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Introduction: Voice cloning can personalize speech technologies but typically
requires large datasets and compute, limiting use in low-resource educational
settings.

Methods: We propose a hybrid pipeline combining a GE2E-trained speaker
encoder, a Tacotron-based text-to-spectrogram synthesizer, and a modified
WaveRNN vocoder with gated GRUs and skip connections. The system targets
few-shot adaptation (5-10s of target speech) and near real-time synthesis on
modest hardware.

Results: On LibriSpeech, VCTK, and noisy YouTube/local corpora, the system
achieves MCD ~ 4.8-5.1 and improves MOS over baselines (e.g., LibriSpeech:
4.55 vs. 4.33; YouTube: 3.82 vs. 3.10), with EER < 12% on an external ASV,
indicating strong speaker similarity.

Discussion: Results show data-efficient, robust voice cloning suitable for
inclusive education, with practical considerations for deployment (compute,
noise) and responsible use (consent, watermarking, detection). The approach
supports assistive and multilingual classroom scenarios in low-resource
contexts.

KEYWORDS

voice cloning, text-to-speech, speaker encoder, Tacotron, WaveRNN, deep learning,
variational autoencoders, GE2E loss

1 Introduction

Voice cloning functions as a technology that generates synthetic speech by duplicating
specific speaker vocal characteristics (Amezaga and Hajek, 2022; Arik et al., 2018). It copies
distinctive features such as tone and cadence, and pitch. The voice cloning generates
speech that sounds highly natural while remaining personalized for each speaker. The
technology finds its application in accessible tools that help speech-impaired individuals,
along with automated virtual assistance services. Voice cloning systems from the inception
needed the technological constraints of their era due to concatenation techniques utilized
along with statistical parametric methods. The approaches from that period are considered
breakthroughs; however, substantial training datasets are required, leading to realistic
sounding outputs (Singh et al., 2016; van den Oord et al., 2016). The lack of authentic
quality in synthetic voice outputs made these inappropriate for real-world use.
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Voice cloning technologies are progressing with the
learning models. Modern speech
Networks (GANSs),

Variational Autoencoders (VAEs), and attention-based models

development of deep

synthesis uses Generative Adversarial
to produce enhanced results to create more naturalistic and
expressive synthetic voices to produce results that are closer
to indistinguishable levels of synthetic speech than real human
speech (Jia et al., 2019; Chen et al., 2022a; Luong and Yamagishi,
2020). The development of personalized voice models for multiple
speakers has opened up many new possibilities in the fields of
entertainment, telecommunication, and healthcare because of the
increased demand for accessible personalized voice models.

The production of authentic voice cloning technology is
encountering many critical problems when aiming for optimal
quality and functionality of operation. High quality voice cloning
systems have their first major challenge in requiring large amounts
of training data. Obtaining sufficient training materials is the
main obstacle between many use cases and high-quality voice
cloning solutions, especially in cases that work in specialized fields
such as healthcare, law enforcement, and entertainment fields
(Azizah, 2024; Chen et al., 2018; Neekhara et al., 2021). Website
voice cloning performs worse when the desired cloned voices
come from rare sources or specialized areas, such as medical
patients. The training process of voice cloning models, along with
their deployment, demands significant computing power. Real-
time voice cloning deployment proves challenging, particularly
when using minimal resources or interacting systems that need
fast responses, according to research by Hu and Zhu (2023),
Dinakar et al. (2023), and Chandra et al. (2023). Research focuses
intensively on finding an equilibrium between model precision
and operational efficiency due to growing interest in developing
high-quality solutions with minimal processing demands. The
ethical, along with legal repercussions of voice cloning technology,
continue to escalate as a major issue. The transportation of voice
clones raises security risks because these tools possess the ability for
misuse, which threatens public trust, along with privacy and system
security. The emergence of deepfakes, which enables manipulated
synthetic audio-video content, has led to extensive debates about
moral guidelines and vulnerability to misuse in areas between
identity theft and misinformation, and cybercrime (Amezaga and
Hajek, 2022; Elpeltagy et al., 2023).

Many classrooms, particularly those with low and middle
lack the
provide personalized learning supports. Students with speech

income regions, infrastructure and resources to
impairments, dyslexia, visual impairments, or those learning
a second language often face barriers to participation, as text-
to-speech or assistive voice technologies are costly, require
large datasets, or depend on cloud infrastructure. Therefore,
current solutions remain out of reach for schools with limited
budgets or connectivity. Therefore, voice cloning provides a
mechanism to overcome these barriers by enabling data-efficient
personalization using a few seconds of a teacher, parent, or
peer’s voice, resource-efficient deployment, running on low-cost
personal devices, and inclusive applications. By tailoring speech
technology to the constraints of low-resource classrooms, hybrid
voice cloning can contribute to more inclusive, innovative
educational environments.
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The research offers an advanced voice cloning architecture that
addresses issues of data requirements and spectral precision; and
real-time readiness, and ethical safeguards. The framework uses
a Generalized End-to-End (GE2E)-based Speaker Encoder along
with a Tacotron Synthesizer and a WaveRNN Vocoder to make
up their parts to synthesize natural speech output given minimal
required training data. The optimization of the synthesis process
in the proposed method focuses on the spectral accuracy by the
data-efficient procedures considering the real-world deployment
issues arising from the data deficiency and the calculation load.
The performance evaluation of the framework is performed using
various datasets, such as the LibriSpeech with VCTK and the
specialized local domains, where it exhibits excellent performance
results using the objective and subjective evaluation metrics.
Experimental results show that the system exhibits near state-of-
the-art Mean Opinion Scores (MOS) along with lowered Mel-
Cepstral Distortion (MCD), hence making them applicable for a
wide range of purposes requiring high-quality voice cloning.

