area

PRC
area

RandomSubSpace 92.979 0.934 0.934 0.934 0.852 0.975 0.975

Stacking 60.595 0.606 0.606 0.755 0.755 0.499 0.522

WeightedInstancesHandlerWrapper 60.595 0.606 0.606 0.755 0.755 0.499 0.522

vot 60.595 0.606 0.606 0.755 0.755 0.499 0.522

CVParameterSelection 60.595 0.606 0.606 0.755 0.755 0.499 0.522

Avg 83.529 0.833 0.835 0.872 0.799 0.834 0.835

Rules DecisionTable 89.676 0.898 0.897 0.895 0.783 0.946 0.946

JRip 92.436 0.924 0.924 0.924 0.841 0.926 0.912

OneR 78.330 0.781 0.783 0.782 0.541 0.766 0.72

PART 92.349 0.923 0.923 0.923 0.839 0.96 0.951

ZeroR 60.595 0.606 0.606 0.755 0.755 0.499 0.522

Avg 82.677 0.826 0.826 0.855 0.751 0.819 0.812

Misc InputMappedClassifier 60.595 0.606 0.606 0.755 0.755 0.499 0.522

Avg 60.595 0.606 0.606 0.755 0.755 0.499 0.522

TABLE 18 Comparative analysis of 40 classifiers utilizing feature selection via PC, on dataset DS3.

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC area PRC
area

Tree Random tree 89.567 0.895 0.896 0.896 0.781 0.895 0.863

Random forest 92.784 0.928 0.928 0.928 0.848 0.971 0.971

REPTree 90.154 0.901 0.902 0.901 0.793 0.939 0.926

DecisionStump 76.266 0.811 0.763 0.735 0.522 0.693 0.699

HoeffdingTree 87.068 0.871 0.871 0.870 0.728 0.909 0.891

LMT 61.391 0.619 0.614 0.614 0.572 0.953 0.736

J4B 91.132 0.911 0.911 0.911 0.814 0.931 0.911

Avg 84.052 0.847 0.840 0.836 0.722 0.898 0.714

Bayes BayesNet 87.198 0.873 0.872 0.877 0.713 0.935 0.939

NaiveBayes 87.198 0.873 0.872 0.877 0.713 0.934 0.924

NaiveBayesUpdateable 87.198 0.873 0.872 0.879 0.713 0.934 0.924

Avg 87.198 0.873 0.872 0.87 0.599 0.934 0.929

Functions Logistic 88.958 0.889 0.89 0.889 0.767 0.952 0.952

SimpleLogistic 88.567 0.886 0.886 0.884 0.759 0.952 0.949

SMO 86.742 0.867 0.867 0.865 0.721 0.847 0.812

MultilayerPerceptron 89.611 0.896 0.896 0.896 0.782 0.943 0.943

88.665 0.888 0.886 0.886 0.771 0.910 0.888

Lazy IBK 89.437 0.894 0.894 0.894 0.777 0.895 0.873

Kstar 88.611 0.893 0.886 0.883 0.765 0.938 0.941

LWL 76.266 0.811 0.763 0.735 0.522 0.894 0.893

Avg 88.652 0.891 0.886 0.885 0.773 0.927 0.912

Meta AdaBoostM1 87.524 0.875 0.875 0.874 0.737 0.94 0.942

(Continued)
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TABLE 18 (Continued)

