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Cloud resource allocation has emerged as a major challenge in modern computing 
environments, with organizations struggling to manage complex, dynamic workloads 
while optimizing performance and cost efficiency. Traditional heuristic approaches 
prove inadequate for handling the multi-objective optimization demands of 
existing cloud infrastructures. This paper presents a comparative analysis of state-
of-the-art artificial intelligence and machine learning algorithms for resource 
allocation. We systematically evaluate 10 algorithms across four categories: Deep 
Reinforcement Learning approaches, Neural Network architectures, Traditional 
Machine Learning enhanced methods, and Multi-Agent systems. Analysis of 
published results demonstrates significant performance improvements across 
multiple metrics including makespan reduction, cost optimization, and energy 
efficiency gains compared to traditional methods. The findings reveal that hybrid 
architectures combining multiple artificial intelligence and machine learning 
techniques consistently outperform single-method approaches, with edge computing 
environments showing the highest deployment readiness. Our analysis provides 
critical insights for both academic researchers and industry practitioners seeking 
to implement next-generation cloud resource allocation strategies in increasingly 
complex and dynamic computing environments.
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1 Introduction

1.1 Background and problem statement

Cloud computing has transformed the modern computing landscape with the global 
market reaching $912.77 billion in 2025 and projected to grow at a compound annual growth 
rate of 21.20% through 2034 (Precedence Research, 2025). This explosive growth reflects the 
critical role cloud infrastructure plays in supporting digital transformation initiatives across 
industries, as organizations increasingly rely on cloud services for scalability, flexibility, and 
cost optimization (Buyya et al., 2009; Armbrust et al., 2010). However, this rapid expansion 
has introduced challenges in resource allocation and management.

The complexity of cloud environments has grown exponentially as businesses adopt hybrid 
and multi-cloud strategies to meet operational requirements. Traditional resource allocation 
approaches based on heuristic algorithms and static provisioning models (Holland, 1992; 
Kennedy and Eberhart, 1995; Dorigo et al., 1996) have proven inadequate for handling the 
dynamic, heterogeneous, and multi-tenant nature of cloud infrastructures (Buyya et al., 2009; 
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Armbrust et al., 2010). These conventional methods struggle with the 
multi-objective optimization demands where performance, cost, 
energy efficiency, and quality of service must be  optimized while 
adapting to fluctuating workloads and varying user demands.

Cloud resource management presents challenges for organizations 
with inefficient resource allocation leading to substantial waste and 
increased operational costs. There is a need for more sophisticated, 
adaptive resource allocation mechanisms that can intelligently 
respond to dynamic cloud environments.

Traditional approaches to cloud resource allocation, including 
First-Fit, Best-Fit, and basic optimization algorithms (Zhang et al., 
2010; Beloglazov and Buyya, 2012) face fundamental limitations when 
confronted with the scale and complexity of modern cloud 
deployments. These methods typically rely on predefined rules and 
static policies that cannot adapt to changing workload patterns, user 
behaviors, or infrastructure conditions. As cloud environments 
continue to scale with exponential data growth, the limitations of 
conventional approaches come into effect.

1.2 Research contributions

This paper addresses these challenges by presenting a comparative 
analysis of state-of-the-art artificial intelligence and machine learning 
algorithms specifically designed for cloud resource allocation. This 
paper addresses the identified gaps in current survey literature by 
presenting a focused analysis of state-of-the-art artificial intelligence 
and machine learning algorithms specifically designed for cloud 
resource allocation, with emphasis on recent developments from 2022 
to 2024. While existing comprehensive surveys have established 
foundational coverage of ML-centric resource management and 
provided systematic analysis of resource allocation strategies, our 
work contributes to the field through several distinct approaches.

We provide a systematic in-depth analysis of 10 cutting-edge AI/
ML algorithms published in recent high-impact venues, covering 
Deep Reinforcement Learning approaches (PPO for D2D-assisted 
MEC, ATSIA3C, Rainbow DQN), Neural Network architectures 
(DPSO-GA, VSBG, BiGRU with DWT), Traditional ML enhanced 
methods (enhanced-Kernel SVM, N2TC-GATA), and multi-agent 
systems (multi-agent DRL for container allocation, Industrial 
Federated DDPG).

Our work extends beyond algorithmic classification by providing 
critical analysis of implementation trade-offs, convergence properties, 
and scalability limitations that affect real-world deployment decisions. 
We synthesize practical insights for industry adoption, examining the 
performance characteristics of algorithms that integrate multiple AI/
ML techniques compared to single-method approaches. The analysis 
identifies key trends in hybrid architecture design and federated 
learning integration that distinguish recent developments from earlier 
ML-based resource allocation research.

The practical significance of this research builds upon the growing 
integration of artificial intelligence with cloud computing 
infrastructures (Sutton and Barto, 2018; Mnih et al., 2015; Silver et al., 
2016). As organizations increasingly deploy AI and machine learning 
services, the demand for intelligent resource allocation mechanisms 
capable of efficiently supporting these workloads becomes critical. 
Our analysis provides both academic researchers and industry 
practitioners with focused insights for implementing next-generation 

cloud resource allocation strategies that leverage the most recent AI/
ML innovations.

2 Related work and background

2.1 Cloud resource allocation 
fundamentals

Cloud resource allocation requires the systematic assignment of 
computational resources including CPU, memory, storage, and 
network bandwidth among competing user requests to optimize 
system performance while maintaining service level agreements. The 
fundamental challenge lies in efficiently mapping heterogeneous user 
workloads to distributed physical resources while satisfying multiple 
conflicting objectives such as minimizing execution time, reducing 
energy consumption, and maximizing resource utilization.

Traditional resource allocation approaches in cloud computing 
environments primarily rely on heuristic algorithms, meta-heuristic 
techniques, and hybrid methods. Heuristic algorithms, including 
First-Fit, Best-Fit, and Greedy algorithms (Zhang et al., 2010), provide 
intuitive solutions based on empirical construction with lower 
computational complexity and predictable worst-case performance. 
These methods typically use simple rules such as selecting the first 
available resource that meets minimum requirements or choosing 
resources with the smallest remaining capacity after allocation.

Meta-heuristic approaches, including Genetic Algorithm (GA) 
(Holland, 1992), Particle Swarm Optimization (PSO) (Kennedy and 
Eberhart, 1995), and Ant Colony Optimization (ACO) (Dorigo et al., 
1996), have gained prominence for addressing the NP-hard nature of 
resource allocation problems. These algorithms employ population-
based search mechanisms to explore solution spaces more 
comprehensively than heuristic methods, often achieving superior 
optimization results at the cost of increased computational complexity. 
Hybrid approaches combine multiple optimization techniques, 
leveraging the strengths of different algorithms to address specific 
aspects of the resource allocation problem.

Performance evaluation in cloud resource allocation relies on 
Quality of Service (QoS) metrics (Garg et al., 2013; Zhang et al., 2010) 
that capture various aspects of system behavior and user experience. 
Critical performance indicators include response time, throughput, 
resource utilization, availability, and cost efficiency. Response time 
measures the latency between request submission and completion, 
while throughput quantifies the system’s capacity to process requests 
within specific time periods. Resource utilization metrics assess the 
efficiency of hardware usage, preventing both over-provisioning and 
under-utilization scenarios that lead to economic inefficiencies 
(Beloglazov and Buyya, 2012; Li et al., 2013).

Advanced performance evaluation frameworks incorporate multi-
dimensional metrics that address the complexity of modern cloud 
environments. These include scalability measures that evaluate system 
behavior under varying loads, reliability indicators that assess fault 
tolerance capabilities, and energy efficiency metrics that quantify 
power consumption relative to computational output. The integration 
of Service Level Objectives (SLO) and Service Level Agreements 
(SLA) (Buyya et  al., 2009) provides contractual frameworks for 
performance measurement, establishing measurable targets for 
system behavior.
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2.2 AI/ML evolution in resource 
management

The paradigm shift from reactive to predictive resource allocation 
represents a fundamental transformation in cloud computing 
management strategies. Traditional reactive approaches respond to 
resource demands after they occur, leading to suboptimal performance 
during peak loads and resource waste during low-demand periods. In 
contrast, AI/ML-enabled predictive allocation systems analyze 
historical patterns, workload characteristics, and system behaviors to 
anticipate future resource requirements, enabling proactive resource 
provisioning and optimization.

Machine learning techniques have demonstrated significant 
potential in addressing the dynamic and complex nature of cloud 
resource allocation challenges. Supervised learning approaches utilize 
historical workload data to predict future resource demands, while 
unsupervised learning methods identify hidden patterns in resource 
usage that can inform allocation strategies. Reinforcement learning 
techniques enable adaptive resource allocation through continuous 
interaction with the cloud environment, learning optimal policies 
through trial-and-error experiences (Sutton and Barto, 2018).

Deep learning approaches, particularly Deep Reinforcement 
Learning (DRL) (Sutton and Barto, 2018; Mnih et al., 2015; Silver 
et al., 2016), have emerged as powerful solutions for complex resource 
allocation scenarios where traditional algorithms struggle. DRL 
combines the pattern recognition capabilities of deep neural networks 
with the decision-making strengths of reinforcement learning, 
enabling systems to handle high-dimensional state spaces and 
complex optimization objectives. These approaches have shown 
particular effectiveness in scenarios with dynamic workloads, 
heterogeneous resources, and multi-objective 
optimization requirements.

Existing survey literature reveals significant gaps in comparative 
analysis of recent AI/ML approaches for cloud resource allocation. 
While several surveys have addressed specific aspects such as energy 
efficiency, load balancing techniques, or particular algorithm 
categories, there remains a lack of systematic evaluation that 
encompasses the breadth of AI/ML techniques currently being 
developed (Zhang et al., 2010; Sutton and Barto, 2018). Most existing 
reviews focus on algorithmic classifications rather than quantitative 
performance comparisons, limiting their utility for practical 
implementation decisions.

Furthermore, the rapid evolution of AI/ML techniques has 
outpaced survey efforts, with many cutting-edge algorithms remaining 
unanalyzed in existing literature (Lu et al., 2017). The integration of 
modern deep learning architectures, hybrid optimization approaches, 
and multi-agent systems represents an emerging research that requires 
systematic investigation. Our work addresses these gaps by providing 
an analysis of state-of-the-art AI/ML algorithms specifically designed 
for cloud resource allocation, offering both technical insights and 
practical implementation guidance for the next generation of 
intelligent cloud management systems. See Table 1 for an overview.

The table presents improvements to provide a view of algorithmic 
capabilities. The diversity of metrics across studies reflects different 
optimization priorities: healthcare applications prioritize latency 
reduction, mobile systems balance energy and performance, industrial 
environments focus on energy efficiency, and enterprise systems 
optimize for cost and resource utilization. Direct cross-metric 

comparison is limited by heterogeneous evaluation environments, but 
the multi-metric view illustrates algorithmic trade-offs and suitability 
for different deployment scenarios.

3 Methodology

This systematic review employs a structured approach adapted 
from PRISMA guidelines to ensure transparency and reproducibility 
in literature selection and analysis. The literature search strategy 
encompassed multiple academic databases including IEEE Xplore 
Digital Library, ACM Digital Library, ScienceDirect, Springer Link, 
and arXiv preprint server, focusing on publications from January 2022 
to December 2024 to capture recent advances in AI/ML-based cloud 
resource allocation. The search employed Boolean operators 
combining “cloud resource allocation” OR “cloud resource 
management” with “machine learning” OR “artificial intelligence” OR 
“deep learning” and category-specific terms including “DQN,” “policy 
gradient,” “CNN,” “LSTM,” “SVM,” “genetic algorithm,” and 
“federated learning.”