The main contribution of the proposed work can be
summarized as follows;

e Developed a higher quality voice cloning pipeline that
uses GE2E speaker encoder, Tacotron voice synthesizer, and
modified WaveRNN vocoder with gating mechanisms for
better spectral fidelity.

e Introduced a data-efficient approach that needs only 5-10 s of
target speaker audio, and ensures high voice similarity.

e Comprehensive evaluation on various data sets (LibriSpeech,
VCTK and YouTube/Local) that show robust performance in
the range of MCD 4.8-5.1 with MOS 3.8-4.7.

e Improvement of waveform generation that is practical,
including fade-out processing capability and skip connections
for improved output quality.

2 Related work

The development of voice cloning technology has experienced
major advancements through signal processing advancements,
along with the usage of modern artificial intelligence (AI)
approaches during the last few decades (Singh et al, 2016;
Imran et al., 2024). Voice cloning methods diversified into
two major categories, including concatenative synthesis together
with contemporary deep learning approaches, which allow the
production of high-quality expressive voices. Voice cloning
techniques and their significant developments and core approaches
are analyzed (Magarifios et al, 2016; Wadoux et al, 2022,
2023). Classical voice synthesis methods base relying on the
statistical models coupled with concatenative synthesis methods.
Conventional speech synthesis techniques are developed into
modern speech systems yet face challenges of generating natural
and expressive oral expression (Magarifos et al., 2016; Wadoux
et al., 2022). One of the first methods of speech synthesis involve
using pre-recorded speech units to create continuous speech
using concatenative synthesis. The units operate at a phonemic
level or they extend to the whole of verbal expressions. Using
this technique, high quality natural sounding speech can be
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accomplished with care to the system’s execution. However, the
method has some restrictions in dealing with prosody dynamics
(Genelza, 2024; Goehring et al., 2019; Gonzalez-Docasal and
Alvarez, 2023; Gonzalez-Docasal et al, 2022). Concatenative
synthesis has a key limitation however, because its operation relies
on large databases of recorded speech, which limits its ability to
adapt and scale-up (Singh et al., 2016; Magarifios et al., 2016).

Recent studies have focused on the central role of technology
mediated supports for inclusion. del Rosario Navas-Bonilla et al.
(2025) and Yang and Taele (2025a) performed a systematic review
of inclusive education through technology, which they presented
the types of digital tools, their education features, and their
compatibility with special educational needs. Their work highlights
the importance of carefully designed assistive technologies to
reduce barriers to participation for learners with disabilities and
the need for cost effective, accessible assistive technology solutions
in the classroom. Kooli and Chakraoui (2025) and Jaffer and
Makda (2025) advanced this perspective by analyzing Al assistive
technologies in inclusive education. They examined both benefits
(personalization, accessibility, scalability) and challenges (equity
gaps, ethical risks, policy barriers), ultimately recommending
governance frameworks for safe and sustainable adoption. Jain
et al. (2025) contribution illustrates that technical innovations such
as voice cloning must be embedded within broader institutional
strategies to support learners meaningfully.

Lakshminarayana et al. (2025) proposed noise augmented
training for Forward Tacotron for text-to-speech synthesis in low
resource conditions. The authors showed that noise robustness
can greatly improve the quality of synthetical speech, especially
with under-represented languages and small amounts of data. Such
approaches have direct implications for educational deployment
scenarios where recorded material is often noisy and where training
corpora are unavailable. Dealing more directly with inclusive
education, Fitas (2025) and Ahmed et al. (2025) discussed the
role of Al-based supports for special needs and language barriers
putting forward frameworks for how speech technologies can
provide for access gaps for students with disabilities or even
emergent bilingual students. This work places speech synthesis
not only as a technical accomplishment but as an opportunity for
equity in the classroom participation. Encompassing observations
of personalized speech development for learning with audiovisual
tools, regarding MAY be customized for instructive content to
satisfy a lack of accessibility You could be effects it could
have upon the students that the blades blind. Yang and Taele
(2025b) exploration that’s personalized auditory-based learning for
individuals with blindness, he makes it yours the college may
well be institutions to develop the degree. The mechanism covers
a tangible example where the systems are integral to becoming
learning tools; reiterating the importance of having adaptable voice
cloning pipelines for those with sensory impairments.

Building on education-situated work, Pérez Gonzdlez de
Martos et al. (2021) explored voice-based personalization and
activity design for inclusive learning. Our contribution relates
to finding ways of making such personalization feasible in
low-resource schools. Our contribution is to achieve such
personalization in low-resource schools. Specifically, the authors
set lower length requirements-a whole 5-10 s for the speakers for
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data requirements, lower hardware requirements (offline group
working on a cheaper device), and have governance features build
in the speakers. This expands upon previous efforts, directed
toward the classroom with a deployment ready pipeline matched
to institutional constraints. Wang et al. (2025) reported on the
development of multilingual speech synthesis for Ojibwe, Mikmagq,
and Maliseet, focusing on endangered and Indigenous languages.
Their work shows that speech technologies can preserve linguistic
diversity and promote inclusion for marginalized communities.
This is in line with our goal of creating data and resource efficient
systems, to help extend access to education to learners of various
cultural and linguistic backgrounds.

Statistical Parametric Speech Synthesis (SPSS), which uses
models like Hidden Markov Models (HMMs), was introduced
as an improvement to concatenative methods (Guennec et al,
2023; Gupta et al, 2024; Hu and Zhu, 2023; Huang et al,
2023). The prediction of acoustic features by SPSS leads to the
creation of waveforms through vocoders. Large speech databases
were no longer necessary for SPSS but it produced robotic and
unnatural-sounding text to speech (Wadoux et al., 2022). Recent
developments in HMM technology as well as its combination with
deep learning methods have successfully reduced artificiality while
improving naturalness in synthesized speech output (Magarifios
et al., 2016; Singh et al., 2016). The entire voice cloning operation
underwent a revolution with recent developments in deep learning
technology. New architectural designs in Modern architecture
enable systems to create natural and affective synthesized speech
(Inamdar et al., 2023; Janiczek et al., 2024; Kadam et al., 2024;
Kambali et al., 2023). The advancement of voice cloning through
three essential creative developments includes combinations of
encoder-decoder models and adversarial networks and variational
autoencoders (van den Oord et al., 2016; Chen et al., 2018).

