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Introduction: Vision Transformers (ViTs) show promise for image recognition but
struggle with medical image segmentation due to a lack of inductive biases for
local structures and an inability to adapt to diverse modalities like CT, endoscopy,
and dermatology. Effectively combining multi-scale features from CNNs and ViTs
remains a critical, unsolved challenge.

Methods: We propose a Pyramid Feature Fusion Network (PFF-Net) that
integrates hierarchical features from pre-trained CNN and Transformer
backbones. Its dual-branch architecture includes: (1) a region-aware branch for
global-to-local contextual understanding via pyramid fusion, and (2) a boundary-
aware branch that employs orthogonal Sobel operators and low-level features
to generate precise, semantic boundaries. These boundary predictions are
iteratively fed back to enhance the region branch, creating a mutually reinforcing
loop between segmenting anatomical regions and delineating their boundaries.
Results: PFF-Net achieved state-of-the-art performance across three clinical
segmentation tasks. On polyp segmentation, PFF-Net attained a Dice score
of 91.87%, surpassing the TransUNet baseline (86.96%) by 5.6% and reducing
the HD95 metric from 22.25 to 11.68 (a 47.5% reduction). For spleen CT
segmentation, it reached a Dice score of 95.33%, outperforming ESFPNet-S
(94.92%) by 4.3% while reducing the HD95 from 6.99 to 3.35 (a 52.1% reduction).
In skin lesion segmentation, our model achieved a Dice score of 90.29%, which
represents a 7.3% improvement over the ESFPNet-S baseline (89.64%).
Discussion: The results validate the effectiveness of our pyramid fusion strategy
and dual-branch design in bridging the domain gap between natural and medical
images. The framework demonstrates strong generalization on small-scale
datasets, proving its robustness and potential for accurate segmentation across
highly heterogeneous medical imaging modalities.
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1 Introduction

With the continuous enhancement of computing power and
the rapid advancement of deep learning, Convolutional Neural
Networks (CNNs) have become an essential part of visual models.
In the field of medical image processing, CNN-based methods
have achieved significant success in recent years. These methods
(Yao et al, 2024) typically use a U-shaped architecture with
an encoder and decoder, which is common in medical image
segmentation.

Increasing the depth of convolutional layers theoretically boosts
the network’s receptive field (i.e., the region of the input image
that each neuron in a CNN layer responds to). By employing
more convolutional layers (Zhou and Abawajy, 2025; Zhou et al.,
2022b), abstract features over a larger image region can be acquired.
However, factors like pooling, stride, dilated convolutions,
computation limitation, and information propagation limit the
effective receptive field (Ding et al., 2022). This limitation can affect
the model’s performance in tasks that necessitate a more global
understanding of context. Therefore, better approaches that can
capture long-range dependency information need to be developed
for medical image segmentation analysis.

In contrast, Transformer models (Vaswani et al., 2017) have
shown a distinct advantage in handling long-range dependency
relationships. In recent years, a growing number of researchers
have begun applying Transformers to the realm of medical image
segmentation (Xia et al, 2025; Zhang et al, 2025). Its widely
acknowledged that on large-scale datasets, Transformers exhibit
greater adaptability compared to CNNs. However, Transformers
encounter challenges, particularly due to the absence of certain
inherent inductive biases present in CNNSs, such as translation
invariance and local correlation (Xu et al., 2025; Zhou et al., 2022a).
This has prompted the development of Vision Transformers,
commonly known as ViT, which necessitate more extensive data
during the training phase. In contrast, CNNs extract features
through localized sliding windows, enabling them to achieve
remarkable results even with significantly smaller datasets. Once
the convolutional kernels in CNNs are trained, their parameters
remain fixed, whereas Transformers dynamically compute the
correlation between pixels or features based on variations in input
images.

In recent years, there has been a reciprocal exchange of
ideas between Transformers and CNNs, resulting in notable
advancements within their respective domains. For instance,
CNNs have adopted the concept of dynamic parameters from
Transformers, giving rise to innovative methodologies such as
dynamic convolution and dynamic ReLU (Lou and Yu, 2025).
Conversely, Transformers have benefited from insights gleaned
from CNNs, employing localized self-attention computations
to develop efficient models like the Swin Transformer (Liu
et al., 2021). Furthermore, the emergence of the Pyramid Vision
Transformer (PVT) (Kumar, 2025) is rooted in the feature
pyramid concept prevalent in CNN architectures. Subsequently,
Transformer-based backbone networks have predominantly
retained the structural elements of local window attention and
feature pyramid, thus highlighting the ongoing interaction and
evolution between these two paradigms.
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To reduce the data requirements of Transformer models,
various methods have been proposed to apply Transformers to
the field of medical image segmentation. In addition to the unit-
level fusion solutions of CNNs and Transformers (Liu et al., 2023),
there is also a strategy to concatenate or combine pre-trained
Transformer modules with CNNs modules. In previous related
research, many studies used pre-trained ViT as the backbone
for feature extraction. For example, in Polyp-PVT (Qayoom
et al., 2025), a Transformer-based feature pyramid structure, PVT
(Kumar, 2025), was used as the backbone for feature extraction,
and then the CNNs decoding module was used to fuse multi-scale
features extracted by PVT. In SwinE-Net (Park and Lee, 2022),
features from corresponding layers of EfficientNet (Kumar and
Gunasundari, 2025) and Swin Transformer were fused by element-
wise multiplication. Subsequently, these fused features, along with
the segmentation mask maps predicted by EfficientNet and Swin
Transformer, were input to the decoder to complete the final
segmentation process. In addition, Shah et al. (2025) constructed a
U-shaped structure entirely composed of Swin Transformer, known
as Swin-Unet. The encoder directly used Swin Transformer as
the backbone network, and both the encoder and decoder were
initialized using pre-trained Swin Transformer. Furthermore, some
research placed Transformers in other positions. For example,
works like Transunet (Chen et al., 2024) and MedSAM (Lei
et al., 2025) introduced pre-trained ViT at bottlenecks or skip
connections in U-shaped structures based on CNNss for the fusion
of global high-order features.

Pre-trained models are essential for deep learning, particularly
for transformers, as they promote network convergence and
improve segmentation accuracy. Supervised pre-training on
extensive datasets like ImageNet and self-supervised techniques
tailored for medical imaging applications have demonstrated
enhancements in the subsequent performance of machine
learning models (Lei et al, 2025; Rani et al, 2024). In this
work, we do not dwell on the supervised pretraining details
of backbones and directly use widely adopted ones (e.g.,
ResNet and Transformer variants) to construct our hybrid
framework.

This
Transformer and CNN backbones to address their respective

study aims to integrate pyramid features from
limitations while leveraging their complementary strengths. The

main contributions are summarized as follows:

e Feature fusion module: we propose a module that aligns
and integrates pyramid features from a pre-trained ResNet
with those from a Transformer backbone. To ensure feature
compatibility, ResNet channels are adjusted before fusion,
and a cascaded decoder progressively combines multi-level
features to refine segmentation outputs.

e Boundary-aware branch: to enhance boundary representation,
we design a dedicated branch that exploits multi-scale
features from the pre-trained backbone. Sobel filtering is
applied to capture low-level edge cues from larger-scale
features, which are then integrated with hierarchical features
through an edge-aware module. The resulting boundary-
weighted representation strengthens predictions near object
boundaries.
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e Comprehensive evaluation: we validate our method on
colorectal polyp, spleen CT, and skin lesion datasets. The
approach consistently outperforms existing methods, with
particularly strong improvements in skin lesion and polyp
segmentation tasks. These results provide new evidence for
the effectiveness of pre-trained Transformers in medical image
segmentation.

2 Related work

2.1 Macro-level fusion strategy of CNNs
and transformers

The macro-level fusion strategy seeks to integrate the output
features of pre-trained CNNs and Transformers. Distinguished
by its higher level of abstraction compared with unit-level
fusion techniques (Liu et al, 2023), this approach harnesses
existing pre-trained models to their full potential. By merging
the respective output features, commonly comprising hierarchical
pyramid features, this strategy enhances model performance while
seamlessly integrating diverse sources of information.

