
TYPE Original Research
PUBLISHED 03 November 2025
DOI 10.3389/fcomp.2025.1676362

OPEN ACCESS

EDITED BY

Dalius Navakauskas,
Vilnius Gediminas Technical University,
Lithuania

REVIEWED BY

Poongodi Chinnasamy,
Christ University, India
Darius Plonis,
Vilnius Gediminas Technical University,
Lithuania

*CORRESPONDENCE

Evita Roponena
evita.roponena@rtu.lv

RECEIVED 30 July 2025
ACCEPTED 14 October 2025
PUBLISHED 03 November 2025

CITATION

Roponena E, Po̧laka I and Grabis J (2025)
Anomaly detection in netflow traffic:
workflow for dataset preparation and analysis.
Front. Comput. Sci. 7:1676362.
doi: 10.3389/fcomp.2025.1676362

COPYRIGHT

© 2025 Roponena, Po̧laka and Grabis. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Anomaly detection in netflow
traffic: workflow for dataset
preparation and analysis

Evita Roponena*, Inese Po̧laka and Jānis Grabis

Institute of Information Technology, Riga Technical University, Riga, Latvia

Information and communication technology (ICT) is crucial for maintaining
efficient communications, enhancing processes, and enabling digital
transformation. As ICT becomes increasingly significant in our everyday
lives, ensuring its security is crucial for maintaining digital trust and resilience
against evolving cyber threats. These technologies generate a large amount of
data that should be analyzed simultaneously to detect threats to an ICT system
and protect the sensitive information it may contain. NetFlow is a network
protocol that can be used to monitor network traffic, collect Internet Protocol
(IP) addresses, and detect anomalies in NetFlow. The article follows the design
science research (DSR) methodology to reach an objective of providing a
methods for developing a set of features for NetFlow analysis with a machine
learning. The sets of features were analyzed and validated by implementing
anomaly detection with the K-means clustering algorithm and time-series
forecasting using the long short-term memory (LSTM) method. The study
provides two separate sets of features for both machine learning methods (24
features for clustering and 14 for LSTM), an overview of the anomaly detection
methods used in this research and a method to combine both machine learning
approaches. Furthermore, this study introduces a method that integrates the
outputs of both models and evaluates the reliability of the final decision based
on Bayes’ theorem and previous performance of the models.

KEYWORDS

anomaly detection, Bayes theorem, clustering, feature engineering, machine learning,
NetFlow, time-series

1 Introduction

Today, most institutions face cybersecurity risks due to the extensive use of information
and communication technology (ICT) devices. A large part of business and everyday
processes are held in a virtual environment, which creates a possibility for both outside
and inside threats. These challenges affect all institutions, as most institutions rely
on ICT to process data and provide online services. This creates possible security
breaches affecting business quality and data integrity. Cyber Incident Response Institution
CERT.LV summarized statistics on Latvian cyberspace during the first quarter of 2025
(CERT.LV, 2025) showing that the number of cybersecurity incidents has increased by
11% and the percentage of denial-of-service attacks has also risen compared to the
previous quarter. Unfortunately, insufficient cybersecurity knowledge among employees
also affects cybersecurity. For example, identity theft, lost devices, insecure third-party
email attachments, and malicious websites are some of the usual causes of these incidents.

Therefore, fast identification of cybersecurity threats is essential to ensure information
security at any institution. Monitoring the data flow for known threats enables taking
immediate action after the identification. However, anomaly detection can identify
previously unknown threats by recognizing changes in data patterns. NetFlow is a CISCO
network protocol that has the capability to collect Internet Protocol (IP) network traffic that

Frontiers in Computer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2025.1676362
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2025.1676362&domain=pdf&date_stamp=2025-11-03
mailto:evita.roponena@rtu.lv
https://doi.org/10.3389/fcomp.2025.1676362
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2025.1676362/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Roponena et al. 10.3389/fcomp.2025.1676362

can be used to monitor tasks and analyze network traffic (Cisco
Systems, 2011). Currently, a variety of network intrusion detection
system (NIDS) datasets are available that contain benign traffic
and synthetic attack scenarios (Ring et al., 2019). In these datasets,
each data sample is represented by a set of features (SoF), and
these features are used in machine learning (ML) tasks to train and
evaluate models. However, a lack of a standardized set of features
leads to every dataset having its own unique set of features (Sarhan
et al., 2021). Therefore, the datasets contain many irrelevant
features to specific contexts, and it is hard to evaluate ML models
used to identify anomalies on the basis of these datasets.

The researchers in Sarhan et al. (2021) propose a method for
converting the available NIDS dataset into a standardized NetFlow
dataset with 12 features: source and destination IP address and
port number, protocol, Transmission Control Protocol (TCP) flags,
layer 7 protocol, incoming bytes and packets, outgoing bytes and
packets, and flow duration. The NetFlow dataset proposed in
Komisarek et al. (2023) additionally contains features such as flow
ID, time of the first and the last packet of the flow, protocol
map, total flows, anomaly category, and anomaly. The results
of the experiments in Fraihat et al. (2023) provided satisfactory
threat identification using only seven characteristics: protocol, TCP
flags, server TCP flags, largest packet length, source to destination
bytes/second, maximum flow Time-To-Live (TTL), and maximum
TCP window (source to destination). The aggregated NetFlow
feature dataset consisting of 39 descriptive features was proposed in
Minkevics and Kampars (2021). Despite contributions made in the
aforementioned studies, the absence of a standardized feature set
for the NetFlow dataset highlights the need for continued research
in this area.