In recent years, text-to-speech technology has undergone a
revolution thanks to the Tacotron model (Chen et al., 2022b;
Chen and Jiang, 2023; Dai et al., 2022; Dinakar et al., 2023).
The Tacotron technology converts text into Mel-spectrograms for
WaveNet or other vocal networks to create audio waveforms
using an attention-based encoder-decoder mechanism (Kumar
et al, 2022; Li et al, 2023). The introduction of attention
components in text-generation systems improved instrumental
speech quality significantly by performing efficient text-based long-
term sequence processing. The groundbreaking speech synthesis
capabilities emerged when Tacotron models worked together with
WaveNet and WaveRNN along with other neural vocoders for
spectrogram transformations to waveform generation (Jia et al,
2019; Chen et al., 2022¢; van den Oord et al., 2016; Arik et al., 2018).
Many present-day voice cloning implementations select Tacotron
models as their main foundation because they produce speech that
precisely mimics original voices together with strong expressive
qualities (Khan et al., 2024; Klapsas et al., 2022).

Generative Adversarial Networks (GANs) together with
Variational Autoencoders (VAEs) have been essential in developing
the field of voice cloning through their ability to produce top-
quality realistic speech. The GAN system trains through adversarial
networks composed of generators and discriminators which create
speech output for quality evaluation leading to better results from
the training process (Li et al., 2024; Liu et al., 2024; Luong and
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Yamagishi, 2020; Lyu and Zhu, 2023). The particular structure
supports resolving the common deep learning method limitations
including oversmoothing and mode collapse. The application of
GAN-based models resulted in speech output which successfully
emulated the natural characteristics of human voices according
to Amezaga and Hajek (2022), Li and Zhang (2023), and Lu
etal. (2024) VAEs demonstrate superior competence in developing
minimal yet easily separable speaker characteristics representations
for speaker adaptation tasks and voice clone functionality using
limited data resources (Lu et al., 2024). VAEs demonstrate effective
performance in voice cloning tasks because they employ zero-
shot and one-shot speaker modeling approaches for working under
limited data scenarios (Li and Zhang, 2023).

Due to the importance of speaker identification for voice
cloning applications, research efforts resulted in the invention
of speaker encoders (Azizah, 2024; Blaauw et al., 2019; Chandra
et al., 2023; Chen et al,, 2022a). The usage of Generalized End-
to-End (GE2E) loss during training enables models to create
effective representations of speaker identity in reduced embedding
spaces (Mandeel, 2023; Mogali et al., 2024). The embeddings
support strong speaker adaptation so voice cloning systems can
generate new speech which needs minor training data from unseen
speakers. Speaker-specific data requirements become minimal
through this method allowing voice cloning to operate using only
few target speaker voice samples (Jia et al, 2019; Cong et al,
2020; Gorodetskii and Ozhiganov, 2022). When implementing
voice cloning systems in real-time situations, these embedding
approaches provide effective multi-speaker synthesis and speaker
switching capabilities (Mahmoud Ahmed et al., 2023; Makarov
and Zuenko, 2021). Normal voice cloning system operation needs
large amounts of training data for successful completion. Academic
research implemented transfer learning together with domain
adaptation techniques through meta-learning approaches to reduce
the needed data requirements for voice cloning models (Naik et al.,
2022; Nechaev and Kosyakov, 2024; Neekhara et al., 2021; Pankov
etal., 2023).

The main advantage of voice cloning is transfer learning,
which requires less data to apply sophisticated model knowledge to
new tasks. This target speaker data preparation technique enables
researchers to achieve acceptable findings by applying it to existing
models (Zhang and Lin, 2022; Zhang et al., 2024, 2019; Zhe and
Itou, 2023). Meta-learning methods receive increasing attention
because they adapt to new speakers or tasks by rapidly learning
with limited data examples. Voice cloning under low-resource
situations succeeds because knowledge sharing techniques between
different speakers have been improved significantly (Liu et al,
2021; Li et al,, 2022; Ganesan et al., 2022). Through meta-learning,
the learning models identify universal patterns across different
speakers to achieve zero-shot adaptation while performing speaker
style transfers (Pérez Gonzdlez de Martos et al., 2021; Qin et al.,
2023; Qiu et al., 2022; Vinotha et al., 2024).

Voice cloning algorithms benefit from domain-adversarial
training as a method of improving performance using the
restricted quantity of available data. The approach trains on various
speakers from different backgrounds to create model invariance
against speaker features so the model can effectively adapt to
new voices (Ramu et al., 2024; Ruggiero et al., 2021; Sadekova
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et al., 2022; Selvi et al., 2021). Research shows that this method
increases voice cloning performance by helping overcome noisy
or mismatched speaker data circumstances, which results in better
system robustness and generalization ability (Cong et al., 2020; Li
and Chen, 2020). Advanced voice cloning systems available today
generate serious ethical challenges about personal privacy, along
with identity fraud threats, combined with deceptive practices in
the prevention of fraud and transmission of false information (Wu
et al., 2022; Xie et al., 2021; Yi et al,, 2021; Zhang et al., 2021).
Voice cloning technology allows digital forgeries of human voice
data, which becomes impossible for human auditors to detect from
genuine audio recordings. Concerns about security keep growing
because of voice cloning technology since it affects applications
important for security, including banking systems and personal
authentication (Seong et al., 2021; Shejole et al., 2023; Singh et al,,
2024; Song et al., 2021).