Figure 1 presents various representative macro-level fusion
strategies for CNNs and Transformers in U-shaped architectures.
The figure serves as a comparative reference and does not depict
fusion structures; skip connections are also omitted for clarity.

The basic UNet (Ronneberger et al., 2015) employs CNNs
in both encoder and decoder. In contrast, models such as
SwinUNet (Cao et al., 2021) and Segmenter (Strudel et al., 2021)
utilize Transformers in both encoder and decoder. Although
Transformers are powerful in feature extraction from large-scale
image data, their use as decoders is relatively uncommon due
to difficulty in recovering fine details. SegFormer (Xie et al,
2021a), for instance, replaces the decoder with a simple multilayer
perceptron (MLP), achieving a balance between accuracy and
efficiency.

Another strategy applies Transformers in the encoder and
CNNs in the decoder, as seen in SETR (Zheng et al., 2021)
and ESFPNet (Chang et al., 2023). In some designs, Transformer
modules are inserted at bottlenecks to integrate high-level features,
exemplified by TransBTS (Wang et al.,, 2021a) and TransUNet.

CTC-Net (Yuan et al., 2023) combines multi-level features from
both Transformer and CNN backbones with cross-scale feature
fusion. Multi-scale features are first merged from both encoders,
then together with the final Transformer encoder output, are fed
into the Transformer decoder for segmentation.

Other methods employ Transformers as bridges between
encoder and decoder to fuse and redistribute multi-scale features,
asin CoTr (Xie etal., 2021b), MISSFormer (Huang et al., 2023), and
TransCeption (Azad et al., 2023). MISSFormer’s encoder-decoder
further integrates CNNs and Transformer modules.

In TransFuse (Zhang et al., 2021), one encoder branch uses
a Transformer directly connected to a CNN decoder. Its multi-
scale features are fused with those from another CNN encoder
branch before being passed to the final CNN decoder. HiFormer
(Heidari et al., 2023) instead incorporates Transformer-extracted
features into a CNN encoder and performs cross-fusion of the
highest- and lowest-level features before decoding with CNNs. Our
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proposed method fuses same-level multi-scale features extracted by
Transformer and CNN encoders, which are then fed into a CNN
decoder. The fused features are also linked to an additional CNN
decoder to capture boundary information, thereby assisting the
final CNN decoder in producing refined segmentation results.
Recent studies further extend macro-level fusion strategies
with new designs. For example, Gao et al. (2025) proposed CoT-
UNet, combining Transformer modules with U-Net for global
context and local detail preservation. Yan et al. (2025) introduced
MCAFETrans, which leverages multiscale convolutional attention
and frequency-domain features to enhance representation and
segmentation performance across imaging modalities.

2.2 Leveraging pre-trained models for
medical image segmentation

Both CNN and Transformer backbone networks are commonly
initialized with pre-trained weights. This initialization enables
the model to possess a comprehensive understanding of various
visual features and semantic information right from the beginning
of training. Leveraging pre-trained weights allows the model to
acquire generic feature representations from extensive datasets,
thereby expediting convergence speed and enhancing overall
performance. Moreover, pre-trained weights facilitate transfer
learning, enabling the model to adapt more readily to new tasks or
data domains, leading to improved performance, especially in tasks
like medical image segmentation.

In the domain of medical image segmentation, pre-trained
weights are often trained on natural images. However, natural
images and medical images belong to distinct domains with
significant differences in modalities. Consequently, effectively
applying these pre-trained weights to the domain of medical images
emerges as a critical research direction.

In recent years, there has been considerable progress in
the field of medical image segmentation by leveraging pre-
trained Transformer models. For instance, Park and Lee (2022)
introduced SwinE-Net, which utilizes pre-trained EfficientNet and
pre-trained Swin Transformer as the feature extraction backbone,
resulting in significant enhancements in polyp segmentation
performance. Similarly, Dong et al. (2021) employed the pre-
trained Pyramid Vision Transformer (PVT) (Wang et al., 2021b)
for feature extraction, combined with multiple convolutional sub-
networks, achieving remarkable results in polyp segmentation
tasks. Building upon the success of the Swin Transformer, Cao
et al. (2021) presented Swin-Unet, a pure Transformer-based U-
shaped network tailored for 2D medical image segmentation. Both
the encoder and decoder components of Swin-Unet were pre-
trained on ImageNet, underscoring the importance of pre-training
strategies in this domain. Notably, the encoder in Swin-Unet
employs a sequential Swin Transformer, while the decoder adopts
an inverted Swin Transformer architecture. Furthermore, Lin
et al. (2022) developed DS-TransUNet, which leverages dual-scale
encoders based on the Swin Transformer architecture to extract
feature representations at both high and low resolutions. This
innovative approach contributes significantly to the advancement
of medical image segmentation techniques.
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FIGURE 1
Macro-level fusion strategy of CNNs and transformers.

CNN

Transformer Feature
Decoder Decoder Fusion
TransUNet CTC-Net

HiFormer Ours

In addition to employing pre-trained vision transformers
as feature extractors, researchers have investigated various
integration strategies within medical segmentation networks. One
such approach involves fusing features extracted by pre-trained
vision transformers with those obtained by CNNs. Alternatively,
transformers are integrated into different network components,
such as the bottleneck of a U-Net or in parallel with a
CNN branch.

Chen et al. (2024) pioneered the integration of transformers
by incorporating a transformer block at the bottleneck of U-
Net. This architectural modification enables the capture of
long-distance dependencies in high-level features acquired
during the segmentation process. Although this approach
demonstrates the feasibility of transformer application in
medical image segmentation, it requires pre-training on large
datasets to achieve optimal performance. Similarly, Wang
et al. (2021a) employed a similar structure, TransBTS, for
multi-modal brain tumor segmentation. Zhang et al. (2021)
proposed TransFuse, parallel CNN and

transformer branches fused with customized modules to enhance

which comprises

segmentation accuracy.

Moreover, other studies, such as UNetr (Hatamizadeh et al,
2022), MISSFormer (Huang et al, 2023), and CoTr (Xie
2021b), have integrated transformers within the U-Net
architecture, albeit with variations in the placement of the
transformer module.

While these methods share with our work the idea of
exploiting complementary strengths of different architectures and

et al.,

optimizing for efficiency, our proposed PFF-Net differs in two
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key aspects: (1) it explicitly employs a dual-branch architecture
with a boundary-aware branch that enhances structural precision
through iterative feedback, and (2) it performs pyramid feature
from both CNN
and Transformer backbones, enabling mutual reinforcement

fusion across same-level representations
between region segmentation and boundary delineation. This
design achieves superior performance across diverse modalities
without relying on frequency-domain transformations, purely
U-shaped collaborative structures, or domain-specific energy
optimization strategies.

3 Proposed method

3.1 Overall architecture

The architecture of our method is delineated in Figure 2.
This model is architectured around two encoders and two
decoders. In detail, the encoders are constituted by a pre-trained
ResNet34 and a pretrained Mix Transformer, tasked with the
independent extraction of pyramid features. Following this, the
multiscale features, as harvested by the CNN backbone, undergo
channel adjustments and are subsequently amalgamated with
analogous layer features from the Transformer, culminating in the
formation of an enriched feature pyramid. On the decoder side,
the model integrates a Region-aware Decoder and a Boundary-
aware Decoder. The Boundary-aware Decoder is specifically
designed to discern the perimeters of segmented entities. The
insights garnered from boundary-aware processing, in concert with
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the lateral output features emanating from the CNN decoder,
are synergistically channeled into the Segmentation Head. This
convergence plays a pivotal role in guiding and completing the
segmentation task.

3.2 Detailed module design

3.2.1 Pre-trained dual encoders

The Pretrained Dual Encoder incorporates pre-trained
encoders from both CNNs and Transformers. Specifically, the
CNNs encoder utilizes ResNet34 (He et al, 2016), while the
Transformer encoder employs Mix Transformer (Chang et al,
2023).

