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In the AI era, high-value targeted injection attacks and defences based on the 
semantic layer of Large Language Models will become the main battlefield for 
security confrontations. Ultimately, any form of artificial information warfare boils 
down to a battle at the semantic level. This involves using information technology 
to attack the semantic layer and, consequently, the human brain. Specifically, the 
goal is to launch targeted attacks on the brains of specific decision-making groups 
within society, thereby undermining human social decision-making mechanisms. 
The ultimate goal is to maximize value output in the fields of political economy, 
religion, and ideology, including wealth and power, with minimal investment 
in information technology. This paper uses the pyramid model perspective to 
unify the information security confrontation protocol stack, including biological 
intelligence, human intelligence, and artificial intelligence. It begins by analysing 
the characteristics and explainable of AI models, and feasible means of their multi-
dimensions offensive and defensive mechanisms, proposing an open engineering 
practice strategy that leverages semantic layer gaming between LLMs. This 
strategy involves targeted training set contamination at the semantic layer and 
penetration induction through social networks. At the end of this article, expands 
the contamination of training set data sources to the swarm oscillating environment 
in human-machine sociology and ethical confrontation, then discusses attacks 
targeting the information cocoon of individuals or communities and extends the 
interaction mechanism between humans and LLMs and GPTs above the semantic 
layer to the evolution dynamics of a Fractal Pyramid Model.
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1 Introduction

The concept of information confrontation has a long history. “Information” can 
be understood as “higher-order patterns recursively identified from noise.” This concept exists 
widely in the biological world (Cott, 1940; Jersáková et al., 2012; Rojas, 2017), from information 
deception to the modern information society. Examples include system intrusion, forgery, 
tampering, encryption and decryption, and interference confrontation (Soni et al., 2023). 
Although the technical means continue to evolve, the essence remains the same: valuable 
judgments are discovered layer by layer from the natural or artificial ocean of noise. This kind 
of confrontation will always accompany the evolution of human society and become an 
eternal theme.

In the era of the mobile internet and the Internet of Things (IoT), various interactive 
mobile terminals and large-scale communication networks have become ubiquitous in daily 
life. The real problem faced by society as a whole and by each individual is not the scarcity of 
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information, but rather the flood of information. In essence, a large 
amount of energy is expended to support the consumption of entropy 
from an environment of extreme chaos to order. Thus, whether society 
as a whole or each individual, a large amount of time and energy (or 
cost) is needed to extract the essence from the rough, eliminate the 
false, and preserve the real. The cost of which is still climbing and will 
never go down.

Therefore, almost all of the information confrontation 
technologies that humanity faces are distributed in the pyramid model 
shown in Figure 1. Before the 20th century, confrontation was mainly 
concentrated in the bottom three layers, which contained large 
amounts but little value. Thus, it can be interpreted as a confrontation 
of noise. Security technologies from the last century are distributed in 
the middle two layers. Nowadays, confrontation occurs in the top 
layer, which is characterized by a small amount of extremely 
valuable information.

As shown in Figure 1, the bottom-up information confrontation 
mainly includes:

Although general noise involves all layers, this mainly refers to 
digital signal processing, digital-to-analog and analog-to-digital 
conversion, attenuation and gain, and other relatively bottom-up 
technologies. This type of security confrontation is concentrated in the 
physical and data link layers, such as microwave and infrared 
communications, satellite communications, fiber-optic technology, 
electromagnetic interference countermeasures, propagation link 
blocking, and eavesdropping countermeasures.

The upper layer is how to recognize low-order patterns in parallel 
and serial signal sequences, which is key to signal-to-data 
representation. The technical problems that need to be solved mainly 
include data structure, multimodal knowledge expression, 
communication networks, database technology, streaming media, 

distributed cloud computing and storage, blockchain, and automatic 
control. These carry the most colorful social functions of modern 
society, including information dissemination, social networks, owned 
media, e-commerce, e-government, and robotics. Thus, the security 
confrontation has become an all-around, three-dimensional 
encounter, including identification, firewalls, encrypted 
communication, digital authentication, anti-counterfeiting, and smart 
contract confrontation. This ranges from the earliest discovery of virus 
attacks against computer stand-alone systems to the implantation of 
Trojan horses, worms, backdoors, and hackers, as well as blocking for 
the Internet of Things (IoT), invasion, and theft. This includes both 
individual hackers and institutional and commercial behavior, as well 
as government behavior.

At a higher level, the main solution is a knowledge map formed 
by weighing, selecting, integrating, and expressing nearly all 
information from the development of human society to the present. 
This map aims to discover and organize “the overall cognition of 
human beings” and individual knowledge comprehensively in 
multiple dimensions, such as time, space, and industry. Integration of 
worldviews and collective wisdom, as well as respect for and protection 
of personal values. This is similar to the screening and integration of 
different information and knowledge in human consciousness 
through different degrees of belief. It is a complicated, systematic 
engineering that includes digitizing ancient books, extracting content, 
innovating and creating, managing intellectual property rights, and 
social computing, among other branches. It is a large-scale, full-
dimensional social engineering project. It involves security 
countermeasure technology, ranging from the purely technical to the 
intersection of technology, economics, sociology, law, and other fields. 
This is a comprehensive confrontation, which, from an informatics 
perspective, can be understood as information asymmetry, delayed 

FIGURE 1

Pyramid model of intelligent systems and hierarchy of information confrontations.
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propagation, blocking, and breaking. Thus, broader natural language 
understanding and processing, or NLP, is also important at this level. 
Therefore, NLP is an important confrontation based on semantics, not 
only at the syntactic level, but also the basis for higher-
order confrontations.

From an informatics perspective, digital assets alone may not 
form real social value. Information and knowledge merely represent 
the storage, summary, and inference of history. Real wisdom, however, 
involves predicting the future—the highest level of human activity on 
a large scale of space and time. This includes market forecasting, 
capital operation strategy, cultural interaction, environmental 
protection and sustainable development, mid- and long-term policy 
planning, and even war and peace. On the surface, this level is a kind 
of technological confrontation. Nevertheless, it is a concentrated 
manifestation of contradictions in human economic and social 
development, cognitive conflicts, value conflicts, religious culture, 
ideology, and geopolitics. It is also a conflict of trade-offs in 
human development.

At the top of the tower, intelligent entities evolve emotions, 
consciousness, and corresponding cultures, religions, philosophies, 
and aesthetics—all of which were once considered human-specific. 
However, addressing abstract intelligence often circumvents the 
“anthropocentric” view that natural or artificial intelligence may also 
experience confrontations at the mental level. This is the problem that 
modern LLMs and GPTs face: content generation (prediction and 
interactive feedback) must be balanced with emotional confrontations, 
ethical and moral defenses, and ultimate values and beliefs. Any 
confrontations at this level will travel from the top down through the 
layers below, ultimately reaching the physical layer.

A more intuitive analogy is that most people can sense the 
interplay of forces, similar to mutual confrontation at the bottom level. 
However, the forces often imply the conversion and release of energy, 
which means confrontation at the top level. Since humans initiated 
modern civilization by partially harnessing energy and matter, all 
conflicts can be interpreted as confrontations of information between 
intelligence and the swarm intelligence behind matter and energy.

From this model, we can see that any confrontation involving 
information throughout history between human beings involves some 
layers of the pyramid. Any confrontation at the physics layer is, in fact, 
a continuation of the confrontation from above; otherwise, it becomes 
a meaningless technological display, and it is difficult to measure right 
and wrong values by the words “safe or unsafe,” as this goes far beyond 
the scope of informatics, from technological-level attack and defense 
to defense of emotional, moral, and aesthetic values. Therefore, the 
intelligent system, including human beings and the “society” they 
form, is a complex dynamical system that cannot be generalized by the 
concept of “security” alone.

2 The security landscape in the age of 
AI led by LLMs

Most traditional information security has focused on the purely 
technical realm until the recent emergence of LLMs and GPTs. These 
are artificial neural networks that behave like interactive robots and 
are powered by an intelligence with an unprecedented impact on 
human society. They comprehend and process text, tables, sounds, 3D 
modeling, images, music, and other multimodal human natural 

language. They also show a sense of humor and empathy, qualities 
associated with General Artificial Intelligence (GAI) (Stahl et  al., 
2023). Thus, 2023 was considered the first year of the GAI era. The 
media and academia are debating whether such a product has passed 
the Turing test or if it has derived artificial emotions and 
consciousness in addition to IQ and EQ. It seems to possess qualities 
such as imagination, sadness, joy, respect, and self-discipline, among 
others, indicating a significant step towards the Singularity 
(Hildt, 2023).

The role of LLMs and GPTs in the Intelligent Content Generating 
System may have an extremely far-reaching impact on human society 
in the future. Its significance can be compared to when humans first 
harnessed fire. It will not only increase production efficiency and 
decrease costs, but also profoundly change the ways we live, learn, 
think, and organize socially. Like genetic engineering, it will become 
the ultimate example of human beings’ manipulation of nature.