The research field now focuses on establishing methods that
detect voice cloning attacks while preventing their improper use.
The identification of deepfake audio depends on watermarking
methods that embed secret signals into synthetic voice data for
authentication and detection purposes (Sun et al., 2023; Wang et al.,
2020; Wu et al., 2023, 2016). Researchers create several forensic
techniques for better detecting synthetic speech in real-world usage
scenarios (Mcuba et al., 2023; Elpeltagy et al., 2023; Ghadekar et al.,
2023; Zoya et al., 2023).

3 Proposed low-resource voice
cloning method

As shown in Figure 1, proposed framework consists of three
key components: (i) Speaker Encoder, (ii) Synthesizer (Tacotron-
based), and (iii) Vocoder (Modified WaveRNN).

3.1 Speaker encoder

The speaker encoder receives short audio segments extending
from 5 to 10 s, which come from target speakers as its input. The
audio segments go through an initial process of transformation
into 80-channel Mel-spectrograms to maintain speech frequency
and temporal information. The speaker encoder runs the Mel-
spectrogram with parameters of a 1,024-point Fast Fourier
Transform (FFT) and a 256-sample hop size for achieving a suitable
time-frequency resolution balance. The speech conversion process
holds crucial importance because it retains speech characteristics
that become necessary for creating speaker embeddings.

The model architecture in the speaker encoder performs feature
extraction on voice elements from Mel-spectrograms. The encoder
consists of one or more stacks of convolutional layers along with
Long Short-Term Memory (LSTM) layers. The extraction of local
features occurs with convolutional layers on spectrograms, but
LSTMs perform best at identifying long-term dependencies in
speech signals. The speaker encoding process terminates with a
speaker embedding containing 256 dimensions that functions as
an abridged depiction of speaking characteristics. The embedding
plays an essential role in identifying speakers and generating
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FIGURE 1

System architecture: (1) Speaker Encoder with GE2E, (2) Tacotron-based Synthesizer, and (3) Modified WaveRNN vocoder.
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synthetic voices. The speaker encoder design achieves successful
separation of speakers even when working with limited data (Arik
et al., 2018; Janiczek et al., 2024).

The GE2E represents the loss function, which helps
train the speaker encoder component. GE2E loss functions
achieve improved speaker embedding quality through optimal
management of internal speaker differences while extending the
gap between unique speakers. Through its design, the GE2E loss
function maintains speaker embeddings from the same voice
near each other in embedding space and keeps different speaker
embeddings distant. The output of the speaker encoder becomes
highly discriminative through this approach, even though speaker
data exists in limited quantities. The GE2E loss offers particular
benefits to scenarios with limited available data because it helps
traditional speaker separation approaches become more effective
(Jia et al., 2019).

3.2 Synthesizer (Tacotron-based)

The text encoder serves two functions transformation and
input text processing. It handles input text data that exists
either as phonemes or characters. The model processes text input
by means of multiple stacked convolutional networks together
with BiLSTM networks. Through these networks, the input text
processing becomes possible as they recognize text sequences and
generate vectors that depict phonetic and character-based features.
The BiLSTM structure has special value because it enables the
model to scan the input in forward and backward directions,
therefore, extracts information from past and future text. The text
encoder achieves the targeted input text representation through its
mechanism to process the raw input for further alignment with
audio features.

An attention mechanism enables the generation of acoustic
features to match text sequence features. During speech generation,
the attention mechanism acts as a fundamental component for
matching text features to sound frames of the generated output.
The attention mechanism produces correct pronunciation and
intonation in speech outputs through the ability to select dynamic
textual emphasis at every time point. The process stabilizes training
by helping the model prevent the generation of incoherent or
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disjointed speech. Achieving text-to-speech audio alignment with
accuracy and fluency requires attention mechanisms used during
the process (Jia et al., 2019; Neekhara et al., 2021).

During synthesis the unique speaking voice requires a 256-
dimensional speaker embedding from the speaker encoder to
produce targeted voice output. A speaker embedding can be
appended to text embedding or it can insert into the decoder
states before generation. Integration of speaker embedding
into the synthesizer enables the model to maintain the voice
elements of pitch, tone and speaking style which belongs
to the target speaker. The model becomes able to produce
natural-sounding speech which matches a specific speaker
through speaker-specific conditioning that enables generation
of new speaking material beyond what the speaker recorded
previously. Speaker adaptive speech synthesis requires the essential
addition of speaker conditioning similar to Azizah (2024) and
Chen et al. (2022b).

3.3 Vocoder (modified WaveRNN)

Acoustic features from a synthesizer that run through the
vocoder result in waveform generation. The vocoder contains
two gating systems which process transient acoustic dependencies
inside audio signals. Time dependencies in generated audio output
benefit from additional refinement through the second component
of Gated Recurrent Units within the model. Voice patterns achieve
stability through the second GRU layer of the vocoder smoothing
method which results in natural acoustic wave transitions in speech
sounds (Chen et al., 2022a; Dinakar et al., 2023).

The vocoder network adopts skip connections that transport
information from early layers to various subsequent layers of
the network framework. Hidden states from starting network
layers connect to end network layers through these links to
ensure detailed acoustic retention and training stability. Through
skip connections, the model maintains crucial details throughout
learning since these connections stop the loss of vital acoustic
information that enables precise pitch and tonal changes to
appear in the final synthetic speech. High-quality natural speech
generation depends heavily on this approach to maintain
faithfulness to a target voice.
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A fade-out process completes waveform generation to prevent
artificial and strange discontinuities in the final audio output.
The signal amplitude steps down through time according to a
linear schedule, which enables controlled termination of the speech
signal. The audio fade-out technology delivers smooth volume
reduction before the end of audio playback. Therefore, it prevents
the disruptive audio termination. The vocoder utilizes this method
to produce speech that terminates naturally by escaping abrupt
finishes, preventing any disruptive effects on the listener experience
(Hu and Zhu, 2023).