A literature review on the ML techniques for cybersecurity
(Roponena et al., 2021) showed that network traffic analysis is
the most popular cybersecurity task in the reviewed literature.
Although supervised machine learning methods were mostly used,
it is an inadequate approach for real-life, unlabeled flow analysis.
Unsupervised methods proposed in the literature were clustering
methods that group data into clusters based on their similarities.
Several clustering techniques were mentioned in the literature for
various tasks: X-means (Gu et al., 2008), Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) (Dias et al.,
2020), K-means (Dias et al., 2020), Self-Organizing Map (SOM)
(Fraihat et al., 2023), Agglomerative Clustering (Komisarek et al.,
2023), and Spectral Clustering (Chiou et al., 2014).

However, unsupervised learning can lead to a high rate of
false positives and false negatives, negatively influencing the
performance of cybersecurity operations. Even if an ML model
concludes that the specific data point is an anomaly, it does not
necessarily indicate that it is an actual anomaly or malicious.
Usually, ML models are tested in artificial or constrained scenarios,
which limits the relevance of the results in real-life settings, even
though the model shows high precision during testing (Doshi-
Velez and Kim, 2017). Robust decision-making in high-stakes
scenarios, such as cybersecurity management, necessitates either
demonstrable trust in model predictions, for example, explainable
results, or a reliable estimation of the likelihood that a given output
is correct.

There are several techniques available to combine the outputs of
multiple models into one final result. Ensemble learning combines

several baseline models to build a single model by fusing baseline
model outputs using voting with assigned weights (Mohammed
and Kora, 2023). This is proven to improve prediction performance
in many studies, including our previous research on supervised
NetFlow analysis (Roponena and Polaka, 2022); however, ensemble
learning introduces complexity and increases computation time
and resource requirements. Statistical methods such as Bayes’
Theorem (Theodoridis, 2015), Bayesian Model Averaging (BMA)
(Fragoso et al., 2018), and the frequentist approach are applicable
to answer the question: how reliable is the combined answer
from several models? However, BMA is useful when probabilistic
predictions are used, meaning that in a binary classification
case BMA average might not correspond to any feasible model
prediction (Hinne et al., 2020). The frequentist approach does
not incorporate prior knowledge into the analysis and is based
solely on given data, whereas Bayesian approaches are performed
additionally, incorporating prior belief (Jun, 2016).

This research complements the previously published article
(Roponena et al., 2024) on How to prepare a suitable machine
learning dataset for NetFlow anomaly analysis? where dataset
preparation refers to a method of data collection, preprocessing,
and analysis. This study provides additional material for previously
defined questions and includes a new research question: How to
combine and evaluate the reliability of several unsupervised ML
models’ results? Thus, the objective of this study is to provide
a method for developing a set of features (SoF) for NetFlow
analysis, as well as defining common methods for NetFlow anomaly
detection and a method for assessing the reliability of ML output
to help define the SoF and the process of data analysis. This study
contributes to the field of network anomaly detection by defining
a SoF specifically designed for NetFlow records and developing
methods for preparing these features for ML tasks. While the
underlying dataset is not published, the feature definitions and
preparation steps are made explicit to support reproducibility and
application in other contexts.

Section 2 details used methods in this study. Section 3
provides the SoF and reliability assessment. The results are
discussed in Section 4, which also provides limitations and future
research directions.

2 Materials and methods

The research was conducted following the design science
research methodology (vom Brocke et al., 2020). The research was
divided into four design cycles, as shown in Figure 1. Each design
cycle contributes to the development of the main artifacts of this
research: NetFlow anomaly detection set of features (SoF), methods
for anomaly detection, and the ML output reliability assessment
method. The purpose of the SoF is defined as a NetFlow dataset
for anomaly analysis with unsupervised ML. Various steps were
initially chosen to prepare the dataset, which included NetFlow
data preprocessing, feature dimensionality reduction, and possible
feature synthesis. However, several changes were made during the
research depending on the chosen ML methods (clustering and
time-series forecasting) and the findings during the analysis of the
NetFlow patterns, including dividing the NetFlow anomaly SoF

Frontiers in Computer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1676362
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Roponena et al. 10.3389/fcomp.2025.1676362

FIGURE 1

NetFlow feature dataset preparation and anomaly detection methods development research steps.

artifact into two SoF based on the ML method. The final research
steps are described in this section.

The first design cycle defines the research problem and a review
of related work provided in Section 1. The technology stack was
chosen to design the solution, consisting of Apache Spark (The
Apache Software Foundation, 2024) for big data processing and
Python programming language (Rossum and Drake, 2009) for the
development of ML models. Real-life raw NetFlow data collection
was performed for the initial analysis, feature engineering, and
preparation of SoF. The Kolmogorov-Smirnov test (KS test), the
initial feature correlation analysis, and other tests were performed
for the initial feature analysis after the first cycle to evaluate features
before their inclusion in SoF.

The analysis of initial SoF allowed us to select the most relevant
NetFlow features for subsequent analysis in the second design cycle.
It enabled the preparation of a second SoF containing manually
induced NetFlow anomalies, generated by subjecting ICT devices
to stress testing. Anomaly detection methods were analyzed to
select ML algorithms, considering the chosen technologies in the

first cycle. The K-means clustering algorithm was chosen as an
anomaly detection method, while the long short-term memory
(LSTM) algorithm was selected for detecting anomalies in time-
series. In addition, the second cycle includes the development of
ML models and anomaly detection algorithms. The ML models
were used to evaluate SoF suitability for anomaly detection to
conclude this cycle.

The third design cycle included the refinement of the SoF
necessary for the improvement of NetFlow anomaly detection with
the selected ML algorithms. This cycle included the final design
of the NetFlow anomaly detection feature datasets. Additionally,
the designed anomaly detection algorithm was conceptualized into
a method.