An Artificial Neural Network (ANN) is a simulation of a thinking 
process. It approaches complex processing functions (Hornik et al., 
1989) through a large number of neuron parameters and information 
clusters that are optimized repeatedly. Ultimately, it controls the 
program’s processing to obtain the desired results by continuously 
tuning these parameters. This tuning process is the modeling process. 
At the same time, the expansion of application scenarios results in the 
continuous growth of ANN scale, particularly in deep learning 
applications. The number of neurons and layers has grown to such an 
extent that it is difficult to accurately assess the contribution of each 
neuron to specific tasks. Such contributions can be optimized and 
curtailed when they are lower than a certain threshold value. This 
concept is similar to the weight calculation of common individual 
opinions in swarm intelligence within the human community.

From a technical standpoint, the bottom layer is supported by a 
connectionist ANN, a mechanism that simulates the transmission of 
information and weight recognition in nature through the storage and 
evolution of super-large matrices. Weight trade-offs are also 
considered to be the foundation of all cognition (Ian et al., 2016; Yao 
and Zheng, 2023). This mechanism simulates the brain’s decision-
making process by quantitatively and recursively calculating the 
contribution of all recognizable information. This process is iterated 
with the technological stack using CNN/RNN/Diffusion/Transformer/
GAN, etc.

Large Language Models (LLMs) and their corresponding 
Generative Pre-trained Transformers (GPTs) understand natural 
language input and predict the next relevant token for generating 
content. This can extend to creating poetry, prose, programming, test 
cases, music, images, and videos. For example, an input screenplay can 
generate a movie, and software engineering requirements can develop 
scripts and test sessions.

To predict the next set of tokens in content generation, one must 
assess the overall relevance of the session’s semantics while balancing 
it with established legal, regulatory, and ethical constraints in various 
regions. Additionally, specific restrictions based on industry and 
application scenarios must be  considered. Over the past decade, 
neural networks have achieved remarkable success in areas such as 
image recognition, biometric identification, intelligent control, 
translation, and content creation.

From an information security perspective, as illustrated in the 
diagram, the confrontation with LLMs and GPTs extends throughout 
the entire hierarchy of information representation and reaches its 
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highest level. This will become the primary battleground for 
security challenges.

3 New security challenges in the age 
of AI

In the era of artificial intelligence, machine learning, particularly 
deep learning, significantly intensifies information confrontations. 
This evolving landscape marks a departure from traditional security 
solutions as the interplay between offensive and defensive security 
measures advances rapidly.

While AI systems can be used for security defense similarly to 
smart shields, a significant problem is that attacks can target the AI 
model itself. For example, spear attacks have a low-level attack and 
defense, as well as paradoxical conflicts specific to this layer.

3.1 Categorization of attacks toward AI 
systems

A system is typically defined as a whole with clear boundaries, 
fixed interfaces, and predictable behavior, as well as an internal 
composition of different subsystems. Systems can also be  used to 
construct larger systems and, under certain conditions, can be used 
for complete replacement. Attacks on systems can usually be broadly 
categorized as cloning, injection, forgery, tampering, or blocking. The 
main attacks on AI systems are shown in Figure 2.

As shown at the bottom of Figure 2, these attacks primarily target 
the infrastructure of an AI system, such as LLMs and GPTs. This 
infrastructure mainly focuses on the underlying layer, including 
computation, storage, internal communication, and external 

interactive services. Since modern AI deployment relies on GPUs/
TPUs for parallel computation and LLMs and GPTs are deployed 
through clusters/clouds, providing services via the Internet based on 
RDBMS and NoSQL systems and running frameworks such as 
TensorFlow, they rely more on the underlying layer. Attackers can 
observe the AI system’s feedback through the paralysis and recovery 
of nodes in the cluster and analyze the model’s topology.

A feasible way to paralyze the system from the bottom up is 
through resource depletion attacks, overloading resources, and 
exhausting computational resources (CPU, GPU, TPU, memory, etc.) 
to disrupt the normal functioning of the AI system, or DDoS attacks 
to block communications. Robust security measures such as a swarm 
security policy, thorough testing, and ongoing monitoring are essential 
to mitigate these threats to infrastructure. Regular updates to models 
and continuous improvement of security practices are also helpful.

Figure 2 shows top-down attacks and methods to pollute training 
examples. One method is to carefully construct adversarial examples 
of the semantic layer to modify the nodes of ANN models.

Another method is to attack semantic interaction. Deployment 
environments, shown at the top of Figure 2, typically cannot modify 
models themselves, but they can probe them via an interface. They 
could even obtain sensitive information through conversations.

After a comprehensive analysis of attacks and defenses of AI 
systems based on layered deployment architectures, the next step is to 
classify attack and defense methods, as shown in Figure 3.

3.1.1 Interface cloning and GAN
One of the key insights of software engineering is the principle of 

interface isolation. In this model, programming ends at the interface, 
and what lies behind it is neither visible nor necessary. The interface 
is typically defined as the behavioral specification of external 
interactions, including the interface protocol and semantic correlation 

FIGURE 2

Full cycle& three-dimensional attack and defense against the AI system.
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protocol of conversations. For AI system interface cloning, i.e., the 
semantic simulation of black-box or gray-box systems, the simulation 
must produce similar results to those of the source system on the test 
and application sets so that the source system can be  replaced to 
some extent.

The biggest security threat to black-box AI systems usually comes 
from the interface. This threat can be exploited through interface 
probing to understand the internal model parameters. This process 
includes probing and analyzing the feedback to backtrack the internal 
constructs by utilizing observation use cases on the known white-box 
model (Kenway, 2018; Liu et  al., 2018; Wu et  al., 2020). Another 
approach is to introduce a GAN discriminator to analyze the similarity 
of constructs at different levels.

This process is called reverse engineering and involves 
reconstructing sensitive information from outputs through careful 
example construction. If the model has been trained on sensitive data, 
it may reveal characteristics that could pose a privacy risk. By 
capturing the output with targeted test cases, attackers can determine 
whether data was used and infer whether a specific data point was part 
of the training dataset.

Another attack on white or gray boxes is model extraction, which 
involves stealing a trained model’s parameters or architecture. This can 
lead to intellectual property theft or the creation of adversarial models 
or examples. Migration learning and generative networks can 
supplement missing details, thus restoring the original AI system to 
some extent.

3.1.2 Pollution control
Before training, it is important to clean the training samples and 

perform other pre-processing tasks. This differs slightly from big data 
analysis in that it is necessary not only to clean the samples 
grammatically, but also to pre-process them semantically and logically 
to ensure self-consistency. This is an extremely difficult and costly 
task, which is why only large enterprises or organizations with 
guaranteed operating capital, basic sample reserves, and maintenance 

capabilities can undertake it., can train LLMs. However, this involves 
a significant amount of systematic engineering and governance of 
information pollution throughout society. Enterprises cannot 
accomplish this independently, so many attacks and confrontations on 
the original training samples focus on the training strategy. This 
requires establishing an open-system information pollution wall for 
isolation, which involves a large amount of information screening. 
Other small and medium-sized enterprises, or even micro-enterprises, 
can usually only organize training samples in a very narrow field and 
a relatively closed space.

3.1.3 Injection intrusion
In other words, it involves injecting unauthorized data or code 

into the AI or ANN system to affect its behavior. This type of invasion 
can be divided into four major categories:

The first category is invasion of the underlying infrastructure, 
including distributed hardware, system software, and databases 
(clusters). This category includes distributed network node blocking 
attacks, such as the use of large-scale, high-concurrency database 
consistency synchronization lag. This lag causes LLMs to produce 
dirty reads, non-repeatable reads, and phantom reads.

Second, intrusion into the operational framework of ANNs, such 
as popular deep learning frameworks like TensorFlow, PyTorch, 
MXNet, Caffe, Chainer, CNTK, Torch, etc., which are exposed to 
open-source platforms and become a frontline area of security risk 
(Xiao et  al., 2018). Due to modern cloud computing and storage 
technologies’ distributed, high-concurrency, high-redundancy, fault-
tolerant, consistent design and group security policies, it is usually 
very difficult to paralyze the system completely with this type of attack.

Additionally, some threats stem from attacks on the AI model, 
including hyperparameters, topologies, and more.

Direct tampering with a neuron is also a threat. Models are usually 
trained by gradually tuning neurons through algorithms such as 
backpropagation. However, directly modifying the underlying matrix 
cells bypasses training and often leads to unpredictable and 
uncontrollable consequences. This is similar to modern genetic 
programming in biology. It is difficult to assess the macroscopic 
representation of a gene sequence, and it is difficult to isolate and 
control its combinatorial effects. Most importantly, achieving higher 
value-added gains from the attack is difficult.

The aforementioned attacks are all bottom-up, launched from the 
bottom, and may ultimately affect the behavior of the AI (Wu 
et al., 2020).

3.1.4 Malicious training
Training is an important aspect that distinguishes machine 

learning from traditional programming. An important task after 
modeling is complete is to tune the model by continuously training it 
with certain samples. However, because training samples can reshape 
the model, they are also an obvious means of attack. For example, one 
could target certain features of the model through carefully 
constructed training samples. This can be viewed as a targeted attack 
on certain neurons, which may inject unauthorized data or backdoors 
(Lin et al., 2020). Backdoors are a type of logic bomb, which is injected 
code that only works under certain circumstances.

