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Cloud resource allocation has emerged as a major challenge in modern computing
environments, with organizations struggling to manage complex, dynamic workloads
while optimizing performance and cost efficiency. Traditional heuristic approaches
prove inadequate for handling the multi-objective optimization demands of
existing cloud infrastructures. This paper presents a comparative analysis of state-
of-the-art artificial intelligence and machine learning algorithms for resource
allocation. We systematically evaluate 10 algorithms across four categories: Deep
Reinforcement Learning approaches, Neural Network architectures, Traditional
Machine Learning enhanced methods, and Multi-Agent systems. Analysis of
published results demonstrates significant performance improvements across
multiple metrics including makespan reduction, cost optimization, and energy
efficiency gains compared to traditional methods. The findings reveal that hybrid
architectures combining multiple artificial intelligence and machine learning
techniques consistently outperform single-method approaches, with edge computing
environments showing the highest deployment readiness. Our analysis provides
critical insights for both academic researchers and industry practitioners seeking
to implement next-generation cloud resource allocation strategies in increasingly
complex and dynamic computing environments.

KEYWORDS

cloud computing, resource allocation, deep reinforcement learning, neural networks,
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1 Introduction
1.1 Background and problem statement

Cloud computing has transformed the modern computing landscape with the global
market reaching $912.77 billion in 2025 and projected to grow at a compound annual growth
rate of 21.20% through 2034 (Precedence Research, 2025). This explosive growth reflects the
critical role cloud infrastructure plays in supporting digital transformation initiatives across
industries, as organizations increasingly rely on cloud services for scalability, flexibility, and
cost optimization (Buyya et al., 2009; Armbrust et al., 2010). However, this rapid expansion
has introduced challenges in resource allocation and management.

The complexity of cloud environments has grown exponentially as businesses adopt hybrid
and multi-cloud strategies to meet operational requirements. Traditional resource allocation
approaches based on heuristic algorithms and static provisioning models (Holland, 1992;
Kennedy and Eberhart, 1995; Dorigo et al., 1996) have proven inadequate for handling the
dynamic, heterogeneous, and multi-tenant nature of cloud infrastructures (Buyya et al., 2009;
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Armbrust et al., 2010). These conventional methods struggle with the
multi-objective optimization demands where performance, cost,
energy efficiency, and quality of service must be optimized while
adapting to fluctuating workloads and varying user demands.

Cloud resource management presents challenges for organizations
with ineflicient resource allocation leading to substantial waste and
increased operational costs. There is a need for more sophisticated,
adaptive resource allocation mechanisms that can intelligently
respond to dynamic cloud environments.

Traditional approaches to cloud resource allocation, including
First-Fit, Best-Fit, and basic optimization algorithms (Zhang et al.,
2010; Beloglazov and Buyya, 2012) face fundamental limitations when
confronted with the scale and complexity of modern cloud
deployments. These methods typically rely on predefined rules and
static policies that cannot adapt to changing workload patterns, user
behaviors, or infrastructure conditions. As cloud environments
continue to scale with exponential data growth, the limitations of
conventional approaches come into effect.

1.2 Research contributions

This paper addresses these challenges by presenting a comparative
analysis of state-of-the-art artificial intelligence and machine learning
algorithms specifically designed for cloud resource allocation. This
paper addresses the identified gaps in current survey literature by
presenting a focused analysis of state-of-the-art artificial intelligence
and machine learning algorithms specifically designed for cloud
resource allocation, with emphasis on recent developments from 2022
to 2024. While existing comprehensive surveys have established
foundational coverage of ML-centric resource management and
provided systematic analysis of resource allocation strategies, our
work contributes to the field through several distinct approaches.

We provide a systematic in-depth analysis of 10 cutting-edge Al/
ML algorithms published in recent high-impact venues, covering
Deep Reinforcement Learning approaches (PPO for D2D-assisted
MEC, ATSIA3C, Rainbow DQN), Neural Network architectures
(DPSO-GA, VSBG, BiGRU with DWT), Traditional ML enhanced
methods (enhanced-Kernel SVM, N2TC-GATA), and multi-agent
systems (multi-agent DRL for container allocation, Industrial
Federated DDPG).

Our work extends beyond algorithmic classification by providing
critical analysis of implementation trade-offs, convergence properties,
and scalability limitations that affect real-world deployment decisions.
We synthesize practical insights for industry adoption, examining the
performance characteristics of algorithms that integrate multiple Al/
ML techniques compared to single-method approaches. The analysis
identifies key trends in hybrid architecture design and federated
learning integration that distinguish recent developments from earlier
ML-based resource allocation research.

The practical significance of this research builds upon the growing
integration of artificial intelligence with cloud computing
infrastructures (Sutton and Barto, 2018; Mnih et al., 2015; Silver et al.,
2016). As organizations increasingly deploy AI and machine learning
services, the demand for intelligent resource allocation mechanisms
capable of efficiently supporting these workloads becomes critical.
Our analysis provides both academic researchers and industry
practitioners with focused insights for implementing next-generation
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cloud resource allocation strategies that leverage the most recent AI/
ML innovations.

2 Related work and background

2.1 Cloud resource allocation
fundamentals

Cloud resource allocation requires the systematic assignment of
computational resources including CPU, memory, storage, and
network bandwidth among competing user requests to optimize
system performance while maintaining service level agreements. The
fundamental challenge lies in efficiently mapping heterogeneous user
workloads to distributed physical resources while satisfying multiple
conflicting objectives such as minimizing execution time, reducing
energy consumption, and maximizing resource utilization.

Traditional resource allocation approaches in cloud computing
environments primarily rely on heuristic algorithms, meta-heuristic
techniques, and hybrid methods. Heuristic algorithms, including
First-Fit, Best-Fit, and Greedy algorithms (Zhang et al., 2010), provide
intuitive solutions based on empirical construction with lower
computational complexity and predictable worst-case performance.
These methods typically use simple rules such as selecting the first
available resource that meets minimum requirements or choosing
resources with the smallest remaining capacity after allocation.

Meta-heuristic approaches, including Genetic Algorithm (GA)
(Holland, 1992), Particle Swarm Optimization (PSO) (Kennedy and
Eberhart, 1995), and Ant Colony Optimization (ACO) (Dorigo et al.,
1996), have gained prominence for addressing the NP-hard nature of
resource allocation problems. These algorithms employ population-
based search mechanisms to explore solution spaces more
comprehensively than heuristic methods, often achieving superior
optimization results at the cost of increased computational complexity.
Hybrid approaches combine multiple optimization techniques,
leveraging the strengths of different algorithms to address specific
aspects of the resource allocation problem.

Performance evaluation in cloud resource allocation relies on
Quality of Service (QoS) metrics (Garg et al., 2013; Zhang et al., 2010)
that capture various aspects of system behavior and user experience.
Critical performance indicators include response time, throughput,
resource utilization, availability, and cost efficiency. Response time
measures the latency between request submission and completion,
while throughput quantifies the system’s capacity to process requests
within specific time periods. Resource utilization metrics assess the
efficiency of hardware usage, preventing both over-provisioning and
under-utilization scenarios that lead to economic inefficiencies
(Beloglazov and Buyya, 2012; Li et al., 2013).

Advanced performance evaluation frameworks incorporate multi-
dimensional metrics that address the complexity of modern cloud
environments. These include scalability measures that evaluate system
behavior under varying loads, reliability indicators that assess fault
tolerance capabilities, and energy efficiency metrics that quantify
power consumption relative to computational output. The integration
of Service Level Objectives (SLO) and Service Level Agreements
(SLA) (Buyya et al, 2009) provides contractual frameworks for
performance measurement, establishing measurable targets for
system behavior.
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2.2 Al/ML evolution in resource
management

The paradigm shift from reactive to predictive resource allocation
represents a fundamental transformation in cloud computing
management strategies. Traditional reactive approaches respond to
resource demands after they occur, leading to suboptimal performance
during peak loads and resource waste during low-demand periods. In
contrast, AI/ML-enabled predictive allocation systems analyze
historical patterns, workload characteristics, and system behaviors to
anticipate future resource requirements, enabling proactive resource
provisioning and optimization.

Machine learning techniques have demonstrated significant
potential in addressing the dynamic and complex nature of cloud
resource allocation challenges. Supervised learning approaches utilize
historical workload data to predict future resource demands, while
unsupervised learning methods identify hidden patterns in resource
usage that can inform allocation strategies. Reinforcement learning
techniques enable adaptive resource allocation through continuous
interaction with the cloud environment, learning optimal policies
through trial-and-error experiences (Sutton and Barto, 2018).

Deep learning approaches, particularly Deep Reinforcement
Learning (DRL) (Sutton and Barto, 2018; Mnih et al., 2015; Silver
etal., 2016), have emerged as powerful solutions for complex resource
allocation scenarios where traditional algorithms struggle. DRL
combines the pattern recognition capabilities of deep neural networks
with the decision-making strengths of reinforcement learning,
enabling systems to handle high-dimensional state spaces and
complex optimization objectives. These approaches have shown
particular effectiveness in scenarios with dynamic workloads,
heterogeneous resources, and multi-objective
optimization requirements.