Learning
strategy

Classifier Accuracy Precision Recall F-
measure

MCC ROC area PRC
area

AttributeSelectedClassifier 89.458 0.895 0.895 0.894 0.778 0.934 0.918

Bagging 91.588 0.916 0.916 0.916 0.823 0.962 0.961

ClassificationViaRegression 88.893 0.890 0.889 0.888 0.766 0.942 0.939

FilteredClassifier 90.697 0.907 0.907 0.907 0.804 0.935 0.92

IterativeClassifierOptimizer 89.067 0.891 0.891 0.89 0.707 0.949 0.951

LogitBoost 89.067 0.891 0.891 0.89 0.707 0.949 0.951

MultiClassClassifier 88.958 0.890 0.889 0.889 0.767 0.952 0.952

MultiClassClassifierUpdateable 88.133 0.883 0.881 0.88 0.765 0.864 0.831

RandomCommittee 92.110 0.921 0.921 0.921 0.834 0.959 0.95

RandomizableFilteredClassifier 86.655 0.866 0.867 0.866 0.772 0.871 0.843

RandomSubSpace 91.219 0.913 0.912 0.911 0.816 0.964 0.966

Stacking 60.595 0.606 0.606 0.755 0.755 0.499 0.522

WeightedInstancesHandlerWrapper 60.595 0.606 0.606 0.755 0.755 0.499 0.522

vot 60.595 0.606 0.606 0.755 0.755 0.499 0.522

CVParameterSelection 60.595 0.606 0.606 0.755 0.755 0.499 0.522

Avg 82.234 0.822 0.822 0.859 0.775 0.826 0.825

Rules DecisionTable 89.241 0.892 0.892 0.892 0.773 0.935 0.937

JRip 90.306 0.903 0.903 0.902 0.796 0.906 0.896

OneR 74.570 0.743 0.746 0.742 0.458 0.723 0.679

PART 89.915 0.899 0.899 0.898 0.788 0.944 0.934

ZeroR 60.595 0.606 0.606 0.755 0.755 0.499 0.522

Avg 80.925 0.808 0.809 0.837 0.714 0.801 0.793

Misc InputMappedClassifier 60.595 0.606 0.606 0.755 0.755 0.499 0.522

Avg 55.694 0.557 0.557 0.715 0.055 0.505 0.506

TABLE 19 Best classifier with respect to the evaluation metric and the dataset.

Dataset Accuracy Precision Recall MCC F-measure ROC area

DS1 IBK, RC RC, RF RF RF RT RT

DS2 RT, RF RT, RF RT, RF RT, RF RT, RF RF, RF

DS3 RF RF RF RF RF, RepTREE RF, LOGISTIC

Besides, when focusing solely on optimizing the precision
metric through a strategic approach perspective, adopting the tree
learning strategy can be highly effective.

Table 11 presents the results of applying 40 classifiers to the
phishing website dataset (DS2), focusing on recall and MCC.

According to Table 11, the Random Tree classifier performs
exceptionally well on the Recall metric. At the same time, the
Random Forest model achieves the best MCC among all considered
classification models.

Furthermore, Trees prove themselves to be an exceptional
learning strategy, producing superior output compared to seven
alternative strategies from both recall and MCC perspectives.

The results obtained from the 40 classifiers applied to
the phishing website dataset (DS2) for the recall and MCC
metrics are presented in Table 12. Random tree classifier
demonstrates superior recall, while the random forest and
the random tree stand out with exceptional performance
on MCC among the classification models considered.
Also, compared to the seven learning strategies under
review, Trees shows better results for both the Recall and
MCC measures.

Additionally, these two classifiers have been most effective on
this dataset, as indicated by their respective evaluation scores in
Table 12.
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The accuracy and precision metrics for the phishing dataset
(DS2) were evaluated using 40 classifiers, and the results are
presented in Table 13.

From the table, it is evident that the IBK model under the
lazy learning strategy, along with the random tree model under
the tree learning approach, achieved the highest accuracy and
precision values.

Furthermore, based on the findings in Table 13 regarding
optimizing the precision metric for the Learning Strategy factor,
Tree Learning should be selected for its superior performance.

Table 14 displays the results of forty classifiers applied to a
dataset (DS3) containing phishing websites. The evaluation metrics
were F-measure and ROC area. Among these, the random forest
classifier showed exceptional performance in both F-measure and
ROC, compared with all seven learning strategies under scrutiny.
Additionally, Trees displayed better outcomes than others on
both measures.

From Table 14, the scores for each evaluation method
indicate that, among the classifiers tested, they were most
efficient on this dataset when compared with the other methods
employed herein.

The results of running 40 classifiers on the phishing website
dataset (DS3) are shown in Table 15, including F-measure and
ROC metrics. According to the table, the random forest classifier
outperforms other classification models on both F-measure and
ROC for this dataset.

Additionally, Trees is the most effective learning strategy for
achieving high marks on both evaluation measures among the
seven strategies considered here.

When 40 classifiers were applied to the phishing website
dataset (DS3), Table 16 shows the results for both the F-measure
and ROC metrics. According to this table, among the considered
classification models, the random forest classifier achieves superior
results in terms of F-measure and ROC on the same dataset.
Besides, Trees, as a learning strategy, demonstrates top-notch
performance across both evaluation criteria when juxtaposed with
seven other strategies.