The fourth and last design cycle provides a method for
combining ML model outputs and reliability assessment of the
results. The last cycle yields the final versions of the set of
NetFlow features for K-means (SoF1) and LSTM (SoF2), the
ML methods for anomaly detection, and the ML reliability
assessment method.

Frontiers in Computer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1676362
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Roponena et al. 10.3389/fcomp.2025.1676362

TABLE 1 Selected NetFlow fields.

NetFlow field Field description

SrcAddr Source IP address

DstAddr Destination IP address

TimeFlowEnd Time the flow ended

TimeFlowStart Time the flow started

Bytes Number of bytes in the flow

Packets Number of packets in the flow

TCPFlags TCP flag number that contains all TCP flags used in the
flow

2.1 Netflow collection and analysis

The NetFlow v.9 protocol was used to collect the NetFlow
data from several switches and routers within the Riga Technical
University network in JSON format. The data were pseudonymized
to protect personal information, such as IP addresses. However, it
is possible to return data to its initial state for validation purposes.
Therefore, the NetFlow data used in this research are not publicly
available. Not all collected NetFlow fields were recognized as useful
for anomaly detection purposes, and only the fields presented in
Table 1 were selected.

Data were validated to review their quality; for example, NaN
values were excluded because they indicate errors during the data
collection process. All data fields were transformed to the right data
type and format with Apache Spark, for example, numeric fields
as numeric. The TCPFlags numeric values were transformed to a
binary value for the specific TCP flag extraction. For example, if
the numeric value of the TCPFlags is 27, the corresponding binary
value is 0001 1011, which indicates that the record contains four
TCP flags: Acknowledgment (ACK), Push (PSH), Synchronization
(SYN), and Finish (FIN).

The literature review concluded that there is no standard SoF
for NetFlow analysis. Therefore, the NetFlow features were selected
based on the features proposed in Minkevics and Kampars (2021).
The initial SoF was created by dividing the data into 10-min time-
windows using the TimeFlowEnd field. Afterward, the data were
grouped by the TimeFlowEnd field and the source IP address to
perform data aggregation within the created groups, obtaining the
maximal, minimal, average, and total values of the features, as well
as the bytes and packets variance of each group. Feature extraction
by aggregation within a time-window helps to reduce the size of the
dataset and obtain statistics about the data flow.

An additional data transformation was performed for the
analysis of the initial SoF. Non-numeric data fields, for example,
IP addresses, were removed from the SoF. The data were
normalized using the Python built-in method FunctionTransformer
to transform values to their logarithmic values from 0 to 1.
Normalization was needed to ensure that the values in the SoF are
within a similar range for the feature analysis.

The initial SoF was analyzed to find useful data patterns.
The boxplots were created to identify which features have
visible outliers. The boxplot diagram showed that the TCP
flags, namely, Urgent (URG), Explicit Congestion Notification

(ECE), and Congestion Windows Reduced (CWR), had only the
value 0. The presence of the TCP flags URG (not frequently
used nowadays), ECE, and CWR (recommended to be blocked
by the firewall) in the future network flow could indicate an
anomaly. The features AverageBytes, AveragePackets, MinPackets,
MaxPackets, MinFlowTime, PacketsVariance, and BytesVariance
had values outside their usual amplitude range. This indicates
that the observed NetFlow contained outlier values, but does not
explicitly conclude the presence of the anomalies. The data used
to create the boxplots were not filtered by the device. An in-
depth analysis of each device’s NetFlow patterns could improve
the findings.

The KS test allows us to compare the distribution of a sample
against a given distribution, including the normal distribution
(Virtanen et al., 2020). The null hypothesis of the test is that the
distribution of the observed NetFlow is normal. The Python library
SciPy (Virtanen et al., 2020) function kstest returns two values
statistic and pvalue that are used to confirm or reject the null
hypothesis. The statistic value measures the maximum difference
between the empirical distribution function of the sample and
the specified distribution function. If the pvalue is less than a
specified significance level (e.g., 0.05), then the null hypothesis can
be rejected. After applying the kstest for the values of each feature,
it was concluded that the pvalue is lower than 0.05 for each feature,
and the data do not have a normal distribution.

Feature correlation was calculated using Python class corr. The
highest correlation was between the aggregated features of bytes
and packets, flow time and packets, and TCP flags that come in
pairs, for example, ACK and PSH. This implies that excluding a
feature from a highly correlating pair would not be beneficial for
NetFlow analysis, as each feature describes different characteristics
of the flow. However, changes in the correlation coefficient could
indicate an anomaly in the traffic.

After the initial analysis, it was decided to include all previously
described features for anomaly detection with the ML models and
include the IP addresses for the preprocessing and evaluation steps.

2.2 Design of machine learning models
and anomaly detection

The first design cycle provided the initial SoF that was used and
improved during the second design cycle. It started with a review
of the ML algorithms used for NetFlow analysis. The NetFlow
dataset used in this study did not contain labeled data that would
indicate whether the data flow was benign or if it contained an
anomaly or malicious traffic. Therefore, unsupervised learning was
chosen as the most suitable way to identify anomalies in the dataset
that could indicate malicious activity in the network. The dataset
was supplemented with anomalous traffic created by overloading
analyzed web servers with data flow in a fixed time. The open-
source load testing tool Apache JMeter was used to overload the
selected servers with network traffic from a known IP address.
This ensured that there were known anomalies to evaluate the
performance of the anomaly detection algorithm.

All clustering algorithms mentioned in the introduction are
built in the Python programming language; however, this does not

Frontiers in Computer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1676362
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Roponena et al. 10.3389/fcomp.2025.1676362

guarantee they can process big data fast enough. Apache Spark
provides a possibility to solve this problem. Therefore, the K-
means clustering algorithm was chosen as it is built into Apache
Spark. This algorithm is also suitable for outlier detection by adding
additional steps.