Existing survey literature reveals significant gaps in comparative
analysis of recent AI/ML approaches for cloud resource allocation.
While several surveys have addressed specific aspects such as energy
efficiency, load balancing techniques, or particular algorithm
categories, there remains a lack of systematic evaluation that
encompasses the breadth of AI/ML techniques currently being
developed (Zhang et al., 2010; Sutton and Barto, 2018). Most existing
reviews focus on algorithmic classifications rather than quantitative
performance comparisons, limiting their utility for practical
implementation decisions.

Furthermore, the rapid evolution of AI/ML techniques has
outpaced survey efforts, with many cutting-edge algorithms remaining
unanalyzed in existing literature (Lu et al., 2017). The integration of
modern deep learning architectures, hybrid optimization approaches,
and multi-agent systems represents an emerging research that requires
systematic investigation. Our work addresses these gaps by providing
an analysis of state-of-the-art AI/ML algorithms specifically designed
for cloud resource allocation, offering both technical insights and
practical implementation guidance for the next generation of
intelligent cloud management systems. See Table 1 for an overview.

The table presents improvements to provide a view of algorithmic
capabilities. The diversity of metrics across studies reflects different
optimization priorities: healthcare applications prioritize latency
reduction, mobile systems balance energy and performance, industrial
environments focus on energy efficiency, and enterprise systems
optimize for cost and resource utilization. Direct cross-metric
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comparison is limited by heterogeneous evaluation environments, but
the multi-metric view illustrates algorithmic trade-offs and suitability
for different deployment scenarios.

3 Methodology

This systematic review employs a structured approach adapted
from PRISMA guidelines to ensure transparency and reproducibility
in literature selection and analysis. The literature search strategy
encompassed multiple academic databases including IEEE Xplore
Digital Library, ACM Digital Library, ScienceDirect, Springer Link,
and arXiv preprint server, focusing on publications from January 2022
to December 2024 to capture recent advances in AI/ML-based cloud
resource allocation. The search employed Boolean operators
combining “cloud resource allocation” OR “cloud resource
management” with “machine learning” OR “artificial intelligence” OR
“deep learning” and category-specific terms including “DQN,” “policy
gradient” “CNN; “LSTM; “SVM, “genetic algorithm,” and
“federated learning”

The selection process followed rigorous inclusion and exclusion
criteria targeting algorithms specifically designed for cloud computing
resource allocation with novel AI/ML approaches, quantitative
performance evaluation, and practical implementation considerations
from 2022 to 2024 publications. The systematic selection proceeded
through three stages: initial screening of 2,847 papers through title
and abstract evaluation resulted in 287 papers for full-text review;
detailed assessment of technical content, algorithmic novelty, and
experimental validation yielded 45 papers meeting all criteria; final
selection focused on 10 algorithms representing methodological
diversity across four categories, performance excellence exceeding
10% improvement in key metrics, implementation readiness,
experimental rigor, and preference for recent 2024 publications
representing cutting-edge research.

The analysis framework addresses the fundamental challenge of
comparing algorithms evaluated under different conditions and
methodologies. Given the heterogeneous nature of evaluation
environments across selected papers, the comparative analysis focuses
on relative improvement percentages rather than absolute values,
categorizes algorithms by problem type and evaluation context, and
provides qualitative assessment where quantitative comparison proves
infeasible. Performance metrics normalization emphasizes primary
metrics including execution time improvement, cost optimization,
and energy efficiency, alongside secondary metrics such as resource
utilization, QoS satisfaction, and scalability measures. Technical
innovation assessment examines algorithmic architecture including
neural network design and optimization techniques, problem
formulation encompassing state space representation and objective
functions, and learning mechanisms covering training procedures and
convergence properties.

The methodology acknowledges significant limitations inherent
in cross-study comparison of machine learning algorithms for cloud
resource allocation. Evaluation environment diversity across
different simulators such as CloudSim and iFogSim, varying datasets
including Google cluster traces and Alibaba traces, and different
experimental setups limit direct quantitative comparison between
algorithms. Baseline variation occurs as different papers employ
different baseline algorithms for comparison, while metric
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TABLE 1 Overview of analyzed machine learning algorithms for cloud resource allocation.

Category Algorithm

Deep reinforcement PPO for D2D-MEC

learning

Key innovation

Policy gradient with clipping

Primary application = Improvements

Mobile edge computing 35-45% execution time
improvement, 40-50% energy

savings, 30-40% cost reduction

ATSIA3C

Residual CNN + A3C

Multi-cloud task scheduling 70.49% makespan reduction, 77.42%
cost optimization, 74.24% energy

improvement

Rainbow DQN

Six DQN enhancements

ToT edge-cloud systems 43.1% utility enhancement, 29.8%
energy efficiency, 27.5% latency

reduction

Neural network architecture DPSO-GA

CNN-LSTM + meta-heuristic

Cloud load balancing 13.3% cost reduction, energy
optimization, prediction MAE

improvements

VSBG

VMD + Hybrid LSTM

RMSLE 0.03 vs. 0.89 baseline, MSE
Reduction, R* = 0.97

Workload prediction

DWT-BiGRU

Wavelet + attention

Host load prediction 15.4% MAPE (high volatility),
RMSE reduction across machine

types

Traditional ML enhanced Enhanced-Kernel SVM

Novel kernel fusion

Healthcare fog-cloud 73.88% execution time
improvement, 90% latency

reduction vs. cloud-only

N2TC-GATA

Neural classification + GA

Multi-objective allocation 13.3% cost, 12.1% response time,

3.2% execution time improvement

Multi-agent based Multi-agent DRL

Cooperative-competitive agents

Container allocation 28% overall runtime improvement,
enhanced container placement

efficiency

IF-DDPG

Federated DDPG

Industrial edge computing 50.5% energy consumption
reduction, 15.2-31.75 improvement

vs. other DRL methods

heterogeneity reflects varying performance metrics and
measurement methodologies across studies. Scale differences
manifest through evaluation conducted at different scales regarding
number of virtual machines, tasks, and time periods. These
limitations necessitate careful interpretation of comparative results
and emphasize the importance of relative performance improvements
than

algorithmic effectiveness.

rather absolute  metric values in  evaluating

4 Algorithm analysis

This section presents a comprehensive technical analysis of 10
state-of-the-art machine learning algorithms for cloud resource
allocation, organized into four distinct categories based on their
underlying methodological approaches. Each category represents a
different paradigm in applying machine learning techniques to
address the complex challenges of resource allocation in modern
cloud computing environments. The algorithms analyzed span recent
developments from leading research venues and demonstrate
significant advances over traditional heuristic approaches. Figure 1
presents the taxonomic organization of the 10 analyzed algorithms
across four main methodological categories, providing a structural
overview of the algorithmic landscape examined in this survey.

Frontiers in Computer Science

4.1 Deep reinforcement learning
approaches

Deep reinforcement learning has emerged as a paradigm for cloud
resource allocation combining the decision-making capabilities of
reinforcement learning with the pattern recognition capability of deep
neural networks (Sutton and Barto, 2018; Mnih et al., 2015; Mao et al.,
2017). These approaches excel in dynamic environments where
traditional optimization methods struggle with the complexity of
multi-dimensional state spaces, temporal dependencies, and
continuous adaptation requirements. The algorithms in this category
demonstrate significant advances in handling uncertainty, learning
from experience, and making optimal allocation decisions in real-time
cloud environments.

The three algorithms examined—Proximal Policy
Optimization for Device-to-Device-assisted Mobile Edge
Computing, Adaptive Task Scheduler using Improved

Asynchronous Advantage Actor-Critic, and Rainbow Deep
Q-Network for edge-cloud systems—represent different aspects
of deep reinforcement learning innovation. They showcase
advances in policy optimization, actor-critic architectures, and
value-based learning, respectively, while addressing specific
challenges in mobile edge computing, multi-cloud task scheduling,
and hierarchical resource allocation.

frontiersin.org


https://doi.org/10.3389/fcomp.2025.1678976
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Bodra and Khairnar

10.3389/fcomp.2025.1678976

DPSO.GA
ONN-L

— Pl
Deep Relnforcement Learning Neural Network Architecture
— . iR
‘// \\ o

vssa
VMD + BILST + GridLSTM

FIGURE 1

Overview of analyzed machine learning algorithms for cloud resource allocation.
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4.1.1 Proximal policy optimization for
D2D-assisted MEC

Proximal Policy Optimization (PPO) has been successfully
adapted for Mobile Edge Computing environments through its
clipped objective function mechanism that prevents destructive
policy updates while maintaining stable learning characteristics
(Cao et al., 2024). The algorithm employs both policy and value
networks, where the policy network outputs probability
distributions over offloading actions, and the value network
estimates state values for advantage calculation using Generalized
Advantage Estimation.

PPO addresses the fundamental challenge of intelligent task
offloading decisions across three-tier architectures comprising mobile
devices, edge servers, and cloud data centers. The approach formulates
resource allocation as a Markov Decision Process that simultaneously
optimizes execution time, energy consumption, and monetary costs
while enabling devices with limited computational capabilities to
make critical decisions about task execution location.