The results of applying 40 classifiers to the phishing website
dataset, with respect to F-measure and ROC metrics, are shown
in Table 17. The random forest classifier outperforms the other
considered classification models on both measures for this dataset,
as shown in Table 17.

Notably, Trees proves superior as a learning strategy, based
on its performance across all evaluation criteria among the
seven strategies compared here, particularly on F-measure and
ROC metrics.

The results of using 40 classifiers on the phishing website
detection dataset (DS3) are depicted in Table 18 and analyzed using
accuracy and pre-session metrics. The data reveal that Random
Forest achieves the best F-MEASURE and ROC scores, while
other top-performing methods, Random Committee and J4B, also
achieve outstanding F-MEASURE and ROC scores.

Evaluating the learning strategy indicates that Tree attains
optimal results for F-MEASURE and ROC METRICS.

The summary of the comparative analysis of 40 classifiers across
three datasets, as presented in Tables 4–18, is shown in Table 19.
In this table, “RC” refers to a random committee, “RF” denotes
random forest, and “RT” stands for random tree.

The study revealed that the classifier delivered superior results
across the considered metrics and datasets. According to Table 11,
the random tree classifier achieved superior results on 13 occasions,
and the random forest classifiers were best seven times. Random
committee classifiers besides IBK performed well twice.

This indicates that, for phishing datasets, random forest is
the preferred option, compared with committee classifiers, which
ranked second. The phishing website said this: the random forest
classifier excelled on the phishing dataset, where all attributes
were integer types, and it showcased excellent performance on the
phishing website detection dataset, or even the phishing website
dataset, which included integer types. Its exceptional ability to
perform well regardless of the number/types of attributes makes
it evident why random forest remains a preferred choice among
classification techniques.

5 Best feature selection method to use
with phishing website datasets

The objective of this section is to determine the optimal
feature selection approach suitable for phishing datasets. To
achieve this, five popular methods are assessed and compared:
ClassifierAttributeEval (CAE), CorrelationAttributeEval (CAE),
GainRatioAttributeEval (GRAI), InfoGainAttributeEval (IGAE),
and principal components. The default settings and parameters in
WEKA were utilized throughout all evaluations.

These feature selection methods were applied to a phishing
dataset, with 40 classification models trained using only the top-
performing 15 features, corresponding to 0.50% of the available
attributes (30).

Moreover, the evaluation metrics used earlier, such as MCC,
accuracy, and precision, will be analyzed again comprehensively
within the same segment under Section Four’s scope.

The phishing dataset underwent various feature selection
methods, after which 40 classification models were trained
using the top-performing 0.50% of features (15 out of 30).
This section evaluates the accuracy, precision, and MCC
metrics outlined in Section 4 using Table 20. Dissecting
four feature selection techniques considered for this study,
applied to the phishing dataset, and evaluated for accuracy,
is showcased.

As shown in Table 20, the random forest and IBK classifiers
achieved their highest accuracies with CAE as their selected
method, also revealing the Functions strategy as superior across
accuracy-based field analyses in this particular case.

In addition, Tree performed optimally when acclimated
alongside CAE’s specified attribute-selection methodology.

Table 20 clearly shows that using only 0.50% of the features
generally improves accuracy.

For instance, random forest classifiers achieved the best
accuracy result (96.2) when all features were used, while the
random forest achieved (96.1). However, both classifiers attained
their highest accuracy scores with the phishing dataset by utilizing
GRAE, besides the IGAE feature selection method on just 0.50% of
its features, resulting in an overall improvement based on Table 20
analysis evidence, which suggests that employing a preprocessing
step, such as feature selection, may enhance predictive performance
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TABLE 20 Evaluation of the considered feature selection methods on the phishing dataset-(DS1) using the accuracy metric.