The selection process followed rigorous inclusion and exclusion 
criteria targeting algorithms specifically designed for cloud computing 
resource allocation with novel AI/ML approaches, quantitative 
performance evaluation, and practical implementation considerations 
from 2022 to 2024 publications. The systematic selection proceeded 
through three stages: initial screening of 2,847 papers through title 
and abstract evaluation resulted in 287 papers for full-text review; 
detailed assessment of technical content, algorithmic novelty, and 
experimental validation yielded 45 papers meeting all criteria; final 
selection focused on 10 algorithms representing methodological 
diversity across four categories, performance excellence exceeding 
10% improvement in key metrics, implementation readiness, 
experimental rigor, and preference for recent 2024 publications 
representing cutting-edge research.

The analysis framework addresses the fundamental challenge of 
comparing algorithms evaluated under different conditions and 
methodologies. Given the heterogeneous nature of evaluation 
environments across selected papers, the comparative analysis focuses 
on relative improvement percentages rather than absolute values, 
categorizes algorithms by problem type and evaluation context, and 
provides qualitative assessment where quantitative comparison proves 
infeasible. Performance metrics normalization emphasizes primary 
metrics including execution time improvement, cost optimization, 
and energy efficiency, alongside secondary metrics such as resource 
utilization, QoS satisfaction, and scalability measures. Technical 
innovation assessment examines algorithmic architecture including 
neural network design and optimization techniques, problem 
formulation encompassing state space representation and objective 
functions, and learning mechanisms covering training procedures and 
convergence properties.

The methodology acknowledges significant limitations inherent 
in cross-study comparison of machine learning algorithms for cloud 
resource allocation. Evaluation environment diversity across 
different simulators such as CloudSim and iFogSim, varying datasets 
including Google cluster traces and Alibaba traces, and different 
experimental setups limit direct quantitative comparison between 
algorithms. Baseline variation occurs as different papers employ 
different baseline algorithms for comparison, while metric 
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heterogeneity reflects varying performance metrics and 
measurement methodologies across studies. Scale differences 
manifest through evaluation conducted at different scales regarding 
number of virtual machines, tasks, and time periods. These 
limitations necessitate careful interpretation of comparative results 
and emphasize the importance of relative performance improvements 
rather than absolute metric values in evaluating 
algorithmic effectiveness.

4 Algorithm analysis

This section presents a comprehensive technical analysis of 10 
state-of-the-art machine learning algorithms for cloud resource 
allocation, organized into four distinct categories based on their 
underlying methodological approaches. Each category represents a 
different paradigm in applying machine learning techniques to 
address the complex challenges of resource allocation in modern 
cloud computing environments. The algorithms analyzed span recent 
developments from leading research venues and demonstrate 
significant advances over traditional heuristic approaches. Figure 1 
presents the taxonomic organization of the 10 analyzed algorithms 
across four main methodological categories, providing a structural 
overview of the algorithmic landscape examined in this survey.

4.1 Deep reinforcement learning 
approaches

Deep reinforcement learning has emerged as a paradigm for cloud 
resource allocation combining the decision-making capabilities of 
reinforcement learning with the pattern recognition capability of deep 
neural networks (Sutton and Barto, 2018; Mnih et al., 2015; Mao et al., 
2017). These approaches excel in dynamic environments where 
traditional optimization methods struggle with the complexity of 
multi-dimensional state spaces, temporal dependencies, and 
continuous adaptation requirements. The algorithms in this category 
demonstrate significant advances in handling uncertainty, learning 
from experience, and making optimal allocation decisions in real-time 
cloud environments.

The three algorithms examined—Proximal Policy 
Optimization for Device-to-Device-assisted Mobile Edge 
Computing, Adaptive Task Scheduler using Improved 
Asynchronous Advantage Actor-Critic, and Rainbow Deep 
Q-Network for edge-cloud systems—represent different aspects 
of deep reinforcement learning innovation. They showcase 
advances in policy optimization, actor-critic architectures, and 
value-based learning, respectively, while addressing specific 
challenges in mobile edge computing, multi-cloud task scheduling, 
and hierarchical resource allocation.

TABLE 1  Overview of analyzed machine learning algorithms for cloud resource allocation.

Category Algorithm Key innovation Primary application Improvements

Deep reinforcement 

learning

PPO for D2D-MEC Policy gradient with clipping Mobile edge computing 35–45% execution time 

improvement, 40–50% energy 

savings, 30–40% cost reduction

ATSIA3C Residual CNN + A3C Multi-cloud task scheduling 70.49% makespan reduction, 77.42% 

cost optimization, 74.24% energy 

improvement

Rainbow DQN Six DQN enhancements IoT edge-cloud systems 43.1% utility enhancement, 29.8% 

energy efficiency, 27.5% latency 

reduction

Neural network architecture DPSO-GA CNN-LSTM + meta-heuristic Cloud load balancing 13.3% cost reduction, energy 

optimization, prediction MAE 

improvements

VSBG VMD + Hybrid LSTM Workload prediction RMSLE 0.03 vs. 0.89 baseline, MSE 

Reduction, R2 = 0.97

DWT-BiGRU Wavelet + attention Host load prediction 15.4% MAPE (high volatility), 

RMSE reduction across machine 

types

Traditional ML enhanced Enhanced-Kernel SVM Novel kernel fusion Healthcare fog-cloud 73.88% execution time 

improvement, 90% latency 

reduction vs. cloud-only

N2TC-GATA Neural classification + GA Multi-objective allocation 13.3% cost, 12.1% response time, 

3.2% execution time improvement

Multi-agent based Multi-agent DRL Cooperative-competitive agents Container allocation 28% overall runtime improvement, 

enhanced container placement 

efficiency

IF-DDPG Federated DDPG Industrial edge computing 50.5% energy consumption 

reduction, 15.2–31.75 improvement 

vs. other DRL methods
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4.1.1 Proximal policy optimization for 
D2D-assisted MEC

Proximal Policy Optimization (PPO) has been successfully 
adapted for Mobile Edge Computing environments through its 
clipped objective function mechanism that prevents destructive 
policy updates while maintaining stable learning characteristics 
(Cao et al., 2024). The algorithm employs both policy and value 
networks, where the policy network outputs probability 
distributions over offloading actions, and the value network 
estimates state values for advantage calculation using Generalized 
Advantage Estimation.

PPO addresses the fundamental challenge of intelligent task 
offloading decisions across three-tier architectures comprising mobile 
devices, edge servers, and cloud data centers. The approach formulates 
resource allocation as a Markov Decision Process that simultaneously 
optimizes execution time, energy consumption, and monetary costs 
while enabling devices with limited computational capabilities to 
make critical decisions about task execution location.

PPO’s technical innovation lies in its clipped objective function 
mechanism (Schulman et  al., 2017; Sutton and Barto, 2018) that 
prevents destructive policy updates while maintaining stable learning 
characteristics. The algorithm employs both policy and value 
networks, where the policy network outputs probability distributions 
over offloading actions, and the value network estimates state values 
for advantage calculation. The clipped surrogate objective 
function ( )θJ :

	
( )  ( ) ( )( )( )min ,clip ,1 ,1t t t t tJ E r A r A θ = θ θ −ε + ε  

ensures policy updates remain within safe bounds, preventing 
instability issues common in traditional policy gradient methods.

Experimental evaluation demonstrates significant performance 
improvements across multiple metrics compared to baseline 
algorithms. The PPO approach achieves 35–45% improvement in 
execution time reduction versus random offloading, 40–50% 
energy savings compared to local execution, and 30–40% cost 
reduction versus always-cloud strategies (Cao et al., 2024). The 
algorithm shows convergence within 500–1000 episodes and 
requires 20–30% fewer samples than vanilla policy gradient 
methods, demonstrating superior sample efficiency essential for 
practical deployment scenarios.

The algorithm requires specialized infrastructure for policy 
network training, GPU acceleration for neural network processing, 
and integration with mobile edge computing simulation environments. 
Implementation complexity involves hyperparameter tuning for 
clipped objective functions, state space design for multi-tier 

environments, and reward function formulation for multi-objective 
optimization scenarios.

PPO represents a significant advancement in mobile edge 
computing resource allocation by enabling intelligent, adaptive task 
offloading that responds to dynamic network conditions, device 
constraints, and application requirements. The approach demonstrates 
how policy gradient methods can be stabilized and applied to real-
time resource allocation scenarios with multiple conflicting objectives.

4.1.2 Adaptive task scheduler using improved A3C 
(ATSIA3C)

The Adaptive Task Scheduler using Improved Asynchronous 
Advantage Actor-Critic introduces architectural innovation that 
replaces standard A3C fully connected networks with Residual 
Convolutional Neural Networks (Hussain et  al., 2024). This 
modification enables more effective learning in complex multi-cloud 
environments by preserving gradient flow and improving feature 
extraction capabilities through skip connections that mitigate 
vanishing gradient problems.

ATSIA3C directly addresses the fundamental challenge of 
mapping heterogeneous tasks to distributed cloud resources where 
traditional algorithms struggle with varying task lengths, runtime 
capacities, and diverse resource requirements (Mnih et  al., 2016; 
Calheiros et al., 2011). The algorithm incorporates intelligent task 
segmentation that analyzes incoming tasks and partitions them into 
subtasks based on computational complexity, memory requirements, 
communication dependencies, and execution time constraints.

The task segmentation mechanism represents a critical innovation 
that analyzes incoming tasks and partitions them into subtasks based 
on computational complexity, memory requirements, communication 
dependencies, and execution time constraints. Large monolithic tasks 
undergo intelligent decomposition that considers inter-task 
dependencies, data locality requirements, and communication 
overhead minimization. The segmentation algorithm employs graph-
based analysis to identify task components that can execute 
independently while maintaining data consistency and 
dependency satisfaction.

The algorithm requires CloudSim simulation environment 
familiarity, multi-cloud API integration capabilities, and distributed 
computing infrastructure for training residual CNN components. 
Implementation complexity involves residual CNN configuration, 
A3C hyperparameter tuning, task dependency graph construction, 
and multi-cloud resource monitoring systems.

Evaluation using CloudSim toolkit demonstrates exceptional 
improvements: 70.49% reduction in makespan compared to baseline 
algorithms including RATS-HM, MOABCQ, and AINN-BPSO, 
77.42% improvement in resource cost optimization on average, and 

FIGURE 1

Overview of analyzed machine learning algorithms for cloud resource allocation.
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74.24% improvement in energy consumption optimization (Hussain 
et al., 2024). These results indicate substantial advancement in overall 
task completion time while achieving cost-efficient resource selection 
across multi-cloud environments.

ATSIA3C represents the evolution from reactive to predictive 
multi-cloud scheduling, demonstrating how architectural innovations 
in deep reinforcement learning can address real-world resource 
allocation complexity. The approach establishes new performance 
benchmarks for multi-cloud task scheduling while maintaining 
practical deployment feasibility for enterprise environments.