PPO’s technical innovation lies in its clipped objective function
mechanism (Schulman et al.,, 2017; Sutton and Barto, 2018) that
prevents destructive policy updates while maintaining stable learning
characteristics. The algorithm employs both policy and value
networks, where the policy network outputs probability distributions
over offloading actions, and the value network estimates state values
for advantage calculation. The «clipped surrogate objective
function J (9):

—~

](9) =E; [min (rt (G)A:,clip(rt (e),1—8,1+8)1/4\t):|

ensures policy updates remain within safe bounds, preventing
instability issues common in traditional policy gradient methods.

Experimental evaluation demonstrates significant performance
improvements across multiple metrics compared to baseline
algorithms. The PPO approach achieves 35-45% improvement in
execution time reduction versus random offloading, 40-50%
energy savings compared to local execution, and 30-40% cost
reduction versus always-cloud strategies (Cao et al., 2024). The
algorithm shows convergence within 500-1000 episodes and
requires 20-30% fewer samples than vanilla policy gradient
methods, demonstrating superior sample efficiency essential for
practical deployment scenarios.

The algorithm requires specialized infrastructure for policy
network training, GPU acceleration for neural network processing,
and integration with mobile edge computing simulation environments.
Implementation complexity involves hyperparameter tuning for
clipped objective functions, state space design for multi-tier

Frontiers in Computer Science

environments, and reward function formulation for multi-objective
optimization scenarios.

PPO represents a significant advancement in mobile edge
computing resource allocation by enabling intelligent, adaptive task
offloading that responds to dynamic network conditions, device
constraints, and application requirements. The approach demonstrates
how policy gradient methods can be stabilized and applied to real-
time resource allocation scenarios with multiple conflicting objectives.

4.1.2 Adaptive task scheduler using improved A3C
(ATSIA3C)

The Adaptive Task Scheduler using Improved Asynchronous
Advantage Actor-Critic introduces architectural innovation that
replaces standard A3C fully connected networks with Residual
Convolutional Neural Networks (Hussain et al., 2024). This
modification enables more effective learning in complex multi-cloud
environments by preserving gradient flow and improving feature
extraction capabilities through skip connections that mitigate
vanishing gradient problems.

ATSIA3C directly addresses the fundamental challenge of
mapping heterogeneous tasks to distributed cloud resources where
traditional algorithms struggle with varying task lengths, runtime
capacities, and diverse resource requirements (Mnih et al., 2016;
Calheiros et al., 2011). The algorithm incorporates intelligent task
segmentation that analyzes incoming tasks and partitions them into
subtasks based on computational complexity, memory requirements,
communication dependencies, and execution time constraints.

The task segmentation mechanism represents a critical innovation
that analyzes incoming tasks and partitions them into subtasks based
on computational complexity, memory requirements, communication
dependencies, and execution time constraints. Large monolithic tasks
undergo intelligent decomposition that considers inter-task
dependencies, data locality requirements, and communication
overhead minimization. The segmentation algorithm employs graph-
based analysis to identify task components that can execute
independently while maintaining data consistency and
dependency satisfaction.

The algorithm requires CloudSim simulation environment
familiarity, multi-cloud API integration capabilities, and distributed
computing infrastructure for training residual CNN components.
Implementation complexity involves residual CNN configuration,
A3C hyperparameter tuning, task dependency graph construction,
and multi-cloud resource monitoring systems.

Evaluation using CloudSim toolkit demonstrates exceptional
improvements: 70.49% reduction in makespan compared to baseline
algorithms including RATS-HM, MOABCQ, and AINN-BPSO,
77.42% improvement in resource cost optimization on average, and
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74.24% improvement in energy consumption optimization (Hussain
et al., 2024). These results indicate substantial advancement in overall
task completion time while achieving cost-efficient resource selection
across multi-cloud environments.

ATSIA3C represents the evolution from reactive to predictive
multi-cloud scheduling, demonstrating how architectural innovations
in deep reinforcement learning can address real-world resource
allocation complexity. The approach establishes new performance
benchmarks for multi-cloud task scheduling while maintaining
practical deployment feasibility for enterprise environments.

4.1.3 Rainbow DQN for edge-cloud systems

Rainbow Deep Q-Network integrates six key enhancements to
standard DQN algorithms: Double Q-Learning, Prioritized
Experience Replay, Dueling Networks, Multi-step Learning,
Distributional Reinforcement Learning, and Noisy Networks
(Alogaily et al., 2024). Each component addresses specific limitations
of traditional DQN approaches through comprehensive enhancement
strategies that improve sample efficiency, reduce overestimation bias,
and enable more sophisticated exploration.

The algorithm operates within three-layer Device-to-Device-
Edge-Cloud architectures, addressing the complexity of hierarchical
resource allocation across IoT devices, edge nodes, and cloud
infrastructure. Rainbow DQN handles the fundamental challenge of
intelligent resource allocation decisions across multiple tiers with
varying computational capabilities, communication constraints, and
latency requirements.

Experimental evaluation demonstrates significant performance
improvements across all key metrics in realistic IoT deployment
scenarios. Rainbow DQN achieves 29.8% improvement in energy
efficiency, 27.5% reduction in latency, and 43.1% increase in utility
compared to Double DQN baselines when tested with 100 IoT devices
(Aloqaily et al., 2024). Performance gains scale effectively with
network size, showing 32% energy efficiency improvement and 50%
utility enhancement with 300 devices.

The algorithm requires specialized deep learning infrastructure
supporting six integrated enhancement components, extensive
memory for prioritized experience replay buffers, and distributed
computing capabilities for multi-step learning processes.
Implementation involves complex hyperparameter coordination
across multiple enhancement mechanisms and sophisticated
exploration strategy management.

Rainbow DQN advances the field by demonstrating how
comprehensive integration of DQN enhancements can address the
complexity of modern distributed computing environments (Hessel
et al., 2018). The approach provides a foundation for hierarchical
resource allocation in IoT-edge-cloud scenarios while establishing
new performance standards for value-based reinforcement learning
in resource management.

4.2 Neural network architecture based
approaches

Neural network architectures represent a fundamental paradigm
in applying machine learning to cloud resource allocation, leveraging
deep learning’s pattern recognition capabilities to predict workload
demands and optimize resource distribution. These approaches excel
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in extracting complex non-linear relationships from historical data,
enabling proactive resource allocation that anticipates future demands
rather than merely reacting to current conditions. The three
algorithms examined—DPSO-GA hybrid optimization, VSBG multi-
modal prediction, and BiGRU with discrete wavelet transformation—
represent different aspects of neural network innovation in cloud
computing. They showcase advances in hybrid optimization
techniques, signal processing integration, and bidirectional temporal
modeling, respectively, while addressing specific challenges in load
balancing, workload prediction, and host utilization forecasting.

4.2.1 Deep learning with particle swarm
intelligence and genetic algorithm (DPSO-GA)

The DPSO-GA algorithm introduces a hybrid approach that
combines Convolutional Neural Networks (He et al., 2016) and Long
Short-Term Memory networks (Hochreiter and Schmidhuber, 1997)
with Particle Swarm Optimization (Kennedy and Eberhart, 1995) and
Genetic Algorithm optimization (Awad et al., 2024; Holland, 1992).
The innovation lies in a two-phase optimization strategy where
PSO-GA optimization performs intelligent hyperparameter selection
while CNN-LSTM neural networks provide sophisticated workload
prediction and resource allocation decisions.

DPSO-GA addresses critical challenges in cloud environments
where dynamic workload patterns create resource imbalances leading
to over-provisioning, under-utilization, and inefficient energy
consumption. The algorithm provides intelligent workload prediction
and proactive resource allocation that anticipates demand changes
and optimizes resource distribution before performance
degradation occurs.

Experimental evaluation using Google cluster workload traces
(Reiss et al,, 2011; Verma et al.,, 2015) and CloudSim simulation
(Calheiros et al, 2011) demonstrates significant performance
improvements across multiple metrics. The DPSO-GA approach
achieves optimal waiting times of 10.2 s for 10 VM configurations,
with energy consumption ranging from 201.77 KWh for 50 tasks to
809.91 KWh for 1500 tasks (Awad et al., 2024). Multi-variate analysis
shows MAE improvements in storage prediction (0.18 vs. 0.25),
processing power (0.29 vs. 0.37), and memory utilization (0.024
vs. 0.036).

The algorithm requires deep learning framework infrastructure
supporting  CNN-LSTM training, meta-heuristic optimization
libraries for PSO-GA implementation, and CloudSim simulation
environment capabilities. Implementation complexity involves
coordination, neural network

hyperparameter optimization

architecture  design, and  integration  of  multiple
optimization paradigms.

DPSO-GA demonstrates the effectiveness of hybrid optimization
approaches that combine deep learning pattern recognition with
meta-heuristic global optimization. The algorithm establishes new
paradigms for proactive cloud resource management while providing
practical frameworks for organizations seeking to implement

intelligent load balancing systems.

4.2.2 Variational mode decomposition with
bidirectional and grid LSTM (VSBG)

The VSBG algorithm introduces systematic combination of
advanced signal processing techniques with hybrid deep learning
architectures through integration of Variational Mode Decomposition,
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Savitzky—-Golay filtering, Bidirectional LSTM (Hochreiter and
Schmidhuber, 1997), and Grid LSTM components (Yuan et al., 2024).
The innovation enables superior prediction accuracy by decomposing
nonstationary workload time series into manageable components that
can be individually processed and optimized for maximum
predictive performance.