Learning
strategy

Classifier CAE CAE GRAE IGAE PC

Tree Random tree 90.502 95.911 95.649 95.640 94.219

Random forest 90.664 96.436 96.255 96.191 94.473

REPTree 89.561 94.898 94.850 94.744 93.523

DecisionStump 84.730 88.891 88.891 88.891 88.891

HoeffdingTree 88.801 94.002 93.930 93.903 93.062

LMT 90.610 95.766 95.829 95.676 94.373

J4B 90.031 95.450 95.630 95.106 93.794

Avg 89.271 0.236 94.434 94.307 93.191

Bayes BayesNet 87.535 92.772 92.781 92.636 92.356

NaiveBayes 87.535 92.772 92.781 92.645 92.365

NaiveBayesUpd 55.694 92.772 55.694 55.694 92.365

Avg 76.921 0.173 80.419 80.325 92.362

Functions Logistic 88.647 93.369 93.387 93.378 92.682

SGD 88.738 93.306 93.351 93.514 91.705

SimpleLogistic 88.629 93.306 93.351 93.432 92.645

SMO 88.955 93.315 93.324 93.523 91.714

VotedPerceptro 88.358 93.288 93.333 93.365 92.555

Avg 86.187 0.241 88.665 88.665 88.665

Lazy IBK 90.755 96.119 95.829 95.730 94.237

Kstar 90.393 96.128 95.983 95.649 94.165

LWL 84.730 88.991 88.973 89.018 88.991

Avg 88.652 0.205 88.652 93.465 88.652

Meta AdaBoostM1 87.435 92.582 92.582 92.582 92.166

AttributeSelectedClassifier 87.363 94.400 94.400 94.310 92.935

Bagging 89.977 95.486 95.404 95.386 93.830

ClassificationViaRegression 89.036 94.536 94.436 94.635 93.188

FilteredClassifier 90.031 95.450 95.630 95.106 93.794

IterativeClassifierOptimizer 87.806 92.736 92.736 92.736 92.220

LogitBoost 87.806 92.736 92.736 92.736 92.437

MultiClassClassifier 88.647 93.369 93.387 93.378 92.682

MultiClassClassifierUpdateable 88.738 93.306 93.351 93.514 93.830

RandomCommittee 90.755 96.408 90.755 96.408 94.409

RandomizableFilteredClassifier 90.230 94.292 90.230 94.771 90.230

RandomSubSpace 89.027 93.414 93.984 93.450 92.691

Stacking 55.694 55.694 55.694 55.694 55.694

WeightedInstancesHandlerWrapper 55.694 55.694 55.694 55.694 55.694

vot 55.694 55.694 55.694 55.694 55.694

CVParameterSelection 55.694 55.694 55.694 55.694 55.694

Avg 80.602 79.996 87.202 84.487 86.661

Rules DecisionTable 88.177 92.863 92.998 92.971 93.025

(Continued)
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TABLE 20 (Continued)

Learning
strategy

Classifier CAE CAE GRAE IGAE PC

JRip 89.271 94.753 94.527 94.563 93.306

OneR 84.730 88.891 88.891 88.891 88.891

PART 90.375 95.585 95.459 95.468 94.355

ZeroR 55.694 55.694 55.694 55.694 55.694

Avg 81.649 85.557 81.649 85.517 85.054

Misc InputMappedClassifier 55.694 55.694 55.694 55.694 55.694

Avg 55.694 55.694 55.694 55.694 55.694

TABLE 21 Evaluation of the considered feature selection methods on the phishing dataset-(DS1) using the precision metric.

Learning
strategy

Classifier CAE CAE GRAS IGAE PC

Tree random tree 0.880 0.919 0.937 0.937 0.810

Random forest 0.879 0.922 0.938 0.937 0.812

REPTree 0.550 0.571 0.611 0.591 0.679

DecisionStump 0.203 0.140 0.203 0.140 0.13

HoeffdingTree 0.341 0.232 0.353 0.249 0.293

LMT 0.602 0.621 0.778 0.788 0.736

J4B 0.732 0.911 0.672 0.671 0.706

Avg 0.295 0.236 0.641 0.616 0.595

Bayes BayesNet 0.295 0.713 0.731 0.731 0.313

NaiveBayes 0.291 0.230 0.307 0.723 0.282

NaiveBayesUpdateable 0.358 0.230 0.307 0.251 0.282

Avg 0.294 0.520 0.448 0.568 0.292

Functions Logistic 0.335 0.145 0.253 0.072 0.292

SGD 0.877 0.351 0.251 0.078 0.285

SimpleLogistic 0.642 0.146 0.401 0.157 0.255

SMO 0.267 0.185 0.426 0.423 0.469

Avg 0.667 0.241 88.665 88.665 88.676

Lazy IBK 0.642 0.917 0.936 0.932 0.809

Kstar 0.563 0.543 0.67 0.957 0.678

LWL 0.745 0.446 0.276 0.345 0.293

Avg 0.359 0.205 88.657 0.744 88.652

Meta AdaBoostM1 0.359 0.14 0.203 0.140 0.130

AttributeSelectedClassifier 0.272 0.667 0.667 0.667 0.597

Bagging 0.139 0.677 0.704 0.710 0.727

ClassificationViaRegression 0.878 0.583 0.621 0.634 0.659

FilteredClassifier 0.873 0.730 0.754 0.771 0.643

IterativeClassifierOptimizer 0.745 0.396 0.347 0.386 0.361
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Frontiers in Computer Science 29 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1687867
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Alazaidah et al. 10.3389/fcomp.2025.1687867