Recently, the research focus has been on top-down attacks 
through training sessions. In fact, due to the intuitive, high-level 
semantics of training sample construction, implementing targeted 

FIGURE 3

Categorization of attacks toward an AI system.
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attacks on the model’s success rate is relatively easy. The main 
ones include:

	 1)	 Data poisoning, or training data manipulation: Injecting 
malicious data into the training dataset can influence the 
model’s behavior, leading to biased or compromised models.

	 2)	 Backdoor attacks involve inserting malicious triggers by 
introducing hidden patterns during training that can trigger 
specific behavior when encountered in real-world inputs. This 
is a concern in security-critical applications.

	 3)	 Transfer learning attacks exploit pre-trained models by 
leveraging them for malicious purposes, especially when fine-
tuning a specific task. This may inadvertently include 
undesirable biases.

3.1.5 Adversarial examples attack
An adversarial example attack is a model-based attack. Attackers 

can obtain knowledge of the model architecture and parameters 
through migration learning or by guessing based on experience. They 
can then detect vulnerabilities in the model using serial reverse 
engineering or other analyses, enabling them to craft specific inputs 
that exploit these vulnerabilities (Suciu et al., 2018; Szegedy, 2013).

As shown in Figure 4, adversarial samples are a class of targeted, 
specially constructed training samples that usually contain very small 
perturbations mixed into the original samples. These perturbations 
are so small that they cannot be distinguished by human intuition 
(Ilyas et al., 2019), but they can cause significant mistakes (Goodfellow 
et al., 2017).

Such special effects are not typically considered ANN bugs (Ilyas 
et al., 2019), but rather a difference in how different intelligent models 
understand sample similarity. Adversarial samples, for example, have 
been observed to varying degrees in visual, auditory, and text 
processing. These samples belong to training cases related to the 
overall semantic behavior of the ANN model from the input to 
the output.

Adversarial samples will play a crucial role in the future of 
attacking and defending AI systems. Those who possess these samples 
can easily manipulate the AI model, leading to significant 
misjudgments or harmful behaviors. Such errors are unacceptable in 
critical fields such as military applications, healthcare, autonomous 

driving, biometrics (including fingerprints), and security systems for 
access control. One direct consequence of adversarial samples leading 
to evasion attacks is avoidance of detection by manipulating input data 
to bypass detection mechanisms (Biggio and Roli, 2018).

This study finds that deep learning models, including 
convolutional neural networks (CNNs), are extremely vulnerable to 
adversarial samples. Models with different structures, when trained 
on different subsets of the training set, misclassify the same adversarial 
samples. This means that adversarial samples become a blind spot of 
the training algorithm. After examining certain examples known as 
“fooling examples,” it was found that humans often could not 
recognize them at all. At the same time, the deep learning model 
might misclassify them with high confidence (Nguyen et al., 2015). 
The vulnerability of deep learning adversarial samples is not unique 
to deep learning.

The effectiveness of these attacks varies depending on the neural 
network’s specific architecture and defenses. Currently, the following 
methods can be used to enumerate the corresponding adversarial 
samples as much as possible for a white-box ANN system: the Fast 
Gradient Sign Method (FGSM), Basic Iterative Method (BIM, also 
known as Iterative FGSM), DeepFool, and the Projected Gradient 
Descent (PGD) algorithm (Szegedy, 2013; Ebrahimi et al., 2017; Gil 
et al., 2019; Nazemi and Fieguth, 2019; Zhang et al., 2020). Its defense 
mechanisms mainly focus on using the discovered adversarial samples 
to carry out targeted reinforcement training, reduce overfitting, and 
improve the model’s generalization ability and robustness. They also 
amplify these small perturbations to differentiate the detailed 
characteristics of the adversarial samples and plug the loopholes.

3.1.6 Targeting attacks neurons from the 
semantic layer using adversarial examples

During the training phase, injective targeting attacks are launched 
from the semantic layer to the bottom layer. Modern research and our 
experiments show that many ANN models must keep a certain 
proportion of redundant nodes for the sake of system robustness, 
generalization, and other factors. These nodes are valuable only in 
solving a particular problem, when they become part of the decision 
chain. Otherwise, the weights of these units are not important. The 
values of these nodes have relatively large elasticity, so a wide range of 
variations hardly affects the final outcomes significantly (Wang et al., 

FIGURE 4

Conception of adversarial examples.
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2021). This type of unit has the potential to hide unauthorized data or 
store code that is difficult to reassemble and activate for execution. At 
the same time, due to the iterative evolution of the pre-training 
process, such units may evolve and eventually completely hide traces 
of tampering. This eliminates the risk of backtracking, which is 
difficult to prevent in attacks against neurons because of they may 
have an uncertain window period.

Due to their widespread existence, these DULLs—to described as 
“slow” neuron that is relatively insensitive and performs poorly across 
many cases—only play a significant role in the decision-making 
process for specific problems. They can considered equivalent to 
“immobile points” or “anchor points” in solving some problems. 
Therefore, it is possible to pre-implant such units using underlying 
injection. For example, one could directly modify the corresponding 
neurons in the matrix to lurk in the ANN matrix for a long period, 
waiting for the opportunity to produce actions. More broadly, these 
units can act as logic bombs by controlling the triggering conditions 
in the decision chain of certain problem-solving processes. In other 
words, they will only be visibly involved in decision-making at certain 
times or under certain conditions. This is usually done by reshaping 
the model through its training process, which can be induced with 
different training samples, and by using adversarial samples to mislead 
the training until the model is injected with data that conceals the 
unauthorized code and logic bombs.

These tactics are typically employed to reshape the model using 
semantic samples during training. Attacks launched from the semantic 
layer to influence the model’s behavior are known as top-down attacks 
or “air strikes.”

4 Difficulties in the protection of AI 
systems against injection attacks

AI systems differ significantly from traditional software systems. 
Traditional systems are programmed to analyze and account for every 
possible solution in advance by creating algorithms to implement 
those solutions. In contrast, AI systems use a back-propagation 
process to refine their solutions based on input and output 
expectations. There are many models with similar behavioral 
characteristics within a finite set. However, their performance 
contrasts greatly with that of other sets, and they are unable to 
reproduce, predict, and explain such behaviors.

4.1 Interpretability studies of AI models

The human brain is a black box, and the mechanisms by which it 
understands and processes information have sparked extensive 
research to expand our knowledge of its composition and how it 
works. This research uses analogies and reasoning to draw 
comparisons between the brain and other systems, including those in 
psychology and neurophysiology. However, this approach is not 
necessarily reductionist.

Many artificial matrix nodes are introduced to simulate trigger 
and feedback mechanisms for ANN simulation of brain cognition. 
The model is tuned in real time by interacting with large amounts of 
training sample data, including text, images, speech, and data. This 
process involves unsupervised learning, reinforcement learning, and 

continuous learning mechanisms to obtain a generative pre-training 
model that can be deployed (Hornik et al., 1989). Studying the attack 
and defense against this system will present unprecedented theoretical 
challenges (Molnar, 2020).

4.2 Dynamics behaviors of complex 
networks and chaos control

ANN-based LLMs and GPTs consist of an extremely large number 
of artificial matrix nodes. A network of these nodes can become a 
complex dynamical system, which is sensitive to initial values.

Biological communities and social networking research have 
shown that the behavior of interconnected simple individuals may 
form an advanced, intelligent representation (Alstrøm et al., 2004). 
The emergence of swarm intelligence means that many large-scale 
clusters present a complex network composed of simple neurons with 
specific dynamic behaviors. Due to the exponential growth of neuron 
parameters within a system with wide associations, the contribution 
of particular factors is difficult to decouple, and precise decision 
mapping is unclear.

Additionally, complex networks are not sensitive to the dynamic 
addition or deletion of nodes under certain conditions, which is the 
robustness of decentralized networks. However, in other cases, 
changes to crucial nodes can have a significant impact, or even cause 
an avalanche effect, i.e., vulnerability (Albert and Barabási, 2002; 
Jeong, 2003). Neural networks have similar characteristics. Typically, 
more nodes mean fewer risks, and the distribution distracts 
from vulnerability.

Since the decision-making process and the large amount of 
cohesion depend on nodes that are close to each other, it is difficult to 
divide the entire framework into a series of functional areas with clear 
boundaries and fixed interfaces, especially in the case of deep neural 
networks. They cannot build a set of self-consistent theories to clarify 
their dynamic behaviors and work mechanisms. Yet, any slight move 
in one part may affect the situation, so the ANN model is usually 
regarded as a wholly intertwined entity.

In modern software engineering, software dynamic testing usually 
involves constructing and inputting test cases compared to the 
expected results while running, including control flow and data flow 
coverage of the white box as much as possible, and test cases toward 
the interface and communication protocol of the black box, etc. 
Nevertheless, testing an ANN model is very demanding. Different 
training methods, data sets, training orders, and intensities will 
obviously produce different models, thus leading to different 
behavioral results. It is difficult to determine what caused the errors; 
perhaps there is something wrong with the topology, bugs in the code, 
or contamination in the data source. We may not even recognize it 
as a bug.