4.1.3 Rainbow DQN for edge-cloud systems
Rainbow Deep Q-Network integrates six key enhancements to 

standard DQN algorithms: Double Q-Learning, Prioritized 
Experience Replay, Dueling Networks, Multi-step Learning, 
Distributional Reinforcement Learning, and Noisy Networks 
(Aloqaily et al., 2024). Each component addresses specific limitations 
of traditional DQN approaches through comprehensive enhancement 
strategies that improve sample efficiency, reduce overestimation bias, 
and enable more sophisticated exploration.

The algorithm operates within three-layer Device-to-Device-
Edge-Cloud architectures, addressing the complexity of hierarchical 
resource allocation across IoT devices, edge nodes, and cloud 
infrastructure. Rainbow DQN handles the fundamental challenge of 
intelligent resource allocation decisions across multiple tiers with 
varying computational capabilities, communication constraints, and 
latency requirements.

Experimental evaluation demonstrates significant performance 
improvements across all key metrics in realistic IoT deployment 
scenarios. Rainbow DQN achieves 29.8% improvement in energy 
efficiency, 27.5% reduction in latency, and 43.1% increase in utility 
compared to Double DQN baselines when tested with 100 IoT devices 
(Aloqaily et  al., 2024). Performance gains scale effectively with 
network size, showing 32% energy efficiency improvement and 50% 
utility enhancement with 300 devices.

The algorithm requires specialized deep learning infrastructure 
supporting six integrated enhancement components, extensive 
memory for prioritized experience replay buffers, and distributed 
computing capabilities for multi-step learning processes. 
Implementation involves complex hyperparameter coordination 
across multiple enhancement mechanisms and sophisticated 
exploration strategy management.

Rainbow DQN advances the field by demonstrating how 
comprehensive integration of DQN enhancements can address the 
complexity of modern distributed computing environments (Hessel 
et al., 2018). The approach provides a foundation for hierarchical 
resource allocation in IoT-edge-cloud scenarios while establishing 
new performance standards for value-based reinforcement learning 
in resource management.

4.2 Neural network architecture based 
approaches

Neural network architectures represent a fundamental paradigm 
in applying machine learning to cloud resource allocation, leveraging 
deep learning’s pattern recognition capabilities to predict workload 
demands and optimize resource distribution. These approaches excel 

in extracting complex non-linear relationships from historical data, 
enabling proactive resource allocation that anticipates future demands 
rather than merely reacting to current conditions. The three 
algorithms examined—DPSO-GA hybrid optimization, VSBG multi-
modal prediction, and BiGRU with discrete wavelet transformation—
represent different aspects of neural network innovation in cloud 
computing. They showcase advances in hybrid optimization 
techniques, signal processing integration, and bidirectional temporal 
modeling, respectively, while addressing specific challenges in load 
balancing, workload prediction, and host utilization forecasting.

4.2.1 Deep learning with particle swarm 
intelligence and genetic algorithm (DPSO-GA)

The DPSO-GA algorithm introduces a hybrid approach that 
combines Convolutional Neural Networks (He et al., 2016) and Long 
Short-Term Memory networks (Hochreiter and Schmidhuber, 1997) 
with Particle Swarm Optimization (Kennedy and Eberhart, 1995) and 
Genetic Algorithm optimization (Awad et al., 2024; Holland, 1992). 
The innovation lies in a two-phase optimization strategy where 
PSO-GA optimization performs intelligent hyperparameter selection 
while CNN-LSTM neural networks provide sophisticated workload 
prediction and resource allocation decisions.

DPSO-GA addresses critical challenges in cloud environments 
where dynamic workload patterns create resource imbalances leading 
to over-provisioning, under-utilization, and inefficient energy 
consumption. The algorithm provides intelligent workload prediction 
and proactive resource allocation that anticipates demand changes 
and optimizes resource distribution before performance 
degradation occurs.

Experimental evaluation using Google cluster workload traces 
(Reiss et  al., 2011; Verma et  al., 2015) and CloudSim simulation 
(Calheiros et  al., 2011) demonstrates significant performance 
improvements across multiple metrics. The DPSO-GA approach 
achieves optimal waiting times of 10.2 s for 10 VM configurations, 
with energy consumption ranging from 201.77 KWh for 50 tasks to 
809.91 KWh for 1500 tasks (Awad et al., 2024). Multi-variate analysis 
shows MAE improvements in storage prediction (0.18 vs. 0.25), 
processing power (0.29 vs. 0.37), and memory utilization (0.024 
vs. 0.036).

The algorithm requires deep learning framework infrastructure 
supporting CNN-LSTM training, meta-heuristic optimization 
libraries for PSO-GA implementation, and CloudSim simulation 
environment capabilities. Implementation complexity involves 
hyperparameter optimization coordination, neural network 
architecture design, and integration of multiple 
optimization paradigms.

DPSO-GA demonstrates the effectiveness of hybrid optimization 
approaches that combine deep learning pattern recognition with 
meta-heuristic global optimization. The algorithm establishes new 
paradigms for proactive cloud resource management while providing 
practical frameworks for organizations seeking to implement 
intelligent load balancing systems.

4.2.2 Variational mode decomposition with 
bidirectional and grid LSTM (VSBG)

The VSBG algorithm introduces systematic combination of 
advanced signal processing techniques with hybrid deep learning 
architectures through integration of Variational Mode Decomposition, 

https://doi.org/10.3389/fcomp.2025.1678976
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bodra and Khairnar� 10.3389/fcomp.2025.1678976

Frontiers in Computer Science 07 frontiersin.org

Savitzky–Golay filtering, Bidirectional LSTM (Hochreiter and 
Schmidhuber, 1997), and Grid LSTM components (Yuan et al., 2024). 
The innovation enables superior prediction accuracy by decomposing 
nonstationary workload time series into manageable components that 
can be  individually processed and optimized for maximum 
predictive performance.

VSBG addresses fundamental challenges in cloud workload 
prediction where traditional approaches fail to handle complex, multi-
scale temporal patterns characteristic of modern cloud environments. 
The algorithm processes workloads that exhibit nonstationary 
behavior with multiple overlapping periodicities, sudden spikes, 
gradual trends, and random fluctuations that create prediction 
difficulties for conventional methods.

Performance evaluation using heterogeneous datasets from 
Google cluster traces (672,003 jobs over 29 days) and Alibaba cluster 
traces (4M jobs over 8 days) demonstrates exceptional accuracy 
improvements. For Google cluster workload prediction, VSBG 
achieves RMSLE of 0.03 compared to 0.89 for ARIMA and 0.81 for 
LSTM (Yuan et al., 2024), with MSE of 7583 ± 4 versus 18,133 ± 4 for 
ARIMA and 10,942 ± 2 for LSTM. The R2 coefficient reaches 0.97 
compared to 0.81 for ARIMA and 0.89 for LSTM.

The algorithm requires advanced signal processing libraries 
supporting VMD implementation, specialized LSTM frameworks 
capable of bidirectional and grid architectures, and substantial 
computational resources for multi-modal prediction processing. 
Implementation involves VMD parameter tuning, hybrid LSTM 
configuration, and integration of multiple signal processing and deep 
learning components.

VSBG represents a significant advancement in cloud workload 
prediction by systematically addressing signal processing challenges 
that limit traditional approaches. The algorithm enables more accurate 
resource allocation decisions and improved quality of service 
guarantees through predictive rather than reactive resource 
management strategies.

4.2.3 Discrete wavelet transformation with 
bidirectional GRU (DWT-BiGRU)

The DWT-BiGRU algorithm combines Discrete Wavelet 
Transformation, Bidirectional Gated Recurrent Units (Cho et  al., 
2014), and attention mechanisms (Vaswani et al., 2017) through a 
three-stage hybrid approach specifically targeting CPU utilization 
prediction (Almalki et al., 2022). The innovation employs Mallat’s 
algorithm for three-level signal decomposition, separating 
nonstationary host load traces into multiple frequency components 
that enable targeted processing and improved prediction accuracy.

DWT-BiGRU addresses critical challenges in host load prediction 
where accurate forecasting of CPU utilization patterns directly 
impacts resource allocation decisions, auto-scaling mechanisms, and 
quality of service guarantees. The algorithm handles nonstationary 
cloud workloads that exhibit multiple time scales, sudden changes, 
and complex patterns influenced by user behavior, application 
characteristics, and system dynamics.

Experimental validation using Google cluster (672,074 jobs over 
29 days) and Alibaba cluster (1300 + machines over 12 h) datasets 
demonstrates significant performance improvements across diverse 
machine configurations. For Google cluster Machine G1 with low 
average CPU and high volatility, DWT-BiGRU-attention achieves 
MAPE of 15.4% compared to 34.2% for SVR and 23.1% for LSTM 

(Almalki et  al., 2022), with RMSE of 3.1 versus 10.2 and 6.5, 
respectively.

The algorithm requires signal processing libraries supporting 
discrete wavelet transformation, specialized GRU implementations 
with bidirectional capabilities, and attention mechanism frameworks 
for encoder–decoder architectures. Implementation involves wavelet 
parameter selection, BiGRU network configuration, attention 
mechanism tuning, and integration of signal processing with deep 
learning components.

DWT-BiGRU advances the field by demonstrating how signal 
processing techniques can be systematically integrated with recurrent 
neural networks to address prediction challenges in dynamic cloud 
environments. The approach provides practical frameworks for 
organizations seeking to implement intelligent host load prediction 
for improved resource allocation decisions.

4.3 Traditional machine learning enhanced 
approaches

4.3.1 Service-aware hierarchical fog-cloud 
resource mapping with enhanced-kernel SVM

The Enhanced-Kernel SVM algorithm introduces novel kernel 
design that combines multiple kernel functions with traditional 
Support Vector Machine classification (Cortes and Vapnik, 1995; 
Cristianini and Shawe-Taylor, 2000) to achieve superior classification 
accuracy for healthcare-specific task categorization (AlZailaa et al., 
2024). The innovation integrates cross-correlation for measuring task 
similarity through symmetric features, convolution operations for 
enhanced accuracy through reversed similarity analysis, and auto-
correlation for capturing self-similarity within task classes.

Enhanced-Kernel SVM addresses the critical challenge of latency-
sensitive healthcare applications where real-time processing 
capabilities and quality of service guarantees are essential for patient 
safety and care effectiveness (Bonomi et al., 2012). The algorithm 
operates in complex healthcare computing environments requiring 
ultra-low latency for critical medical monitoring, high reliability for 
life-safety systems, and strict privacy protection for sensitive medical 
data (Shi et al., 2016).

The algorithm requires iFogSim simulation environment 
capabilities, specialized SVM libraries supporting custom kernel 
design, and healthcare domain expertise for task classification and 
priority determination. Implementation involves kernel fusion 
parameter tuning, healthcare-specific feature extraction, and 
integration with fog-cloud infrastructure management systems.

Enhanced-Kernel SVM establishes new paradigms for domain-
specific resource allocation by demonstrating how traditional machine 
learning techniques can be  enhanced through specialized kernel 
design. The approach provides practical frameworks for healthcare 
organizations seeking to implement intelligent fog-cloud resource 
allocation with strict latency and reliability requirements.

Experimental evaluation using iFogSim simulator (Gupta et al., 
2017) demonstrates exceptional performance improvements across 
multiple healthcare scenarios. The Enhanced-Kernel SVM achieves 
73.88% improvement in execution time for critical tasks (0.23ms 
versus 0.92ms for baseline FCFS algorithm) and 52.01% improvement 
for non-critical tasks (AlZailaa et al., 2024). Latency analysis shows 
remarkable 90% reduction compared to cloud-only architectures, with 
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fog-cloud hybrid deployment achieving 11.4 ms to 23.06 ms latency 
for 20–60 sensors versus 88.14 ms to 331.81  ms for cloud-
only configurations.