The structures of ResNet34 and Mix Transformer are illustrated
in Figure 3. Specifically, ResNet34 (He et al., 2016) serves as an
example for the CNNs encoder. Its output feature scales are 64 x
112 x 112, 64 x 56 x 56, 128 x 28 x 28, 256 x 14 x 14, and
512 x 7 x 7 (format: channels x width x height). Regarding the
Transformer encoder, Mix Transformer (MiT) (Chang et al., 2023)
is employed as an example, with output feature scales of 64 x 56 x 56,
128 x 28 x 28,320 x 14 x 14,and 512 x 7 x 7.

Features with a size of 112 x 112 are extracted from ResNet34
(He et al., 2016). This step aims to enhance boundary perception
and facilitate better detail restoration in the decoder. Features
from the initial downsampling layer are rich in high-frequency
information, akin to a common convolutional stem, which
significantly differs from other layers in functionality, serving two
primary purposes:

1. Learning local features, such as edges, for subsequent
global/semantic feature extraction.

2. Downsampling feature maps in the initial layers reduces the
workload of subsequent computations. While examining each
pixel individually in the input may not be meaningful, extracting
edge pixels requires rich local features encapsulating significant
local spatial correlations.

To facilitate effective fusion of features extracted from
ResNet34 (cy, ¢, ¢3, and ¢4) with the multiscale features extracted
by MiT (f;, t, t3, and f4), a Channel Modification Module
(CMM) is introduced. The primary function of this module is to
adjust channels before feature fusion, thereby achieving feature
transformation and alignment simultaneously. This alignment
ensures that CNNs features are brought into the same space as
Transformer features, enabling their effective integration despite
originating from different sources. However, it is noteworthy
that the design of the channel adjustment module initially aims
to address disparities in feature channel numbers, enhancing
compatibility between features and producing superior fusion
results in subsequent fusion processes.

After the channel adjustment process, the lightweight
Complementary Fusion Module (CFM), illustrated in Figure 4,
developed in this study, can be employed for feature fusion. This
module is responsible for combining features from both the CNN
backbone and the Transformer backbone. Specifically, features
from the CNN backbone undergo channel adjustment before
fusion.
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3.2.2 Boundary-aware decoder

The Boundary-Aware Decoder, depicted above in Figure 2,
is responsible for extracting boundary information from both
high-level and low-level features. This decoder aims to filter out
irrelevant boundary details, recognizing the importance of high-
resolution features for accurate boundary delineation. Specifically,
it utilizes the 1/2 and 1/4 high-resolution features obtained from
the CNNs encoder to identify boundaries. The Sobel operator
(Kanopoulos et al., 1988) is applied in both horizontal (K)
and vertical (K,) directions on the initial two layers (with sizes
of 112 x 112 and 56 x 56) to generate gradient maps. This
operation is achieved using two 3 x 3 fixed-parameter convolutional
kernels with a stride of 1 for convolution. The definitions of these
convolutional kernels, K, and K, are as follows:

—-101 -1 -2 -1
Kie=|-202|, K,=|0 0 0 |. (1)
—-101 1 2 1

The Sobel convolution employs fixed convolutional kernels to
generate gradient maps By and B;, which may contain semantically
irrelevant information. However, for enhanced precision in
localizing segmented object boundaries, the Boundary-Aware
Decoder also incorporates the high-level feature B,. These features
(Bo, B, and By) are subsequently fed into the Boundary Perception
Head (BPH), where boundary supervision is conducted at this
stage.

The detailed design of the Boundary Perception Head (BPH)
is illustrated in Figure 5. Here, x3, x2, and x; correspond to
By, B, and B, in Figure 2, respectively. Initially, features of
these three scales undergo channel adjustment through a 1 x 1
convolution. Subsequently, they undergo upsampling operations,
with a factor of 16 and 2 applied to x; and x, processing,
respectively. These two features are then concatenated along
the channel dimension. Following this, they pass through two
basic convolutional modules, comprising convolution operations,
batch normalization, and ReLU activation. Lastly, a 1 x 1
convolutional layer adjusts the channel number to 1, and the
Sigmoid function is applied to extract boundary attention for
further supervision. It is crucial to note that the Sigmoid activation
function is not applied before feeding the boundary-aware results
into the final segmentation head. This process can be formalized

as follows:
x1 = PWConv(x1), (2)
Xy = PWConv(xy), (3)
x3 = PWConv(xs), (4)
x. = Concat(x1,x2,x3), (5)
out = o (PWConv(ConvBlock(ConvBlock(x.)))), (6)

where PWConv(-) denotes point-wise convolution, specifically a
1 x 1 convolution as illustrated in Figure 5. ConvBlock represents a
standard convolutional module. o denotes the Sigmoid activation
function.
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FIGURE 2
Multiscale fusion model of pre-trained CNNs and pre-trained transformers.

3.2.3 Region-aware decoder

The Region-Aware Decoder serves as the decoder component
intended for performing region segmentation tasks using the
pyramid features fused by the dual encoders. Illustrated in Figure 2,
the structure of this decoder closely resembles that of traditional
decoders found within U-shaped architectures series.

In the Region-Aware Decoder, each layer of features undergoes
a 2x upsampling from bottom to top, followed by concatenation
with the previous layer’s features, facilitating multi-scale feature
fusion. This fusion is achieved through point-wise convolution,
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resulting in a fused output. Subsequently, the fused result
undergoes another 2x upsampling and repeats the process
iteratively until the decoding process is complete.

The design of this decoder draws inspiration from classic
structures such as UNet. Through the process of upsampling and
feature fusion, it contributes to the restoration of high-resolution
region information from features extracted by the lower-level
encoders. By integrating pyramid features and feature fusion, the
Region-Aware Decoder enhances its ability to perform region
segmentation tasks in medical images.
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3.2.4 Semantic segmentation head

To fully exploit the boundary-aware results, a crucial
component, the final Semantic Segmentation Head (SH), is
devised. The purpose of this component is to integrate multiple
side outputs from the region decoder with the boundary-aware
results, thereby achieving comprehensive semantic segmentation of
medical images.

In this procedure, side outputs at different scales (Fy, F, F>, and
F3) undergo resizing to ensure uniform dimensions. Subsequently,
these adjusted features are concatenated along the channel
dimension to create a comprehensive feature representation.
Ultimately, these concatenated features are fed into the Semantic
Segmentation Head for the final semantic segmentation process.

Furthermore, the Semantic Segmentation Head integrates the
boundary-aware results to enhance the concatenated features of all
side outputs. This process can be mathematically expressed as:

O = Conv (Concat(Fy, F1, F2, F3) © (1 4+ BPH)) . (7)

Here, BPH denotes the output of the Boundary-aware Decoder,
also known as the Boundary Perception Head, representing a
weight matrix pertaining to the boundaries of segmented objects.
The term 1 + BPH enhances features near the boundaries
without explicitly filtering out other features. Fy, F;, F, and F3
correspond to the side outputs of the Region-aware Decoder,
as depicted in Figure 2, resized to a consistent scale (H/2 x
W/2). The operation Concat signifies feature concatenation
along the channel dimension, while © represents element-wise
multiplication (Hadamard product). Subsequently, employinga 1 x
1 2D convolution, known as point-wise convolution, the channel
dimension is mapped to a specific number of segmentation classes.
Finally, the outcome undergoes a 2x upsampling to yield the final
segmentation result.

This design ensures that in completing the semantic
segmentation task, not only is multi-scale information from
the region decoder fully considered, but also the boundary-aware
results are fully utilized, thereby enhancing the performance of
semantic segmentation for medical images.

3.3 Loss functions

Our approach implements supervision in two areas. The first
is the boundary-aware decoder, which perceives the boundaries of
segmented objects. The second is the final region segmentation,
specifically at the output of the semantic segmentation head after
the region-aware decoder.