The K-means algorithm is an iterative algorithm that tries
to group a dataset into non-overlapping K clusters (Jain, 2010).
The data points inside the clusters are similar, and each cluster
is different from the other clusters. The Apache Spark K-means
implementation supports two distance measurement functions:
Euclidean distance and Cosine similarity. The Cosine similarity
uses angular distances, which are often used to measure document
similarity in text analysis (Han et al., 2012), but in the case of
the NetFlow data analysis, not only angle, but also magnitude is
significant; therefore, the Euclidean distance was chosen for our
dataset analysis.

In high-dimensional spaces, the Euclidean distances are prone
to the curse of dimensionality. The dimension of a dataset
corresponds to the number of features it contains (in our case,
24 clustering features). The curse of dimensionality refers to
difficulties during data analysis and visualization in identifying
patterns (Chiou et al., 2014). A dimensional reduction algorithm,
for example, principal component analysis (PCA), is recommended
to overcome this problem. The dimensions in our ML dataset were
reduced from 24 to 2 using the PCA after feature normalization.
As a result, it was possible to visualize data using two-dimensional
(2D) plots and calculate the outliers in each created cluster.

The scatterplot and elbow method were used to determine
the initial number of clusters for a specific web server. While
performing K-means on the NetFlow datasets, it was concluded
that the amount of NetFlow and the number of clusters changed
during different times of the day, and during weekdays and
weekends. Therefore, it was decided to divide data into eight
subdatasets of the NetFlow dataset: workdays and weekends
morning (h ≥ 6 a.m. and h <10 a.m.), day (h ≥ 10 a.m. and h <5
p.m.), evening (h ≥ 5 p.m. and h <9 p.m.), and night (h ≥ 9 p.m.
and h <6 a.m.). Additionally, a new feature WeekDay was added to
the dataset solely for division purposes, and UniqueIPfromSource
was included to determine if the analyzed web server has a higher
or lower number of connection requests than usual.

The K-means algorithm by itself is not able to identify
outliers; therefore, additional steps were added after performing
the clustering. It was decided to identify outliers in the dataset
based on the Euclidean distance between a data point and the
center of the cluster to which it belongs. The maximum distance
threshold was calculated by dividing the sum of the maximum and
minimum distances by 2 (Barai and Dey, 2017). Each datapoint
that exceeded this threshold was considered an outlier. Time-
series dataset preparation is required to transform already obtained
features (Table 1) into the time-series. The LSTM model was
developed using the deep learning API Keras (2015), which is
written in Python and runs on top of the open-source machine
learning platform TensorFlow. The core data structures of Keras
are layers and models. A Sequential Model was used to create
an LSTM model structure for NetFlow analysis. The Sequential
model is appropriate for a plain stack of layers where each layer
has exactly one input tensor and one output tensor. It allows
us to add the necessary layers for the planned neural network.
Model architecture consisted of six layers: two LSTM layers, two

dense or fully connected layers, one dropout layer, and one batch
normalization layer.

Analysis of forward (sent to the ICT device) and backward
(sent from the ICT device) traffic flow of one ICT device
provides the understanding of the usual pattern of the input
and output flow and its changes during or after an attack. The
combination of forward and backward NetFlow data provides a
more comprehensive picture of the bidirectional communication
flow between network endpoints.

The set of aggregated NetFlow features (SoF1) was used to
test the suitability of the LSTM model for NetFlow forecasting
(Figure 2A); however, the model was unable to identify data
patterns using the SoF1. Therefore, a set of non-aggregated
NetFlow features (SoF2) was used to train and test the LSTM model
(Figure 2B). However, it is important to mention that the SoF2
provided worse results for the clustering and significantly increased
the clustering time. The SoF2 contained a number of packets,
bytes, flow duration, TCP flag count, weekday, and time delta. The
Timedelta feature refers to a time interval between current and
preceding data samples and was included because of the irregular
temporal distribution of the data. The number of packets and bytes
was forecasted for the next step by the LSTM model.

Additional outlier detection steps were added to find the
outliers based on the value forecasted by the model. Outlier
detection using testing data was based on finding a significant
difference between the true and predicted NetFlow feature values.
The calculated threshold was used to perform outlier detection
using a sample of predicted data.

The quantiles and the interquartile range were computed using
a list of sorted differences to establish a threshold for the number
of packets and bytes. During the attack, the forward flow feature
values are more likely to be unusually high than unusually low;
therefore, the upper threshold is considered while creating the list
of outliers to minimize the false positives. However, the backward
flow feature values can be either unusually high, or low, or within
a normal range; therefore, both thresholds are used to create the
outlier list. The backward flow data sample was considered as an
outlier if the difference value exceeded the upper threshold or did
not exceed the lower threshold. The forward flow data sample was
detected as an outlier if the difference value exceeded the upper
threshold. Outlier detection method using quantiles assumes that
the data has a symmetrical distribution, which is not present in
the feature difference values. However, this method provided fewer
false positives than the previously used threshold finding methods,
for example, average value calculation.

The findings of the second design cycle provided valuable
information to refine the initial SoF for both ML methods presented
in this subsection. Additionally, ML anomaly detection methods
were designed during this design cycle that can be improved in
future work.

2.3 Model reliability assessment

ML models for NetFlow anomaly detection developed in the
second design cycle use different data structures. This indicates
that multiple data representations (time-series sequences and
aggregated statistical features) can both contribute to NetFlow

Frontiers in Computer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1676362
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Roponena et al. 10.3389/fcomp.2025.1676362

FIGURE 2

Forecasted and true values by LSTM model: (A) aggregated feature TotalBytes, (B) non-aggregated feature Bytes.

anomaly detection. However, this necessitates the integration of
model outputs to mitigate the limitations of the individual models
and enhance the reliability of anomaly detection results. This
creates an opportunity for ensemble strategy with cross-dataset
learning; however, given the complex nature of ensemble methods,
it was not implemented in this study.