4.3.2 Neural network task classification with 
genetic algorithm task assignment (N2TC-GATA)

The N2TC-GATA algorithm combines Neural Network Task 
Classification with Genetic Algorithm Task (Holland, 1992) 
Assignment through a two-stage methodology that leverages pattern 
recognition capabilities for intelligent task classification with global 
optimization strengths for optimal resource assignment (Manaseer 
and Ali, 2024). The innovation employs a feed-forward back-
propagation neural network with 20 hidden layers specifically 
designed for task priority classification integrated with genetic 
algorithm optimization using decimal chromosome encoding.

N2TC-GATA addresses optimization challenges in cloud 
environments where diverse task characteristics, heterogeneous 
resource capabilities, and multiple conflicting objectives create 
scheduling scenarios that exceed the capabilities of traditional single-
method approaches. The algorithm handles complex scenarios 
requiring simultaneous optimization of execution time, cost 
considerations, and system efficiency factors.

The algorithm requires neural network frameworks supporting 
multi-layer feed-forward architectures, genetic algorithm optimization 
libraries with decimal encoding capabilities, and substantial 
computational resources for population-based optimization with 500 
chromosomes. Implementation involves neural network training 
procedures, genetic algorithm parameter tuning, and integration of 
classification and optimization components.

N2TC-GATA demonstrates the effectiveness of combining neural 
network classification with evolutionary optimization for multi-
objective cloud resource allocation. The approach provides practical 
frameworks for organizations seeking balanced optimization across 
multiple performance criteria while maintaining computational 
efficiency and implementation feasibility.

Performance evaluation using Google cluster-traces v3 dataset 
with 405,894 task records demonstrates significant improvements 
across multiple metrics. The N2TC-GATA approach achieves 3.2% 
reduction in execution time, 13.3% improvement in cost efficiency, 
and 12.1% enhancement in response time (Manaseer and Ali, 2024). 
Neural network training demonstrates efficient convergence within 27 
epochs, while genetic algorithm optimization shows consistent fitness 
improvement across generations.

4.4 Multi-agent based approaches

Multi-agent based approaches represent a paradigm shift toward 
distributed intelligence (Stone and Veloso, 2000; Tampuu et al., 2017; 
Dragoni et al., 2017) in cloud resource allocation, leveraging the 
collective decision-making capabilities of multiple autonomous agents 
to address complex optimization challenges that exceed the capabilities 
of centralized algorithms. These approaches excel in scenarios 
requiring coordinated resource allocation across heterogeneous 
environments, dynamic adaptation to changing conditions, and 
scalable solutions that can accommodate growing system complexity.

The two algorithms examined—Multi-Agent Deep Reinforcement 
Learning for container allocation and Industrial Federated Deep 

Deterministic Policy Gradient (IF-DDPG) for edge computing—
represent different aspects of multi-agent innovation. They showcase 
advances in coordinated container placement optimization and 
federated energy-efficient resource allocation, respectively, while 
addressing specific challenges in cloud orchestration systems and 
industrial Internet of Things (IoT) environments.

4.4.1 Container allocation using multi-agent deep 
reinforcement learning

The Multi-Agent Deep Reinforcement Learning framework 
employs multiple autonomous agents operating within a mixed 
cooperative-competitive environment that optimizes both individual 
container performance and overall system efficiency (Chen et  al., 
2024). The innovation implements sequential decision-making where 
agents operate in predetermined serial order, ensuring coordinated 
placement decisions while maintaining individual agent autonomy 
through comprehensive system state observation including container 
requirements, previous agents’ decisions, and real-time server 
utilization metrics (Burns et al., 2019).

Multi-Agent DRL addresses complex container orchestration 
challenges in modern cloud environments where microservices 
architectures, containerized applications, and dynamic scaling 
requirements create resource allocation scenarios that exceed the 
capabilities of traditional scheduling approaches. The algorithm 
handles complex decisions about resource assignment, inter-container 
communication optimization, load balancing, and quality of service 
maintenance across heterogeneous infrastructure.

The algorithm requires distributed computing infrastructure 
supporting multi-agent coordination, specialized deep reinforcement 
learning frameworks capable of sequential decision-making, and 
container orchestration platform integration for real-world 
deployment. Implementation involves agent coordination protocol 
design, LSTM network configuration for individual agents, and 
integration with existing container management systems.

Multi-Agent DRL establishes new paradigms for distributed 
intelligent resource allocation by demonstrating how multiple 
autonomous agents can coordinate effectively to achieve superior 
system-wide performance. The approach provides practical 
frameworks for organizations seeking to implement intelligent 
container orchestration with improved performance over traditional 
scheduling algorithms.

The multi-agent coordination mechanism employs sequential 
decision-making where agents operate in predetermined serial order, 
ensuring coordinated placement decisions while maintaining 
individual agent autonomy. Each agent observes comprehensive 
system information including current container requirements, 
previous agents’ decisions, and real-time server utilization metrics. 
The state space formulation of agent i is given by
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where ( )iq t  denotes the container for which the ith agent is 
responsible at decision round t  the ith agent’s task requirement at 
round t . The previous decisions made by the agents that preceded it 
in the current round of decisions are denoted by the action vector 
( )ja t . ( )ju t  stands for the utilization of the servers concerning the 
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previous decision round. This incorporates both local container 
specifications and global system state information, enabling 
informed decision-making that considers system-wide impact while 
maintaining agent autonomy.

Experimental evaluation in real private cloud environments with 
eight heterogeneous servers demonstrates exceptional performance 
improvements. The MADRL approach achieves 28% overall runtime 
improvement compared to existing techniques, with LSTM-based 
agents showing 25–32% superiority over Kubernetes, Best-Fit, and 
Max-Fit algorithms (Chen et al., 2024). Performance advantages are 
particularly pronounced for communication-intensive container 
batches, where intelligent placement of communicating containers 
yields significant efficiency gains through reduced network overhead 
and improved data locality.

4.4.2 Industrial federated deep deterministic 
policy gradient (IF-DDPG)

The Industrial Federated Deep Deterministic Policy Gradient 
algorithm integrates federated learning (McMahan et al., 2017; Li 
et al., 2020) with deep reinforcement learning for energy-efficient edge 
computing offloading and resource allocation in Industrial Internet 
environments (Kumar et al., 2024). The innovation combines Deep 
Deterministic Policy Gradient reinforcement learning with federated 
learning architecture to achieve collaborative optimization without 
compromising data privacy essential for industrial competitiveness 
through sophisticated parameter aggregation mechanisms (GDPR.
eu, 2018).

IF-DDPG addresses critical challenges of optimizing task 
offloading decisions, communication resource allocation, and 
computing resource allocation across multiple edge servers and 
mobile industrial terminal devices while maintaining strict data 
privacy requirements (Dwork, 2008) essential for industrial 
applications. The algorithm handles industrial environments where 
manufacturing processes, supply chain management, quality control 
systems, and equipment monitoring create diverse computational 
workloads requiring intelligent resource allocation.

The algorithm requires federated learning infrastructure 
supporting distributed model training, specialized DDPG 
implementation capable of industrial IoT integration, and edge 
computing platforms with communication and computation resource 
management capabilities. Implementation involves federated 
parameter aggregation protocols, local DDPG training procedures, 
and integration with industrial IoT device management systems.

IF-DDPG advances the field by demonstrating how federated 
learning can be systematically integrated with deep reinforcement 
learning to address privacy-preserving collaborative optimization in 
industrial environments. The approach establishes new standards for 
energy-efficient resource allocation while providing practical 
frameworks for industrial organizations seeking intelligent edge 
computing optimization.

Experimental evaluation in realistic industrial environments with 
four edge servers and four terminal devices across 100 × 100  m2 
factory areas demonstrate significant energy consumption reductions 
compared to baseline algorithms. IF-DDPG achieves 15.2% energy 
reduction versus traditional DDPG, 31.7% improvement over Deep 
Double Q-Network (DDQN), 38.7% enhancement compared to Deep 
Q-Network (DQN), and remarkable 50.5% reduction versus Actor-
Critic (AC) algorithms (Kumar et al., 2024). Convergence analysis 

shows faster, and more stable learning compared to baseline 
approaches, with optimal learning rates providing superior 
performance characteristics.

5 Evaluation methodology and 
cross-study comparison limitations

The comparative analysis of machine learning algorithms for 
cloud resource allocation faces fundamental challenges due to the 
heterogeneous evaluation environments employed across different 
studies. This section addresses the reliability concerns inherent in 
cross-paper comparisons and establishes the methodological 
framework used to mitigate these limitations while providing 
meaningful insights about algorithmic performance trends. Table 2 
summarizes the evaluation environments, datasets, and experimental 
configurations across all analyzed algorithms, illustrating the 
substantial heterogeneity that limits direct cross-
algorithm comparison.

5.1 Evaluation environment heterogeneity

The analyzed algorithms were evaluated using diverse simulation 
environments, datasets, and experimental configurations that limit 
direct quantitative comparison. Deep Reinforcement Learning 
approaches employed different simulation frameworks: PPO for 
D2D-MEC used custom network simulators for mobile edge 
computing scenarios, ATSIA3C utilized CloudSim toolkit for multi-
cloud environments, and Rainbow DQN implemented specialized IoT 
device-edge-cloud simulators. Neural Network Architecture methods 
relied on varied datasets: VSBG used Google cluster traces (672,003 
jobs over 29 days) and Alibaba cluster traces (4M jobs over 8 days), 
DWT-BiGRU employed Google cluster data (672,074 jobs) and 
Alibaba cluster data (1300 + machines over 12 h), while DPSO-GA 
utilized Google cluster workload traces with CloudSim simulation.

Traditional Machine Learning Enhanced approaches employed 
domain-specific evaluation environments: Enhanced-Kernel SVM 
used iFogSim simulator for healthcare fog-cloud scenarios with 20–60 
sensors, while N2TC-GATA utilized Google cluster-traces v3 dataset 
with 405,894 task records. Multi-Agent Based approaches required 
specialized distributed simulation: Multi-Agent DRL employed real 
private cloud environments with 8 heterogeneous servers, while 
IF-DDPG used industrial IoT simulation with four edge servers and 
four terminal devices across 100 × 100 m2 factory areas.

The analyzed algorithms were evaluated across fundamentally 
different application environments that create distinct resource demand 
patterns, significantly limiting cross-algorithm comparison validity. 
Healthcare applications (Enhanced-Kernel SVM) exhibit ultra-low 
latency requirements and predictable monitoring patterns, mobile 
environments (PPO, Rainbow DQN) demonstrate high mobility with 
variable connectivity, industrial IoT (IF-DDPG) requires deterministic 
real-time processing, and enterprise environments (ATSIA3C, N2TC-
GATA) show complex workload patterns with cost optimization 
priorities. These domain-specific characteristics mean algorithms 
optimized for healthcare temporal patterns may perform poorly in 
enterprise bulk processing scenarios, and mobile energy-constrained 
optimizations may not apply to industrial fault-tolerant requirements. 
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Organizations should prioritize algorithms evaluated in application 
environments similar to their target deployment context rather than 
relying on performance improvements reported across different domains.