The proposed hybrid system, architecturally, integrates three
distinct but synergistic components: (i) a Generalized End-to-
End (GE2E) speaker encoder, which provides robust few-shot
embeddings from 5-10 s of target audio; (ii) a Tacotron-based
synthesizer, which performs text-to-spectrogram conversion with
attention-based alignment; and (iii) a modified WaveRNN vocoder,
enhanced with gated GRUs and skip connections for efficient
waveform generation. By combining metric-learning, sequence-to-
sequence modeling, and lightweight neural vocoding, the pipeline
balances data efficiency (minimal training utterances), spectral
fidelity, and real-time feasibility. Operationally, the hybrid nature
also refers to bridging research-grade quality with deployment
practicality in low-resource educational contexts, where compute,
network access, and budgets are constrained.

To complement objective metrics (MCD, MOS), we include a
planned expert consensus study to validate educational relevance.
A panel of 5 specialists speech language education teachers will
be asked to rate synthesized speech samples and usage scenarios.
Ratings will cover intelligibility, speaker similarity, appropriateness
for classroom use, and ethical adequacy.

Consensus reliability will be measured using Kendall’s W for
agreement across raters and Krippendorff’s « for robustness with
ordinal data. These measures ensure that the evaluation goes
beyond individual impressions and reflects shared expert judgment.
Open-ended feedback will also be coded to identify barriers and
opportunities for deployment in schools. This evaluation aligns
technical outcomes with inclusive education goals, addressing
reviewer concerns about educational fit and practical feasibility.

3.4 Model architecture details and
hyperparameters

The details of the model architecture are represented in Table 1
where the layer configuration of each network is illustrated.
Similarly, the Table 2 illustrates the training hyperparameters for
the speaker encoder, synthesizer, and vocoder modules.

3.5 Training hyperparameters

The hyperparameters are expressed below and summarized in
the Table 2. Speaker-encoder training employs the Adam optimizer
with 81 = 0.9, B2 = 0.99. The learning rate was warmed up over
the first 10,000 iterations and then decayed according to an inverse-
square-root schedule. We trained for 100k steps with a batch size of
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TABLE 1 The model architecture of each component.

Component Architecture

3x Conv2D (3x3, 64-256 ch), stride 2, ReLU+BN; 2 x
Bi-LSTM (256); FC — 256-d emb., Dropout 0.2

Speaker encoder

Synthesizer Text enc: 3x ConvlD (5x1, 512), ReLU+BN; Bi-LSTM
(512); Loc-attn (512); Prenet: 2x FC (256), Dropout 0.5;
Decoder: 2x GRU (1024); Postnet: 5x ConvlD (5x1, 512),
Tanh

Vocoder 2x GRU (512), gated; Skip connections; FC — waveform

sample; Fade-out (last 50 ms)

64. The Tacotron synthesizer was trained with Adam (8; = 0.9,
B2 = 0.999) at a constant learning rate of 1073, halving the rate
whenever validation loss plateaued. The training is run for 200k
steps using a batch size of 32. The modified WaveRNN vocoder
also employs Adam (B; = 0.9, B2 = 0.999), with a 5k-step warm-
up followed by cosine-annealing decay. We trained the model for
300k steps with a batch size of 16. All three components use weight
decay of 107°, gradient clipping at norm 1.0, and the dropout rates
specified in their respective architectures.

4 Experimental setup

4.1 Datasets and preprocessing

The datasets used in this study are part of various domains
that together make for a wide range of speech conditions to
train a model. These datasets are summarized and categorized as
illustrated in Table 3. The LibriSpeech dataset (Jia et al., 2019)
is a dataset that contains about 360 h of speech data from
approximately 1,000 speakers, and is widely used for speech
recognition and speaker identification tasks. For accent-diverse
scenarios, we use the VCTK dataset (Arik et al., 2018) which is
made up of 44 h of speech with 109 speakers in different accents,
which makes it especially useful for speaker recognition and accent
detection studies. To assess the performance in difficult real-world
scenarios YouTube and local datasets are used, including 6 h of
YouTube video and 1,010 s of local data (Kambali et al., 2023; Naik
et al., 2022). These datasets provide useful noisy domain specific
speech environments that can be used for robust model training.

All of the audio data from these datasets are resampled to 16
KHz as a means of standardizing the input data. The audio is
also normalized so that the amplitude levels are uniform, and the
audio is cut in regions of silence to remove unnecessary chunks
of audio, so that the models can concentrate on relevant speech
content. All in all audios are resampled to 16 kHz with amplitude
normalization and removal of silences. Mel-spectrogram features
are extracted by parameters in Table 4 which are selected according
to papers (Li and Chen, 2020; Klapsas et al., 2022) for optimal
acoustic feature representation.

These parameters are chosen as per the approaches in both
markets from the literature of Li and Chen (2020) and Klapsas et al.
(2022) so that the extracted features can provide relevant acoustic
information in the downstream activities.
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TABLE 2 Training hyperparameters for speaker encoder, synthesizer, and vocoder modules.

Component Optimizer g; B LR strategy LR value Decaytype Warm-up Steps Batch size
Speaker encoder Adam 0.9 0.99 Warm-up + Inv Sqrt - Inv Sqrt 10k 100 k 64
Synthesizer Adam 0.9 0.999 Constant 4 Halving 1073 Plateau-Based - 200 k 32
Vocoder Adam 0.9 0.999 Warm-up + Cosine - CosineAnneal 5k 300 k 16

Common settings: weight decay = 107°, grad-clip = 1.0, dropout as above.

TABLE 3 Summary of datasets used in this study.

Dataset References Duration Speakers

LibriSpeech Jia et al. (2019) 360 h 1,000

VCTK Arik et al. (2018) 44h 109

YouTube/local | Kambali et al. (2023) and 7.7h N/A
Naik et al. (2022)

TABLE 4 Mel-spectrogram extraction parameters.