Statistical calculation of output reliability, or in other words,
how trustworthy the result is, was decided as a preferable method
in this research study. Bayes’ theorem, which deals with conditional
probabilities, is applicable in the context of NetFlow anomaly
detection by enabling the calculation of the likelihood of an
anomaly occurring, given that an ML model has previously
observed anomalies. Both model outputs are presented as binary
values: 0 when an anomaly is not identified and 1 when an
anomaly is observed. Thus, two cases are possible: both models
have returned the same result, or the results are opposite. Given
that the probability of the right prediction PA, PB by both models
A = clustering and B = LSTM is known, the reliability of a correct
answer P(A, B) can be calculated using Bayes’ theorem assuming
independence of the ML models predictions. In the case of both
models agreeing on the same data label P(A = 1, B = 1) or
P(A = 0, B = 0), the Equation 1 can be used. Equation 2 represents
the case of disagreement of the models: P(A = 1, B = 0) or P(A =
0, B = 1). The Equation 2 shows the case when the clustering
model identifies an anomaly but LSTM not, in the equation for the
opposite outcome PA is replaced with PB and vice versa.

P((A = 1, B = 1) ∨ (A = 0, B = 0)) = PAPB

PAPB + (1 − PA)(1 − PB)
(1)

P(A = 1, B = 0) = PB(1 − PA)
PB(1 − PA) + (PA)(1 − PB)

(2)

3 Results

After the second design cycle, it was possible to conclude that
two different SoF are required for the clustering (SoF1) and time-
series forecasting (SoF2). The SoF1 is presented in Table 2. The

clustering features were calculated from traffic originating from the
source address and directed to the web service, while time-series
features were obtained for both flow directions. The final SoF1
consisted of 27 different features, of which 24 were used for actual
clustering (excluding SrcAddr, TimeFlowEnd, and WeekDay). The
SoF2 is presented in Table 3. The final SoF2 consisted of 12 input
features and two output features.

The NetFlow anomaly detection methods were refined during
the third cycle. The method for NetFlow anomaly detection using
the K-means algorithm was developed, consisting of 12 steps
(Figure 3). After the data were prepared according to the SoF1
and split, dimensionality reduction and K-means clustering were
performed for each data subset separately. The Euclidean distance
is obtained for each datapoint within each cluster of the data
subset to compute the maximum distance threshold. This threshold
enables outlier detection by identifying data points that exceed
it. Thus, providing the list of outliers for further analysis. The
clustering revealed that, firstly, network traffic is less on weekends
than on workdays. Secondly, the proposed algorithm labels the
data point as an outlier when it is located far from the cluster
center. Third, the number of clusters should be adjusted for each
data subset. The proposed method was able to correctly identify,
on average, 83.3% of the anomalous flows. This value is treated as
an empirical probability, representing the likelihood of correctly
detecting an anomaly.

The method for detecting NetFlow anomalies using time-series
was designed and refined for the LSTM algorithm. The method
consisted of 12 steps (Figure 4). The LSTM model’s objective is
to analyze NetFlow flow to and from the ICT device. The model
uses the previous 10 steps of the data sample to forecast the next
step. The forecasted value is then compared to the actual value
to compute the difference. Thresholds are chosen depending on
the flow direction. The outliers were detected for the number of
packets, the number of bytes, and both features, with the results
shown in Table 4. The percentages provided in the table are used
as an empirical detection probability. True outlier identification
probability in the forward flow provided satisfactory results;
however, the backward flow analysis provided average results. A
significantly lower true positive rate in backward flow analysis was
achieved using only the upper threshold. The performance of the

Frontiers in Computer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1676362
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Roponena et al. 10.3389/fcomp.2025.1676362

TABLE 2 Set of features for NetFlow clustering (SoF1).

Feature
group

Aggregated
feature

Description

Preprocessing
features

TimeFlowEnd Time range within 10 min

SrcAddr Source IP address

WeekDay Weekday when flow has
ended

Descriptive byte
features

TotalBytes Total number of bytes

AvarageBytes Average number of bytes

MinBytes Minimal number of bytes

MaxBytes Maximal number of bytes

BytesVariance Byte variance

Descriptive packet
features

TotalPackets Total number of packets

AvaragePackets Average number of packets

MinPackets Minimal number of packets

MaxPackets Maximal number of packets

PacketsVariance Packet variance

Descriptive flow
features

TotalFlowTime Total flow duration

AverageFlowTime Average flow duration

MinFlowTime Minimal flow duration

MaxFlowTime Maximal flow duration

TotalFlowNr Total number of flows

Connections UniqueIPfromSource Number of unique
connections

TCP flag count FinCount FIN flag count

SYNCount SYN flag count

RSTCount RST flag count

PSHCount PSH flag count

ACKCount ACK flag count

URGCount URG flag count

ECECount ECE flag count

CWRCount CWR flag count

LSTM model using both features was also evaluated using standard
regression task performance metrics Mean Squared Error (MSE),
Mean Absolute Error (MAE), R2, and Mean Absolute Percentage
Error (MAPE).

Both MSE and MAE provide complementary perspectives on
prediction accuracy: MSE emphasizes larger errors and is sensitive
to outliers, while MAE reflects the average error magnitude without
disproportionately weighting extreme deviations. Backward flows
show lower errors compared to forward flows, suggesting more
accurate predictions for backward flows. Similarly, MAPE scores
indicate lower relative error for backward flows. R2 values for
both flows are relatively low, implying limited predictive power.
Although the standard prediction metrics (MSE, MAE, MAPE,
R2) indicate better forecasting performance for backward flows,
this does not improve anomaly detection. Forward flows contain
more pronounced anomalies, which increase prediction error.