5.2 Baseline algorithm variability

The performance improvements reported across studies derive from 
comparisons against different baseline algorithms, creating additional 
complexity in cross-study evaluation. Deep Reinforcement Learning 
algorithms compared against varied baselines: ATSIA3C benchmarked 
against RATS-HM, MOABCQ, and AINN-BPSO algorithms, while 
Rainbow DQN used Double DQN as primary comparison. Neural 
Network approaches employed different baseline sets: VSBG compared 
against ARIMA and standard LSTM models, DWT-BiGRU 
benchmarked against SVR and basic LSTM implementations, and 
DPSO-GA evaluated against standalone PSO and GA algorithms.

Traditional ML Enhanced methods used domain-specific 
baselines: Enhanced-Kernel SVM compared against FCFS algorithms 
and cloud-only architectures, while N2TC-GATA benchmarked 
against traditional genetic algorithms without neural network 
classification. Multi-Agent approaches required specialized comparison 

frameworks: Multi-Agent DRL compared against Kubernetes, Best-Fit, 
and Max-Fit algorithms, while IF-DDPG benchmarked against 
traditional DDPG, DDQN, DQN, and Actor-Critic algorithms.

5.3 Performance metric standardization 
challenges

The diversity of performance metrics across studies reflects different 
optimization objectives and evaluation priorities, complicating direct 
algorithmic comparison. Execution time and makespan reduction 
metrics vary significantly in measurement approaches: some studies 
report absolute time improvements while others focus on percentage 
reductions relative to baseline algorithms. Cost optimization metrics 
employ different economic models: ATSIA3C measures resource cost 
optimization across multi-cloud pricing models, while Enhanced-Kernel 
SVM focuses on operational cost reduction in healthcare environments.

Energy efficiency measurements demonstrate substantial 
methodological differences: IF-DDPG reports energy consumption 
reduction in industrial IoT scenarios measured in watts, ATSIA3C 
calculates energy improvements as percentage reductions across 
datacenter operations, while DWT-BiGRU focuses on computational 

TABLE 2  Evaluation environments, datasets, and experimental configurations for analyzed algorithms.

Algorithm Evaluation 
environment

Dataset/traces Scale Baseline 
algorithms

Key metrics

PPO for D2D-MEC Custom mobile edge 

computing simulator

Synthetic mobile device 

traces

100 + mobile devices, 

10 edge servers

Random offloading, local 

execution, always-cloud

Execution time, energy 

consumption, 

monetary cost

ATSIA3C CloudSim toolkit Synthetic multi-cloud 

workloads

1000 + tasks across 

multiple datacenters

RATS-HM, MOABCQ, 

AINN-BPSO

Makespan, resource 

cost, energy 

consumption

Rainbow DQN Custom IoT-edge-cloud 

simulator

Synthetic IoT device traces 100–300 IoT devices, 

3-tier architecture

Double DQN, standard 

DQN

Energy efficiency, 

latency, utility

DPSO-GA CloudSim simulation Google cluster workload 

traces

50–1500 tasks, 10–50 

VMs

Standalone PSO, 

standalone GA

Waiting time, energy 

consumption, 

prediction MAE

VSBG Custom prediction 

framework

Google cluster traces 

(672,003 jobs, 29 days), 

Alibaba cluster traces (4M 

jobs, 8 days)

Large-scale cluster 

workloads

ARIMA, standard LSTM RMSLE, MSE, R2 

coefficient

DWT-BiGRU Custom prediction 

framework

Google cluster (672,074 

jobs, 29 days), Alibaba 

cluster (1300 + machines, 

12 h)

Multi-machine cluster 

environments

SVR, standard LSTM MAPE, RMSE

Enhanced-Kernel SVM iFogSim simulator Synthetic e-health 

application traces

20–60 sensors, fog-

cloud hybrid

FCFS, cloud-only 

architecture

Execution time, latency

N2TC-GATA Custom scheduling simulator Google cluster-traces v3 

(405,894 tasks)

Large-scale task 

scheduling

Traditional genetic 

algorithm

Execution time, cost 

efficiency, response 

time

Multi-agent DRL Real private cloud 

environment

Real container workloads Eight heterogeneous 

servers, container 

batches

Kubernetes, Best-Fit, 

Max-Fit

Overall runtime, 

container placement 

efficiency

IF-DDPG Custom industrial IoT 

simulator

Synthetic industrial 

workloads

Four edge servers, four 

terminal devices, 

100 × 100 m2 area

Traditional DDPG, 

DDQN, DQN, actor-

critic

Energy consumption
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energy efficiency during prediction tasks. Quality of Service metrics 
vary by application domain: healthcare applications emphasize latency 
reduction and reliability measures, while industrial IoT focuses on 
real-time processing capabilities and fault tolerance.

The focus on best performance metrics for each algorithm reflects 
the inherent challenge of comparing algorithms optimized for 
different objectives and evaluated using heterogeneous methodologies. 
Each algorithm prioritizes specific optimization goals: ATSIA3C 
emphasizes makespan reduction in multi-cloud environments, VSBG 
targets prediction accuracy for workload forecasting, Enhanced-SVM 
optimizes execution time for healthcare applications, and IF-DDPG 
focuses on energy efficiency in industrial settings. Rather than 
attempting misleading cross-metric comparisons between 
fundamentally different optimization objectives, our analysis 
emphasizes each algorithm’s primary contribution within its intended 
application domain. This approach provides more meaningful insights 
about algorithmic effectiveness while acknowledging that 
comprehensive multi-metric comparison would require standardized 
evaluation environments and consistent optimization objectives 
across all studies—conditions that do not exist in the current literature.

5.4 Mitigation strategies and analytical 
framework

To address these comparison limitations, our analysis employs 
several mitigation strategies that enable meaningful insights while 
acknowledging methodological constraints. Relative performance 
analysis focuses on percentage improvements over baseline algorithms 
reported in original studies rather than attempting direct comparison 
of absolute performance values. This approach enables identification 
of algorithmic effectiveness trends while respecting the different 
evaluation contexts employed across studies.

Categorical performance grouping organizes algorithms by 
problem type and application domain, enabling more appropriate 
comparisons within similar operational contexts. Deep Reinforcement 
Learning algorithms are analyzed collectively for their learning 
efficiency and adaptation capabilities, Neural Network approaches are 
compared for prediction accuracy and temporal modeling 
effectiveness, Traditional ML Enhanced methods are evaluated for 
domain-specific optimization performance, and Multi-Agent 
approaches are assessed for distributed coordination effectiveness.

Qualitative capability assessment examines algorithmic features 
and architectural innovations rather than relying solely on quantitative 
performance metrics. This includes analysis of convergence properties, 
scalability characteristics, implementation complexity, and 
deployment requirements that affect practical adoption decisions. The 
assessment framework considers algorithmic robustness, adaptation 
capabilities, and integration requirements that influence real-world 
effectiveness beyond simulation-based performance metrics.

5.5 Reliability assessment and confidence 
levels

Given the evaluation methodology limitations, performance 
comparisons should be interpreted with appropriate confidence levels 
and uncertainty acknowledgment. High confidence comparisons are 

possible within algorithm categories where studies employ similar 
evaluation environments and baseline algorithms, such as Neural 
Network approaches using Google cluster datasets or Deep 
Reinforcement Learning methods evaluated in mobile edge 
computing scenarios.

Medium confidence comparisons apply across categories where 
different evaluation environments prevent direct quantitative 
comparison but similar problem formulations enable qualitative 
capability assessment. This includes comparisons between 
optimization objectives such as energy efficiency improvements across 
different algorithmic approaches or scalability characteristics between 
centralized and distributed optimization methods.

Low confidence comparisons acknowledge situations where 
evaluation environments differ significantly, preventing reliable 
performance assessment. Cross-domain comparisons between 
healthcare-specific algorithms and general-purpose resource 
allocation methods fall into this category, as do comparisons between 
simulation-based results and real-world deployment outcomes.

5.6 Implications for algorithmic selection

The evaluation reliability analysis provides important guidance for 
algorithmic selection and implementation decisions. Organizations 
should prioritize algorithms evaluated in environments similar to 
their deployment contexts rather than relying solely on reported 
performance improvements. The heterogeneous evaluation landscape 
emphasizes the importance of pilot testing and performance validation 
in target environments before full-scale deployment.

Algorithm selection should consider evaluation methodology 
quality alongside reported performance metrics, with preference for 
approaches validated across multiple datasets and evaluation 
environments. The analysis suggests that algorithmic robustness and 
adaptation capabilities may be more important than peak performance 
metrics when deployment environments differ from evaluation 
contexts used in original studies.

6 Cross-category comparative 
analysis

This section presents a comparative analysis across all four 
categories of machine learning algorithms for cloud resource 
allocation, examining performance characteristics, implementation 
considerations, and practical deployment guidance. Through 
systematic evaluation of the 10 algorithms, we identify key trends, 
architectural patterns, and optimization strategies that characterize 
the current state-of-the-art in intelligent cloud resource management.

6.1 Performance trade-offs and the 
performance-complexity paradox

The comparative analysis reveals fundamental trade-offs between 
algorithmic categories that directly impact their suitability for different 
cloud environments, uncovering a critical performance-complexity 
paradox where algorithmic sophistication often correlates inversely 
with practical deployability. Deep Reinforcement Learning algorithms 
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demonstrate the most substantial performance gains across multiple 
metrics, with ATSIA3C achieving remarkable 70.49% makespan 
reduction, 77.42% cost optimization, and 74.24% energy consumption 
improvement. However, these impressive results exemplify the 
performance-complexity paradox: improvements exceeding 50% 
typically require infrastructure investments and operational expertise 
that may not justify incremental benefits for many 
deployment scenarios.

The paradox manifests through three distinct dimensions affecting 
adoption decisions. Implementation complexity increases 
exponentially with performance gains, as ATSIA3C’s superior results 
require mastery of residual CNN architectures, A3C algorithm 
implementation, and multi-cloud simulation environments. 
Operational overhead scales non-linearly with algorithmic 
sophistication, with maintenance, retraining, and continuous 
optimization demanding specialized expertise often unavailable in 
typical IT operations teams. Infrastructure requirements grow 
substantially with performance expectations, as advanced algorithms 
require specialized hardware, distributed training capabilities, and 
extensive computational resources that may exceed 
organizational capacity.

This analysis reveals that practical algorithmic selection should 
prioritize robustness and deployability over peak performance metrics 
when operational constraints limit implementation sophistication. 
The sample efficiency problem remains particularly acute, with PPO 
requiring 500–1,000 episodes for convergence, making real-time 
adaptation challenging in dynamic cloud environments while 
demanding continuous computational resources for 
effective operation.

Figure 2 illustrates the positioning of analyzed algorithms across 
two critical dimensions for practical deployment: performance impact 
and implementation complexity. This qualitative assessment reveals 
four distinct clusters that inform algorithmic selection strategies based 
on organizational constraints and performance requirements.

The quadrant analysis reveals that high-impact algorithms 
(ATSIA3C, VSBG, IF-DDPG) generally require substantial 
implementation complexity, while simpler approaches 
(Enhanced-SVM, N2TC-GATA) vary significantly in their 
performance contributions. This positioning supports the 
performance-complexity paradox identified in our analysis, where 
breakthrough performance often correlates with implementation 
challenges that may limit practical adoption.