3.3.1 Boundary-aware loss

Compared to other regions, boundaries occupy a smaller
proportion. Therefore, we employ a weighted cross-entropy loss
function:

1

Lboundary = ﬁ (Wng) log(B;Ji)) +wop(1 — Béi)) log(l - B]()i))) . (8)
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Here, N represents the total number of samples within a batch.
Bg) denotes the actual boundary of the i-th sample, while Bl(,i)
refers to the predicted boundary. Moreover, wy, and w—,, signify the
weights allocated to positive and negative samples, respectively. The
determination of w;, and w—;, follows the outlined procedure:
Ny

T > W=b = T

N (©)

where N}, represents the number of positive samples, and N_;, is the
number of negative samples. This method employs class frequency-
weighting, where weights are determined computed on the number
of samples in each class. If the number of samples in a class is high,
its weight can be set to a smaller value; conversely, if the number of
samples in a class is low, its weight can be set to a larger value. This
adjustment of weights effectively balances the influence of different
classes during training.

3.3.2 Region segmentation loss

In the semantic segmentation head, located to the right of
the region-aware decoder, a combination of the commonly used
Dice loss and cross-entropy loss is employed. Specifically, it is
formulated as follows:

L = Lpice + Lc, (10)

where Lpi, and Lcg refer to the Dice loss and cross-entropy
loss between the model’s predicted output and the ground truth,
respectively. It is noteworthy that, in the experiments, the criterion
for selecting the optimal model weight is based solely on the Dice
score. That is, the weight with the highest Dice score during the
validation phase is selected for saving.

4 Experiments

This section commences with an overview of the datasets
employed in the experiments, followed by an elaborate description
of the experimental setup and evaluation criteria. Subsequently,
performance comparisons are made with other prevalent models,
and ablation experiments are conducted on various components of
the model. Finally, corresponding conclusions are drawn based on
the experimental findings.

4.1 Datasets

4.1.1 ISIC 2018

This experiment revolves around Task 1 of the ISIC 2018
Challenge *, which primarily deals with segmenting skin lesion
regions. The challenge comprises three tasks: lesion segmentation,
lesion attribute detection, and disease classification. ISIC 2018
dataset comprises RGB images of diverse sizes, which have been
resized to 224 x 224 for experimental convenience. We exclusively
utilize 2,589 training images from the Challenge, employing 5-fold
cross-validation in our experiments.

1 https://challenge2018.isic-archive.com
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4.1.2 Spleen segmentation CT

Furthermore, we participate in the Medical Segmentation
Decathlon Challenge 2, specifically in Task 9, which involves spleen
segmentation. This subset comprises a total of 61 portal venous
phase CT scans, with 41 scans allocated for training and 20 for
testing. Each comparison model is trained on the 2D slices of these
CT scans in the transverse plane, also known as the axial view.
The raw images’ scale of the 2D slices is downscaled to 224 x 224.
However, the spacing parameter remains unchanged during the
scaling process, and the original spacing values provided by the CT
scans are used in distance calculations.

4.1.3 Polyp segmentation

For the polyp segmentation task, several public datasets are
utilized, including Kvasir SEG (Jha et al., 2020), CVC-ClinicDB
(Bernal et al., 2015), CVC-ColonDB (Tajbakhsh et al., 2015), CVC-
T (Vazquez et al, 2017), and ETIS (Silva et al, 2014). These
datasets are used to validate the effectiveness of the proposed
model. Specifically:

e The Kvasir SEG dataset comprises 1,000 polyp images
along with corresponding ground truth masks annotated by
endoscopy experts. Images in the Kvasir SEG dataset have
resolutions ranging from 332 x 487 to 1,920 x 1,072 pixels.

e The CVC-ClinicDB dataset, also known as CVC-612, provides
612 publicly available images from 25 colonoscopy videos at a
resolution of 384 x 288 pixels.

e The CVC-ColonDB dataset contains 380 images extracted
from 15 colonoscopy videos at a resolution of 574 x 500 pixels.

e The ETIS dataset comprises 196 images extracted from 34
colonoscopy videos at a resolution of 1,225 x 996 pixels.

e The CVC-T dataset, a subset of EndoScene, includes 60 images
from 44 colonoscopy sequences involving 36 patients at a
resolution of 574 x 500 pixels.

For ease of training and testing, the images from these datasets
are resized to 224 x 224 due to resolution discrepancies. It is
important to note that, since these images are from different
datasets, a stratified sampling method is employed during the 5-fold
cross-validation to maintain proportional distribution of samples
across datasets.

4.2 Experimental setup and evaluation
criteria

4.2.1 Experimental setup

The experimental setup, including both hardware and software,
is detailed in Table 1.

During the training phase, a uniform batch size of 16 was
upheld, utilizing the AdamW optimizer with an initial learning rate
of 1 x 1074, subject to exponential decay over successive iterations.
Noteworthy is that the hybrid Transformer model underwent 250
epochs of training, while the CNN-based model converged within

2 https://decathlon-10.grand-challenge.org/
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150 epochs. In contrast, SwinUNet was trained from scratch for a
total of 400 epochs.

4.2.2 Evaluation criteria

In our experimental analysis, seven metrics are employed to
evaluate the efficacy of the comparative methodologies, namely
Dice coeflicient, 95th percentile Hausdorff distance (HD95),
Jaccard similarity coefficient, precision, accuracy, specificity, and
sensitivity. It is noteworthy that due to the nature of the input data,
which consists of either 2D images or 2D slices extracted from 3D
images, the Average Surface Distance (ASD) metric is not included
in the evaluation framework of this investigation.

4.3 Comparison experiments with other
state-of-the-art methods

4.3.1 Comparative methods

The experimental setup mirrors that of Liu et al. (2023),
including the hardware platform. The compared methods are
categorized into two main groups: those based on CNNs and
those based on Transformers, or hybrid models combining both.
Among CNN-based methods are U-Net (Ronneberger et al., 2015),
U-Net++ (Zhou et al,, 2018), ResUNet, Attention U-Net (Oktay
et al,, 2018), DAUNet (Fu et al., 2019), and R2B (Liu et al., 2022),
each offering distinct architectural enhancements. Conversely,
Transformer-based methods include TransUNet (Chen et al,
2024), SwinUNet (Cao et al, 2021), UTNet V2 (Gao et al,
2022), ViTAE V2 (Zhang et al, 2023), MISSFormer (Huang
et al.,, 2023), PVT-CASCADE (Rahman and Marculescu, 2023),
ESFPNet (Chang et al., 2023), HiFormer (Heidari et al., 2023), and
PyramidalConv (Liu et al., 2023), each integrating Transformer
structures in diverse ways, such as replacing or enhancing
traditional CNN components or fusing them with Transformer
units.

4.3.2 Quantitative results

For the Spleen CT dataset, the mean and variance of
performance evaluation metrics are assessed for the entire 3D
image rather than individual slices. Conversely, for the ISIC 2018
and polyp segmentation, performance evaluation is conducted
based on each independent medical image. This differs from the
evaluation method employed in UTNet V2, where the statistics are
calculated for each fold in 5-fold cross-validation, i.e., averaging
and calculating the standard deviation of the 5-fold performance.

4.3.2.1 Evaluation on the polyp dataset

We combined five public polyp datasets into a single cohort for
evaluation. The performance of each model was assessed via 5-fold
cross-validation, and the averaged results are presented in Table 2.

The results on the polyp dataset (Table 2) reveal several critical
findings. First, CNN-based models such as U-Net, U-Net++, and
ResUNet deliver solid and consistent performance, with R2B
achieving the best Dice (87.29%) among CNNs by explicitly
modeling boundary information. Nevertheless, CNNs still fall short
of capturing long-range dependencies, which limits their overall
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TABLE 1 Software and hardware for experiments.

Software

Operiting system

Ubuntu 18.04
Hardware

E5-2678 v3 64GB DDR4

CUDA version

10.3389/fcomp.2025.1677905

Python version Pytorch version

1*NVIDIA Tesla V100 32G

segmentation accuracy compared to Transformer-based or hybrid
approaches.

Second, pretrained Transformer variants, including PVT-
CASCADE?, and ESFPNet-S*,
substantial advantages, with Dice scores above 89% and markedly

HiFormer-B*, demonstrate
lower HD95 values. This highlights the importance of pretraining
on large-scale natural image datasets, whose feature distributions
are relatively close to polyp images, thereby providing a strong
initialization for Transformer-based encoders.