TABLE 3 Set of features for NetFlow time-series (SoF2).

Feature
group

NetFlow field Field description

Output features Packets Number of packets

Bytes Number of bytes

Descriptive flow
features

Duration Total flow duration

WeekDay Weekday when flow has ended

TCP flag FIN Presence of FIN flag in a flow

SYN Presence of SYN flag in a flow

RST Presence of RST flag in a flow

PSH Presence of PSH flag in a flow

ACK Presence of ACK flag in a flow

URG Presence of URG flag in a flow

ECE Presence of ECE flag in a flow

CWR Presence of CWR flag in a flow

FIGURE 3

K-means clustering steps for anomaly detection in Netflow data.

These larger deviations are reflected in higher error metrics,
yet they also make anomalies more visible and easier to detect.
Therefore, the poorer forecasting performance for forward flows

Frontiers in Computer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1676362
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Roponena et al. 10.3389/fcomp.2025.1676362

FIGURE 4

Forecasting steps with LSTM for anomaly detection in Netflow data.

TABLE 4 LSTM performance evaluation.

Performance metric Forward
flow

Backward
flow

MSE 2.95 0.72

MAPE 2.9E+14 1.36E+14

MAE 0.99 0.47

R2 0.29 0.32

Estimation of true outliers in Bytes (%) 95.32 59.58

Estimation of true outliers in Packets
(%)

93.51 30.48

Estimation of true outliers for Both (%) 96.42 55.57

actually corresponds to improved anomaly detection capability,
demonstrating that standard accuracy metrics must be interpreted
in the context of the target task.

Both proposed NetFlow anomaly detection methods return the
lists of identified outliers. The lists are transformed back to the
original NetFlow traffic sample to include values the models did not
use for analysis, such as IP source or destination addresses. Making
it possible to use ML results with other cybersecurity methods, to

have the results analyzed by security specialists, and to assess the
output reliability.

The output reliability assessment requires to collect NetFlow
data in 10 min time-window which matches with the time-window
used for aggregation in clustering NetFlow dataset. The models
return a list of outliers for further analysis and save other data
records in a temporary list for a previously defined time for a
potential assessment in the models’ disagreement case (Figure 5).

The outlier identification reliability is determined using the
equations provided in Section 2.3, and the probabilities of true
answer are obtained from the ML models. In case of an agreement
between both models, the Equation 1 is used. If only the clustering
model detected an anomaly, then the Equation 2 is used, but
otherwise the Equation 2 is mirrored with swapped arguments. The
estimated values from the clustering PA = 0.83 model, and the
LSTM model: forward PB = 0.96, backward PB = 0.56, are used
to calculate the reliability. The result is shown in Table 5 where A
is a clustering model and B is an LSTM model, and 1 refers to an
identified anomaly.

Output reliability, or the probability of the identified outlier
being an actual outlier, highly depends on the previous model
performance. As shown in the forward NetFlow case, the output
of the LSTM model is more significant than the clustering model
because of the higher probability, but in the backward flow, the
outcome is opposite. However, when both models agree, there is
a high possibility that the identification is correct.

4 Discussion

The design science research methodology was used to create
the main artifacts of this research, allowing for the improvement
of findings during each design cycle. As a result, four main artifacts
of this research were created:

• NetFlow anomaly detection set of features for the clustering
algorithm (SoF1). It can be used as a complete set of features
or only include the necessary features. Furthermore, the SoF1
can be used with other clustering algorithms or data analysis
methods, such as correlation analysis.

• NetFlow anomaly detection set of features for time-series
forecasting (SoF2). It allows us to use a small portion of
data to forecast NetFlow values one or more steps ahead
using a specified number of previous records. This enables
observation of sudden changes in the NetFlow traffic that are
different from its baseline used in a training phase.

• The defined NetFlow anomaly detection methods. These
methods enable validation and improvement of the SoF1 and
SoF2. Additionally, proving that the presented SoF can be used
in an ML task.

• ML models output combination method and result reliability
assessment method. The methods show how the probability
of correct identification can be assessed using two ML models
trained on the same dataset with different preprocessing steps.

Both SoF are the main contributions of this research. Therefore,
to emphasize its novelty, a comparison with the existing datasets
used in network anomaly detection is performed (Table 6). The

Frontiers in Computer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1676362
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Roponena et al. 10.3389/fcomp.2025.1676362

FIGURE 5

Outlier detection with clustering and forecasting ML models.

TABLE 5 ML model output reliability assessment.

Outlier identification result Forward
flow

Backward
flow

P(A = 1, B = 1) or P(A = 0, B = 0) 0.99 0.86

P(A = 0, B = 1) 0.83 0.21

P(A = 1, B = 0) 0.17 0.79

comparison considers the number of features, presence of temporal
features, use of aggregation, labeled data, and testbed origin. These
aspects directly influence a dataset’s suitability for ML. The number
of features reflects its descriptive richness and the possible presence
of unnecessary features. Temporal features capture time-dependent
behaviors essential for detecting dynamic anomalies. Aggregation
indicates statistical analysis of data, and the testbed environment
reflects whether the NetFlow was collected in a constrained
environment or real traffic. Overall, the proposed datasets stand
out for their inclusion of temporal and aggregated features, as
well as their non-testbed origin, offering a practical foundation for
anomaly detection research.

Evaluation confirmed that the proposed ML approach can
detect anomalies in NetFlow data using the features presented
in this research. However, there are several possibilities for
improvement. Fine-tuning of the ML models can improve the given
results, although it can also lead to overfitted models that are unable

TABLE 6 SoF comparison with other studies.