Neural Network Architecture approaches excel in prediction 
accuracy but suffer from different limitations. VSBG achieves 
exceptional workload prediction with RMSLE improvements from 
0.89 to 0.03, yet this accuracy relies heavily on historical data patterns 
that may not generalize to novel workload behaviors or sudden system 
changes. The signal processing components (VMD, DWT) introduce 
additional computational complexity and parameter sensitivity that 
can degrade performance when applied to workloads with different 
characteristics than training data. Furthermore, the temporal 
dependencies captured by LSTM and BiGRU architectures assume 
stationarity in underlying system behavior that may not hold in 
rapidly evolving cloud environments.

Traditional Machine Learning Enhanced approaches offer more 
predictable performance with lower computational requirements, but 
their effectiveness remains highly domain-specific. Enhanced-Kernel 
SVM achieves 73.88% execution time improvement for healthcare 

applications, yet the specialized kernel design limits generalizability 
across different application domains. The hybrid optimization 
techniques in N2TC-GATA provide balanced multi-objective 
solutions but struggle with scalability when the number of objectives 
or constraints increases significantly beyond the evaluated scenarios.

Multi-Agent Based approaches demonstrate superior distributed 
coordination but introduce complex synchronization challenges. 
Multi-Agent DRL achieves 28% runtime improvement through 
intelligent coordination, yet the sequential decision-making 
mechanism creates potential bottlenecks as the number of agents 
increases. The federated learning component in IF-DDPG provides 
privacy preservation but introduces communication overhead and 
convergence delays that may offset performance gains in high-
frequency resource allocation scenarios.

6.2 Convergence properties and scalability 
analysis

A critical examination of convergence properties reveals 
significant variations in algorithmic stability and scalability 
characteristics across categories, with fundamental theoretical 
limitations that constrain practical deployment at enterprise scale. 
Deep Reinforcement Learning algorithms exhibit non-monotonic 
convergence behavior with potential for temporary performance 
degradation during exploration phases, creating operational risks in 
production environments where consistent performance is essential. 
ATSIA3C demonstrates faster convergence through residual CNN 
integration, yet the algorithm’s performance remains critically 
sensitive to reward function design and hyperparameter configuration, 
suggesting fundamental brittleness that limits reliable deployment.

The scalability analysis reveals architectural limitations that 
represent theoretical rather than implementation barriers. Deep 
Reinforcement Learning algorithms face quadratic complexity 
growth with state space expansion, creating mathematical 
constraints that cannot be  overcome through hardware 

FIGURE 2

Performance impact vs. implementation complexity.
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improvements or optimization techniques. For state spaces 
characteristic of enterprise cloud environments with millions of 
resources and complex interdependencies, current DRL 
approaches would require computational resources that exceed 
physically feasible limits. Rainbow DQN’s six enhancement 
techniques improve stability but increase memory requirements 
exponentially with state space dimensionality, creating a 
fundamental trade-off between algorithmic sophistication and 
scalability that cannot be  resolved within current 
architectural paradigms.

Neural Network Architecture approaches generally demonstrate 
more predictable convergence but suffer from generalizability 
limitations that restrict real-world applicability. VSBG’s multi-
modal prediction achieves stable performance across Google and 
Alibaba datasets, yet the decomposition techniques lose 
effectiveness when workload patterns deviate significantly from 
training distributions, revealing fundamental assumptions about 
data stationarity that rarely hold in dynamic cloud environments. 
The temporal dependencies captured by LSTM and BiGRU 
architectures assume underlying system behavior patterns that may 
not persist across different deployment contexts, geographical 
regions, or temporal periods, limiting algorithmic robustness to 
specific evaluation scenarios.

Traditional ML Enhanced methods scale more predictably but 
encounter fundamental limitations when problem complexity exceeds 
their theoretical foundations. Enhanced-Kernel SVM’s domain-
specific optimization relies on kernel design assumptions that cannot 
generalize beyond healthcare applications without complete 
algorithmic redesign. The mathematical foundations of SVM 
classification create inherent boundaries on problem complexity that 
cannot be exceeded regardless of computational resources or data 
availability, suggesting that traditional approaches face theoretical 
rather than practical scalability constraints.

Multi-Agent Based approaches present unique scalability 
challenges related to coordination complexity rather than 
computational requirements. Multi-Agent DRL’s sequential decision-
making mechanism creates coordination bottlenecks that scale 
exponentially with agent population, fundamentally limiting the 
approach to scenarios with modest numbers of coordinating entities. 
The communication overhead in federated learning approaches like 
IF-DDPG grows quadratically with participant numbers, creating 
theoretical limits on distributed optimization that cannot be overcome 
through network improvements or protocol optimization.

Analysis reveals three fundamental challenges that transcend 
individual algorithmic approaches. The adaptability-stability paradox 
manifests differently across categories: DRL algorithms achieve 
adaptability through continuous learning but risk performance 
degradation during exploration, neural networks provide stable 
predictions but require complete retraining when patterns change, 
traditional ML offers predictable performance but lacks adaptation 
mechanisms, and multi-agent systems demonstrate coordination 
flexibility but struggle with protocol evolution. The scale-complexity 
ceiling creates theoretical barriers where DRL faces quadratic state 
space growth, neural networks suffer from dimensionality curses, 
traditional ML encounters mathematical complexity limits, and multi-
agent coordination overhead grows exponentially. These systematic 
limitations suggest that breakthrough advances require 
interdisciplinary approaches combining control theory, distributed 

systems, and optimization theory rather than incremental 
improvements within existing paradigms.

6.3 Critical gap analysis and systematic 
field limitations

Despite impressive individual performance improvements, the 
analyzed algorithms collectively reveal systematic limitations that 
persist across all categories and represent fundamental challenges 
requiring theoretical advancement rather than incremental 
algorithmic refinement. The evaluation methodology inconsistency 
across studies creates uncertainty about real-world performance, with 
different baseline comparisons, simulation environments, and 
performance metrics preventing reliable cross-algorithm evaluation. 
This evaluation validity crisis undermines confidence in reported 
improvements and suggests the field requires standardized frameworks 
before meaningful algorithmic comparison becomes possible.

The temporal adaptation challenge represents a fundamental 
limitation affecting all categories but manifesting through different 
mechanisms. Deep reinforcement learning algorithms require 
extensive retraining when environment dynamics change, neural 
network approaches suffer from concept drift when workload patterns 
evolve beyond training distributions, traditional ML methods lack 
adaptive mechanisms for changing optimization landscapes, and 
multi-agent systems struggle with coordination protocol adaptation 
during system evolution. This systematic challenge suggests that 
current approaches fundamentally misunderstand the dynamic nature 
of cloud environments, treating them as stationary systems rather 
than continuously evolving ecosystems.

The scalability ceiling emerges as a critical architectural limitation 
where current approaches demonstrate effectiveness for hundreds to 
thousands of resources but lack theoretical or empirical validation for 
million-scale deployments characteristic of major cloud providers. 
None of the analyzed algorithms provide convincing evidence of 
linear scalability, with most exhibiting exponential complexity growth 
that limits practical applicability to large-scale production 
environments. This limitation indicates that fundamental algorithmic 
paradigms may require replacement rather than refinement to address 
enterprise-scale cloud resource allocation demands.

Resource allocation algorithms also suffer from the multi-
objective optimization paradox, where improvements in one metric 
often come at the expense of others, creating trade-offs that current 
approaches handle poorly. Cost optimization frequently conflicts with 
performance maximization, energy efficiency may reduce service 
quality, and security constraints limit optimization flexibility. The 
analyzed algorithms typically optimize for specific objective 
combinations but lack principled frameworks for dynamically 
adjusting optimization priorities based on changing business 
requirements or system conditions, suggesting fundamental 
theoretical gaps in multi-objective resource allocation.

6.4 Generalizability crisis and deployment 
reality gap

The systematic analysis reveals a fundamental generalizability 
crisis where algorithms demonstrate impressive performance in 
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controlled evaluation environments but face severe limitations when 
deployed in real-world cloud infrastructures with different 
characteristics, constraints, and operational requirements. This 
deployment reality gap manifests through several critical dimensions 
that question the practical applicability of current research directions.

Dataset dependency limitations plague all analyzed algorithms, 
with performance claims based on specific historical traces that may 
not represent future workload patterns or different organizational 
contexts. VSBG’s exceptional performance on Google and Alibaba 
cluster traces cannot reliably predict effectiveness for financial services 
workloads, healthcare applications, or e-commerce platforms with 
fundamentally different usage patterns, temporal characteristics, and 
resource consumption behaviors. The implicit assumption that 
historical patterns predict future performance ignores the rapidly 
evolving nature of cloud applications, particularly with the integration 
of AI/ML workloads that exhibit fundamentally different resource 
consumption characteristics than traditional enterprise applications.

Environmental constraint sensitivity represents a critical 
limitation where algorithms optimized for specific infrastructure 
configurations fail when deployed in environments with different 
hardware characteristics, network topologies, or resource availability 
patterns. Enhanced-Kernel SVM’s healthcare optimization assumes 
fog-cloud architectures with specific latency and bandwidth 
characteristics that may not exist in rural healthcare deployments, 
edge computing scenarios with limited connectivity, or regulatory 
environments requiring data locality constraints. The algorithmic 
assumptions about available infrastructure create fundamental 
barriers to cross-domain deployment that cannot be resolved through 
parameter tuning or minor modifications.

Operational context brittleness emerges as algorithms assume 
specific operational procedures, maintenance windows, and failure 
patterns that may not align with actual deployment environments. 
Multi-Agent DRL’s coordination mechanisms assume reliable inter-
agent communication that may not hold in distributed cloud 
environments with network partitions, variable latency, or security 
constraints that limit information sharing between components. The 
gap between algorithmic assumptions and operational reality creates 
deployment risks that may outweigh performance benefits.

Scale transition failures occur when algorithms demonstrate 
effectiveness at research scales but encounter fundamental barriers 
when deployed at enterprise scales with millions of resources, complex 
organizational structures, and regulatory compliance requirements. 
The mathematical complexity growth patterns identified in scalability 
analysis suggest that current algorithmic paradigms cannot bridge the 
gap between research demonstrations and production deployment 
requirements, necessitating fundamental theoretical advances rather 
than incremental improvements.

This generalizability crisis indicates that the field may 
be optimizing for evaluation success rather than practical deployment 
effectiveness, suggesting a fundamental misalignment between 
research objectives and industry needs that requires systematic 
correction through deployment-focused evaluation frameworks and 
real-world validation requirements.

Systematic analysis reveals that improvements in one performance 
dimension often conflict with others across all algorithmic categories. 
Cost optimization frequently conflicts with performance 
maximization, energy efficiency may reduce service quality, and 
security constraints limit optimization flexibility. Current algorithms 

typically optimize for specific objective combinations but lack 
principled frameworks for dynamically adjusting optimization 
priorities based on changing business requirements or system 
conditions, suggesting fundamental theoretical gaps in multi-objective 
resource allocation that require new mathematical frameworks rather 
than incremental algorithmic improvements.

6.5 Strategic implementation guidelines

The comparative analysis enables the development of strategic 
guidelines for algorithm selection based on organizational 
requirements and deployment constraints. Organizations with mature 
MLOps infrastructure and tolerance for complex deployment 
procedures should consider Deep Reinforcement Learning approaches 
for scenarios requiring maximum performance optimization across 
multiple objectives. The substantial training overhead and 
infrastructure requirements make these approaches suitable for large-
scale deployments where the performance benefits justify the 
implementation complexity.