TABLE 21 (Continued)

Learning
strategy

Classifier CAE CAE GRAS IGAE PC

LogitBoost 0.139 0.396 0.347 0.386 0.361

MultiClassClassifier 0.139 0.142 0.286 0.047 0.273

MultiClassClassifierUpdateable 0.139 0.139 0.139 0.139 0.105

RandomCommittee 0.139 0.920 0.937 0.937 0.825

RandomizableFilteredClassifier 0.667 0.908 0.906 0.912 0.800

RandomSubSpace 0.605 0.770 0.774 0.806 0.563

Stacking 0.646 0.139 0.139 0.139 0.105

WeightedInstancesHandlerWrapper 0.597 0.557 0.139 0.139 0.105

vot 0.139 0.139 0.139 0.139 0.105

CVParameterSelection 0.139 0.139 0.139 0.139 0.105

Avg 80.602 0.455 7.510 0.443 7.474

Rules DecisionTable 0.667 0.668 0.667 0.668 0.568

JRip 0.605 0.625 0.641 0.657 0.52

OneR 0.646 0.646 0.646 0.646 0.132

PART 0.597 0.625 0.671 0.673 0.691

ZeroR 0.139 0.139 0.139 0.139 0.105

Avg 81.649 0.540 81.649 0.556 0.403

Misc InputMappedClassifier 55.694 0.139 0.139 0.139 0.105

Avg 55.694 0.139 55.693 0.139 55.693

TABLE 22 Evaluation of the considered feature selection methods on the phishing dataset-(DS1) using the MCC metric.

Learning
strategy

Classifier CAE CAE GRAS IGAE PC

Tree Random tree 0.745 0.797 0.823 0.815 0.781

Random forest 0.837 0.879 0.869 0.887 0.848

REPTree 0.776 0.812 0.823 0.842 0.793

DecisionStump 0.476 0.568 0.532 0.532 0.522

HoeffdingTree 0.414 0.638 0.523 0.700 0.728

J4B 0.790 0.829 0.834 0.838 0.814

Avg 0.673 0.753 0.734 0.769 0.747

Bayes BayesNet 0.717 0.754 0.822 0.758 0.730

NaiveBayes 0.547 0.721 0.603 0.753 0.730

NaiveBayesUpdateable 0.547 0.721 0.603 0.753 0.730

Avg 0.603 0.732 0.676 0.754 0.730

Functions Logistic 0.750 0.782 0.820 0.804 0.767

SGD 0.738 0.782 0.818 0.803 0.759

SimpleLogistic 0.746 0.781 0.752 0.748 0.721

SMO 0.701 0.747 0.844 0.807 0.782

Avg 0.733 0.773 0.7712 0.771 0.771

Lazy IBK 0.746 0.782 0.909 0.795 0.777

Kstar 0.775 0.802 0.827 0.793 0.765
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TABLE 22 (Continued)