Set of
features

Features Temporal
features

Aggregation Testbed

SoF1 24 Yes Yes No

SoF2 14 Yes No No

Moustafa
and Slay
(2015)

49 Yes No Yes

Sharafaldin
et al. (2018)

75 Yes Yes Yes

Sarhan
et al. (2021)

12 Yes No Yes

Komisarek
et al. (2023)

12 Yes Yes No

Fraihat
et al. (2023)

7 No Yes Yes

Minkevics
and
Kampars
(2021)

39 No Yes No

to work with new data. Analysis of NetFlow features by excluding
certain features and comparing results can potentially reduce the
SoF and, consequently, the dataset, thereby improving the speed of
the ML models. Furthermore, current NetFlow data included only

Frontiers in Computer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1676362
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Roponena et al. 10.3389/fcomp.2025.1676362

anomalies reflecting high-load conditions. Expanding the variety
of anomaly classes in future iterations would further enhance the
data robustness and applicability for evaluating anomaly detection
methods and proposed features.

The reliability score not only indicates the probability of the
correct answer but also serves as a support element for the decision
selection mechanism. Despite the argument in various research on
whether a human is a solution or a threat in the cybersecurity
process (Zimmermann and Renaud, 2019), we argue that a human
is a valuable asset during cybersecurity operations, which, unlike
artificial intelligence, is able to adapt to new events. Reliability
score aligned with predefined score categories can trigger an action
response mechanism by a cybersecurity system. For example, a
high reliability score leads to autonomous action by a system, such
as blacklisting a suspicious IP address before further analysis by
notified specialists. However, medium scores and low scores trigger
specialist notification with different urgency levels.

Future work includes further improvement of the provided
methods, supplemented with Human-in-the-Loop methods,
enabling incremental learning of ML models and real NetFlow
traffic labeling for the training phase. Furthermore, even though
ensemble learning was considered during this research, it was not
implemented in this study. The outputs of ML models can be
combined to gain additional identification results by implementing
ensemble learning supplemented with the reliability score. In
addition, it is planned to increase the number of ML models, which
would change the equations used in this research but provide more
reliable assessment results. The artifacts presented in this study are
validated using data obtained from a higher education institution.
Although the methods and the SoF are universal and usable in
other use cases, scalability may pose challenges when extending
the current preprocessing and aggregation methods to significantly
higher data rates and flow diversity.

Data availability statement

The datasets presented in this article are not readily available
because data includes personal data. Requests to access the datasets
should be directed to evita.roponena@rtu.lv.

Author contributions

ER: Visualization, Data curation, Methodology, Writing –
review & editing, Conceptualization, Writing – original draft.
IP: Methodology, Writing – review & editing. JG: Methodology,
Writing – review & editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Barai, A., and Dey, L. (2017). Outlier detection and removal algorithm in
k-means and hierarchical clustering. World J. Comput. Appl. Technol. 5, 24–29.
doi: 10.13189/wjcat.2017.050202

CERT.LV (2025). 2025. gada 1. Ceturksnis Latvijas Kibertelpā. Technical report,
CERT.LV (Riga). Available online at: https://cert.lv/en/

Chiou, T. W., Tsai, S. C., and Lin, Y. B. (2014). Network security management with
traffic pattern clustering. Soft Comput. 18, 1757–1770. doi: 10.1007/s00500-013-1218-0

Chollet, F (2015). Keras. Available online at: https://keras.io

Cisco Systems (2011). Netflow Version 9 Flow-Record Format (San Jose, CA).

Dias, L., Valente, S., and Correia, M. (2020). “Go with the flow: clustering
dynamically-defined netflow features for network intrusion detection with dynids,”
in 2020 IEEE 19th International Symposium on Network Computing and Applications,
NCA 2020 (Piscataway, NJ). doi: 10.1109/NCA51143.2020.9306732

Doshi-Velez, F., and Kim, B. (2017). Towards a Rigorous Science of Interpretable
Machine Learning (Ithaca, NY).

Fragoso, T. M., Bertoli, W., and Louzada, F. (2018). Bayesian model averaging:
a systematic review and conceptual classification. Int. Stat. Rev. 86, 1–28.
doi: 10.1111/insr.12243

Fraihat, S., Makhadmeh, S., Awad, M., Al-Betar, M. A., and Al-Redhaei, A.
(2023). Intrusion detection system for large-scale iot netflow networks using machine
learning with modified arithmetic optimization algorithm. Internet Things 22:100819.
doi: 10.1016/j.iot.2023.100819

Gu, G., Perdisci, R., Zhang, J., and Lee, W. (2008). “Botminer: clustering analysis
of network traffic for protocol- and structure-independent botnet detection,” in
Proceedings of the 17th USENIX Security Symposium (Berkeley, CA), 139–154.

Han, J., Kamber, M., and Pei, J. (2012). 2 - Getting to Know Your Data, 3rd
Edn. Burlington, MA: Morgan Kaufmann, 39–82. doi: 10.1016/B978-0-12-381479-1.
00002-2

Hinne, M., Gronau, Q. F., van den Bergh, D., and Wagenmakers, E.-J. (2020). A
conceptual introduction to bayesian model averaging. Adv. Methods Pract Psychol. Sci.
3, 200–215. doi: 10.1177/2515245919898657

Frontiers in Computer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1676362
mailto:evita.roponena@rtu.lv
https://doi.org/10.13189/wjcat.2017.050202
https://cert.lv/en/
https://doi.org/10.1007/s00500-013-1218-0
https://keras.io
https://doi.org/10.1109/NCA51143.2020.9306732
https://doi.org/10.1111/insr.12243
https://doi.org/10.1016/j.iot.2023.100819
https://doi.org/10.1016/B978-0-12-381479-1.00002-2
https://doi.org/10.1177/2515245919898657
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Roponena et al. 10.3389/fcomp.2025.1676362

Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognit. Lett.
31, 651–666. doi: 10.1016/j.patrec.2009.09.011

Jun, S. (2016). Frequentist and bayesian learning approaches to
artificial intelligence. Int. J. Fuzzy Logic Intell. Syst. 16, 111–118.
doi: 10.5391/IJFIS.2016.16.2.111

Komisarek, M., Pawlicki, M., Simič, T., Kavčnik, D., Kozik, R., Choraś, M., et al.
(2023). “Modern netflow network dataset with labeled attacks and detection methods,”
in ACM International Conference Proceeding Series (New York, NY: Association for
Computing Machinery). doi: 10.1145/3600160.3605094

Minkevics, V., and Kampars, J. (2021). “Artificial intelligence and big data driven is
security management solution with applications in higher education organizations,”
in Proceedings of the 2021 17th International Conference on Network and Service
Management: Smart Management for Future Networks and Services, CNSM 2021 (Izmir:
IEEE), 340–344. doi: 10.23919/CNSM52442.2021.9615575

Mohammed, A., and Kora, R. (2023). A comprehensive review on ensemble deep
learning: opportunities and challenges. J. King Saud Univ. Comput. Inf. Sci. 35, 757–774.
doi: 10.1016/j.jksuci.2023.01.014

Moustafa, N., and Slay, J. (2015). “Unsw-nb15: a comprehensive data set for
network intrusion detection systems (unsw-nb15 network data set),” in 2015 Military
Communications and Information Systems Conference (MilCIS) (Canberra, ACT: IEEE),
1–6. doi: 10.1109/MilCIS.2015.7348942

Ring, M., Wunderlich, S., Scheuring, D., Landes, D., and Hotho, A. (2019). A
survey of network-based intrusion detection data sets. Comput. Secur. 86, 147–167.
doi: 10.1016/j.cose.2019.06.005

Roponena, E., Kampars, J., Gailitis, A., and Strods, J. (2021). “A literature
review of machine learning techniques for cybersecurity in data centers,” in ITMS
2021 - 2021 62nd International Scientific Conference on Information Technology
and Management Science of Riga Technical University, Proceedings (Riga: IEEE).
doi: 10.1109/ITMS52826.2021.9615321

Roponena, E., and Polaka, I. (2022). “Classifier selection for an ensemble of network
traffic analysis machine learning models,” 2022 63rd International Scientific Conference

on Information Technology and Management Science of Riga Technical University
(ITMS) (Riga: IEEE), 1–6. doi: 10.1109/ITMS56974.2022.9937116

Roponena, E., Polaka, I., and Grabis, J. (2024). “Netflow anomaly detection dataset
creation for traffic analysis,” in 2024 IEEE 65th International Scientific Conference on
Information Technology and Management Science of Riga Technical University (ITMS)
(Riga: IEEE), 1–6. doi: 10.1109/ITMS64072.2024.10741602

Rossum, G. V., and Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace.

Sarhan, M., Layeghy, S., Moustafa, N., and Portmann, M. (2021). “Netflow
datasets for machine learning-based network intrusion detection systems,” in
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, LNICST, volume 371 LNICST (Cham: Springer
Science and Business Media Deutschland GmbH), 117–135. doi: 10.1007/978-3-030-72
802-1_9

Sharafaldin, I., Lashkari, A. H., and Ghorbani, A. A. (2018). “Toward generating
a new intrusion detection dataset and intrusion traffic characterization,” in
International Conference on Information Systems Security and Privacy (Setubal).
doi: 10.5220/0006639801080116

The Apache Software Foundation (2024). Sparkr: R Front End for ‘Apache Spark’.
Wilmington, DE.

Theodoridis, S. (2015). Chapter 2 - Probability and Stochastic Processes. Cambridge,
MA: Academic Press, 9–51. doi: 10.1016/B978-0-12-801522-3.00002-1

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,
D., et al. (2020). Scipy 1.0: fundamental algorithms for scientific computing in python.
Nat. Methods 17, 261–272. doi: 10.1038/s41592-019-0686-2

vom Brocke, J., Hevner, A., Maedche, A. (2020). Introduction to
Design Science Research. Cham: Springer International Publishing, 1–13.
doi: 10.1007/978-3-030-46781-4_1

Zimmermann, V., and Renaud, K. (2019). Moving from a ‘human-as-problem’ to a
‘human-as-solution’ cybersecurity mindset. Int. J. Hum.-Comput. Stud. 131, 169–187.
doi: 10.1016/j.ijhcs.2019.05.005

Frontiers in Computer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2025.1676362
https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.5391/IJFIS.2016.16.2.111
https://doi.org/10.1145/3600160.3605094
https://doi.org/10.23919/CNSM52442.2021.9615575
https://doi.org/10.1016/j.jksuci.2023.01.014
https://doi.org/10.1109/MilCIS.2015.7348942
https://doi.org/10.1016/j.cose.2019.06.005
https://doi.org/10.1109/ITMS52826.2021.9615321
https://doi.org/10.1109/ITMS56974.2022.9937116
https://doi.org/10.1109/ITMS64072.2024.10741602
https://doi.org/10.1007/978-3-030-72802-1_9
https://doi.org/10.5220/0006639801080116
https://doi.org/10.1016/B978-0-12-801522-3.00002-1
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/978-3-030-46781-4_1
https://doi.org/10.1016/j.ijhcs.2019.05.005
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Anomaly detection in netflow traffic: workflow for dataset preparation and analysis
	1 Introduction
	2 Materials and methods
	2.1 Netflow collection and analysis
	2.2 Design of machine learning models and anomaly detection
	2.3 Model reliability assessment

	3 Results
	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