VSBG addresses fundamental challenges in cloud workload
prediction where traditional approaches fail to handle complex, multi-
scale temporal patterns characteristic of modern cloud environments.
The algorithm processes workloads that exhibit nonstationary
behavior with multiple overlapping periodicities, sudden spikes,
gradual trends, and random fluctuations that create prediction
difficulties for conventional methods.

Performance evaluation using heterogeneous datasets from
Google cluster traces (672,003 jobs over 29 days) and Alibaba cluster
traces (4M jobs over 8 days) demonstrates exceptional accuracy
improvements. For Google cluster workload prediction, VSBG
achieves RMSLE of 0.03 compared to 0.89 for ARIMA and 0.81 for
LSTM (Yuan et al., 2024), with MSE of 7583 + 4 versus 18,133 + 4 for
ARIMA and 10,942 + 2 for LSTM. The R? coefficient reaches 0.97
compared to 0.81 for ARIMA and 0.89 for LSTM.

The algorithm requires advanced signal processing libraries
supporting VMD implementation, specialized LSTM frameworks
capable of bidirectional and grid architectures, and substantial
computational resources for multi-modal prediction processing.
Implementation involves VMD parameter tuning, hybrid LSTM
configuration, and integration of multiple signal processing and deep
learning components.

VSBG represents a significant advancement in cloud workload
prediction by systematically addressing signal processing challenges
that limit traditional approaches. The algorithm enables more accurate
resource allocation decisions and improved quality of service
guarantees through predictive rather than reactive resource
management strategies.

4.2.3 Discrete wavelet transformation with
bidirectional GRU (DWT-BiGRU)

The DWT-BiGRU algorithm combines Discrete Wavelet
Transformation, Bidirectional Gated Recurrent Units (Cho et al.,
2014), and attention mechanisms (Vaswani et al., 2017) through a
three-stage hybrid approach specifically targeting CPU utilization
prediction (Almalki et al., 2022). The innovation employs Mallat’s
algorithm for three-level signal decomposition, separating
nonstationary host load traces into multiple frequency components
that enable targeted processing and improved prediction accuracy.

DWT-BiGRU addresses critical challenges in host load prediction
where accurate forecasting of CPU utilization patterns directly
impacts resource allocation decisions, auto-scaling mechanisms, and
quality of service guarantees. The algorithm handles nonstationary
cloud workloads that exhibit multiple time scales, sudden changes,
and complex patterns influenced by user behavior, application
characteristics, and system dynamics.

Experimental validation using Google cluster (672,074 jobs over
29 days) and Alibaba cluster (1300 + machines over 12 h) datasets
demonstrates significant performance improvements across diverse
machine configurations. For Google cluster Machine G1 with low
average CPU and high volatility, DWT-BiGRU-attention achieves

MAPE of 15.4% compared to 34.2% for SVR and 23.1% for LSTM
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(Almalki et al.,, 2022), with RMSE of 3.1 versus 10.2 and 6.5,
respectively.

The algorithm requires signal processing libraries supporting
discrete wavelet transformation, specialized GRU implementations
with bidirectional capabilities, and attention mechanism frameworks
for encoder-decoder architectures. Implementation involves wavelet
parameter selection, BiGRU network configuration, attention
mechanism tuning, and integration of signal processing with deep
learning components.

DWT-BiGRU advances the field by demonstrating how signal
processing techniques can be systematically integrated with recurrent
neural networks to address prediction challenges in dynamic cloud
environments. The approach provides practical frameworks for
organizations seeking to implement intelligent host load prediction
for improved resource allocation decisions.

4.3 Traditional machine learning enhanced
approaches

4.3.1 Service-aware hierarchical fog-cloud
resource mapping with enhanced-kernel SVM

The Enhanced-Kernel SVM algorithm introduces novel kernel
design that combines multiple kernel functions with traditional
Support Vector Machine classification (Cortes and Vapnik, 1995;
Cristianini and Shawe-Taylor, 2000) to achieve superior classification
accuracy for healthcare-specific task categorization (AlZailaa et al.,
2024). The innovation integrates cross-correlation for measuring task
similarity through symmetric features, convolution operations for
enhanced accuracy through reversed similarity analysis, and auto-
correlation for capturing self-similarity within task classes.

Enhanced-Kernel SVM addresses the critical challenge of latency-
sensitive healthcare applications where real-time processing
capabilities and quality of service guarantees are essential for patient
safety and care effectiveness (Bonomi et al., 2012). The algorithm
operates in complex healthcare computing environments requiring
ultra-low latency for critical medical monitoring, high reliability for
life-safety systems, and strict privacy protection for sensitive medical
data (Shi et al,, 2016).

The algorithm requires iFogSim simulation environment
capabilities, specialized SVM libraries supporting custom kernel
design, and healthcare domain expertise for task classification and
priority determination. Implementation involves kernel fusion
parameter tuning, healthcare-specific feature extraction, and
integration with fog-cloud infrastructure management systems.

Enhanced-Kernel SVM establishes new paradigms for domain-
specific resource allocation by demonstrating how traditional machine
learning techniques can be enhanced through specialized kernel
design. The approach provides practical frameworks for healthcare
organizations seeking to implement intelligent fog-cloud resource
allocation with strict latency and reliability requirements.

Experimental evaluation using iFogSim simulator (Gupta et al.,
2017) demonstrates exceptional performance improvements across
multiple healthcare scenarios. The Enhanced-Kernel SVM achieves
73.88% improvement in execution time for critical tasks (0.23ms
versus 0.92ms for baseline FCFS algorithm) and 52.01% improvement
for non-critical tasks (AlZailaa et al., 2024). Latency analysis shows
remarkable 90% reduction compared to cloud-only architectures, with
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fog-cloud hybrid deployment achieving 11.4 ms to 23.06 ms latency
for 20-60 sensors versus 88.14ms to 331.81 ms for cloud-
only configurations.

4.3.2 Neural network task classification with
genetic algorithm task assignment (N2TC-GATA)

The N2TC-GATA algorithm combines Neural Network Task
Classification with Genetic Algorithm Task (Holland, 1992)
Assignment through a two-stage methodology that leverages pattern
recognition capabilities for intelligent task classification with global
optimization strengths for optimal resource assignment (Manaseer
and Ali, 2024). The innovation employs a feed-forward back-
propagation neural network with 20 hidden layers specifically
designed for task priority classification integrated with genetic
algorithm optimization using decimal chromosome encoding.

N2TC-GATA addresses optimization challenges in cloud
environments where diverse task characteristics, heterogeneous
resource capabilities, and multiple conflicting objectives create
scheduling scenarios that exceed the capabilities of traditional single-
method approaches. The algorithm handles complex scenarios
requiring simultaneous optimization of execution time, cost
considerations, and system efliciency factors.

The algorithm requires neural network frameworks supporting
multi-layer feed-forward architectures, genetic algorithm optimization
libraries with decimal encoding capabilities, and substantial
computational resources for population-based optimization with 500
chromosomes. Implementation involves neural network training
procedures, genetic algorithm parameter tuning, and integration of
classification and optimization components.

N2TC-GATA demonstrates the effectiveness of combining neural
network classification with evolutionary optimization for multi-
objective cloud resource allocation. The approach provides practical
frameworks for organizations seeking balanced optimization across
multiple performance criteria while maintaining computational
efficiency and implementation feasibility.

Performance evaluation using Google cluster-traces v3 dataset
with 405,894 task records demonstrates significant improvements
across multiple metrics. The N2TC-GATA approach achieves 3.2%
reduction in execution time, 13.3% improvement in cost eﬂ:lciency,
and 12.1% enhancement in response time (Manaseer and Ali, 2024).
Neural network training demonstrates efficient convergence within 27
epochs, while genetic algorithm optimization shows consistent fitness
improvement across generations.

4.4 Multi-agent based approaches

Multi-agent based approaches represent a paradigm shift toward
distributed intelligence (Stone and Veloso, 2000; Tampuu et al., 2017;
Dragoni et al., 2017) in cloud resource allocation, leveraging the
collective decision-making capabilities of multiple autonomous agents
to address complex optimization challenges that exceed the capabilities
of centralized algorithms. These approaches excel in scenarios
requiring coordinated resource allocation across heterogeneous
environments, dynamic adaptation to changing conditions, and
scalable solutions that can accommodate growing system complexity.

The two algorithms examined—Multi-Agent Deep Reinforcement
Learning for container allocation and Industrial Federated Deep
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Deterministic Policy Gradient (IF-DDPG) for edge computing—
represent different aspects of multi-agent innovation. They showcase
advances in coordinated container placement optimization and
federated energy-efficient resource allocation, respectively, while
addressing specific challenges in cloud orchestration systems and
industrial Internet of Things (IoT) environments.

4.4.1 Container allocation using multi-agent deep
reinforcement learning

The Multi-Agent Deep Reinforcement Learning framework
employs multiple autonomous agents operating within a mixed
cooperative-competitive environment that optimizes both individual
container performance and overall system efficiency (Chen et al,,
2024). The innovation implements sequential decision-making where
agents operate in predetermined serial order, ensuring coordinated
placement decisions while maintaining individual agent autonomy
through comprehensive system state observation including container
requirements, previous agents decisions, and real-time server
utilization metrics (Burns et al., 2019).