Third, our proposed PFF-Net* achieves the best results across
all evaluation metrics, with Dice (91.87%), Jaccard (86.58%), and
HD95 (11.68) outperforming all baselines by a clear margin. Its
superior boundary perception, evidenced by both low HD95 and
balanced Sensitivity (93.39%) and Precision (91.93%), confirms the
effectiveness of our pyramid fusion mechanism and boundary-
aware branch in integrating global Transformer context with fine-
grained CNN features.

Finally, some models underperform despite pretraining. For
instance, SwinUNet shows significantly lower Dice (80.14%), likely
due to suboptimal decoder initialization and the reversed Swin
Transformer design, which lacks detailed boundary modeling.
Similarly, MISSFormer and UTNet V2 struggle to generalize
well, indicating that not all hybrid or Transformer-based models
are universally suited for polyp segmentation. In contrast, PFE-
Net demonstrates consistent and superior performance across all
metrics, establishing its robustness and reliability for clinical polyp
detection and segmentation tasks.

4.3.2.2 Evaluation on the ISIC 2018 dataset

Similarly, 5-fold cross-validation was performed on the ISIC
2018 dataset, and the experimental results are summarized in
Table 3.

The experimental results on the ISIC 2018 dataset reveal several
critical insights, some of which are consistent with observations on
polyp datasets. First, notable performance disparities exist among
different architectural families. CNN-based models, such as U-Net
and its variants, demonstrate robust and consistent performance,
establishing strong baselines. In contrast, the pure Transformer
model (SwinUNet) exhibits significantly inferior performance
(Dice: 83.13%; HD95: 32.64), highlighting the challenges pure
Transformers face in learning effective representations from
limited medical data without the inductive biases inherent in
CNNG.

Conversely, hybrid architectures that integrate CNNs and
Transformers, such as TransUNet and our proposed PFF-Net,
dominate the top rankings. This underscores the effectiveness
of combining local fine-grained features with global contextual
dependencies in medical image segmentation. It is worth noting
that models marked with * (e.g. TransUNet*, ESFPNet-S*) show
substantial improvements over their base versions, suggesting

Frontiersin Computer Science

that pre-training on large-scale datasets is a powerful strategy to
mitigate overfitting and fully leverage the potential of Transformer-
based models.

Among all models, our PFF-Net achieves state-of-the-art
performance, ranking first in Dice (90.29%), HD95 (11.02),
Jaccard (83.75%), Sensitivity (92.39%), and Accuracy (96.40%).
The exceptionally low HD95 value, along with its small standard
deviation, indicates that PFF-Net not only provides accurate
segmentation on average but also exhibits superior robustness
when handling challenging cases with ambiguous boundaries
or irregular shapes. Furthermore, PFF-Net strikes an excellent
balance between Sensitivity and Precision (92.39% and 90.92%,
respectively), demonstrating its capability to effectively reduce
both false negatives and false positives. This comprehensive
advantage is attributed to our novel core technique, a Pyramid
Fusion mechanism integrating pre-trained Transformer and CNN
backbones with boundary awareness, which enables precise
boundary delineation and effective multi-scale feature fusion.

Although specialized models such as PyramidalConv excel in
Specificity (96.69%) and ESFPNet-S* leads in Precision (91.01%),
their performance in other metrics is not as uniformly outstanding
as that of PFF-Net. This consistent excellence across all evaluation
metrics solidifies PFF-Net’s position as a superior and reliable
solution for skin lesion segmentation tasks.

4.3.3 Evaluation on the spleen segmentation CT
dataset

Finally, 5-fold cross-validation was conducted on the CT
dataset for spleen segmentation. The primary challenge of this
task lies in the relatively low proportion of spleen presence, with
most slices lacking spleen structures. Nearly all methods exhibited
relatively poor validation results in the initial 20 epochs of training.
Notably, SwinUNet performed inadequately on this task and is
therefore omitted from Table 4. However, except for SwinUNet, the
performance of all other methods is included in Table 4.

The experimental results on the spleen CT dataset provide
several important insights distinct from those observed in natural-
like modalities such as polyps and skin lesions. First, while CNN-
based models (e.g., U-Net, U-Net++, ResUNet) establish strong
baselines with Dice scores above 92%, they primarily benefit from
inductive biases well-suited for intensity-based CT images. Among
these, R2B stands out with the best Dice (95.45%) and lowest HD95
(3.62), confirming the effectiveness of boundary modeling in organ
segmentation.

Second, Transformer-based and hybrid models show more
varied performance in this task. Unlike in polyp or skin
lesion datasets, models pretrained on natural images (e.g., PVT-
CASCADE*, HiFormer-B*) do not dominate, reflecting the
modality gap between single-channel CT scans and RGB natural
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TABLE 2 Performance comparison on the Polyp dataset.

AVG
Dice%1 HD95| Jaccard%?t Specificity%?  Sensitivity%1 Precision%1 Accuracy%1
U-Net 86.33 £ 0.20 31.08 =+ 66.74 79.71 £0.22 97.20 £ 0.12 88.19 £ 0.21 87.28 +0.20 96.11 +0.13
U-Net++ 86.94 % 0.20 31.90 £ 70.91 80.54 +0.21 97.10 +0.13 88.21 4 0.20 88.46 & 0.20 95.93 + 0.14
CNNs-based model ResUNet 86.46 =+ 0.20 29.16 + 74.01 80.01 +0.22 96.56 == 0.14 88.54 +0.21 87.47 +0.20 95.57 £ 0.15
Attention U-Net 86.07 £ 0.20 33.06 + 71.19 79.29 4 0.22 96.85 %+ 0.13 88.29 4 0.20 87.03 £ 0.20 95.83 +0.13
DAUNet 86.10 = 0.20 28.91 + 57.82 79.25 +0.22 97.43 £ 0.10 88.31 £ 0.20 87.36 + 0.20 96.31 £ 0.11
R2B 87.29 4 0.19 23.61 % 64.45 80.89 % 0.21 97.11 +0.13 88.86 % 0.20 88.37 £ 0.19 96.23 +0.13
TransUNet 86.00 & 0.20 27.76 + 65.97 79.2140.22 96.99 +0.13 88.06 % 0.20 87.16 £ 0.21 95.93 4 0.13
TransUNet* 86.96 + 0.19 2225+ 52.21 8034 +0.21 97.70 £ 0.10 89.20 = 0.20 87.82 +0.19 96.75 = 0.10
SwinUNet* 80.14 +0.25 35.17 £ 65.83 72.07 £0.26 96.49 £ 0.13 83.22+£0.25 81.61 +0.25 95.10 £ 0.13
UTNet V2 85.89 + 0.21 27.63 + 68.63 79.21 +0.22 96.85 £ 0.13 87.61 +0.21 87.43 £ 0.21 95.78 + 0.14
Transformer/Hybrid
ViTAE V2 86.18 +0.20 24.50 + 61.88 79.46 +0.22 97.18 £ 0.12 88.00 £ 0.21 87.36 %+ 0.20 96.17 £ 0.12
PVT-CASCADE* 9037 +£0.15 14.52 4 39.40 84.60 £ 0.17 98.35 £ 0.08 91.89 +0.15 90.75 £ 0.15 97.72 £ 0.08
MISSFormer 84.09 £ 0.21 27.61 £ 55.83 76.70 £ 0.23 97.24 £ 0.11 86.45 £ 0.22 8530 +0.22 96.15 £ 0.11
HiFormer-B 82.60 +0.23 33.05 + 79.19 75.07 £ 0.24 95.64 £ 0.16 85.08 = 0.24 84.04 +0.24 94.60 £ 0.16
HiFormer-B* 89.91 +0.15 15.30 & 38.51 84.03 £0.17 98.42 = 0.07 91.48 £ 0.16 90.41 £ 0.15 97.71 £ 0.07
ESFPNet-S 85.82 +0.20 22.93 + 53.27 78.91 +0.22 97.59 £ 0.10 87.83 +0.21 87.05 + 0.20 96.63 + 0.10
ESFPNet-S* 90.32 +0.15 15.47 4 42.57 84.60 £ 0.17 98.34 £ 0.08 91.88 £ 0.15 90.72 £ 0.15 97.71 £ 0.08
PyramidalConv 88.86 + 0.18 19.51 4 51.52 83.04 +0.20 97.96 £ 0.10 90.43 + 0.18 89.92 +0.17 97.09 + 0.10
PFE-Net* 91.87 £ 0.12 11.68 £ 27.07 86.58 + 0.15 98.78 £ 0.05 93.39 £ 0.12 91.93 £ 0.13 98.26 %+ 0.05

Each entry in the table is presented as the mean + standard deviation of the corresponding metric. The best result in each column is highlighted in bold black.
* indicates that the model utilized pre-trained weights on the ImageNet21K dataset or pre-trained weights published in relevant literature. The bold values represent the best or second-best performance, facilitating the comparison of the methods corresponding to

the top-performing results.
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TABLE 3 Performance comparison on the ISIC 2018 dataset.