Learning
strategy

Classifier CAE CAE GRAS IGAE PC

LWL 0.555 0.568 0.528 0.54 0.522

Avg 0.692 0.717 0.773 0.709 0.773

Meta AdaBoostM1 0.707 0.794 0.528 0.781 0.737

AttributeSelectedClassifier 0.749 0.820 0.837 0.837 0.778

Bagging 0.799 0.843 0.854 0.866 0.823

ClassificationViaRegression 0.757 0.811 0.808 0.843 0.766

FilteredClassifier 0.786 0.822 0.851 0.842 0.804

IterativeClassifierOptimizer 0.746 0.794 0.807 0.810 0.770

LogitBoost 0.746 0.794 0.807 0.810 0.770

MultiClassClassifier 0.750 0.782 0.820 0.804 0.767

MultiClassClassifierUpdateable 0.738 0.786 0.804 0.797 0.750

RandomCommittee 0.824 0.859 0.864 0.878 0.834

RandomizableFilteredClassifier 0.688 0.685 0.794 0.652 0.72

RandomSubSpace 0.792 0.831 0.846 0.852 0.816

Stacking 0.755 0.755 0.755 0.755 0.755

WeightedInstancesHandlerWrapper 0.755 0.755 0.755 0.755 0.755

vot 0.755 0.755 0.755 0.755 0.755

CVParameterSelection 0.755 0.755 0.755 0.755 0.755

Avg 0.756 0.790 0.790 0.799 0.772

Rules DecisionTable 0.616 0.781 0.798 0.783 0.773

JRip 0.437 0.827 0.814 0.841 0.796

OneR 0.594 0.541 0.541 0.541 0.458

PART 0.551 0.829 0.853 0.839 0.788

ZeroR 0.243 0.499 0.755 0.755 0.755

Avg 0.488 0.6954 0.713 0.751 0.714

Misc InputMappedClassifier 0.243 0.499 0.755 0.755 0.755

Avg 0.243 0.499 0.500 0.755 0.500

for various classification models specifically through adoption of
the CAE technique.

The evaluation results for the phishing dataset using
five feature selection methods are shown in Table 21, with
emphasis on the precision metric. The Random Forest
classifier using the GRAE method achieved the highest
precision, yielding remarkable results regardless of the feature
selection method.

Moreover, function and tree strategies proved to be efficient
learning approaches for the precision metrics in this dataset. GRAE
achieved the trees’ maximum precision.

Comparing Table 21 (utilizing all features) and using only
0.50% percentiles confirms that a general improvement in precision
results can be seen when utilizing fewer attributes such as those
demonstrated in Table 1’s findings; for instance, while utilizing
every attribute resulted in a top score reaching 0.938, lessened
usage proved more beneficial overall performance-wise across

varying methodologies examined previously through these tables
mentioned above.

Hence, according to Table 21, using feature selection as a
preprocessing step may improve the overall predictive performance
of most classification models.

Hence, according to Table 21, using feature selection as a
preprocessing step may improve the overall predictive performance
of most classification models,

Table 22 displays the assessment results for five feature selection
techniques applied to the phishing dataset, using MCC as the
metric. The Random Forest classifier achieved the highest MCC
values with the IGAE technique, and the Functions strategy
produced optimal learning results on this data set. The tree
method achieved favorable results by applying IGAE for feature
selection.

Moreover, comparing all features vs. using only 0.50% showed
an improvement in overall performance when examined against
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FIGURE 3

Evaluation of the best feature selection method to use with phishing
website datasets-(DS1).

FIGURE 4

Evaluation of the best feature selection method to use with phishing
website datasets-(DS2).

FIGURE 5

Evaluation of the best feature selection method to use with phishing
website datasets-(DS3).

the MCC matrix, exemplified by the best-case scenario, in which
using all available features yielded a score of 0.887 via Random
Forest classification.

According to Table 15, considerable progress is expected in
refined prediction accuracy across various classification models if
appropriate feature selection is conducted during preprocessing,

particularly when leveraging responsive methods such as those
designated “IGEA.”

The optimal approach to optimization is demonstrated in
Figure 5, which shows that IGAE Feature selection reigns supreme.

Figures 3–5 reveal that the feature selection IGAE and
GRAE, in addition to the tree learning strategy, exhibit superior
performance compared to other strategies in terms of accuracy,
precision, recall, MCC, F-measure, and ROC area across three
datasets. Moreover, the rules and misc learning strategies
demonstrate subpar results across almost all metrics for those same
three datasets.

Consequently, it is strongly advised against using rules
other than the misc learning strategy course of study for
phishing detection.

6 Conclusion and future research

This research aimed to identify optimal characteristics
for creating a stronger machine learning model for
detecting phishing websites. Over the past three decades,
machine learning has made significant strides and
has been implemented in many practical applications,
including identifying malicious web pages used in scams or
identity theft.

The paper investigates the best classification model
for detecting these site types. While exploring which
classification method would best handle phishing website
detection datasets, the author discovered that an ensemble
approach combining Random Forest, Random Tree, and IBK
classifiers proved most effective. In conclusion, after evaluating
several feature selection methods for detecting fraudulent
websites, InfoGainAttributeEval and GainRatioAttributeEval
were deemed reliable options. However, further appraisals
focusing on variables such as the additional classification styles
mentioned above should continue to be considered alongside
other metrics. Comparing their performance will provide
additional insight into refining detection accuracy for tracing illicit
online activity.
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