Multi-Agent DRL addresses complex container orchestration
challenges in modern cloud environments where microservices
architectures, containerized applications, and dynamic scaling
requirements create resource allocation scenarios that exceed the
capabilities of traditional scheduling approaches. The algorithm
handles complex decisions about resource assignment, inter-container
communication optimization, load balancing, and quality of service
maintenance across heterogeneous infrastructure.

The algorithm requires distributed computing infrastructure
supporting multi-agent coordination, specialized deep reinforcement
learning frameworks capable of sequential decision-making, and
container orchestration platform integration for real-world
deployment. Implementation involves agent coordination protocol
design, LSTM network configuration for individual agents, and
integration with existing container management systems.

Multi-Agent DRL establishes new paradigms for distributed
intelligent resource allocation by demonstrating how multiple
autonomous agents can coordinate effectively to achieve superior
system-wide performance. The approach provides practical
frameworks for organizations seeking to implement intelligent
container orchestration with improved performance over traditional
scheduling algorithms.

The multi-agent coordination mechanism employs sequential
decision-making where agents operate in predetermined serial order,
ensuring coordinated placement decisions while maintaining
individual agent autonomy. Each agent observes comprehensive
system information including current container requirements,
previous agents’ decisions, and real-time server utilization metrics.
The state space formulation of agent i is given by

e i(t) ,{a1(t),...,a,-_l(t),aHl(tfl),...,aK
Si( )_{E?—l)}},{ul(t—1),...,uM(t—1)} }

where ¢; (t) denotes the container for which the ith agent is
responsible at decision round ¢ the ith agent’s task requirement at
round ¢. The previous decisions made by the agents that preceded it
in the current round of decisions are denoted by the action vector
a; (t) uj (t) stands for the utilization of the servers concerning the
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previous decision round. This incorporates both local container
specifications and global system state information, enabling
informed decision-making that considers system-wide impact while
maintaining agent autonomy.

Experimental evaluation in real private cloud environments with
eight heterogeneous servers demonstrates exceptional performance
improvements. The MADRL approach achieves 28% overall runtime
improvement compared to existing techniques, with LSTM-based
agents showing 25-32% superiority over Kubernetes, Best-Fit, and
Max-Fit algorithms (Chen et al., 2024). Performance advantages are
particularly pronounced for communication-intensive container
batches, where intelligent placement of communicating containers
yields significant efficiency gains through reduced network overhead
and improved data locality.

4.4.2 Industrial federated deep deterministic
policy gradient (IF-DDPQ)

The Industrial Federated Deep Deterministic Policy Gradient
algorithm integrates federated learning (McMahan et al., 2017; Li
etal., 2020) with deep reinforcement learning for energy-efficient edge
computing offloading and resource allocation in Industrial Internet
environments (Kumar et al., 2024). The innovation combines Deep
Deterministic Policy Gradient reinforcement learning with federated
learning architecture to achieve collaborative optimization without
compromising data privacy essential for industrial competitiveness
through sophisticated parameter aggregation mechanisms (GDPR.
eu, 2018).

IF-DDPG addresses critical challenges of optimizing task
offloading decisions, communication resource allocation, and
computing resource allocation across multiple edge servers and
mobile industrial terminal devices while maintaining strict data
privacy requirements (Dwork, 2008) essential for industrial
applications. The algorithm handles industrial environments where
manufacturing processes, supply chain management, quality control
systems, and equipment monitoring create diverse computational
workloads requiring intelligent resource allocation.

The algorithm requires federated learning infrastructure
specialized DDPG
implementation capable of industrial IoT integration, and edge

supporting  distributed model training,
computing platforms with communication and computation resource
management capabilities. Implementation involves federated
parameter aggregation protocols, local DDPG training procedures,
and integration with industrial IoT device management systems.

IF-DDPG advances the field by demonstrating how federated
learning can be systematically integrated with deep reinforcement
learning to address privacy-preserving collaborative optimization in
industrial environments. The approach establishes new standards for
energy-efficient resource allocation while providing practical
frameworks for industrial organizations seeking intelligent edge
computing optimization.

Experimental evaluation in realistic industrial environments with
four edge servers and four terminal devices across 100 x 100 m?
factory areas demonstrate significant energy consumption reductions
compared to baseline algorithms. IF-DDPG achieves 15.2% energy
reduction versus traditional DDPG, 31.7% improvement over Deep
Double Q-Network (DDQN), 38.7% enhancement compared to Deep
Q-Network (DQN), and remarkable 50.5% reduction versus Actor-
Critic (AC) algorithms (Kumar et al., 2024). Convergence analysis
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shows faster, and more stable learning compared to baseline
approaches, with optimal learning rates providing superior
performance characteristics.

5 Evaluation methodology and
cross-study comparison limitations

The comparative analysis of machine learning algorithms for
cloud resource allocation faces fundamental challenges due to the
heterogeneous evaluation environments employed across different
studies. This section addresses the reliability concerns inherent in
cross-paper comparisons and establishes the methodological
framework used to mitigate these limitations while providing
meaningful insights about algorithmic performance trends. Table 2
summarizes the evaluation environments, datasets, and experimental
configurations across all analyzed algorithms, illustrating the
substantial limits  direct

heterogeneity  that Cross-

algorithm comparison.

5.1 Evaluation environment heterogeneity

The analyzed algorithms were evaluated using diverse simulation
environments, datasets, and experimental configurations that limit
direct quantitative comparison. Deep Reinforcement Learning
approaches employed different simulation frameworks: PPO for
D2D-MEC used custom network simulators for mobile edge
computing scenarios, ATSIA3C utilized CloudSim toolkit for multi-
cloud environments, and Rainbow DQN implemented specialized IoT
device-edge-cloud simulators. Neural Network Architecture methods
relied on varied datasets: VSBG used Google cluster traces (672,003
jobs over 29 days) and Alibaba cluster traces (4M jobs over 8 days),
DWT-BiGRU employed Google cluster data (672,074 jobs) and
Alibaba cluster data (1300 + machines over 12 h), while DPSO-GA
utilized Google cluster workload traces with CloudSim simulation.

Traditional Machine Learning Enhanced approaches employed
domain-specific evaluation environments: Enhanced-Kernel SVM
used iFogSim simulator for healthcare fog-cloud scenarios with 20-60
sensors, while N2TC-GATA utilized Google cluster-traces v3 dataset
with 405,894 task records. Multi-Agent Based approaches required
specialized distributed simulation: Multi-Agent DRL employed real
private cloud environments with 8 heterogeneous servers, while
IF-DDPG used industrial IoT simulation with four edge servers and
four terminal devices across 100 x 100 m? factory areas.

The analyzed algorithms were evaluated across fundamentally
different application environments that create distinct resource demand
patterns, significantly limiting cross-algorithm comparison validity.
Healthcare applications (Enhanced-Kernel SVM) exhibit ultra-low
latency requirements and predictable monitoring patterns, mobile
environments (PPO, Rainbow DQN) demonstrate high mobility with
variable connectivity, industrial IoT (IF-DDPG) requires deterministic
real-time processing, and enterprise environments (ATSIA3C, N2TC-
GATA) show complex workload patterns with cost optimization
priorities. These domain-specific characteristics mean algorithms
optimized for healthcare temporal patterns may perform poorly in
enterprise bulk processing scenarios, and mobile energy-constrained
optimizations may not apply to industrial fault-tolerant requirements.
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TABLE 2 Evaluation environments, datasets, and experimental configurations for analyzed algorithms.

Evaluation Dataset/traces

Algorithm

Scale

10.3389/fcomp.2025.1678976

Baseline

Key metrics

environment

PPO for D2D-MEC Custom mobile edge Synthetic mobile device

100 + mobile devices,

algorithms

Random offloading, local

Execution time, energy

framework jobs, 29 days), Alibaba
cluster (1300 + machines,

12h)

environments

computing simulator traces 10 edge servers execution, always-cloud consumption,
monetary cost
ATSIA3C CloudSim toolkit Synthetic multi-cloud 1000 + tasks across RATS-HM, MOABCQ, Makespan, resource
workloads multiple datacenters AINN-BPSO cost, energy
consumption
Rainbow DQN Custom IoT-edge-cloud Synthetic IoT device traces 100-300 IoT devices, Double DQN, standard Energy efficiency,
simulator 3-tier architecture DQN latency, utility
DPSO-GA CloudSim simulation Google cluster workload 50-1500 tasks, 10-50 Standalone PSO, Waiting time, energy
traces VMs standalone GA consumption,
prediction MAE
VSBG Custom prediction Google cluster traces Large-scale cluster ARIMA, standard LSTM RMSLE, MSE, R?
framework (672,003 jobs, 29 days), workloads coefficient
Alibaba cluster traces (4M
jobs, 8 days)
DWT-BiGRU Custom prediction Google cluster (672,074 Multi-machine cluster SVR, standard LSTM MAPE, RMSE

Enhanced-Kernel SVM iFogSim simulator Synthetic e-health

application traces

20-60 sensors, fog-
cloud hybrid

FCFS, cloud-only

architecture

Execution time, latency

N2TC-GATA Custom scheduling simulator | Google cluster-traces v3

(405,894 tasks)

Large-scale task

scheduling

Traditional genetic

algorithm

Execution time, cost
efficiency, response

time

Multi-agent DRL Real private cloud Real container workloads

Eight heterogeneous

Kubernetes, Best-Fit,

Overall runtime,

simulator workloads

terminal devices,

100 x 100 m? area

DDQN, DQN, actor-

critic

environment servers, container Max-Fit container placement
batches efficiency
IF-DDPG Custom industrial IoT Synthetic industrial Four edge servers, four Traditional DDPG, Energy consumption

Organizations should prioritize algorithms evaluated in application
environments similar to their target deployment context rather than
relying on performance improvements reported across different domains.