AVG
Dice%1 HD95 Jaccard%1t Specificity%t  Sensitivity%1 Precision%1 Accuracy%1
U-Net 87.88 + 0.14 17.07 4 22.47 80.43 +0.17 95.97 + 0.08 91.31+0.13 88.32+0.16 95.21 + 0.07
U-Net++ 88.14 + 0.13 17.13 4 24.62 80.73 +0.16 96.00 + 0.08 91.58 £ 0.13 88.40 + 0.16 95.38 + 0.07
NN based model ResUNet 88.29 + 0.14 15.12 4 20.68 81.10+ 0.17 95.79 + 0.10 91.28 +0.13 89.06 + 0.16 95.19 + 0.08
Attention U-Net 87.89 +0.13 16.27 +21.23 80.31+0.16 96.11 + 0.08 91.40 + 0.14 88.18 4 0.15 95.22 + 0.07
DAUNet 87.93+0.15 17.03 +26.23 80.73 + 0.18 95.97 + 0.09 91.31+0.13 88.49 + 0.17 95.06 + 0.08
R2B 88.95+ 0.13 13.16 + 17.27 81.94+0.16 9571+ 0.11 91.42+0.13 90.03 £ 0.15 95.47 + 0.08
TransUNet 88.81+0.13 14.16 4 19.07 81.80 +0.16 96.28 £ 0.09 91.11 + 0.14 90.02 £ 0.15 95.63 + 0.07
TransUNet* 89.41 4+ 0.12 12.37 4 15.65 82.51+0.15 96.10 £ 0.10 91.41 + 0.14 90.62 =+ 0.13 95.95 + 0.07
Transformer/Hybrid SwinUNet 83.13 £ 0.19 32,64+ 42.11 74414021 95.71 + 0.09 86.34+0.20 84.96 + 0.19 93.86 + 0.10
SwinUNet* 87.62 + 0.14 18.39 4 25.99 80.09 + 0.17 96.24 + 0.09 90.02 + 0.15 89.05 + 0.16 95.19 + 0.08
ViTAE V2 88.8240.13 13.41 + 1791 81.80 +0.16 96.08 £ 0.09 91.32 4+ 0.14 89.92+0.15 95.57 + 0.08
UTNet V2 88.14+0.15 14.81 4 20.29 81.05+0.18 9559+ 0.11 91.58 £ 0.13 88.83 + 0.17 95.20 + 0.09
MTUNet 87.67 + 0.14 16.23 4 28.40 80.18 + 0.17 9521+ 0.11 91.66 + 0.15 87.67 £ 0.16 94.95 + 0.09
MISSFormer 87.17 4 0.15 17.52 +23.17 79.69 + 0.18 95.89 + 0.09 90.63 £ 0.15 88.26 £ 0.16 95.08 + 0.08
PVT-CASCADE* 87.01+0.15 15.11 4 20.44 79.36 £ 0.18 9531+ 0.11 91.92 + 0.13 86.87 £ 0.18 94.84 + 0.09
ESFPNet-$ 85.74+ 0.16 21.03 + 26.86 77.80 £ 0.19 95.85 + 0.09 90.18 £ 0.15 86.61 +0.19 94.43 + 0.09
ESEPNet-$* 89.64 + 0.12 12.03 + 16.25 82,95+ 0.15 96.28 £ 0.10 91.52 £ 0.13 91.01 £ 0.14 96.06 + 0.07
HiFormer-B 88.62+ 0.13 13.23 4 17.00 81.48+0.16 96.24 £ 0.10 90.49 + 0.14 90.42 £ 0.15 95.58 + 0.08
HiFormer-B* 89.58 £ 0.12 12.36 + 18.58 82.81+0.15 96.39 + 0.09 91.70 £ 0.13 90.54 + 0.13 96.09 + 0.07
PyramidalConv 89.68 + 0.12 12.07 4 15.94 82.83+0.15 96.69 =+ 0.08 92,15+ 0.12 90.21 4 0.13 96.10 + 0.06
PFF-Net 90.29 % 0.11 11.02 £ 14.20 83.75 +0.14 96.42 + 0.09 92.39 +0.12 90.92 + 0.13 96.40 = 0.06

* indicates that the model utilized pre-trained weights on the ImageNet21K dataset or pre-trained weights published in relevant literature. The bold values represent the best or second-best performance, facilitating the comparison of the methods corresponding to

the top-performing results.
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TABLE 4 Performance comparison of various models on the spleen segmentation CT dataset.

Architecture Average
Dice%1 HD95| Jaccard%1t Specificity%t  Sensitivity%1 Accuracy%1

U-Net 92.83 £ 0.05 15.55 +31.91 87.00 % 0.08 99.98 % 0.00 92.79 % 0.06 93.33 + 0.06 99.94 % 0.00
U-Net++ 94.65 & 0.03 8.67 + 19.44 90.01 £ 0.05 99.98 % 0.00 94.16 £ 0.03 9531 £ 0.05 99.96 £ 0.00
ResUNet 94.00 £ 0.02 9.81 +16.20 88.76 & 0.04 99.98 = 0.00 93.41 4 0.03 94.74 % 0.04 99.95 % 0.00

CNNs-based model
Attention U-Net 94.03 £ 0.04 10.54 £ 19.13 88.92 % 0.06 99.98 % 0.00 94.20 £ 0.03 94.10 % 0.06 99.95 £ 0.00
DAUNet 94.75 £ 0.03 8.38 +18.31 90.16 % 0.05 99.98 = 0.00 95.09 £ 0.03 94.84 + 0.04 99.96 = 0.00
R2B 95.45 % 0.02 3.62+6.13 91.36 £ 0.03 99.98 % 0.00 95.68 & 0.02 9531 £ 0.03 99.96 £ 0.00
TransUNet 94.06 + 0.02 412527 88.88 & 0.04 99.98 % 0.00 92.15 % 0.04 96.23 % 0.03 99.95 % 0.00
TransUNet* 94.34 £ 0.02 7.55 + 24.12 89.36 & 0.04 99.98 = 0.00 92.82 4 0.04 96.06 % 0.03 99.95 4 0.00