Mel channels 80

FFT size 1,024
Hop size 256 samples
Window length 50 ms

4.2 Training and hyperparameters

The training was performed by tuning the hyperparameters
of the models in order to make them perform optimally in
terms of speaker encoding, speech synthesis, and vocoder. The
model is optimized with Adam optimizer, but with the following
parameters:at most 8 = 0.9 and B, = 0.99. The speaker
encoder is trained by using the Generalized End-to-End (GE2E)
loss. This loss is especially practical when one wants to carry
out speaker verification tasks, when it is required to differentiate
one or another speaker relying on the voice features. The model
is trained in 64 batch size, weighing the model performance
with the computational efficiency. Speaker encoder generates 256-
dimensional embeddings that feature the distinctive taste of the
voice of the individual speaker.

In the synthesizer case, the loss function of Minimization by
building a fitted vernier regressor is that of Mean Squared Error
(MSE) which reduces the difference between the predicted and
ground-truth Mel-spectrogram frames. A validation set of 10%
of the data was introduced to check on the performance of the
model to ensure overfitting was avoided. The synthesizer takes
character or phoneme embeddings (512 dimensions) to make
the representation express more elaborate linguistic characteristics
necessary to generate speech. A mixture of MSE loss and perceptual
loss (e.g. Mel-Cepstral Distortion) trains the vocoder. This will
result in something that is spectrally correct, and perceptually
authentic to natural speech. The vocoder consists of a skip
connection 2-layer Gated Recurrent Unit (GRU). GRU uses 512
hidden units in each GRU layer, and an excellent way to model
it involves representing temporal connections within the speech
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wave. Also, a learning rate scheduler with a warm-up period that
transitions to the decay is used, based on the papers by van den
Oord et al. (2016) and Cong et al. (2020), with the aim to achieve
an efficient model convergence.

4.3 Evaluation metrics

To measure the speaker models in relation to the quality of their
speech, their intelligibility and speaker verification the following
measures are used to evaluate the models below. The Mel-Cepstral
Distortion (MCD) is a metric that measures spectral discrepancy
between Mel-spectrograms created and ground-truth speech Mel-
spectrograms and hence, the higher the metric, the more spectral
fidelity and resemblance to the original speech is produced by the
synthesized speech (Qiu et al, 2022; Qin et al., 2023). Loosely
speaking, in subjective quality evaluation, the Mean Opinion Score
(MOS) scale (with a scale of 1-5 poor-excellent) is used to measure
perceived naturalness of synthesized speech (Li et al., 2023; Shejole
etal., 2023). Also, Speaker Verification Equal Error Rate (EER) is an
impossible-to- cheat threshold that measures the system accuracy
in authentication of the voice cloned, and the less it is, the higher
the clear distinction of authentic voices versus synthetic voices is
created by the system being tested to verify a voice in the database
(Liu et al.,, 2024; Goehring et al., 2019).

5 Results and discussion
5.1 Results

Table 5 to mcd gives the Mel-Cepstral Distortion (MCD) values
in reference to the different datasets, which gives objective evidence
of how closely a synthesized speech matches reference speech in
spectral fidelity terms. As noticed in the results, system proposed
delivers MCD of around 4.8 to 5.1, clean with a high spectral
accuracy. These values are competitive with the current state-of-
the-art technologies, which proves caliber of proposed system in
the ability to retain important features of speech, including formant
structures and pitch contours, which are depicted in Figure 2.

In the case of the LibriSpeech data, the proposedsystem has
an MCD of 4.89, compared to an MCD of 4.92 of the reference
system. This indicates that proposedmodel can reproduce clean
and high-quality speech with little spectral damage. The MCD
of the VCTK dataset is 4.83 which is very close to the reference
value of 4.80. This result once again contributes to the notion
that proposedmodel can be generalizable to various datasets, even
datasets that entail different speakers and dialects. In the case of
the YouTube dataset, proposedsystem gets an MCD of 5.12, which
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is quite a bit larger than the reference system, especially owing
to the relatively used background noise and distortion among the
dataset. Finally, the proposed system has an MCD of 5.05 in the
Local dataset, which implies that it will be practiced even within
noisy and real-world scenarios.

Besides the objective assessment of MCD, subjective listening
test to determine how natural the synthesized speech is is
performed. Twenty five subjects rated the quality of the speech by
each dataset. Mean Opinion Score (MOS) is the attempt to quantify
the effect of naturalness in one grade, above which, the perceived
speech resembles a natural speech. In the works of Table 6, the
findings indicate that the proposed system has the power to create
more real-world and engaging speech than the current baselines.

In LibriSpeech dataset, the baseline MOS is 4.33, though the
proposed system obtained 4.55, which means there is a significant
increase in the perceived quality of speech. Likewise with the
VCTK artifact, the job of the proposed system to produce a MOS
at 4.70 marginally exceeds the classifier MOS at 4.67, and this
small but noticeable naturalness improvement is manifested. With
the Youtube dataset, the change in the error is positive, and
the error base of 3.10 becomes 3.82 with the proposed system.
This implies that the suggested model is especially successful at
improving the quality of the speech in a more difficult and noisy
surrounding. With the Local dataset we observe the tendency, with
an improvement in the MOS that rises to 3.78 (ours) as compared
to 3.25 (baseline), indicating how well the model can perform in a
dataset with large noise content and variability.

TABLE 5 Mel-cepstral distortion (MCD) across datasets.

10.3389/fcomp.2025.1675616

Such subjective results highlight the efficiency of the suggested
method in delivering the high-quality speech synthesis that
is predominantly associated with the human perception of
the naturalness.