5.2 Baseline algorithm variability

The performance improvements reported across studies derive from
comparisons against different baseline algorithms, creating additional
complexity in cross-study evaluation. Deep Reinforcement Learning
algorithms compared against varied baselines: ATSIA3C benchmarked
against RATS-HM, MOABCQ, and AINN-BPSO algorithms, while
Rainbow DQN used Double DQN as primary comparison. Neural
Network approaches employed different baseline sets: VSBG compared
against ARIMA and standard LSTM models, DWT-BiGRU
benchmarked against SVR and basic LSTM implementations, and
DPSO-GA evaluated against standalone PSO and GA algorithms.

Traditional ML Enhanced methods used domain-specific
baselines: Enhanced-Kernel SVM compared against FCFS algorithms
and cloud-only architectures, while N2TC-GATA benchmarked
against traditional genetic algorithms without neural network
classification. Multi-Agent approaches required specialized comparison

Frontiers in Computer Science 10

frameworks: Multi-Agent DRL compared against Kubernetes, Best-Fit,
and Max-Fit algorithms, while IF-DDPG benchmarked against
traditional DDPG, DDQN, DQN, and Actor-Critic algorithms.

5.3 Performance metric standardization
challenges

The diversity of performance metrics across studies reflects different
optimization objectives and evaluation priorities, complicating direct
algorithmic comparison. Execution time and makespan reduction
metrics vary significantly in measurement approaches: some studies
report absolute time improvements while others focus on percentage
reductions relative to baseline algorithms. Cost optimization metrics
employ different economic models: ATSIA3C measures resource cost
optimization across multi-cloud pricing models, while Enhanced-Kernel
SVM focuses on operational cost reduction in healthcare environments.

Energy efficiency measurements demonstrate substantial
methodological differences: IF-DDPG reports energy consumption
reduction in industrial IoT scenarios measured in watts, ATSIA3C
calculates energy improvements as percentage reductions across
datacenter operations, while DWT-BiGRU focuses on computational
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energy efficiency during prediction tasks. Quality of Service metrics
vary by application domain: healthcare applications emphasize latency
reduction and reliability measures, while industrial IoT focuses on
real-time processing capabilities and fault tolerance.

The focus on best performance metrics for each algorithm reflects
the inherent challenge of comparing algorithms optimized for
different objectives and evaluated using heterogeneous methodologies.
Each algorithm prioritizes specific optimization goals: ATSIA3C
emphasizes makespan reduction in multi-cloud environments, VSBG
targets prediction accuracy for workload forecasting, Enhanced-SVM
optimizes execution time for healthcare applications, and IF-DDPG
focuses on energy efficiency in industrial settings. Rather than
attempting misleading cross-metric comparisons between
fundamentally different optimization objectives, our analysis
emphasizes each algorithm’s primary contribution within its intended
application domain. This approach provides more meaningful insights
about algorithmic effectiveness while acknowledging that
comprehensive multi-metric comparison would require standardized
evaluation environments and consistent optimization objectives

across all studies—conditions that do not exist in the current literature.

5.4 Mitigation strategies and analytical
framework

To address these comparison limitations, our analysis employs
several mitigation strategies that enable meaningful insights while
acknowledging methodological constraints. Relative performance
analysis focuses on percentage improvements over baseline algorithms
reported in original studies rather than attempting direct comparison
of absolute performance values. This approach enables identification
of algorithmic effectiveness trends while respecting the different
evaluation contexts employed across studies.

Categorical performance grouping organizes algorithms by
problem type and application domain, enabling more appropriate
comparisons within similar operational contexts. Deep Reinforcement
Learning algorithms are analyzed collectively for their learning
efficiency and adaptation capabilities, Neural Network approaches are
compared for prediction accuracy and temporal modeling
effectiveness, Traditional ML Enhanced methods are evaluated for
domain-specific optimization performance, and Multi-Agent
approaches are assessed for distributed coordination effectiveness.

Qualitative capability assessment examines algorithmic features
and architectural innovations rather than relying solely on quantitative
performance metrics. This includes analysis of convergence properties,
scalability  characteristics, implementation complexity, and
deployment requirements that affect practical adoption decisions. The
assessment framework considers algorithmic robustness, adaptation
capabilities, and integration requirements that influence real-world

effectiveness beyond simulation-based performance metrics.

5.5 Reliability assessment and confidence
levels

Given the evaluation methodology limitations, performance

comparisons should be interpreted with appropriate confidence levels
and uncertainty acknowledgment. High confidence comparisons are
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possible within algorithm categories where studies employ similar
evaluation environments and baseline algorithms, such as Neural
Network approaches using Google cluster datasets or Deep
Reinforcement Learning methods evaluated in mobile edge
computing scenarios.

Medium confidence comparisons apply across categories where
different evaluation environments prevent direct quantitative
comparison but similar problem formulations enable qualitative
This
optimization objectives such as energy efficiency improvements across

capability assessment. includes comparisons between
different algorithmic approaches or scalability characteristics between
centralized and distributed optimization methods.

Low confidence comparisons acknowledge situations where
evaluation environments differ significantly, preventing reliable
performance assessment. Cross-domain comparisons between
healthcare-specific algorithms and general-purpose resource
allocation methods fall into this category, as do comparisons between

simulation-based results and real-world deployment outcomes.

5.6 Implications for algorithmic selection

The evaluation reliability analysis provides important guidance for
algorithmic selection and implementation decisions. Organizations
should prioritize algorithms evaluated in environments similar to
their deployment contexts rather than relying solely on reported
performance improvements. The heterogeneous evaluation landscape
emphasizes the importance of pilot testing and performance validation
in target environments before full-scale deployment.

Algorithm selection should consider evaluation methodology
quality alongside reported performance metrics, with preference for
approaches validated across multiple datasets and evaluation
environments. The analysis suggests that algorithmic robustness and
adaptation capabilities may be more important than peak performance
metrics when deployment environments differ from evaluation
contexts used in original studies.

6 Cross-category comparative
analysis

This section presents a comparative analysis across all four
categories of machine learning algorithms for cloud resource
allocation, examining performance characteristics, implementation
considerations, and practical deployment guidance. Through
systematic evaluation of the 10 algorithms, we identify key trends,
architectural patterns, and optimization strategies that characterize
the current state-of-the-art in intelligent cloud resource management.

6.1 Performance trade-offs and the
performance-complexity paradox

The comparative analysis reveals fundamental trade-offs between
algorithmic categories that directly impact their suitability for different
cloud environments, uncovering a critical performance-complexity
paradox where algorithmic sophistication often correlates inversely
with practical deployability. Deep Reinforcement Learning algorithms
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demonstrate the most substantial performance gains across multiple
metrics, with ATSIA3C achieving remarkable 70.49% makespan
reduction, 77.42% cost optimization, and 74.24% energy consumption
improvement. However, these impressive results exemplify the
performance-complexity paradox: improvements exceeding 50%
typically require infrastructure investments and operational expertise
that justify benefits
deployment scenarios.

may not incremental for many
The paradox manifests through three distinct dimensions affecting

adoption  decisions. Implementation complexity increases
exponentially with performance gains, as ATSIA3C’s superior results
require mastery of residual CNN architectures, A3C algorithm
simulation environments.

implementation, and multi-cloud

Operational overhead scales non-linearly with algorithmic
sophistication, with maintenance, retraining, and continuous
optimization demanding specialized expertise often unavailable in
typical IT operations teams. Infrastructure requirements grow
substantially with performance expectations, as advanced algorithms
require specialized hardware, distributed training capabilities, and
extensive ~ computational  resources that may exceed
organizational capacity.

This analysis reveals that practical algorithmic selection should
prioritize robustness and deployability over peak performance metrics
when operational constraints limit implementation sophistication.
The sample efficiency problem remains particularly acute, with PPO
requiring 500-1,000 episodes for convergence, making real-time
adaptation challenging in dynamic cloud environments while
demanding  continuous  computational ~ resources  for
effective operation.

Figure 2 illustrates the positioning of analyzed algorithms across
two critical dimensions for practical deployment: performance impact
and implementation complexity. This qualitative assessment reveals
four distinct clusters that inform algorithmic selection strategies based
on organizational constraints and performance requirements.

The quadrant analysis reveals that high-impact algorithms
(ATSIA3C, VSBG, IF-DDPG)
implementation ~ complexity,  while simpler  approaches
(Enhanced-SVM, N2TC-GATA) vary significantly in their
This the

performance-complexity paradox identified in our analysis, where

generally require substantial

performance contributions. positioning  supports
breakthrough performance often correlates with implementation
challenges that may limit practical adoption.