Toansformer/Hybeid ViTAE V2 92.82 £ 0.03 7.76 +£13.17 86.75 % 0.05 99.97 % 0.00 93.18 % 0.04 92.65 % 0.04 99.94 % 0.00
UTNet V2 94.61 £ 0.02 12.74 + 35.53 89.87 & 0.04 99.98 = 0.00 94.20 + 0.04 95.22 + 0.04 99.95 4 0.00
MISSFormer 93.76 & 0.04 8.46 + 14.60 88.48 £ 0.06 99.98 % 0.00 93.84 £ 0.03 93.84 % 0.05 99.95 % 0.00
PVT-CASCADE* 91.29 4 0.04 7.73 +12.10 84.19 4 0.06 99.97 + 0.00 89.81 % 0.06 93.16 + 0.04 99.93 = 0.00
ESFPNet-S 88.17 £ 0.08 16.20 + 25.73 79.70 £ 0.12 99.96 % 0.00 88.23 +0.10 88.78 £ 0.08 99.91 % 0.00
ESFPNet-S* 94.92 4 0.02 6.99 + 26.46 90.36 & 0.03 99.98 = 0.00 94.32 4 0.02 95.59 % 0.03 99.96 % 0.00
HiFormer-B 92.52 4 0.04 9.82 +20.26 86.28 % 0.06 99.98 % 0.00 91.72 % 0.04 93.52 +0.05 99.94 % 0.00
HiFormer-B* 94.25 4 0.03 4.65 + 8.80 89.24 4 0.05 99.98 =+ 0.00 93.62 % 0.03 95.00 = 0.04 99.95 £ 0.00
PyramidalConv 95.47 % 0.02 426 +6.41 91.44 £ 0.04 99.98 % 0.00 95.38 £ 0.03 95.66 % 0.03 99.96 £ 0.00
PFE-Net 95.33 % 0.02 3.35+5.19 91.13 £ 0.03 99.98 =+ 0.00 94.69 + 0.02 96.06 =+ 0.03 99.96 = 0.00

* indicates that the model utilized pre-trained weights on the ImageNet21K dataset or pre-trained weights published in relevant literature. The bold values represent the best or second-best performance, facilitating the comparison of the methods corresponding to

the top-performing results.
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images. Nevertheless, pretrained initialization remains beneficial,
as seen in ESFPNet-S* and TransUNet*, which clearly outperform
their non-pretrained counterparts, suggesting that pretraining
still accelerates convergence and improves stability even under
modality mismatch.

Third, our PFF-Net achieves highly competitive results, with
Dice (95.33%), Jaccard (91.13%), and HD95 (3.35) all ranking
among the top. Notably, its HD95 is the lowest across all
models, even surpassing R2B and PyramidalConv, highlighting
the robustness of our boundary-aware fusion mechanism in
handling challenging CT slices where spleen boundaries are faint
or ambiguous. The balance between Precision (96.06%) and
Sensitivity (94.69%) further indicates that PFF-Net reduces both
false positives and false negatives, offering reliable and consistent
segmentation across diverse cases.

Finally, while specialized CNN designs such as R2B and
PyramidalConv achieve marginally higher Dice or Specificity, they
do not exhibit the same all-around superiority as PFF-Net. In
contrast, our method consistently delivers near state-of-the-art
Dice and Jaccard scores while leading in HD95, establishing itself
as a robust and generalizable framework for CT-based organ
segmentation. This suggests that the proposed pyramid feature
fusion and boundary-aware branch provide strong adaptability
across modalities, even when domain gaps with natural image
pretraining exist.

4.3.4 Visualization results
4.3.4.1 Visual comparison of predicted results

Figure 6 presents a comparative visualization of the predicted
segmentation results across three datasets: spleen segmentation,
polyp segmentation, and skin lesion segmentation. Each dataset
includes two representative cases to illustrate the performance of
different models.

The first two columns correspond to spleen segmentation, the
middle two columns display images from the ISIC 2018 skin lesion
dataset, and the last two columns showcase polyp segmentation
results. Each row represents the predictions of a specific model,
with the bottom row highlighting the results obtained using our
proposed method, while the remaining rows display the outputs of
alternative approaches.

To facilitate comparison, expert-annotated contours are
outlined in red, whereas the segmentation results predicted by
different methods are delineated in green. These visualizations
provide clear insights into the boundary adherence and
segmentation accuracy of each approach.

As shown in Table 4, PyramidalConv and R2B achieve superior
performance compared to other methods, including our proposed
approach. However, it is worth noting that our method consistently
ranks just below PyramidalConv and R2B across most evaluation
metrics, highlighting its strong competitiveness. This observation
is further corroborated by the visualization results, which provide
intuitive insights into model performance by illustrating how each
approach segments targets in medical images and enabling direct
comparison of segmentation quality.

Notably, in the cases of skin lesion and polyp segmentation,
our model produces results that closely resemble the ground truth
masks in terms of target localization, region size, and contour
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accuracy. This strong alignment with the ground truth underscores
the generalization capability and competitive performance of our
model in medical image segmentation tasks.

4.3.4.2 Visualization of boundary-aware features

The visualization results of boundary-aware features are
presented in Figure7. To illustrate the impact of boundary
perception across different data modalities, we selected two
representative cases from each dataset.

The first two columns showcase examples from skin
lesion segmentation tasks, where the relatively uniform
background enables rough localization of boundaries. Our
method effectively enhances boundary contrast, aiding in
precise delineation.

The middle two columns correspond to spleen segmentation
on CT images, where the spleen is relatively small and absent in
most slices. In this scenario, the boundary-aware decoder efficiently
localizes segmentation areas, demonstrating its adaptability to
challenging anatomical structures.

The last two columns display polyp segmentation cases, where
polyps share similar textures with surrounding tissues. In this
context, our method not only highlights polyp boundaries but
also captures relevant contextual information, improving overall
segmentation accuracy.

Compared to existing methods, our approach demonstrates
superior boundary adherence in lesion segmentation, which is
particularly beneficial for clinical applications requiring precise
delineation. This improvement is driven by our novel feature
fusion strategy, which enhances spatial consistency and effectively
suppresses segmentation artifacts. By integrating multi-scale
contextual cues, our model ensures sharper and more reliable
boundary predictions, reinforcing its robustness across diverse
medical imaging tasks.

These visualization results provide an intuitive understanding
of boundary-aware features, revealing how boundary perception
varies across different tasks and data modalities. This underscores
the adaptability and diversity of model performance in various
scenarios.

4.3.5 Comparison of model parameters and
computational complexity

Table 5 presents the number of parameters and computational
complexity of each model. All models have an input dimension of
1 X 3 x 224 x 224 and an output dimension of 1 x 2 x 224 x
224. Additionally, the performance results shown in Tables 2-4 are
taken into account.

Compared to other methods, the proposed model achieves a
balance between model parameters, computational complexity,
and performance. It maintains a relatively low number of
parameters and computational cost while delivering excellent
segmentation results. This highlights the effectiveness and
efficiency of the proposed method in the field of medical
image segmentation.
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FIGURE 6

Visualization examples.
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FIGURE 7
Visualization examples of boundary features
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4.4 Ablation experiments

The ablation polyp  dataset
(Table 6) provide deeper insights into the role of different

experiments on the

components in our architecture. Several key observations can
be drawn.

4.4.1 Impact of each component

First, comparing the first two rows, the Mix Transformer
encoder (90.32% Dice) clearly outperforms the ResNet34 encoder
(89.96% Dice), confirming the advantage of Transformer-based
architectures in modeling long-range dependencies. However,
when both encoders are fused (third row), performance improves
further (91.50% Dice), demonstrating the complementarity
between CNNs (local spatial features) and Transformers (global
contextual modeling). This validates our motivation for designing
a dual-backbone architecture.

Second, the introduction of the Boundary-Aware Decoder
brings additional benefits. In the dual-task setup (fourth row,
variant A), explicit boundary supervision enables the network to
refine edge details, leading to a slight improvement in Dice and
HD95. This highlights the importance of boundary modeling in
medical image segmentation, where accurate delineation of lesion
contours is clinically critical.

Third, the comparison between variant A and variant B reveals
that merely injecting boundary information into the Region-
Aware Decoder, without direct supervision of the Boundary-Aware
Decoder, results in a slight drop in performance. This suggests that
boundary features need explicit supervision to be fully effective,
otherwise their contribution becomes diluted in the feature fusion
process.

Frontiersin Computer Science

Finally, the optimized design (variant C), where dual
supervision is applied to both decoders achieves the best balance,
with Dice maintained at 91.61% and HD95 reduced to 12.22, the
lowest among all settings. This demonstrates that our Pyramid
Fusion + dual-supervision strategy not only maximizes average
segmentation accuracy but also significantly improves robustness
against boundary ambiguity.