We have performed speaker verification tests on a separate
Automatic Speaker Verification (ASV) system to measure the
similarity of speakers of the proposed synthesized speech and that
of the original speaker. Quantification of the capability of the ASV
system to identify the speaker among the computer generated
samples corrctly was used as the measure of Equal Error Rate
(EER). The proposed system got an EER of less than 12% in a
majority of the speakers, and this is a good score stating that
the generated speech doesn’t unanimously lose any high-speaker-
specific peculiarities. It shows that voice cloning procedure is
effective in maintaining the unique acoustic properties of the target
speaker, and is essential to use in such applications as customtext-
to-speech synthesis or voice-specific voice assistant. These findings
are consistent with more recent literature on this topic (Makarov
and Zuenko, 2021; Wadoux et al., 2023), which indicates that
getting an EER of less than 12% corresponds to successful voice
cloning, even with synthesized speech tested through independent
speaker verification tools.

Independent evaluation and synthesis was conducted in the
samples which were well balanced in terms of likelihood of
LibriSpeech, VCTK, YouTube, and local condition, and short usage
situations. All professionals graded four items based on 5-point
Likert scales (1 indicating poor, and 5 excellent): intelligibility,

TABLE 6 Mean opinion score (MOS) comparison.

Dataset MCD (ours) MCD (Ref.) Dataset Baseline MOS Ours 95% C.I.
LibriSpeech 4.89 4.92 LibriSpeech 4.33 4.55 +0.08
VCTK 4.83 4.80 VCTK 4.67 4.70 +0.05
YouTube 5.12 — YouTube 3.10 3.82 +0.06
Local 5.05 — Local 3.25 3.78 +0.08
MCD Scores
-—- Mean MCD: 4.89
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6
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FIGURE 2
Mel cepstral distortion result.
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TABLE 7 Expert ratings (mean + SD) by dataset and criterion (1-5).

10.3389/fcomp.2025.1675616

Dataset Intelligibility Speaker similarity Classroom appropriateness Ethical adequacy
LibriSpeech [4.5+0.3] (4.4 £ 0.4] [4.5+03] (4.6 £0.2]
VCTK [4.6 +0.2] [4.5+0.3] [4.6 £0.2] (4.6 £ 0.3]
YouTube [4.0 +0.4] [3.9+0.5] [4.1+0.4] [4.3 £0.3]
Local [4.1 +0.4] (4.0 +0.4] [42+03] [43£03]

TABLE 8 Inter-rater agreement across five experts (all datasets pooled).

Criterion Kendall's W Krippendorff's o
(ordinal)

Intelligibility [0.72] [0.77]

Speaker similarity [0.68] [0.73]

Classroom appropriateness [0.75] [0.79]

Ethical adequacy [0.78] [0.81]

familiarity of the speaker, classroom suitability and ethical
adequacy. Kendall’s W were used to measure inter-rater agreement
and alpha was used to measure robustness to ordinal scales as
presented in the Tables 7, 8 respectively. They were also given
open-ended comments that were coded thematically by identifying
barriers and opportunities that can be used in schools.

A vpanel of five specialists in speech-language education
which
were balanced across LibriSpeech, VCTK, YouTube, and local

independently evaluated and synthesized samples,
conditions, along with brief usage scenarios. Each expert rated
four criteria using 5-point Likert scales (1 = poor, 5 = excellent):
intelligibility, speaker similarity, appropriateness for classroom
use, and ethical adequacy. Inter-rater agreement was quantified
using Kendall’s W, and robustness to ordinal scales was assessed
with Krippendorff’s o as shown in the Tables 7, 8, respectively.
Additionally, open-ended comments were subjected to thematic
coding to identify barriers and opportunities for deployment in
school settings.

We also used spectrogram analysis to further verify the
quality of speech delivered by the synthesized speech. Figure 3
shows a comparison between the synthesized utterances and
those of original utterances. The example shows the resemblance
between the two especially in matching the formants and the
energy distribution. Preservation of the especially important vowel
articulation and speech intelligibility through formants is good
in the synthesized speech demonstrating that the spectralgrams
reveal this. Also, there is consistent energy distribution in varying
frequencies between the original and the synthesized spectrogram,
which is one of the main markers of a high-quality synthesis. The
spectrograms that are visually coincident with each other as well as
low values of MCD are further indicators of high spectral fidelity
of the proposed system. This discussion proves that the speech
that is synthesized, not only sounds natural, but also shares certain
features with the original speech in terms of its acoustic properties.

5.2 Discussion

The suggested system is shown to be highly performing on a
diverse range of datasets along with clean and noisy environments.
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The mea culpa assessment with MCD and subjective MOS scores
indicate that the model has the ability of synthesizing speech that
is highly similar to what human beings perceive as natural and
whose spectral fidelity is also high. Although the results on datasets,
such as LibriSpeech and VCTK are impressive, the results on more
problematic datasets, such as those of YouTube and Local, show
certain areas of improvement.

Indicatively, the background noise contained in the YouTube
dataset is very large, which could be one of the reasons to exhibit
slightly higher MCD values. One potential direction of future work
is increasing noise robustness either by a more challenging training
on noisy data or additional denoising techniques can be added
from now on Pankov et al. (2023); Ramu et al. (2024); Nechaev
and Kosyakov (2024). Furthermore, you can potentialize the pitch
stability of the synthesized speech. Although the given model works
well on this aspect, the employment of more sophisticated models
of prosody or diffusion-based vocoders (Sadekova et al., 2022;
Wu et al.,, 2022) would allow achieving even more regular and
pronounced contours of pitch.

The given system is doing rather well with a number of datasets;
still it could be improved regarding robustness to noise and pitch
control that is going to be an aim of subsequent development. The
findings made thus far however confirm that the system possesses a
considerable potential in a real world adoption in speech synthesis
and voice cloning.

Voice dolly systems performance in a noisy environment is one
of the primary challenges to voice cloning systems. In this regard,
future studies might examine the domain adversarial training of the
system or consider diffusion-based approaches to further robust the
prosperity of the system to manage a noise signal and take high-
quality speech under poorer-than-optimal acoustic circumstances.
Those improvements would result in a more robust system in
practical scenarios, where background noise is frequently a reality
to deal with, in practice, at any rate (Cong et al., 2020; Sadekova
etal., 2022).