Neural Network Architecture approaches excel in prediction
accuracy but suffer from different limitations. VSBG achieves
exceptional workload prediction with RMSLE improvements from
0.89 to 0.03, yet this accuracy relies heavily on historical data patterns
that may not generalize to novel workload behaviors or sudden system
changes. The signal processing components (VMD, DWT) introduce
additional computational complexity and parameter sensitivity that
can degrade performance when applied to workloads with different
characteristics than training data. Furthermore, the temporal
dependencies captured by LSTM and BiGRU architectures assume
stationarity in underlying system behavior that may not hold in
rapidly evolving cloud environments.

Traditional Machine Learning Enhanced approaches offer more
predictable performance with lower computational requirements, but
their effectiveness remains highly domain-specific. Enhanced-Kernel
SVM achieves 73.88% execution time improvement for healthcare
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Performance impact vs. implementation complexity.

applications, yet the specialized kernel design limits generalizability
across different application domains. The hybrid optimization
techniques in N2TC-GATA provide balanced multi-objective
solutions but struggle with scalability when the number of objectives
or constraints increases significantly beyond the evaluated scenarios.

Multi-Agent Based approaches demonstrate superior distributed
coordination but introduce complex synchronization challenges.
Multi-Agent DRL achieves 28% runtime improvement through
intelligent coordination, yet the sequential decision-making
mechanism creates potential bottlenecks as the number of agents
increases. The federated learning component in IF-DDPG provides
privacy preservation but introduces communication overhead and
convergence delays that may offset performance gains in high-
frequency resource allocation scenarios.

6.2 Convergence properties and scalability
analysis

A critical examination of convergence properties reveals
significant variations in algorithmic stability and scalability
characteristics across categories, with fundamental theoretical
limitations that constrain practical deployment at enterprise scale.
Deep Reinforcement Learning algorithms exhibit non-monotonic
convergence behavior with potential for temporary performance
degradation during exploration phases, creating operational risks in
production environments where consistent performance is essential.
ATSIA3C demonstrates faster convergence through residual CNN
integration, yet the algorithm’s performance remains critically
sensitive to reward function design and hyperparameter configuration,
suggesting fundamental brittleness that limits reliable deployment.

The scalability analysis reveals architectural limitations that
represent theoretical rather than implementation barriers. Deep
Reinforcement Learning algorithms face quadratic complexity
growth with state space expansion, creating mathematical
constraints that cannot be overcome through hardware

frontiersin.org


https://doi.org/10.3389/fcomp.2025.1678976
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Bodra and Khairnar

improvements or optimization techniques. For state spaces
characteristic of enterprise cloud environments with millions of
DRL
approaches would require computational resources that exceed

resources and complex interdependencies, current
physically feasible limits. Rainbow DQN’s six enhancement
techniques improve stability but increase memory requirements
exponentially with state space dimensionality, creating a
fundamental trade-off between algorithmic sophistication and
that be

architectural paradigms.

scalability cannot resolved within  current

Neural Network Architecture approaches generally demonstrate
more predictable convergence but suffer from generalizability
limitations that restrict real-world applicability. VSBG’s multi-
modal prediction achieves stable performance across Google and
Alibaba datasets, yet the decomposition techniques lose
effectiveness when workload patterns deviate significantly from
training distributions, revealing fundamental assumptions about
data stationarity that rarely hold in dynamic cloud environments.
The temporal dependencies captured by LSTM and BiGRU
architectures assume underlying system behavior patterns that may
not persist across different deployment contexts, geographical
regions, or temporal periods, limiting algorithmic robustness to
specific evaluation scenarios.

Traditional ML Enhanced methods scale more predictably but
encounter fundamental limitations when problem complexity exceeds
their theoretical foundations. Enhanced-Kernel SVM’s domain-
specific optimization relies on kernel design assumptions that cannot
generalize beyond healthcare applications without complete
algorithmic redesign. The mathematical foundations of SVM
classification create inherent boundaries on problem complexity that
cannot be exceeded regardless of computational resources or data
availability, suggesting that traditional approaches face theoretical
rather than practical scalability constraints.

Multi-Agent Based approaches present unique scalability
challenges related to coordination complexity rather than
computational requirements. Multi-Agent DRLs sequential decision-
making mechanism creates coordination bottlenecks that scale
exponentially with agent population, fundamentally limiting the
approach to scenarios with modest numbers of coordinating entities.
The communication overhead in federated learning approaches like
IF-DDPG grows quadratically with participant numbers, creating
theoretical limits on distributed optimization that cannot be overcome
through network improvements or protocol optimization.

Analysis reveals three fundamental challenges that transcend
individual algorithmic approaches. The adaptability-stability paradox
manifests differently across categories: DRL algorithms achieve
adaptability through continuous learning but risk performance
degradation during exploration, neural networks provide stable
predictions but require complete retraining when patterns change,
traditional ML offers predictable performance but lacks adaptation
mechanisms, and multi-agent systems demonstrate coordination
flexibility but struggle with protocol evolution. The scale-complexity
ceiling creates theoretical barriers where DRL faces quadratic state
space growth, neural networks suffer from dimensionality curses,
traditional ML encounters mathematical complexity limits, and multi-
agent coordination overhead grows exponentially. These systematic
that  breakthrough
interdisciplinary approaches combining control theory, distributed

limitations  suggest advances  require
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systems, and optimization theory rather than incremental

improvements within existing paradigms.

6.3 Critical gap analysis and systematic
field limitations

Despite impressive individual performance improvements, the
analyzed algorithms collectively reveal systematic limitations that
persist across all categories and represent fundamental challenges
requiring theoretical advancement rather than incremental
algorithmic refinement. The evaluation methodology inconsistency
across studies creates uncertainty about real-world performance, with
different baseline comparisons, simulation environments, and
performance metrics preventing reliable cross-algorithm evaluation.
This evaluation validity crisis undermines confidence in reported
improvements and suggests the field requires standardized frameworks
before meaningful algorithmic comparison becomes possible.

The temporal adaptation challenge represents a fundamental
limitation affecting all categories but manifesting through different
mechanisms. Deep reinforcement learning algorithms require
extensive retraining when environment dynamics change, neural
network approaches suffer from concept drift when workload patterns
evolve beyond training distributions, traditional ML methods lack
adaptive mechanisms for changing optimization landscapes, and
multi-agent systems struggle with coordination protocol adaptation
during system evolution. This systematic challenge suggests that
current approaches fundamentally misunderstand the dynamic nature
of cloud environments, treating them as stationary systems rather
than continuously evolving ecosystems.

The scalability ceiling emerges as a critical architectural limitation
where current approaches demonstrate effectiveness for hundreds to
thousands of resources but lack theoretical or empirical validation for
million-scale deployments characteristic of major cloud providers.
None of the analyzed algorithms provide convincing evidence of
linear scalability, with most exhibiting exponential complexity growth
that limits practical applicability to large-scale production
environments. This limitation indicates that fundamental algorithmic
paradigms may require replacement rather than refinement to address
enterprise-scale cloud resource allocation demands.

Resource allocation algorithms also suffer from the multi-
objective optimization paradox, where improvements in one metric
often come at the expense of others, creating trade-offs that current
approaches handle poorly. Cost optimization frequently conflicts with
performance maximization, energy efficiency may reduce service
quality, and security constraints limit optimization flexibility. The
analyzed algorithms typically optimize for specific objective
combinations but lack principled frameworks for dynamically
adjusting optimization priorities based on changing business
requirements or system conditions, suggesting fundamental
theoretical gaps in multi-objective resource allocation.

6.4 Generalizability crisis and deployment
reality gap

The systematic analysis reveals a fundamental generalizability
crisis where algorithms demonstrate impressive performance in
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controlled evaluation environments but face severe limitations when
deployed in real-world cloud infrastructures with different
characteristics, constraints, and operational requirements. This
deployment reality gap manifests through several critical dimensions
that question the practical applicability of current research directions.

Dataset dependency limitations plague all analyzed algorithms,
with performance claims based on specific historical traces that may
not represent future workload patterns or different organizational
contexts. VSBG’s exceptional performance on Google and Alibaba
cluster traces cannot reliably predict effectiveness for financial services
workloads, healthcare applications, or e-commerce platforms with
fundamentally different usage patterns, temporal characteristics, and
resource consumption behaviors. The implicit assumption that
historical patterns predict future performance ignores the rapidly
evolving nature of cloud applications, particularly with the integration
of AI/ML workloads that exhibit fundamentally different resource
consumption characteristics than traditional enterprise applications.

Environmental constraint sensitivity represents a critical
limitation where algorithms optimized for specific infrastructure
configurations fail when deployed in environments with different
hardware characteristics, network topologies, or resource availability
patterns. Enhanced-Kernel SVM’s healthcare optimization assumes
fog-cloud architectures with specific latency and bandwidth
characteristics that may not exist in rural healthcare deployments,
edge computing scenarios with limited connectivity, or regulatory
environments requiring data locality constraints. The algorithmic
assumptions about available infrastructure create fundamental
barriers to cross-domain deployment that cannot be resolved through
parameter tuning or minor modifications.

Operational context brittleness emerges as algorithms assume
specific operational procedures, maintenance windows, and failure
patterns that may not align with actual deployment environments.
Multi-Agent DRLs coordination mechanisms assume reliable inter-
agent communication that may not hold in distributed cloud
environments with network partitions, variable latency, or security
constraints that limit information sharing between components. The
gap between algorithmic assumptions and operational reality creates
deployment risks that may outweigh performance benefits.