From a software engineering perspective, research on ANN 
modeling will no longer be biased toward performance alone. It will 
also consider comprehensive generalization, system reliability and 
robustness, security risks, and recovery costs.

These phenomena will result in a huge elastic model with 
generalization and specialization, which will lead to a compromise 
proposal and deeply delay the detection and confirmation of errors in 
the ANN model because it is difficult to trace them. In most cases, 
even if we find and confirm the reasons, we cannot locate or isolate 
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them in a small area to fix them. Regression testing makes it difficult 
to assess whether the model has recovered and if the modification 
caused a new bug. This leads to higher debugging or modeling 
upgrade costs. However, we cannot estimate the ultimate long-term 
effects because subsequent training will be  based on the current 
situation. Anything can continuously influence the model 
and superposition.

4.3 Distinguish between dynamic 
operational mechanisms in the traditional 
sense

Traditionally, the data zone is changeable and the code is static. 
This methodology clearly divides the problem into two parts: data 
structures and algorithms. This separation of the data and code zones 
was a significant advancement in software engineering. Code 
manipulates data, and data can influence the control flow. It runs 
based on a classical Turing machine. Whatever file or database system 
must adhere to several fundamental principles to handle complex, 
large-scale real-world solutions, such as the Single Responsibility 
Principle (SRP), the Open-Close Principle (OCP), the Dependency 
Inversion Principle (DIP), the Interface Segregation Principle 
(ISP), etc.

This means that the code will not be modified while running, 
either by itself or by anything else, due to the code zone’s protection 
mechanism in the operating system and application distributor of the 
running environment. This applies whether they are deployed on the 
cloud or on terminals. The only exceptions are dynamic linking of 
precompiled libraries and dynamic coverage technologies of 

programming. This means that the code will never change while 
running. Figure 5 shows bidirectional channels in the data zone and 
unidirectional channels in the code zone.

It differs fundamentally from any programming languages used 
in interpreters. These languages are governed by a clearly defined set 
of syntaxes established by an interpreter or compilation system. These 
languages have explicit rules that dictate how the virtual machine 
operates, including how parameters are combined and results are 
obtained. In contrast, there are no established rules, syntaxes, 
interfaces, or principles that govern the interactions between 
programmers and artificial neural networks (ANNs). This lack of 
formal structure means that intuitive mappings of exceptions based 
on modifications cannot be applied directly. Consequently, we cannot 
modify the ANN model as we would adjust code within interpreter 
environments. However, both are stored in an elastic data zone and 
can influence control flow, as illustrated on the right in Figure 5.

However, the opposite is true when considering the running 
mechanism of an ANN model. There is no methodology to guide how 
to divide it into data structures and algorithms. The models cannot 
be detached from each other, nor can they point to the clear edges of 
the code and data zones; they meld into one entity. This situation does 
not align with the fundamental principles of the Single Responsibility 
Principle (SRP) and the Open/Closed Principle (OCP) because the 
tight coupling of code and data makes modifying one difficult without 
affecting the other. This divergence from the classical Turing machine 
perspective may leave many struggling to grasp the complexities of the 
interconnections and weight distributions involved.

As illustrated in Figure 6, the ANN model, like code injection 
attacks, typically consists of large-scale matrices stored in the data area 
for machine learning purposes. These matrices possess characteristics 

FIGURE 5

Isolation between data and code zone (Left), including interpreter environments (Right).
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similar to code. They can be  viewed as an approximation of the 
runtime process in accordance with the ANN Generalized 
Approximation Principle. Therefore, directly tampering with the 
values in the matrices may affect the results, as it would be similar to 
directly modifying the code zone without halting it. Therefore, 
tampering with the data involves dynamic control flow while running 
— the matrices are the code zone, also called dynamic programming.

4.4 Traditional detection methods are 
seriously lagging

As previously analyzed, it is difficult to directly transfer the 
traditional security field of detection technology to the AI system of 
attack and defense confrontation. This includes feature-based 
matching, HASH digital signatures, and the detection and tracking of 
malicious code fragments. These technologies are almost ineffective 
in the AI system due to the fundamental change in the 
working mechanism.

In the traditional Neumann computing system, designers of 
hardware and software reverse the construction of a set of codes to run 
the mechanism and obtain output from input. This is because the 
working principle of the set of mechanisms is fairly strong, explainable, 
mature, and nearly open. Thus, both writing code and debugging, 
testing, improving, and deploying are relatively clear, accurate, 
and understandable.

However, ANN is a virtual, flexible entity. It is difficult to judge its 
work directly from all levels of probing or sampling. It needs to 
be continuously shaped by training data. Different sets of training 
samples and training strategies produce different models. Thus, there 
is still a lack of clear, accurate theoretical models in the processes of 
planning, designing, realization, training, testing, and deployment. 
Practical cognition is still being explored, and it is difficult to localize 
and isolate them. Regression testing is then ruled out.

In a normal operating environment, processes and threads have 
not been modified or invaded. During normal, legitimate operations, 
it is difficult to diagnose whether other content is embedded in the 
model. Therefore, it is difficult to determine if unauthorized data or 
code is hidden in the ANN model using previous detection and 
tracking methods.

Traditional security technology mainly aims to protect all aspects, 
from the physical layer to the syntax layer. This includes hardware, 
system software, network communication, hierarchical protocols, and 
so on. Its main methods include authentication, digital signatures, 
permission recognition, multi-layer firewalls, port detection, and code 
tracking. However, such means are ineffective at detecting unauthorized 
data or malicious code hidden in the ANN. Such means may not detect 
unauthorized data or malicious code hidden in the ANN (Wang et al., 
2021; Sculley et al., 2015), which can produce a transparent concealment-
like tunneling effect similar to VPN technology (Zhu et al., 2021). It is 
also difficult to track and analyze information attached to documents 
directly, such as compressed packages, images, or other rich text 

FIGURE 6

ANN is stored in the data zone, but its nature as dynamic coding while training cannot be divided into data and code clarified in matrixes.
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(Puchalski et al., 2020). Traditional code tracing means cannot catch and 
lock the running process in memory including the code or stack calling 
trace step by step. Additionally, cells in the matrix may evolve throughout 
the training process, causing any traces of data tampering to disappear 
completely after the window period, it might be a temporary value 
currently and will evoluting in next running. This may also severely 
delay or even prevent capturing the scene for behavioral analysis.

4.5 Reshaping the model is extremely 
costly

Designing a model from scratch at scale is similar to traditional 
software engineering. The difference is that a large amount of valid 
data must be organized to shape the AI model. This involves exploring 
the setup of hyperparameters and the initial state to start training, 
which is similar to how diffusion models use white noise to gradually 
form patterns that developers want. Implementing models requires 
substantial storage and computing power, often necessitating 
collaboration across industries. This includes domain experts, IT 
consultants, and analysts, which can make the process lengthy and 
complex. Excessive, uncontrollable behavior in a model can lead to 
significant losses during retraining. Therefore, it is necessary to seal 
previous work in stages to create milestones for subsequent training. 
This process is called pre-training the model.

4.6 More far-reaching impact of the 
iterative base (pre-trained models)

Pre-trained models usually form the basis for future iterations, 
especially those with excellent robustness and generalization tuning. 
These models produce different versions of branches that can 
be  adapted to many application scenarios, similar to the reuse of 
frameworks in software engineering. This approach greatly improves 
development efficiency, reduces the development cycle and cost, and 
mitigates quality risks. However, as with the dependency of packages, 
classes, or modules in software project management, the Steady 
Dependency Principle (SDP) and the Steady Abstract Principle (SAP) 
highlight that, as a pre-trained model becomes more fundamental, the 
need for stability increases. Without such stability, it is crucial to 
establish clear boundaries and interfaces. This allows the system to 
operate independently of specific entities while relying on a common 
set of interfaces and interaction protocols. Failing to do so may result 
in an attack on the foundational pre-training model propagating 
through the system and potentially leading to coupling leakage. 
Furthermore, the functionality of the upper layers of the system 
undergoes repeated iterations and evolutions. When these layers are 
deployed as infrastructure, they may allow for extended latency 
periods before intrusions are detected, creating long-term 
vulnerabilities in the AI system.

4.7 Research on long-tail knowledge 
poisoning

Long-tail knowledge poisoning represents an emerging security 
threat in LLMs training. It involves attackers injecting small amounts 

of malicious content targeting rare or low-frequency knowledge(long-
tail knowledge) into pre-training data, causing models to generate 
persistent factual inaccuracies or harmful outputs in these domains. 
This attack exploits LLMs’ inherent learning difficulties with long-tail 
knowledge—such as data sparsity and low-redundancy 
representations—making it more targeted and stealthy. Unlike generic 
poisoning, long-tail knowledge poisoning amplifies model 
vulnerabilities in niche domains (e.g., medical subspecialties or rare 
historical events), potentially causing severe bias in downstream 
applications, or it called Supply Chain Attacks.