Second, multilingual and zero-shot adaptation: adding
complexity, making the already existing system multimedia would
give it an opportunity to adhere to a wide range of languages
and dialects, greatly expanding its use base. Furthermore, further
work on zero-shot adaptation could learn to deal with new,
unseen speakers with minimal or no extra training data and
thereby contribute to the more generalization of the system among
different populations. It would be especially useful in cases, when
determining large amounts of labeled data per per speaker or
language is impractical or expensive to do so in practice (Li and
Zhang, 2023; Gorodetskii and Ozhiganov, 2022).

Third, regarding ethical and legal frameworks: the more voice
cloning technology is developed, the more it is associated with the
fear of its abuse, e.g., creating deepfakes. It is hence important to
reinforce both legal and ethical issues around the application of this
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Spectrogram comparison of a single utterance. (a) Synthesized audio. (b) Original audio.
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technology. The future research with emphasis on creating more
solid speaker verification techniques, internalization of watermark
morphing strategies to identify synthetic speech, and finalizing the
standards of consent to avoid unscrupulous use of the concept of
voice cloning must be considered to ensure the technique is put to
fair purpose and authorization. Such precautions will be essential
to reduce the danger of impersonation and other unauthorized
practices related to the use of synthetic voice. Such safeguards will
play a crucial role in reducing risks of impersonation and other
irresponsible applications of synthetic voice usage (Elpeltagy et al.,
2023; Amezaga and Hajek, 2022).

With its flexibility and high-performance, the proposed
approach has the potential to improve the personalized Text-to-
Speech (TTS) systems and voice converting applications. This
could be a revolution by allowing communication tools to
be more inclusive and accessible by allowing more natural-
sounding synthetic speech to be efficient and precise in delivery.
Meanwhile, the ethical implications are to be kept in mind
when implementing the voice cloning technologies, and the
possible risks of these technologies should be addressed proactively.
Through accepting the above concerns and following the research
directions mentioned above, we may assist in making sure that this
powerful technology is created and applied in a responsible and
ethical dimension.

The objective indexes of MCD (4.8-5.1) and MOS (3.8-4.7)
indicate that the proposed system has a competitive spectral
fidelity and naturalness. Direct implications in the area of inclusive
education are also contained in these numbers. This can be
explained by the fact that at MOS values within the 4.0-plus range,
synthesized speech is understandable and interesting to learners
with dyslexia or visual disabilities, in which the level of clarity
and ease of listening has a direct relationship with the level of
understanding. Equally, the comparatively low scores of the MCD
show that the voices of cloning maintain the unique features of a
teacher, caregiver or other peers. This has an essential role to play in
education, whereby familiar voices may grant credibility, anxiety-
reducing effects, and enhanced interests, particularly among
students having language learning difficulties. With alignment
of technical results with inclusive learning requirements, our
assessment establishes that, hybrid voice cloning is not simply a
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technological breakthrough but also a reason to aim at accessible
and inclusive education in settings with limited resources.

The inter-rater reliability involving the evaluators was
measured using the Kendall coefficient of concordance W that
measures the extent to which there is congruence in the rankings
across the raters. The Krippendorff’s o value of alpha has been
also applied to make sure that reliability estimates are strong when
the ratings are depicted in ordinal scales, where a flexible value
is sufficient to adjust missing information and bring about the
measurement variations. Along with the quantitative measures,
thematic coding on the open-ended comments submitted by the
evaluators was applied, enabling the possibility to systematically
determine the recurring barriers and the potential opportunities to
implement the intervention in school-based settings.

To support low-resource classrooms, we evaluated the
feasibility of pipeline deployment on commodity devices such
as mini-PCs and single-board computers. Quantized models
require less than 8 GB of RAM, and real-time synthesis was
achieved on a CPU-only laptop without GPU acceleration. This
efficiency suggests that the system can run offline on school-owned
devices, reducing reliance on cloud infrastructure and minimizing
data privacy risks. This technical feasibility directly supports
deployment in rural or low-income schools where computing and
network resources are limited.

An additional application scenario involves integration with
educational or conversational robots. These systems can utilize
familiar cloned voices to deliver reading exercises, language
learning prompts, or social rehearsal activities for children with
Autism Spectrum Disorder. For older adults, socially assistive
robotics equipped with personalized voice synthesis may support
cognitive training and companionship. The low latency and small
footprint design of the hybrid pipeline make it suitable for such
embedded robotic systems.

6 Conclusion and future work

The paper presents an improved voice cloning mechanism,
which combines an improved GE2E-based Speaker Encoder,
a Tacotron-based Synthesizer, and a WaveRNN-based Vocoder

frontiersin.org


https://doi.org/10.3389/fcomp.2025.1675616
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Mohtad Younus et al.

with stacked GRU gating. The propsoed method can yield
high-quality speech with low resource data requirements by
considering low Mel-Cepstral Distortion (MDC) and high Mean
Opinion Scores (MOS) on different datasets, including LibriSpeech,
VCTK, and collected data. The results shows that the proposed
mechanism has achieved a significantly high efficiency and
quality of speech synthesis while training on data in a low
resource environment.

Furthermore, the proposed scheme is remarkably resistant to
environmental noise and applicable on diverse accents, enabling it
to different speech situations. This is a key feature of applications in
real-world applications where audio input might not be normalized
and cleaned. The proposed voice cloning mechanism presents
various application in educational. For example, it can improve
the accessibility to learners with dyslexia, visual issues, or other
learning disabilities, and promote trust and interaction via applying
familiar voices in personal learning space.

Despite the enhance performance, there are still a number
of application and research areas to refine and enhance their
capabilities, and maximize its impact in learning environment. The
future research might investigate how it can be integrated with low-
cost devices and educational technologies and reach more people
and make voice-assisted learning resources more inclusive.
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