Scale transition failures occur when algorithms demonstrate
effectiveness at research scales but encounter fundamental barriers
when deployed at enterprise scales with millions of resources, complex
organizational structures, and regulatory compliance requirements.
The mathematical complexity growth patterns identified in scalability
analysis suggest that current algorithmic paradigms cannot bridge the
gap between research demonstrations and production deployment
requirements, necessitating fundamental theoretical advances rather
than incremental improvements.

This generalizability crisis indicates that the field may
be optimizing for evaluation success rather than practical deployment
effectiveness, suggesting a fundamental misalignment between
research objectives and industry needs that requires systematic
correction through deployment-focused evaluation frameworks and
real-world validation requirements.

Systematic analysis reveals that improvements in one performance
dimension often conflict with others across all algorithmic categories.
Cost
maximization, energy efficiency may reduce service quality, and

optimization frequently conflicts with performance

security constraints limit optimization flexibility. Current algorithms
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typically optimize for specific objective combinations but lack
principled frameworks for dynamically adjusting optimization
priorities based on changing business requirements or system
conditions, suggesting fundamental theoretical gaps in multi-objective
resource allocation that require new mathematical frameworks rather
than incremental algorithmic improvements.

6.5 Strategic implementation guidelines

The comparative analysis enables the development of strategic
guidelines for algorithm selection based on organizational
requirements and deployment constraints. Organizations with mature
MLOps infrastructure and tolerance for complex deployment
procedures should consider Deep Reinforcement Learning approaches
for scenarios requiring maximum performance optimization across
multiple objectives. The substantial training overhead and
infrastructure requirements make these approaches suitable for large-
scale deployments where the performance benefits justify the
implementation complexity.

Neural Network Architecture approaches provide optimal
solutions for organizations with predictable workload patterns and
historical data availability. These algorithms excel in environments
where accurate demand forecasting directly translates to cost savings
and performance improvements. However, organizations must invest
in data collection infrastructure and model maintenance procedures
to ensure continued effectiveness as system characteristics evolve.

Traditional Machine Learning Enhanced methods offer the most
accessible entry point for organizations seeking immediate
improvements with existing infrastructure. The interpretable nature
of SVM-based approaches and hybrid optimization techniques
provides transparency essential for regulatory compliance and
operational validation. These approaches work best in specialized
domains with well-defined optimization objectives and constraint sets.

Multi-Agent Based approaches suit organizations operating
distributed cloud environments with strong privacy requirements or
regulatory constraints limiting data sharing. The federated learning
capabilities enable collaborative optimization while preserving data
sovereignty, making these approaches particularly valuable for multi-
organizational cloud federations or industry consortiums requiring
coordinated resource management.

6.6 Synthesis of hybrid architecture
effectiveness and evolutionary principles

The analysis reveals that hybrid architectures consistently
outperform single-method approaches across all performance metrics
and deployment scenarios, representing not merely incremental
improvement but fundamental evolution in algorithmic design
philosophy. This effectiveness stems from three systematic integration
mechanisms that address the inherent limitations of isolated AI/ML
techniques. Capability augmentation combines techniques with
non-overlapping strengths, such as DPSO-GASs integration of CNN
spatial feature extraction with PSO-GA global optimization, creating
synergistic effects that exceed individual component capabilities.
Weakness mitigation pairs techniques where one addresses the other’s
limitations, exemplified by VSBG’s combination of VMD signal
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decomposition with hybrid LSTM architectures to handle
nonstationary data that neither component could manage effectively
in isolation. The analysis reveals that hybrid architectures consistently
outperform single-method approaches across all performance metrics
and deployment scenarios, representing not merely incremental
improvement but fundamental evolution in algorithmic design
philosophy. This effectiveness stems from three systematic integration
mechanisms that address the inherent limitations of isolated AI/ML
techniques. Capability augmentation combines techniques with
non-overlapping strengths, such as DPSO-GA's integration of CNN
spatial feature extraction with PSO-GA global optimization, creating
synergistic effects that exceed individual component capabilities.
Weakness mitigation pairs techniques where one addresses the other’s
limitations, exemplified by VSBG’s combination of VMD signal
decomposition with hybrid LSTM architectures to handle
nonstationary data that neither component could manage effectively
in isolation.

Performance amplification leverages emergent properties where
combined techniques achieve superior results through complex
interactions rather than simple addition of individual contributions,
demonstrated by ATSIA3C’s residual CNN integration with A3C that
improves both feature extraction and policy learning simultaneously
through architectural co-evolution. This mechanism suggests that
optimal hybrid design requires understanding technique interactions
rather than merely combining high-performing components.

The architectural evolution patterns reveal a clear trajectory from
reactive single-technique approaches toward predictive hybrid
systems that integrate multiple AI/ML paradigms following
identifiable principles. This convergence occurs systematically because
modern cloud environments exhibit complexity characteristics that
exceed the capability boundaries of individual machine learning
paradigms. The fundamental principle emerging from this analysis
suggests that optimal cloud resource allocation requires integration of
complementary AI/ML capabilities rather than reliance on single
techniques, with the most successful architectures achieving balance
between capability breadth, implementation complexity, and
operational maintainability.

However, hybrid architectures introduce their own systematic
challenges including increased implementation complexity, higher
computational requirements, and more complex failure modes that
can offset performance benefits in resource-constrained environments.
The integration overhead creates a critical threshold effect where
architectural sophistication must be balanced against deployment
constraints, suggesting that successful hybrid design requires
principled approaches to complexity management rather than
unbounded technique integration. Organizations considering hybrid
approaches must carefully evaluate whether performance benefits
justify additional operational complexity and resource requirements,
particularly when deployment environments impose strict resource
or expertise constraints.

The convergence of challenges across all categories illuminates
requirements for next-generation systems: (1) temporal adaptation
mechanisms that treat dynamic environments as fundamental design
constraints, (2) hierarchical architectures achieving linear scalability
through principled decomposition, and (3) multi-objective
frameworks enabling dynamic priority adjustment based on
operational context. Future research should prioritize hybrid
architectures integrating multiple ML paradigms, meta-learning
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approaches for rapid adaptation, and quantum-inspired optimization
for addressing exponential complexity challenges.

7 Future work

The analysis of machine learning-based cloud resource
allocation algorithms reveals significant opportunities for advancing
the field through targeted research initiatives. Future research
should prioritize next-generation hybrid architectures that
systematically integrate multiple machine learning paradigms,
meta-learning approaches for rapid adaptation to new cloud
environments, and quantum-inspired optimization algorithms for
addressing exponential complexity challenges.

Current approaches demonstrate effectiveness for hundreds to
thousands of resources, but modern cloud environments require
fundamentally different approaches for millions of resources.
Research should explore hierarchical multi-agent architectures,
enhanced federated learning with secure aggregation protocols and
differential privacy mechanisms (Dwork, 2008), and edge-cloud-
quantum computing integration for unified optimization frameworks.

Domain-specific applications require specialized algorithms
addressing medical data processing and regulatory compliance
(Dwork, 2008; NIST, 2020) for healthcare environments, operational
technology integration for industrial IoT, and multi-objective
optimization for smart city applications. Security research should
focus on zero-trust computing environments, sustainability initiatives
with carbon-aware algorithms, and 5G/6G network integration for
ultra-low latency requirements.

8 Conclusion

This comprehensive survey presents a systematic analysis of 10
state-of-the-art machine learning algorithms for cloud resource
allocation across four methodological categories: Deep Reinforcement
Learning, Neural Network Architecture, Traditional Machine
Learning Enhanced, and Multi-Agent Based approaches.

The analysis reveals that machine learning-based approaches
methods, with
improvements ranging from 10% to over 70%. Deep Reinforcement

consistently outperform traditional heuristic
Learning algorithms demonstrate the most substantial gains, with
ATSIA3C achieving 70.49% makespan reduction, 77.42% cost
optimization, and 74.24% energy consumption improvement. Neural
Network Architecture methods excel in prediction accuracy, with VSBG
achieving RMSLE improvements from 0.89 to 0.03. Traditional ML
Enhanced approaches prove effective for domain-specific applications,
with Enhanced-Kernel SVM demonstrating 73.88% execution time
improvement for healthcare tasks. Multi-Agent approaches show superior
distributed coordination, with Multi- Agent DRL achieving 28% runtime
improvement and IF-DDPG delivering 15.2 to 50.5% energy reductions.

Key trends include the emergence of hybrid architectures as
dominant approaches, edge computing integration across multiple
algorithms, and privacy preservation through federated learning
capabilities. The practical analysis reveals varying implementation
complexity and computational requirements, providing selection
guidance for organizations with different deployment constraints and
performance objectives.
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This survey contributes a comparative analysis of recent ML
approaches for cloud resource allocation, offering technical insights
for researchers and practical guidance for industry practitioners. The
systematic evaluation framework enables informed decision-making
for implementing next-generation cloud resource allocation strategies.
As cloud computing evolves toward increasingly complex and
distributed architectures, the insights presented guide development of
intelligent systems capable of meeting modern computing challenges
through the fundamental transformation from reactive to predictive
and adaptive resource allocation.
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