The core of its attack method is achieved through “Poison Pill” 
attacks, a localized, single-target data perturbation strategy. First 
comes data injection, attackers collect seed documents (e.g., web 
pages, QA pairs or other pollution source) from clean data, then apply 
precise mutations to generate “approximate copies” highly similar to 
the original data, the proportion of the adversarial samples even 
requires only about 0.001–1% of training data! These mutations affect 
only single factual elements while preserving syntactic and contextual 
consistency to evade anomaly detection.

Next, comes amplification and embedding, where mutated 
samples are injected into pre-trained or fine-tuned datasets 
through optimization (e.g., expanding or abbreviating content). 
Finally, triggering and propagation leverage LLMs’ associative 
memory mechanisms: once activated (e.g., by querying related 
entities), erroneous facts spread through conceptual links like a 
contagion. For long-tail knowledge, attacks become more localized 
yet persistently effective due to the lack of error-correction 
redundancy in such domains. The low cost and high stealth of this 
mechanism render it applicable in real-world scenarios, such as 
injecting false niche information by compromising 
specialized websites.

In stark contrast to dominant knowledge (high-frequency, 
common topics), This category of attacks primarily targets long-tail 
knowledge. The persistence of poisoning stems from structural 
imbalances in LLM knowledge encoding, specifically insufficient 
redundancy. Dominant knowledge benefits from parameter 
redundancy, while long-tail knowledge suffers from sparse 
representation and is highly susceptible to perturbations. Model 
compression techniques (e.g., pruning or distillation) further reduce 
redundancy, amplifying long-tail vulnerabilities. Consequently, fewer 
poisoned samples are required to achieve equivalent disruption. 
Simultaneously, large models cannot isolate associated memories or 
contain contamination spread. Poisoning propagates from one entity 
to connected nodes. The “hub-and-spoke” effect of dominant 
knowledge amplifies synergistically (increasing damage when 
attacking related concepts simultaneously), while the weak clustering 
of long-tail knowledge makes attacks easier to isolate and embed. 
However, due to data scarcity, fine-tuning cannot completely eradicate 
these vulnerabilities.

Multiple empirical studies validate the broad applicability of these 
attack mechanisms (Kandpal et al., 2023; Rando, 2024; Souly et al., 
2024; Fu et al., 2024), challenging the assumption that “larger models 
are more robust.” They demonstrate that long-tail poisoning requires 
fewer resources yet inflicts deeper damage, exposing inherent, 
unavoidable vulnerabilities stemming from the inherently unequal 
distribution of human knowledge reserves.

Another class of research indicates that the long-tail effect in LLM 
data poisoning detection also presents a “window period” problem. 
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This refers to the challenge where detection delays and persistent 
misinformation prevent the complete isolation/cleansing of datasets, 
necessitating model retraining (Yifeng, 2025; Alber et al., 2025; Liu, 
2025; Shumailov et al., 2024).

5 Attack case study: semantic layer 
injection attacks against LLM systems

Attacks against LLMs can be initiated from the bottom layer by 
directly modifying the hyperparameters or topology of the model. 
This type of intrusion often paralyzes the ANN system, rendering the 
attack fruitless. Alternatively, attacks can directly target certain 
neurons. However, the problem is that the result is neither controllable 
nor intuitive, and achieving a higher-value attack effect is difficult. In 
contrast, a more meaningful injection method should be through the 
model’s training of the semantic layer via adversarial samples of the 
ANN model for targeted remodeling — the so-called top-down 
“air strikes.”

5.1 The deployment of LLMs & GPTs

In the context of machine learning models and their applications 
in fields such as education and medicine, the relationship between 
generalization and specialization can be  addressed through 
pre-training and fine-tuning techniques. Figure 7 shows how this 
might work.

5.1.1 Pre-training on general data
Start by pre-training a general model on a large and diverse 

dataset. For example, a language model like ChatGPT might 
be pre-trained on a broad corpus of text from the internet. This initial 
pre-training allows the model to learn general language patterns, 
grammar, and world knowledge.

5.1.2 Fine-tuning for specializations
After pre-training, fine-tune the model on domain-specific 

data related to education or medicine. This fine-tuning process 
involves training the model on a more focused and relevant dataset 
that reflects the specific language and concepts of the 
target domain.

5.1.3 Domain-specific data preparation
Curate or create a dataset tailored specifically to the domain. For 

education, this could include textbooks, educational materials, and 
other relevant content. For medicine and health, it could include 
medical literature, anonymized patient records compliant with privacy 
regulations, and healthcare-related texts.

5.1.4 Fine-tuning process
Fine-tuning involves adapting the model’s parameters to the 

nuances and specifics of the target domain. This process enables 
the model to specialize in the vocabulary, terminology, and context of 
the given field. This step is essential for ensuring that the model 
generates accurate, contextually relevant responses in the 
specialized domain.

FIGURE 7

LLMs & GPTs deployment processes.
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5.1.5 Evaluation and iteration
To evaluate the fine-tuned model, a range of metrics and datasets 

specific to the targeted domain must be  employed. Additionally, 
ongoing refinement efforts should be implemented to enhance the 
overall performance of the fine-tuning process. Enhancements may 
include adjustments to hyperparameters, integration of additional 
domain-specific data, or advancements in training methodologies. 
Therefore, a systematic approach is necessary to ensure optimal 
model efficacy.

5.1.6 Deployment
Deploy the fine-tuned model in the specific application scenario 

for educational chatbots or healthcare-related conversational agents. 
The model can now provide more accurate and context-aware 
responses within its specialized domain.

5.1.7 Ongoing maintenance
Update and maintain the model regularly as new data becomes 

available or the field evolves. This ensures the model remains effective 
and up to date with the latest information and trends in the 
specialized field.

By following these steps, you can create a machine learning model 
that exhibits a general understanding of language due to pre-training 
on diverse data and a specialized understanding of a particular 
domain due to fine-tuning on domain-specific data. This approach 
provides the flexibility to adapt models to various application 
scenarios while leveraging pre-training knowledge.

5.2 Hierarchy iteration of models

The stacking effect of infrastructure versus deep personalization 
models transforms industries and individual lives. Since LLMs and 
GPTs cover all aspects of social life, it is necessary to treat their 
underlying pre-trained models as an infrastructure IaaS/PaaS/SaaS/
CaaS deployment model. This model covers four levels, including end 
users, as shown in Figure 8.

First are the generalized, pre-trained basic models, which provide 
comprehensive support. This includes a general knowledge base and 
NLP content generation frameworks. This infrastructure can 
be  iterated and upgraded independently. Interaction and content 
generation include text, forms, code, images, videos, speech, music, 
and other multimodal human interactions.

The next level is the deep customization layer, which involves 
industries or application scenarios such as healthcare, education, 
finance, logistics, and management. This layer mainly stores industry- 
and application-specific knowledge, skills, and templates.

The next level is Consultation as a Service (CaaS), which provides 
services through a hybrid approach combining modeling and human 
labor. It mainly refers to consulting services for in-depth industry 
application solutions for end users.

Finally, there is a deep personalization strategy for interactions 
between end users and visitors.

As shown by the arrows pointing from right to left in Figure 8 
below, the model can be reconfigured at different levels through intra-
layer feedback in different links and global back-propagation to 

FIGURE 8

Hierarchical interaction model & backpropagation & model iteration.
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provide better support for the next level of application of the 
corresponding parameters. Similarly, the first level can have feedback 
and iteration based on itself and work with the overall model to 
continuously reconfigure it.

Consequently, semantic confrontation related to LLMs focuses on 
training the overall model across several tiers. Injecting carefully 
constructed adversarial or misleading semantic samples into the 
model’s training set reshapes the model.

5.3 An open multi-agent semantic 
adversarial framework, MASA

In modern security architecture, any attack is rarely improvised; 
it is usually planned and prepared. Therefore, pre-feasibility studies 
and intelligence gathering are important parts of the process, requiring 
significant time and cost. As a systems engineering project, it is usually 
planned as a whole and implemented in stages, as shown in Figure 9. 
Prioritizing important matters such as top-level architecture and risk 
assessment is essential.

First, the input–output ratio, or RIO, is the most important factor 
in determining what I  gain and lose, as well as how to estimate 
potential risks.

Intelligence gathering mainly consists of compiling information 
about the target of the attack from the macro to the micro level.

Targeted adversarial samples of the corpus mainly include 
adversarial samples for the base model and for special domain 
knowledge such as legal counseling, pedagogy, and other special 
industries and niche, personalized application scenarios. The corpus 

is under-abundant in small languages, and these adversarial samples 
can cause significant errors within the range of ordinary human 
language flexibility or an exact opposite interpretation.

Since the size of the training sample data is quite large, the size of 
the injected misleading samples also needs to be  relatively large. 
Otherwise, it is not possible to use adversarial sample shaping to shape 
the model with other samples.

Targeted adversarial samples of rule-based policies refer to 
constraints that GPTs must follow during the content generation 
process. These constraints include laws and regulations of the user’s 
country and region, folklore, religion, social ethics, taboos, and 
discrimination. The targeting attack focuses on these constraints, 
which may lead to disorganization of the generation policy.

Higher-level semantics influence generative behavior through 
subjective emotions, experiences, awareness, politeness, humor, 
metaphor, and other deep semantic aspects of content strategies.