Overall, the ablation results confirm three key principles: (1)
hybrid CNN-Transformer backbones provide complementary
feature representations, (2) explicit boundary modeling is
essential for accurate lesion delineation, and (3) dual-task
supervision ensures the effective utilization of boundary
information. These insights validate the architectural choices
in PFF-Net and explain its consistent superiority in the

main experiments.

4.4.2 Impact of multi-scale feature fusion
strategy extracted by CNN and transformer
backbones

Pre-trained CNN and Transformer backbones provide multiple
strategies for multi-scale feature fusion. In this study, we focus on
same-level fusion methods, including two basic strategies: element-
wise addition (Addition Fusion) and channel-wise concatenation
(Concatenation Fusion). Beyond these simple baselines, we also
compare several representative fusion modules proposed in recent

literature:

e STCF (Spatial-Transformer-CNN Fusion) from
CoTrFuse (Chen et al, 2023), which explicitly
fuses spatial and contextual features from CNNs

and Transformers.
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TABLE 5 Parameters and FLOPs of all models.
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e FCM (Feature Complementary Module) from CTC-
Net (Yuan et al, 2023), designed to enhance feature
complementarity via cross-branch interactions.

o APF (Addition and Product Fusion), an enhanced variant of
addition fusion that incorporates both element-wise addition
and multiplication before channel alignment.

e CFM (Complementary Fusion Module), our proposed
lightweight module (Figure7), which achieves efficient
yet effective feature integration with lower computational
overhead.

This setup ensures a fair and comprehensive comparison,
covering both classical fusion schemes and advanced modules. The
ablation results are summarized in Table 7.

First, among the two simplest baselines, channel-wise
concatenation (91.80% Dice, HD95 = 12.14) consistently
outperforms element-wise addition (91.61% Dice, HD95 = 12.22).
This suggests that concatenation preserves richer complementary
representations from CNN and Transformer backbones, whereas
addition may oversimplify the integration.

Second, more sophisticated fusion modules from prior works,
such as APE, STCEF, and FCM, generally improve Dice scores
but at the cost of increased complexity. For example, STCF
incurs higher FLOPs and only marginally improves Dice (91.66%)
while degrading HD95 (13.47). Similarly, APF achieves moderate
gains over addition but still underperforms concatenation in
terms of both Dice and HD95. Notably, FCM reaches the same
Dice score as our CFM (91.87%) but requires almost twice the
parameters (121M vs. 68M) and produces inferior boundary
precision (HD95 = 12.40). These comparisons highlight that
not all fusion strategies translate into better accuracy-efficiency
trade-offs.

Finally, our proposed CFM achieves the best overall balance,
obtaining both the highest Dice score (91.87%) and the lowest
HD95 (11.68), while maintaining computational efficiency (68M
parameters). This indicates that the lightweight design of CFM
enables effective feature complementarity between CNNs and
Transformers without introducing unnecessary overhead. In
particular, the superior HD95 results confirm that CFM enhances
boundary delineation robustness, which is critical for precise lesion
segmentation.

In summary, the comparative analysis demonstrates that
while traditional concatenation already provides a solid
improvement over addition, our CFM further advances
segmentation performance by delivering both accuracy
and efficiency. This validates the necessity of a tailored
lightweight fusion design for hybrid CNN-Transformer
segmentation networks.

5 Discussion

We discuss the impact of pretraining and the practical
significance of our hybrid architecture across different modality as
observed from Tables 2-7. PFF-Net fuses local feature extraction
from pretrained CNNs and the global context modeling ability
of Transformers, leading to two key findings supported by
our experiments.
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TABLE 6 Impact of each component.

10.3389/fcomp.2025.1677905

Backbone/encoder = Boundary-aware Params(M) FLOPs(G)
decoder
Dice%?

Resnet34* X 43.03 12.45 89.96 + 0.15 16.20 + 46.44
Mix Transformer* X 24.49 3.22 90.32 £ 0.15 15.47 £ 42.57
Resnet34* + mix X 67.20 15.58 91.50 £0.12 13.00 £ 36.04
transformer*

Resnet34* + mix Na: A 67.42 17.50 91.61 +0.13 12.88 + 38.14
transformer*

Resnet34* + mix JF B 67.42 17.50 91.51 £0.13 13.53 £ 39.87
transformer*

Resnet34* + mix Jr C 67.42 17.50 91.61 +0.13 12.22 £+ 32.51
transformer*

W

represents performing only dual-tasking, where the Boundary-aware Decoder and the Region-aware Decoder branches are independent, and supervision is applied at both decoder ends.
. represents having dual decoders, with the boundary-aware results applied to the Region-aware Decoder branch, but no supervision at the Boundary-aware Decoder.
. represents implementing dual supervision in situation B, i.e., supervision is also applied at the end of the Boundary-aware Decoder.

4.* indicates that the MixTransformer backbone and ResNet backbone are initialized with pre-trained weights from the ImageNet dataset. _/ denotes the existence of the Boundary-aware

Decoder, and x indicates the absence of the Boundary-aware Decoder.

5. For simplicity, the fusion of ResNet34 and Mix Transformer uses the simplest addition strategy.

The bold values represent the best or second-best performance, facilitating the comparison of the methods corresponding to the top-performing results.

TABLE 7 Impact of different feature fusion strategy.

Fusion strategy Params(M) FLOPs(G)
Dice% 1

Addition Fusion 67.42 17.50 91.61£0.13 12.22 432,51
Concatenation Fusion 68.19 17.61 91.80 £0.12 12.14 +32.48
APF 68.19 17.61 91.68 £0.13 12.79 £ 36.92
STCF 74.57 18.58 91.66 £ 0.13 13.47 4 41.00
FCM 121.04 25.65 91.87 +£0.13 12.40 & 36.53
CFM 68.21 17.62 91.87 £ 0.12 11.68 + 27.07

The decimal point of the Dice average score has been shifted two places to the right. The optimal metric for each column has been highlighted in bold.

5.1 Role of pretraining and
modality-dependent gains

In our experiments, pretraining mostly speeded up

convergence and boosted segmentation scores immensely
w.r.t Transformer-only models. SwinUNet without pretraining, for
example, showed poor performance on any of the three datasets
(thus not given in full table). But the scale of these benefits is tightly
connected to how well the pretraining data matches up with the
target modality. Tables 2-7 show HiFormer and ESFPNet both
provided +8.85%, +4.33%, and 9.00%, improvements for Polyp
segmentation and ISIC2018 in terms of Dice scores, separately,
those two tasks are more similar to the domain distribution our
original task. By contrast, HiFormer only improved the Dice value
of Spleen CT segmentation by +1.87% (Table 4). ESFPNet still
accumulated a significant improvement of +7. 76%, indicating
that the model’s architecture allows effective cross-domain feature
reuse even in modalities with low similarity (Mei et al., 2022). In
addition, since the effectiveness of model pretraining is modality
dependent, more specific approaches such as large-scale medical
imaging pretraining with unsupervised or self-supervised learning

should also be explored (Xu et al., 2025).
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5.2 Practical value of PFF-Net

PFF-Net integrated pretrained CNN and Transformer
backbones into a unified multi-scale pyramid fusion architecture
with a boundary-aware refinement branch. Notably, the boundary-
aware branch helped to better capture fine structural details and
consequently improved the Dice and HD95 scores across several
datasets.

6 Conclusion

The focus of this study is to propose a hybrid CNN-
Transformer architecture, called PFF-Net, by combining pyramid
feature fusion with boundary-aware refinement for medical
image segmentation. Experiments on polyp, skin lesion, and
splenic CT datasets showed comparable improvements suggesting
that the architecture preserves local information well while
modeling global context. In future work, we plan to investigate
(1) modality-aware pretraining methods using large-scale medical
image datasets, particularly in unsupervised/self-supervised
learning settings to further learn domain-specific features as
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well; (2) more lightweight Transformer formulations with
inherently inductive biases for better generalization on small-
size datasets; and (3) adaptive fusion strategies for processing
3D volumetric scans and fusing multi-modality sources in
clinical contexts.
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