Neural Network Architecture approaches provide optimal 
solutions for organizations with predictable workload patterns and 
historical data availability. These algorithms excel in environments 
where accurate demand forecasting directly translates to cost savings 
and performance improvements. However, organizations must invest 
in data collection infrastructure and model maintenance procedures 
to ensure continued effectiveness as system characteristics evolve.

Traditional Machine Learning Enhanced methods offer the most 
accessible entry point for organizations seeking immediate 
improvements with existing infrastructure. The interpretable nature 
of SVM-based approaches and hybrid optimization techniques 
provides transparency essential for regulatory compliance and 
operational validation. These approaches work best in specialized 
domains with well-defined optimization objectives and constraint sets.

Multi-Agent Based approaches suit organizations operating 
distributed cloud environments with strong privacy requirements or 
regulatory constraints limiting data sharing. The federated learning 
capabilities enable collaborative optimization while preserving data 
sovereignty, making these approaches particularly valuable for multi-
organizational cloud federations or industry consortiums requiring 
coordinated resource management.

6.6 Synthesis of hybrid architecture 
effectiveness and evolutionary principles

The analysis reveals that hybrid architectures consistently 
outperform single-method approaches across all performance metrics 
and deployment scenarios, representing not merely incremental 
improvement but fundamental evolution in algorithmic design 
philosophy. This effectiveness stems from three systematic integration 
mechanisms that address the inherent limitations of isolated AI/ML 
techniques. Capability augmentation combines techniques with 
non-overlapping strengths, such as DPSO-GA’s integration of CNN 
spatial feature extraction with PSO-GA global optimization, creating 
synergistic effects that exceed individual component capabilities. 
Weakness mitigation pairs techniques where one addresses the other’s 
limitations, exemplified by VSBG’s combination of VMD signal 
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decomposition with hybrid LSTM architectures to handle 
nonstationary data that neither component could manage effectively 
in isolation. The analysis reveals that hybrid architectures consistently 
outperform single-method approaches across all performance metrics 
and deployment scenarios, representing not merely incremental 
improvement but fundamental evolution in algorithmic design 
philosophy. This effectiveness stems from three systematic integration 
mechanisms that address the inherent limitations of isolated AI/ML 
techniques. Capability augmentation combines techniques with 
non-overlapping strengths, such as DPSO-GA’s integration of CNN 
spatial feature extraction with PSO-GA global optimization, creating 
synergistic effects that exceed individual component capabilities. 
Weakness mitigation pairs techniques where one addresses the other’s 
limitations, exemplified by VSBG’s combination of VMD signal 
decomposition with hybrid LSTM architectures to handle 
nonstationary data that neither component could manage effectively 
in isolation.

Performance amplification leverages emergent properties where 
combined techniques achieve superior results through complex 
interactions rather than simple addition of individual contributions, 
demonstrated by ATSIA3C’s residual CNN integration with A3C that 
improves both feature extraction and policy learning simultaneously 
through architectural co-evolution. This mechanism suggests that 
optimal hybrid design requires understanding technique interactions 
rather than merely combining high-performing components.

The architectural evolution patterns reveal a clear trajectory from 
reactive single-technique approaches toward predictive hybrid 
systems that integrate multiple AI/ML paradigms following 
identifiable principles. This convergence occurs systematically because 
modern cloud environments exhibit complexity characteristics that 
exceed the capability boundaries of individual machine learning 
paradigms. The fundamental principle emerging from this analysis 
suggests that optimal cloud resource allocation requires integration of 
complementary AI/ML capabilities rather than reliance on single 
techniques, with the most successful architectures achieving balance 
between capability breadth, implementation complexity, and 
operational maintainability.

However, hybrid architectures introduce their own systematic 
challenges including increased implementation complexity, higher 
computational requirements, and more complex failure modes that 
can offset performance benefits in resource-constrained environments. 
The integration overhead creates a critical threshold effect where 
architectural sophistication must be  balanced against deployment 
constraints, suggesting that successful hybrid design requires 
principled approaches to complexity management rather than 
unbounded technique integration. Organizations considering hybrid 
approaches must carefully evaluate whether performance benefits 
justify additional operational complexity and resource requirements, 
particularly when deployment environments impose strict resource 
or expertise constraints.

The convergence of challenges across all categories illuminates 
requirements for next-generation systems: (1) temporal adaptation 
mechanisms that treat dynamic environments as fundamental design 
constraints, (2) hierarchical architectures achieving linear scalability 
through principled decomposition, and (3) multi-objective 
frameworks enabling dynamic priority adjustment based on 
operational context. Future research should prioritize hybrid 
architectures integrating multiple ML paradigms, meta-learning 

approaches for rapid adaptation, and quantum-inspired optimization 
for addressing exponential complexity challenges.

7 Future work

The analysis of machine learning-based cloud resource 
allocation algorithms reveals significant opportunities for advancing 
the field through targeted research initiatives. Future research 
should prioritize next-generation hybrid architectures that 
systematically integrate multiple machine learning paradigms, 
meta-learning approaches for rapid adaptation to new cloud 
environments, and quantum-inspired optimization algorithms for 
addressing exponential complexity challenges.

Current approaches demonstrate effectiveness for hundreds to 
thousands of resources, but modern cloud environments require 
fundamentally different approaches for millions of resources. 
Research should explore hierarchical multi-agent architectures, 
enhanced federated learning with secure aggregation protocols and 
differential privacy mechanisms (Dwork, 2008), and edge-cloud-
quantum computing integration for unified optimization frameworks.

Domain-specific applications require specialized algorithms 
addressing medical data processing and regulatory compliance 
(Dwork, 2008; NIST, 2020) for healthcare environments, operational 
technology integration for industrial IoT, and multi-objective 
optimization for smart city applications. Security research should 
focus on zero-trust computing environments, sustainability initiatives 
with carbon-aware algorithms, and 5G/6G network integration for 
ultra-low latency requirements.

8 Conclusion

This comprehensive survey presents a systematic analysis of 10 
state-of-the-art machine learning algorithms for cloud resource 
allocation across four methodological categories: Deep Reinforcement 
Learning, Neural Network Architecture, Traditional Machine 
Learning Enhanced, and Multi-Agent Based approaches.

The analysis reveals that machine learning-based approaches 
consistently outperform traditional heuristic methods, with 
improvements ranging from 10% to over 70%. Deep Reinforcement 
Learning algorithms demonstrate the most substantial gains, with 
ATSIA3C achieving 70.49% makespan reduction, 77.42% cost 
optimization, and 74.24% energy consumption improvement. Neural 
Network Architecture methods excel in prediction accuracy, with VSBG 
achieving RMSLE improvements from 0.89 to 0.03. Traditional ML 
Enhanced approaches prove effective for domain-specific applications, 
with Enhanced-Kernel SVM demonstrating 73.88% execution time 
improvement for healthcare tasks. Multi-Agent approaches show superior 
distributed coordination, with Multi-Agent DRL achieving 28% runtime 
improvement and IF-DDPG delivering 15.2 to 50.5% energy reductions.

Key trends include the emergence of hybrid architectures as 
dominant approaches, edge computing integration across multiple 
algorithms, and privacy preservation through federated learning 
capabilities. The practical analysis reveals varying implementation 
complexity and computational requirements, providing selection 
guidance for organizations with different deployment constraints and 
performance objectives.
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This survey contributes a comparative analysis of recent ML 
approaches for cloud resource allocation, offering technical insights 
for researchers and practical guidance for industry practitioners. The 
systematic evaluation framework enables informed decision-making 
for implementing next-generation cloud resource allocation strategies. 
As cloud computing evolves toward increasingly complex and 
distributed architectures, the insights presented guide development of 
intelligent systems capable of meeting modern computing challenges 
through the fundamental transformation from reactive to predictive 
and adaptive resource allocation.

Author contributions

DB: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Project administration, Resources, 
Supervision, Validation, Visualization, Writing – original draft, Writing – 
review & editing. SK: Data curation, Formal analysis, Investigation, 
Validation, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for 
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Any alternative text (alt text) provided alongside figures in this 
article has been generated by Frontiers with the support of artificial 
intelligence and reasonable efforts have been made to ensure accuracy, 
including review by the authors wherever possible. If you identify any 
issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Almalki, F. A., Soufiene, B. O., Alsamhi, S. H., and Sakli, H. (2022). Host load 

prediction in cloud computing with discrete wavelet transformation (DWT) and 
bidirectional gated recurrent unit (BiGRU) network. Comput. Commun. 198, 71–85. doi: 
10.1016/j.comcom.2022.11.009

Aloqaily, M., Ridhawi, I. A., Salameh, H. B., and Jararweh, Y. (2024). An advanced 
deep reinforcement learning algorithm for three-layer D2D-edge-cloud computing 
architecture for efficient task offloading in the internet of things. J. King Saud Univ. 
Comput. Inform. Sci. 36:102055. doi: 10.1016/j.jksuci.2024.102055

AlZailaa, A., Chi, H. R., Radwan, A., and Aguiar, R. L. (2024). Service-aware 
hierarchical fog–cloud resource mapping for e-health with enhanced-kernel SVM. J. 
Sens. Actuator Netw. 13:10. doi: 10.3390/jsan13010010

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., et al. (2010). 
A view of cloud computing. Commun. ACM 53, 50–58. doi: 10.1145/1721654.1721672

Awad, M., Alqarni, T., and Alabrah, A. (2024). A hybrid cloud load balancing and host 
utilization prediction method using deep learning and optimization techniques. Heliyon 
10:e24407. doi: 10.1016/j.heliyon.2024.e24407

Beloglazov, A., and Buyya, R. (2012). Optimal online deterministic algorithms and 
adaptive heuristics for energy and performance efficient dynamic consolidation of 
virtual machines in cloud data centers. Concurr. Comput. Pract. Exper. 24, 1397–1420. 
doi: 10.1002/cpe.1867

Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012). "Fog computing and its role 
in the internet of things." Proceedings of the First Edition of the MCC Workshop on 
Mobile Cloud Computing, 13–16.

Burns, B., Beda, J., and Hightower, K. (2019). Kubernetes: up and running: dive into 
the future of infrastructure. 2nd Edn. Santa Rosa, California: O'Reilly Media. Available 
online at: https://www.oreilly.com/library/view/kubernetes-up-and/9781492046523/

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and Brandic, I. (2009). Cloud 
computing and emerging IT platforms: vision, hype, and reality for delivering computing 
as the 5th utility. Future Gener. Comput. Syst. 25, 599–616. doi: 
10.1016/j.future.2008.12.001

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., and Buyya, R. (2011). 
CloudSim: a toolkit for modeling and simulation of cloud computing environments and 
evaluation of resource provisioning algorithms. Softw. Pract. Exper. 41, 23–50. doi: 
10.1002/spe.995

Cao, Q., Liu, L., Xu, D., Chen, L., Tang, Y., and Zhang, G. (2024). Proximal policy 
optimization for efficient D2D-assisted computation offloading and resource allocation 
in multi-access edge computing. Future Internet 16:19. doi: 10.3390/fi16010019

Chen, L., Wang, X., Zhang, Y., and Liu, M. (2024). Container allocation in cloud 
environment using multi-agent deep reinforcement learning. IEEE Trans. Cloud 
Comput. 12, 445–458. doi: 10.1109/TCC.2024.3156789

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., 
et al. (2014). "Learning phrase representations using RNN encoder-decoder for 
statistical machine translation." Proceedings of the 2014 Conference on Empirical 
Methods in Natural Language Processing (EMNLP).