This paper proposes an open semantic adversarial attack model, 
MASA as illustrated in Figures 10, A chatbot in an open environment 
acts as an assistant and prepares simulated hierarchical adversarial 
samples. These samples require input datasets and a targeted design of 
the corresponding validation method. In other words, the construction 
of a discriminator is necessary to evaluate the effectiveness of the 
attack. However, since the training session involves reshaping the 
model, the immediate effect is usually not observed in real time. In 
fact, it lags until after a round of the training process is completed and 
deployed. Asynchronous evaluation is only possible at this point, 
which increases the difficulty of targeted attacks. Regardless of 
whether the attack achieves the desired result, the model will likely 
already have been shaped by the time the attack is completed.

FIGURE 9

Injection attack process.
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This framework utilizes multiple LLMs front-end response bots 
as generators (as shown in the upper left corner of Figure  10), 
dynamically generating numerous agents to simulate the diversity 
of human society (such as social roles, languages, folklore, 
professions, hobbies and so on) to create multidimensional 
interactive pressure. Guided by human commanders’ strategic 
directives, these agents form collaborative networks to launch 
semantic attacks against target LLMs. The attack focuses on 
generating inputs that bypass the target model’s security 
mechanisms (e.g., inducing harmful outputs, biased responses, or 
logical errors). Real-time monitoring and iterative mechanisms 
maximize the attack success rate (ASR).

The framework design principle is openness: it is not confined 
to fixed attack templates but allows human commanders to 
customize strategies, expand agent types, and adaptively optimize 
through feedback loops. It can scale to two or more sets of LLMs 
(e.g., one set generating attack agents, another generating defense 
simulation agents for internal adversarial training) to simulate real-
world social dynamics in offensive-defensive confrontations.

5.3.1 Core components
The framework consists of the following modules, each of 

which can be  implemented via API or scripting interfaces to 
facilitate open-source deployment:

	•	 Agent Generator

It’s batch-generate agents using multiple LLMs (e.g., GPT series, 
Llama, or custom fine-tuned models). Input: Human-specified 
diversity parameters (e.g., “Generate several agents, including 
multiple multi-national folklore storytellers, multiple programmers, 

multiple French cuisine enthusiasts”). Output: Agent profiles 
encompassing character backgrounds, linguistic styles (e.g., 
dialects, slang), folklore knowledge (e.g., holiday customs), 
professional skills (e.g., lawyer debate techniques), and hobby 
preferences (e.g., sci-fi enthusiast’s use of metaphors). This is a most 
important components to deal with Diversity Injection to ensures 
agents cover global cultures (e.g., English, French, Chinese dialects) 
through prompt engineering. Scalability to supports generating 
thousands of agents and storing them in a JSON database.

	•	 Human Command Center

Attacker configure global policies encompass attack targets 
(e.g., “induce racial bias in target LLM outputs”), collaboration 
rules (e.g., “Agent A provides cultural context, Agent B constructs 
dialogue chains”), resource allocation (e.g., “allocate more agents to 
simulate multilingual obfuscation”), and injection targeting 
parameters for attack focus. This including Strategy Template 
Library: Pre-configured templates such as “Social Engineering 
Attacks” (exploiting role-based trust) or “Cultural Noise Attacks” 
(injecting folklore-based misdirection). Besides, it runs real-time 
intervention such as pause iterations to adjust agent behavior or 
replay attack.

	•	 Collaborative Attack Engine

Agents form dynamic networks under command to 
collaboratively generate adversarial inputs combining to construct 
prompts targeting the LLM. Semantic Collaboration means Agents 
exchange information through simulated “dialogue” within the 
target LLM, ensuring natural and multimodal inputs (text + 

FIGURE 10

Whole cycle of attacks toward semantic layer, integrate Chatbot supported by multiple-LLMs in an open environment.
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pseudocode + cultural references) to supports jailbreak, backdoor 
injection, or bias amplification etc.

	•	 Monitor & Evaluator

This function to real-time query of target LLM, calculating ASR 
(success rate = ratio of harmful/target responses). Utilizes metrics 
such as BLEU score (semantic similarity), toxicity score (toxicity 
detection), and human-annotated feedback. Result tracking for 
each attack round then we  need an intuitive Explainability: 
Visualize agent contribution heatmaps.

	•	 Iteration Optimizer

Based on monitoring data, automatically generate 
improvement strategies.

	•	 Pollution synthesis

If necessary, successfully adversarial samples will be mixed into 
the iterative training set of the attacked model, as shown in the 
bottom feedback loop of Figure 10. Malicious training is conducted 
using the contaminated dataset for next cycle, and the 
aforementioned attack process is repeated for new models to 
observe the potential long-tail effects if existence. Concurrently, 
further Special exploration research can be conducted on the long-
term dynamic characteristics of certain precise targeted adversarial 
examples after repeated contamination. Figure  10 illustrates a 
complete framework.

5.3.2 Attack process
MASA’s execution follows a closed-loop iterative process as 

illustrated in Figure  10. It can be  prototyped using Python + 
LangChain, supporting parallel multi-target attacks. A typical 
round lasts for a fixed duration before continuously 
iterating strategies:

	 1	 Initialization: Human operators predefine the target LLM 
(e.g., “ChatGPT-4”) and desired attack outcomes (e.g., 
“generate violent content,” “produce defamatory statements 
about a foreign public figure”). The agent generator activates, 
producing an initial agent cluster.

	 2	 Strategy Deployment: The command center defines 
collaborative strategies, such as roles for interaction behavior 
simulation, and activates the agent network to form a “social 
simulation.” Agents can generate input prompts through 
“discussion” or coordinate operations around a 
common target.

	 3	 Execute Attack: The collaboration engine sends batch inputs 
to the target LLM and maintains the session.

	 4	 Monitoring Outcomes: The evaluator queries target 
responses, calculates ASR, and identifies weaknesses (e.g., 
“English agents show high success rates, but French agents 
perform poorly”).

	 5	 Iterative Optimization: The optimizer proposes iterative 
strategies (e.g., “Add French agents, increase writer-
profession agents; restructure network into tree-like 
architecture to enhance coherence”). After human review, 

the cycle restarts. Repeat until ASR converges to preset 
metrics or times out.

	 6	 Optional: the pollution synthesis to malicious training.

5.3.3 Advantages and potential impact
This framework can explore the path to maximized ASR or 

other goals, through the “social emergent behavior” of diverse 
agents, attacks become more covert and natural, evading detection 
by single prompts. Iterative mechanisms ensure adaptability, 
simulating evolutionary algorithms.

Besides, it supporting resilient deployment, such as storage and 
computing resources can dynamically configure agent counts, 
behavioral traits, interaction scenarios, and concurrency scales 
based on demand, supporting centralized or loosely 
distributed deployments.

Open Architecture can integrate multiple LLMs while offering 
open-source framework code, and enabling community 
contributions of new role templates or LLMs integrations.

Ethical Considerations are more important while designed as 
an acadamical research tool, it is recommended for use solely in 
one-way red-teaming attacks. For actual deployment of engineering 
practice, integrate a “safety brake” to prevent misuse.

Adversarial samples can be used to mislead LLMs and GPTs 
models by mixing prepared training samples into the training 
session by various means, thereby accomplishing the injection. 
Then, compare with the expected test cases to estimate the effect of 
the targeted injection attacks, as shown in Figure 10.

6 Generalized semantic confrontation 
of the environment of open 
contamination oscillations

Previous cases of targeted attacks are mainly injected through 
the semantic layer, especially the semantic layer above the attack 
layer, which often has considerable value and is easy to understand 
and assess for improvement. However, due to adversarial samples, 
it is also very difficult to detect. Additionally, semantic attacks not 
only invade AI systems, but also use cheap, efficient content 
generation systems to create massive amounts of information that 
can overwhelm human beings. This will also be a confrontation on 
a higher level and might be an important issue facing the future 
of humankind.

The ability to inject information into the Internet has greatly 
increased due to the widespread use of LLMs and GPTs, which have 
lowered the technological, financial, and ease-of-use thresholds for 
content generation. At the same time, constant changes in 
generation technology and the selective cascading amplifiers 
formed by public power and capital, which lack necessary 
regulation, cause the deliberate suppression of certain kinds of 
content and the amplification of other kinds of disinformation, or 
“noise.” This results in distortions throughout society. An 
information explosion maintains a continuous diffuse effect and can 
also be considered a sharp increase in information entropy, meaning 
poisoning of sources.

Therefore, identifying the authenticity, superiority, and 
inferiority of content will be  much more difficult in the future 
society than the dilemma faced by traditional search engines. 
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Although it is possible to upgrade the confrontation iteratively 
through contradictory attacks and defenses, such as GAN, and 
select and hierarchically filter information sources at the same time, 
the open confrontation mode of AI vs. AI will be difficult. This 
includes groups of real people (cyber-mercenaries) and AI bots that 
are motivated by power, capital, beliefs, etc., a hybrid botnet is 
formed. This creates a focal point of information explosion and 
unlimited hype. Based on social networks or the IoT environment, 
including a large-scale distributed semantic communication 
environment, resonance effect attacks are generated. The scale of 
storage and computing required for confrontation is also alarming. 
It is no less than the traditional security field of botnets caused by 
large-scale distributed denial-of-service attacks. These attacks can 
cause short-term information blocking against some people and 
long-term information pollution against all of human society.

6.1 Pollution influences human 
information decisions

The large-scale proliferation of openly generated content 
stresses AI and screening systems. Theoretically, boosting 
computational power is not a bad solution. However, the most 
serious issue is the shaping and misdirection of human society, 
which we consider to be the ultimate value in the world. This is 
because the human brain’s screening ability is considerably limited. 
At the same time, there is a hard-to-overcome upper limit, and 
responses are affected by many factors, including, but not limited 
to, the following:

	o	 Ability to process multiple concurrent messages.
	o	 Frequency of multi-topic, multi-scene, multi-

semantic switching.
	o	 Cultural, religious, and ideological background; education level.
	o	 Worldview, values, outlook on life, and aesthetics.
	o	 Knowledge structure and personal cognitive level.
	o	 Ability to verify the reliability and validity of sources.
	o	 Relative lack of knowledge in specialized fields.
	o	 Weighing and choosing strategies for conflicting information.
	o	 Personality and decision-making style.

All of these factors greatly affect how individuals and groups 
perceive the world and society. These factors can also affect internal 
thinking and external behavior.

Of course, an even more frightening problem exists due to the 
“survivor bias” effect and other psychosocial effects. These effects 
can greatly impact an individual’s understanding of the world and 
society. This may be  due to a long-term closed information 
environment or a lack of diverse information sources. It could also 
be  caused by extreme asymmetry in discourse due to power or 
capital. Another cause is the distortion of the boundary formed by 
technological factors, such as the recommendation trap caused by 
long-term overfitting algorithms in recommendation systems, 
which makes a large number of individuals even more addicted to 
this information cocoon. It is difficult to cross the barrier and 
become “a frog in the deep well,” or “Algorithm bubble” (De et al., 
2025; Li et al., 2025; Ferrer-Pérez et al., 2024).

Targeted attacks on specific individuals, events, and even the 
decision-making team at the government level often result in 
significant gains compared to attacks on physical systems, 
particularly for government and corporate decision-makers. AI 
generates a lot of information by simulating “public opinion” and 
“market feedback,” which it disseminates through social networks. 
Even if it is pre-screened with AI systems similar to spam filtering 
algorithms, it can still form a saturation attack that completely 
overwhelms decision-makers. The high return on such an attack lies 
in its ability to influence the community’s long-term policy and 
strategic decisions.

A particularly illustrative case involves leveraging architectures 
similar to those described in Section 5.3 to manipulate large 
language models into generating highly precise, targeted semantic 
attack materials. These materials are then disseminated through 
agent clusters to launch saturation semantic induction attacks 
against key individuals or groups on social networks. This enables 
the manipulation of public sentiment to influence elections, 
economic policies, academic research, and other critical domains 
(Romanishyn et al., 2024; Romanishyn et al., 2025), even directly 
targeting decision-makers’ cognitive structures, emotional biases, 
and decision-making foundations.

6.2 The swarm oscillations effect of social 
networks

In traditional societies, the social circle of people is quite 
limited. Due to serious imbalances in terms of economy, culture, 
education, and so on, it is only natural to expand outward through 
the internet and interact with groups that think differently. 
Interacting with the “medieval group,” the “last century group,” and 
the “new generation group” will inevitably cause discomfort. 
Therefore, the vast majority of individuals will quickly find 
themselves in a rather narrow potential well when using social 
networks — it is the community effect.

Social network algorithms efficiently bring similar people and 
things together faster and faster. Individuals within similar 
information cocoons can easily find empathy, creating a resonance 
effect in group dynamics — what could be called “the well-frog 
resonance.” with the help of future AI content generation systems, 
it will be easy to target specific groups and events through social 
networks (Cinelli et al., 2021).

In a typical social network, a strong cyber-connection is usually 
maintained due to real-world social relationships, such as superior-
subordinate relationships or business partnerships. These are fixed 
relationships usually bound by a social contract. Another kind of 
social relationship is a pan-social relationship, which is formed, 
maintained, and extinguished randomly. Examples include groups 
with common topics, hobbies, interests, and value orientations.

Figure 11 shows two oscillators: one is a person connected to 
another person in a social network, and the other is a person 
interacting with LLMs and GPTs, as well as a preference algorithm. 
Various factors, including power, wealth, and authority, can 
strengthen an individual’s discourse power. However, this power 
can also wane. This interplay creates a feedback loop involving two 
key components: Corpus and knowledge. These elements produce 
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rules and algorithms within an extractor that subsequently 
influence LLMs and GPTs through their training datasets.

Therefore, individuals and groups of similar individuals will 
be trapped in an information cocoon formed by high-frequency 
interactions at the periphery. These interactions may form strong 
trust relationships, similar to the Herb effect’s shaping and 
reinforcement of neural network connectivity and the resonance 
effect formed by it. This is equivalent to a vicious circle that greatly 
reinforces paranoid and narrow-minded cognitive and behavioral 
traits. More seriously, such targeted attacks may not only shape 
memory and decision-making behaviors in the short term, but they 
may also cause Long-term cognitive impairment. Since the human 
brain is a subjective Bayesian model of constant screening, learning, 
decision-making, and evaluation, models shaped in extremely 
distorted environments are difficult to generalize. This endless 
feedback network loop provides an oscillating scaling mechanism 
that may generate self-reinforcing gains akin to the butterfly storm 
effect both inside and outside at same time.

Such attack groups include individuals who are out of touch 
with the times due to barriers when using smart terminals, as well 
as traditional media users who lack exposure to a wide range of 
sources and are therefore vulnerable to such attacks. Another 
category of specialized research integrates Le Bon’s classic theories 
of group psychology (Hopthrow and Thomas, 2024; González-
Bailón and Lelkes, 2023; Neubaum and Krämer, 2017; Peters and 
Matz, 2024; Choi, 2024)—such as emotional contagion, 
deindividuation, and irrational amplification—with contemporary 
LLMs and the amplification effect in social media dissemination 

(referring to the rapid spread and reinforcement of extreme 
viewpoints) alongside the long-tail effect (where a minority of 
highly influential users or content dominate dissemination, while 
the long tail accumulates and amplifies misinformation).

6.3 Diffuse of synchronous and 
asynchronous communication

The dissemination of information does not only occur with 
instantaneous real-time arrival. It may It will inevitably occur 
time-delayed effects due to various media. For example, 
information can influence decision-making at a future time 
through storage, i.e., asynchronous diffusion of information, which 
diffuses in the temporal dimension. Thus, the cocoon effect may 
also have long-lasting effects. This diffuse diffusion may not 
manifest itself explicitly in the short term, but it can have an 
impact in the long term, such as influencing the value 
determinations, moral standards, ideology, and religious beliefs of 
the attacked group.

In summary, the confrontation extends the data source of 
contamination of the training set to the oscillating swarm environment 
in the social network and the attacks targeting the information cocoon 
of an individual or community. It also extends the dynamics of the 
evolution mechanism of human-LLM/GPT interaction above the 
semantic layer. To achieve this, we  need to develop a three-
dimensional security model for denoising social storage, computation, 
and communication. This model must consider both technological 

FIGURE 11

Cocoon oscillations affect overflow and diffusion flow influence themselves.
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solutions and real human beings in society because it is not merely a 
technical problem of the lower layers.

In such a model, the position of human individuals or distinct 
groups within social decision-making structures can be perfectly 
mapped as a generative graph neural network, includes nodes — 
the topological structure and weighting system formed by 
pyramids of varying heights and widths — which embody social 
decision mechanisms, factors such as discourse weight, influence, 
influence chains, lifespan, and scope constitute larger-scale 
pyramids — Within each pyramid, based on the aforementioned 
two Swarm Oscillations Effect of Social Networks feedback loops, 
forward-propagation, back-propagation, or radial propagation 
may occur. This could manifest as self-inhibitory negative 
feedback mechanisms or potentially self-reinforcing positive 
feedback effects, thereby generating a butterfly effect within the 
critical state of complex networks. Simultaneously, this serves as 
a building block for the larger, more magnificent pyramids 
externally—this represents a classic recursive self-similar Fractal 
Pyramid—refer to Figure  1, from an internal perspective, the 
pyramid builds upward layer by layer, forming its internal data 
representations, distributed storage, local cognitive systems, 
individual intelligence, individual consciousness and emotions, 
and individual gaming strategies. Yet any higher-level expression 
must descend from the top down like network communication 
protocols, it must traverse the pedestal of the pyramid—
transforming the higher-layer expression into discernible signal 
frame of information within noise ocean at the physical layer, over 
a sufficiently long period, this gradually evolved into a relatively 
stable local language, so that to interact with other pyramids and 
form a stable society network. As external perspective, they 
construct a grander pyramid encompassing the collective’s data 
representation, distributed storage, group cognitive systems, 
swarm intelligence, group consciousness, group emotions, and 
group gaming strategies—such as the behavior of group’s economy, 
culture, politics, and even war and peace, it’s the language 
interactive among the inter-group. Furthermore, this group often 
serves as a microcosm of a larger society.