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20, 273–297. 
doi: 10.1023/A:1022627411411

Cristianini, N., and Shawe-Taylor, J. (2000). An introduction to support vector 
machines and other kernel-based learning methods. Cambridge UK.: Cambridge 
University Press. Available online at: https://www.cambridge.org/core/books/an-
introduction-to-support-vectormachines-and-other-kernelbased-learningmethods/
A6A6F4084056A4B23F88648DDBFDD6FC

Dorigo, M., Maniezzo, V., and Colorni, A. (1996). Ant system: optimization by a 
colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B Cybern. 26, 29–41. doi: 
10.1109/3477.484436

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin, R., 
et al. (2017). “Microservices: yesterday, today, and tomorrow” in Present and ulterior 
software engineering, 195–216. doi: 10.1007/978-3-319-67425-4_12

Dwork, C. (2008). Differential privacy: a survey of results. Int. Conf. Theory Appl. 
Models Comput. 4978, 1–19. doi: 10.1007/978-3-540-79228-4_1

Garg, S. K., Versteeg, S., and Buyya, R. (2013). A framework for ranking of cloud 
computing services. Future Gener. Comput. Syst. 29, 1012–1023. doi: 
10.1016/j.future.2012.06.006

GDPR.eu. (2018). GDPR compliance checklist. Available online at: https://gdpr.eu/
checklist/

Gupta, H., Vahid Dastjerdi, A., Ghosh, S. K., and Buyya, R. (2017). iFogSim: a 
toolkit for modeling and simulation of resource management techniques in the 
internet of things, edge and fog computing environments. Softw. Pract. Exper. 47, 
1275–1296.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image 
recognition. Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 770–778. Available online 
at: https://ieeexplore.ieee.org/document/7780459

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., et al. 
(2018). “Rainbow: combining improvements in deep reinforcement learning” in Thirty-
second AAAI Conference on Artificial Intelligence.

https://doi.org/10.3389/fcomp.2025.1678976
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://doi.org/10.1016/j.comcom.2022.11.009
https://doi.org/10.1016/j.jksuci.2024.102055
https://doi.org/10.3390/jsan13010010
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1016/j.heliyon.2024.e24407
https://doi.org/10.1002/cpe.1867
https://www.oreilly.com/library/view/kubernetes-up-and/9781492046523/
https://doi.org/10.1016/j.future.2008.12.001
https://doi.org/10.1002/spe.995
https://doi.org/10.3390/fi16010019
https://doi.org/10.1109/TCC.2024.3156789
https://doi.org/10.1023/A:1022627411411
https://www.cambridge.org/core/books/an-introduction-to-support-vectormachines-and-other-kernelbased-learningmethods/A6A6F4084056A4B23F88648DDBFDD6FC
https://www.cambridge.org/core/books/an-introduction-to-support-vectormachines-and-other-kernelbased-learningmethods/A6A6F4084056A4B23F88648DDBFDD6FC
https://www.cambridge.org/core/books/an-introduction-to-support-vectormachines-and-other-kernelbased-learningmethods/A6A6F4084056A4B23F88648DDBFDD6FC
https://doi.org/10.1109/3477.484436
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-540-79228-4_1
https://doi.org/10.1016/j.future.2012.06.006
https://gdpr.eu/checklist/
https://gdpr.eu/checklist/
https://ieeexplore.ieee.org/document/7780459


Bodra and Khairnar� 10.3389/fcomp.2025.1678976

Frontiers in Computer Science 17 frontiersin.org

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural Comput. 
9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory 
analysis with applications to biology, control, and artificial intelligence. Cambridge, MA: 
MIT Press. doi: 10.7551/mitpress/1090.001.0001

Hussain, M., Alam, M., and Beg, M. M. S. (2024). Efficient deep reinforcement 
learning based task scheduler in multi cloud environment. Sci. Rep. 14:18598. doi: 
10.1038/s41598-024-72774-5

Kennedy, J., and Eberhart, R. (1995). "Particle swarm optimization." Proceedings of 
IEEE International Conference on Neural Networks, 4, 1942–1948.

Kumar, A., Sharma, R., Singh, P., and Patel, D. (2024). Federated deep reinforcement 
learning for energy-efficient edge computing offloading and resource allocation in 
industrial internet. J. Netw. Comput. Appl. 218:103712. doi: 10.1016/j.jnca.2024.103712

Li, X., Qian, Z., Lu, S., and Wu, J. (2013). Energy efficient virtual machine placement 
algorithm with balanced and improved resource utilization in a data center. Math. 
Comput. Model. 58, 1222–1235. doi: 10.1016/j.mcm.2013.02.003

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. (2020). Federated learning: challenges, 
methods, and future directions. IEEE Signal Process. Mag. 37, 50–60.

Lu, C., Ye, K., Xu, G., Xu, C. Z., and Bai, T. (2017). Imbalance in the cloud: an analysis 
on Alibaba cluster trace. IEEE Int. Conf. Big Data, 2884–2892. doi: 10.1109/
BigData.2017.8258257

Manaseer, S., and Ali, A. (2024). Resource allocation in cloud computing using genetic 
algorithm and neural network. Int. J. Adv. Comput. Sci. Appl. 15, 412–420. doi: 
10.14569/IJACSA.2024.0150342

Mao, Y., You, C., Zhang, J., Huang, K., and Letaief, K. B. (2017). A survey on mobile 
edge computing: the communication perspective. IEEE Commun. Surv. Tutor 19, 
2322–2358. doi: 10.1109/COMST.2017.2745201

McMahan, B., Moore, E., Ramage, D., Hampson, S., and Arcas, B. A. Y. (2017). 
“Communication-efficient learning of deep networks from decentralized data” in 
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, 
vol. 54, 1273–1282.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., et al. (2016). 
“Asynchronous methods for deep reinforcement learning” in Proceedings of the 33rd 
International Conference on Machine Learning, vol. 48, 1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al. 
(2015). Human-level control through deep reinforcement learning. Nature 518, 529–533. 
doi: 10.1038/nature14236

NIST (2020). Cybersecurity framework version 1.1. Gaithersburg, MD: National 
Institute of Standards and Technology. Available online at: https://www.nist.gov/
cyberframework/getting-started-csf-11

Precedence Research. (2025). "Cloud computing market size to hit USD 5,150.92 
billion by 2034." Available online at: https://www.precedenceresearch.com/cloud-
computing-market (Accessed 03 July, 2025).

Reiss, C., Wilkes, J., and Hellerstein, J. L. (2011). Google cluster-usage traces: Format 
+ Schema. White Paper: Google Inc.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal 
policy optimization algorithms. arXiv. doi: 10.48550/arXiv.1707.06347

Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L. (2016). Edge computing: vision and 
challenges. IEEE Internet Things J. 3, 637–646. doi: 10.1109/JIOT.2016.2579198

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., et al. 
(2016). Mastering the game of go with deep neural networks and tree search. Nature 529, 
484–489. doi: 10.1038/nature16961

Stone, P., and Veloso, M. (2000). Multiagent systems: a survey  
from a machine learning perspective. Auton. Robot. 8, 345–383. doi: 
10.1023/A:1008942012299

Sutton, R. S., and Barto, A. G. (2018). Reinforcement learning: an introduction. 2nd 
Edn. Cambridge, MA: MIT Press. Available online at: https://mitpress.mit.
edu/9780262039246/reinforcement-learning/

Tampuu, A., Matiisen, T., Kodelja, D., Kuzovkin, I., Korjus, K., Aru, J., et al. (2017). 
Multiagent deep reinforcement learning with extremely sparse rewards. PLoS One 
12:e0172395.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. 
(2017). Attention is all You need. Adv. Neural Inf. Proces. Syst. 30, 5998–6008.

Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., and Wilkes, J. 
(2015). Large-scale cluster management at Google with Borg." In Proceedings of the 
Tenth European Conference on Computer Systems, 18.

Yuan, H., Bi, J., Li, S., Zhang, J., and Zhou, M. (2024). An  
improved LSTM-based prediction approach for resources and workload in large-
scale data centers. Future Gener. Comput. Syst. 160, 375–392. doi: 
10.1016/j.future.2024.06.028

Zhang, Q., Cheng, L., and Boutaba, R. (2010). Cloud computing: state-of-the-art 
and research challenges. J. Internet Serv. Appl. 1, 7–18. doi: 
10.1007/s13174-010-0007-6

https://doi.org/10.3389/fcomp.2025.1678976
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.7551/mitpress/1090.001.0001
https://doi.org/10.1038/s41598-024-72774-5
https://doi.org/10.1016/j.jnca.2024.103712
https://doi.org/10.1016/j.mcm.2013.02.003
https://doi.org/10.1109/BigData.2017.8258257
https://doi.org/10.1109/BigData.2017.8258257
https://doi.org/10.14569/IJACSA.2024.0150342
https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.1038/nature14236
https://www.nist.gov/cyberframework/getting-started-csf-11
https://www.nist.gov/cyberframework/getting-started-csf-11
https://www.precedenceresearch.com/cloud-computing-market
https://www.precedenceresearch.com/cloud-computing-market
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1038/nature16961
https://doi.org/10.1023/A:1008942012299
https://mitpress.mit.edu/9780262039246/reinforcement-learning/
https://mitpress.mit.edu/9780262039246/reinforcement-learning/
https://doi.org/10.1016/j.future.2024.06.028
https://doi.org/10.1007/s13174-010-0007-6

	Machine learning-based cloud resource allocation algorithms: a comprehensive comparative review
	1 Introduction
	1.1 Background and problem statement
	1.2 Research contributions

	2 Related work and background
	2.1 Cloud resource allocation fundamentals
	2.2 AI/ML evolution in resource management

	3 Methodology
	4 Algorithm analysis
	4.1 Deep reinforcement learning approaches
	4.1.1 Proximal policy optimization for D2D-assisted MEC
	4.1.2 Adaptive task scheduler using improved A3C (ATSIA3C)
	4.1.3 Rainbow DQN for edge-cloud systems
	4.2 Neural network architecture based approaches
	4.2.1 Deep learning with particle swarm intelligence and genetic algorithm (DPSO-GA)
	4.2.2 Variational mode decomposition with bidirectional and grid LSTM (VSBG)
	4.2.3 Discrete wavelet transformation with bidirectional GRU (DWT-BiGRU)
	4.3 Traditional machine learning enhanced approaches
	4.3.1 Service-aware hierarchical fog-cloud resource mapping with enhanced-kernel SVM
	4.3.2 Neural network task classification with genetic algorithm task assignment (N2TC-GATA)
	4.4 Multi-agent based approaches
	4.4.1 Container allocation using multi-agent deep reinforcement learning
	4.4.2 Industrial federated deep deterministic policy gradient (IF-DDPG)

	5 Evaluation methodology and cross-study comparison limitations
	5.1 Evaluation environment heterogeneity
	5.2 Baseline algorithm variability
	5.3 Performance metric standardization challenges
	5.4 Mitigation strategies and analytical framework
	5.5 Reliability assessment and confidence levels
	5.6 Implications for algorithmic selection

	6 Cross-category comparative analysis
	6.1 Performance trade-offs and the performance-complexity paradox
	6.2 Convergence properties and scalability analysis
	6.3 Critical gap analysis and systematic field limitations
	6.4 Generalizability crisis and deployment reality gap
	6.5 Strategic implementation guidelines
	6.6 Synthesis of hybrid architecture effectiveness and evolutionary principles

	7 Future work
	8 Conclusion

	References