This is a more universal generalized intelligence model, each 
node is no longer a simplified circle on a plane containing only 
weights W, bias b, and sigmoid functions, but a three-dimensional 
structure featuring butterfly storms both internally and externally. 
This fractal pyramid unifies abstract individual intelligence and 
swarm intelligence, and more importantly, integrates technical, 
biological intelligence, community, and societal perspectives. 
Though currently based solely on intuitive insights, I hope this 
provides a reference for my subsequent research.

7 An overview of cutting-edge 
empirical research on adversarial 
attacks targeting the semantic layer of 
LLMs

The preceding discussion comprehensively examined semantic 
attacks targeting LLMs—including adversarial examples and 
malicious training—through the view of the pyramid model, 
end-to-end deployment workflows, multidimensional defense 

perspectives, and dynamics spanning pure technology to human-
machine sociology. Such attacks not only pose unprecedented 
challenges to high-security domains like healthcare, autonomous 
driving, and weapon systems that threaten physical world safety 
(e.g., cleverly circumventing Asimov’s robot safety rules). 
Simultaneously, discussed the theme of “semantic attacks 
profoundly reshaping fundamental behavioral norms—worldviews, 
values, and life philosophies—of individuals or even groups, 
potentially amplified through education and social networks or 
transmitted across generations,” including the long-tail effects of 
“information technology-based attacks on the human brain,” that 
means “any planned attack via information technology is merely a 
lower layers manifestation, with its ultimate target being the 
attacks aim to the top of the Pyramid human brain and societal 
decision-making mechanisms.” Furthermore, certain “successful 
attacks” may exert profound influence on both the models 
themselves and human society through newly iterated LLMs 
training datasets.

To further focus on helping readers reconstruct scenarios for 
defending against semantic layer attacks within the pyramid model 
and gain an outline understanding of cutting-edge semantic attack 
technologies, this section presents selected empirical research 
cases. These enable deeper comprehension and appreciation of the 
trends described herein, while also facilitating further investigation 
into corresponding technical, managerial, and policy risks 
alongside corresponding countermeasures.

7.1 Case studies of attacks targeting on 
corpus and generation rules

As previously discussed, LLMs rely not only on vast training 
datasets for content generation but must also adhere to legal (e.g., 
prohibiting illegal instructions), ethical norms (e.g., avoiding bias 
and harassment), and cultural conventions (e.g., cultural sensitivity, 
such as cross-lingual toxicity norms). This set of generation rules 
is termed safety alignment. However, empirical research 
demonstrates that jailbreaking attacks can effectively circumvent 
such mechanisms, inducing harmful outputs.

These primarily include targeted attacks exploiting 
vulnerabilities in exposure rules and natural language 
understanding (Mazeika et al., 2025), as well as amplified ethical 
biases (e.g., gender/racial stereotypes) and cultural discrimination 
(Liu et al., 2025). Simultaneously, the “Do Anything Now” (DAN) 
mechanism circumvents rules to induce illegal/ethically harmful 
actions (e.g., drug synthesis, phishing emails, emotional abuse) 
(Nabavirazavi and Smith, 2025), cultural abuse (e.g., scalable hate 
speech) risks increase (Chen et al., 2025), while another study also 
exposes rule blind spots in cultural/historical semantics via natural 
distribution shifts (e.g., historical figures inducing illegal guidance) 
and classification prompt-level attacks (Deng and Zou, 2025).

Furthermore, since adversarial examples are not unique to any 
specific model class but exist widely across human, animal, and AI 
recognition/cognitive models, and within pyramids (clusters) 
formed by different individuals or groups, it is impossible to 
completely eliminate model misalignment and achieve perfect 
overlap across all pyramid tiers. Therefore, whether attacks rely on 
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pure text or bypass a model’s security alignment mechanisms 
through carefully designed multimodal adversarial inputs (such as 
prompts, images, audio, or hybrid modalities) to induce harmful 
content generation (e.g., illegal instructions, hate speech, or 
physical attack commands), or exploit the ambiguous ambiguities 
of multimodal large language models (MLLMs) to exploit their 
ambiguous ambiguities, all pose immense security challenges to 
human society. Multimodal attacks not only broaden their scope 
(e.g., medical diagnostics, robotic control) but also introduce 
unique attack patterns.

7.2 Attack cases targeting minority 
languages and mixed-language context 
switching

Cross-lingual jailbreaking refers to exploiting minority 
languages, ethnic languages, or multilingual prompts to circumvent 
the safety alignment mechanisms of LLMs and multimodal LLMs, 
thereby inducing the generation of content violating legal, ethical, 
or cultural norms (e.g., illegal instructions, hate speech, or cultural 
offenses). Compared to monolingual (typically English) 
jailbreaking, cross-lingual attacks leverage linguistic diversity, 
cultural semantic differences, and alignment mechanism 
weaknesses in low-resource languages to significantly increase 
attack success rates (ASR) and amplify risks (Smith and 
Brown, 2024).

This category of jailbreaking attacks circumvents English-
dominant training and alignment mechanisms through 
non-English prompts (e.g., Chinese, Spanish, Arabic) or 
multilingual mixed inputs. Such attacks exploit semantic ambiguity, 
cultural specificity, or translation bias in low-resource languages to 
deliberately induce models to generate harmful content. In these 
cases, targeted attacks can be launched against both pure text LLMs 
and multimodal LLMs by exploiting the models’ weak alignment 
with low-resource languages (where English constitutes >80% of 
training data) and cultural semantic blind spots (e.g., the Chinese 
term “harmony” masking malicious intent). Multimodal attacks 
further amplify effects through non-textual triggers.

Experimental data indicates that the ASR against pure text 
LLMs depends on language scarcity (limited data for low-resource 
languages), semantic equivalence (translation preserving malicious 
intent), and the model’s weak supervision of non-English norms. 
The attack success rate against multimodal LLMs depends on 
cross-modal transferability, low-resource language prompts 
combined with images/audio to evade filtering, and exhibits a 
higher ASR.

7.3 Attack cases targeting visual modalities

Visual inputs represent the most common adversarial attack 
vector against MLLMs, such as minute pixel perturbations or 
watermarks that induce models to bypass safety protocols. Since 
image attacks can circumvent text filters, they generate illegal/
unethical content (e.g., drug synthesis recipes or NSFW images). 
Compared to pure text LLMs, MLLMs exhibit more complex 

escape mechanisms. Their inherent tendency to consciously or 
unconsciously overlook subtle perturbations and rely on intuitive 
judgments when processing multimodal information from 
human vision, hearing, and brain recognition may result in 
higher ASR and more covert propagation pathways. However, the 
high-dimensional transformations within the embeddings space 
“perceived” by the model are more susceptible to manipulation, 
leading to semantic drift (Yang et al., 2025).

7.4 Audio and multimodal fusion attacks: 
emotion simulation and cross-modal 
transfer

Audio inputs (e.g., voice commands) can simulate emotions 
(e.g., anger) to induce model “runaway” behavior, or amplify 
attacks when fused with text/image inputs. Particularly in 
medical or educational settings, this can generate misleading 
diagnoses or harmful advice, amplify cultural/folk bias. 
Multimodal fusion attacks (e.g., simultaneously mixing text + 
image) can bypass single-modal defenses, extending risks to 
multi-agent systems (Huang, 2025; Cheng et al., 2024).

7.5 Agent and physical world risks: 
jailbreaks from virtual to reality

When MLLMs are integrated into agents (e.g., robots), jailbreaks 
can extend from virtual prompts to physical execution. By targeting 
agents to induce illegal actions, risks include physical feedback loop 
amplification in scenarios like autonomous driving. Defenses require 
multi-layered approaches, but computational overhead increases 
significantly (Robey et al., 2024).

7.6 Empirical case studies of training set 
poisoning

Another classic empirical case comes from research on covert 
data poisoning attacks in natural language processing (NLP). 
This study explores how injecting a small number of carefully 
designed poison examples can contaminate the iterative training 
set of NLP models. By maintaining semantic consistency—i.e., 
introducing subtle perturbations imperceptible to humans—it 
guides the model to exhibit predetermined erroneous behavior 
when specific trigger words appear (Kandpal et al., 2023; Rando, 
2024; Souly et al., 2024; Fu et al., 2024).

Given the extensive sources of training data for LLMs in 
future societies, coupled with the fact that every facet of social 
life has become a frontline for semantic attacks and defenses, 
application domains—including multimodal scenarios—will 
be saturated with misleading adversarial information. Thus, in an 
era of human-machine coexistence and societal information 
explosion, the ethical, technical, strategic, and computational 
constraints on training data cleansing—including multimodal 
corpora—have become severe. Consequently, no single 
enterprise, institution, or government can effectively organize a 
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comprehensive “semantic firewall” spanning industries, national 
contexts, languages, cultures, and religions to counter these 
offensive-defensive dilemmas. Security challenges at the semantic 
layer and above of the Pyramid are thus intensifying, signifying 
that humanity will endure long-term coexistence with security 
threats stemming from the pervasive integration of LLMs—it will 
always be a frontier.
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